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Abstract. A non-parametric method is applied to quan-
tify residual uncertainty in hydrologic streamflow forecast-
ing. This method acts as a post-processor on deterministic
model forecasts and generates a residual uncertainty distri-
bution. Based on instance-based learning, it uses a k nearest-
neighbour search for similar historical hydrometeorological
conditions to determine uncertainty intervals from a set of
historical errors, i.e. discrepancies between past forecast and
observation. The performance of this method is assessed us-
ing test cases of hydrologic forecasting in two UK rivers: the
Severn and Brue. Forecasts in retrospect were made and their
uncertainties were estimated using kNN resampling and two
alternative uncertainty estimators: quantile regression (QR)
and uncertainty estimation based on local errors and clus-
tering (UNEEC). Results show that kNN uncertainty estima-
tion produces accurate and narrow uncertainty intervals with
good probability coverage. Analysis also shows that the per-
formance of this technique depends on the choice of search
space. Nevertheless, the accuracy and reliability of uncer-
tainty intervals generated using kNN resampling are at least
comparable to those produced by QR and UNEEC. It is con-
cluded that kNN uncertainty estimation is an interesting al-
ternative to other post-processors, like QR and UNEEC, for
estimating forecast uncertainty. Apart from its concept being
simple and well understood, an advantage of this method is
that it is relatively easy to implement.

1 Introduction

Hydrologic forecasts for real-life systems are inevitably un-
certain (Beven and Binley, 1992; Gupta et al., 1998; Refs-
gaard et al., 2007). This, among other things, is due to the
uncertainties in the meteorological forcing, in the modelling
of the hydrologic system response and in the initial state of
the system at the time of forecast. It is well accepted that,
compared to a simple deterministic forecast, additional infor-
mation about the expected degree of accuracy of that fore-
cast is valuable and generally leads to better decision mak-
ing (Krzysztofowicz, 2001). Various techniques have there-
fore been developed to quantify uncertainties associated with
the meteorological model input (van Andel et al., 2013), the
initial state of the model (Li et al., 2009) and the hydro-
logic models themselves (Deletic et al., 2012; Coccia and
Todini, 2011). Frameworks and guidelines have been devel-
oped to incorporate uncertainty analysis of environmental
models effectively in decision making (Arnal et al., 2016;
Reichert et al., 2007; Refsgaard et al., 2007). Broadly, there
are three basic approaches to uncertainty estimation: (i) ex-
plicitly defining a probability model for the system response,
e.g. Todini (2008), (ii) estimation of statistical properties of
the error time series in the post-processing phase of model
forecast, e.g. Dogulu et al. (2015), and (iii) methods using
Monte Carlo sampling of inputs and/or parameters, aimed
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at getting a range of model outputs, e.g. Beven and Bin-
ley (1992) and Freer et al. (1996). Other uncertainty esti-
mation techniques may employ a combination of these ap-
proaches (Del Giudice et al., 2013). Some techniques focus
on one source of uncertainty, such as the model parameter
uncertainty (Benke et al., 2008) or the model structure un-
certainty (Butts et al., 2004), while others focus on com-
bined uncertainties stemming from model parameters, model
structure deficits and inputs (Schoups and Vrugt, 2010; Evin
et al., 2013; Del Giudice et al., 2013). In this context, it is
important to note that apart from estimating uncertainty of
model parameters during calibration, uncertainty estimation
for hydrologic forecasting requires quantification of predic-
tive uncertainty, which includes uncertain system response
in addition to different combinations of model parameters
(Renard et al., 2010; Coccia and Todini, 2011; Dotto et
al., 2012).

In this paper, we will restrict ourselves to the class of un-
certainty estimators called post-processors. These methods
usually do not discriminate between different sources of un-
certainty. They “aggregate” all sources into a so-called resid-
ual uncertainty. Post-processing methods assume the exis-
tence of a single calibrated model with an optimal set of
model parameters, and build a statistical or machine learn-
ing model of the residual uncertainty. Typically, these tech-
niques relate a combination of model inputs and/or outputs
to the model error distribution. Various post-processors have
been developed and applied to hydrologic modelling, such as
a meta-Gaussian error model (Montanari and Brath, 2004),
UNEEC (Solomatine and Shrestha, 2009), quantile regres-
sion (Weerts et al., 2011), and DUMBRAE (Pianosi and
Raso, 2012). Quantile regression (QR) is a relatively straight-
forward post-processing technique that relates the probabil-
ity of residual errors to the model forecast (the predictand)
by a regression model that is derived from historical fore-
casts and observations. QR has been successfully applied for
uncertainty quantification in hydrologic forecasts with vari-
ous modifications (Weerts et al., 2011; Verkade et al., 2013;
Roscoe et al., 2012; López López et al., 2014; Hoss and Fis-
chbeck, 2015), whereas UNEEC involves a machine learn-
ing technique for building a non-linear regression model of
error quantiles (Solomatine and Shrestha, 2009). UNEEC in-
cludes three steps: (1) fuzzy clustering of input data in the
space of “relevant” variables; (2) estimating the probabil-
ity distribution function of residual errors for each cluster
and (3) building a machine learning model (e.g. an artificial
neural network) of the prediction interval for a given prob-
ability (Dogulu et al., 2015). Many other uncertainty esti-
mation techniques, such as DUMBRAE (Pianosi and Raso,
2012), HUP (Krzysztofowicz, 1999), model conditional pro-
cessor (Coccia and Todini, 2011), Bayesian revision (Reg-
giani et al., 2009) and Bayesian model averaging (Raftery et
al., 2005), make explicit assumptions about the nature of the
probability distribution function of error. This is not neces-
sary for QR and UNEEC (López López et al., 2014; Dogulu

et al., 2015). Nevertheless, in QR and UNEEC assumptions
need to be made about the form of the regression function
that is used to calculate the quantiles.

In an attempt to explore the utility of easier-to-implement
post-processing techniques, we employ a simple non-
parametric forecast method for residual uncertainty quan-
tification. This method uses kNN search to learn about the
past residual errors, which avoids having to make explicit
assumptions about the nature of the error distribution and
tuning of distribution parameters. Instance-based learning
has been used in meteorology and hydrology before for re-
sampling of precipitation and streamflows, most notably by
Lall and Sharma (1996), who used the k nearest-neighbour
(kNN) method for resampling of monthly streamflow se-
quences. kNN search has also been used in a non-parametric
simulation method to generate random sequences of daily
weather variables (Rajagopalan and Lall, 1999). They de-
fined a weighting function for probability where the pre-
dictand is resampled from k values. Jules and Buishand
(2003) used nearest-neighbour resampling to generate multi-
site sequences of daily precipitation and temperature in the
Rhine basin. Also, instance-based learning has been used
as a data-driven model for hydrologic forecasting (Soloma-
tine et al., 2008; Solomatine and Ostfeld, 2008). Beckers
et al. (2016) use nearest-neighbour resampling to generate
monthly sequences of climate indices and related precipita-
tion and temperature series for the Columbia River basin.
Specifically in the context of error modelling, a version of
UNEEC that uses kNN instance-based learning as its ba-
sic machine learning technique to predict the residual error
quantiles was compared to the original ANN-based UNEEC
in Shrestha and Solomatine (2008). However, kNN can also
be used without the complicated UNEEC procedure that in-
cludes fuzzy clustering. The application of kNN has recently
been tested for forecast updating by constructing a determin-
istic error prediction model (Akbari and Afshar, 2014). Sim-
ilarly, it has been shown that model errors can be resampled
using kNN, after explicitly accounting for input and param-
eter uncertainty, to generate uncertainty intervals (Sikorska
et al., 2015). In this paper we extend the simplification of
kNN resampling for uncertainty estimation. We present an
application of the kNN method to generate residual uncer-
tainty estimates for a predictand, using a fixed time series of
input and fixed model parameters, and explore whether this
approach, being simpler than many other uncertainty quan-
tification approaches mentioned above, is a useful or even a
better alternative.

To demonstrate its use, we employ a relatively simple con-
figuration of kNN resampling to produce uncertainty inter-
vals for hydrologic forecasting. The next section explains the
method in more detail and describes the validation procedure,
i.e. the performance indicators. In Sect. 3, the method is ap-
plied to two case studies, each with a different system re-
sponse (discharge and water level). The performance of kNN
uncertainty estimation as a function of forecast lead time is
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analysed in the first case study. The second case study is used
to further validate the performance of kNN uncertainty es-
timation and analyse its sensitivity to the choice of search
space and the value of k. Also, the influence of systematic
bias in the hydrologic model on the uncertainty intervals gen-
erated by kNN search is explored in the second case study.
For both case studies, performance indices of kNN resam-
pling are compared to those of QR and UNEEC. And finally
in Sect. 4, we discuss the usability of kNN search as a post-
processor uncertainty estimator in hydrologic forecasting.

2 Method

2.1 kNN error model

The kNN residual uncertainty estimator can be seen as a
zero-order local error quantile model built from a kNN
search. Let us define a vector v in n-dimensional space of
variables (the search space) on which the residual uncertainty
is assumed to be statistically dependent.

v =
[
v1, . . ., vn

]
(1)

The cumulative probability distribution function C of
residual errors at prediction time step t conditioned on v = vt
is defined as

Ct (e|v = vt )= Pt (E ≤ e|v = vt ) , (2)

where P is the probability function and E denotes the ran-
dom variable for residual errors. Residual error is defined
throughout this paper as the difference between the simu-
lated values and the observed values for a hydrologic system
response f , like discharge or water level.

e = fsimluated− fobserved (3)

We are making the assumption of stationarity in time so
that past error distributions are representative of the future:

Ct (e|v = vt )= Cp (e|v = vt ) . (4)

The subscript p denotes historical time series. Therefore Cp
is the cumulative distribution function of residual errors from
the past. In Eq. (4), Cp is being conditioned to the input vari-
able vector at time t . Nevertheless, as we only have single
realizations of the error variable E for each historical point,
we relax the constraint of v = vt . Instead, we assume that the
nearby neighbours of vt in n-dimensional space will have a
similar probability distribution of errors to vt and that these
historical errors are samples from Cp (e|v = vt ). An empiri-
cal probability distribution can thus be constructed using the
kNN historical errors:

Ct (et |v = vt ) ≈ Cp
(
e|rp ≤ rk

)
, (5)

Figure 1. Dependence of error samples on the value of k. For larger
values of k, points are at a greater distance from vt (the predic-
tion step), thus compromising the conditioning of the residual error
probability distribution on vt (Eq. 5).

where rp is the Euclidean distance in n-dimensional space of
input variables.

rp = |vp− vt | =

√√√√[ n∑
i=1

(
vip− v

i
t

)2
]

(6)

vp is the input variable vector of the past data point in the
cloud of such past data points v (Fig. 1) and rk is the distance
to the kth nearest neighbour of vt . The choice of the input
variable vector is a problem in itself since it should include
only the most relevant variables that determine the forecast
uncertainty. In this study, the input variable vector is cho-
sen based on correlation between the candidate variables and
the past errors. If the correlation between the error time se-
ries and a particular candidate variable is relatively high, then
it can be included in the input variable vector space. Other,
more sophisticated methods involving the mutual informa-
tion can be used as well (Fernando et al., 2009). This will be
exemplified in the case studies described in the next section.
To represent the relative importance of input variables used in
the search, dimensions of the input variable vector space can
be suitably weighted in. Also, the model-based methods can
be used where models are built for each considered candidate
input variable set, and the choice is made based on their rela-
tive performance. These, however, were not explored in this
study; it rather focused on the usability of the kNN search
in its most basic implementation for uncertainty quantifica-
tion. Nevertheless, we do demonstrate the sensitivity of the
uncertainty intervals to the choice of input variable vector.

In order to level variables with different magnitudes, they
are normalized. If σi represents the standard deviation of in-
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put variable i calculated using the past data, then

rp =

√√√√√√
 n∑
i=1

(
vip− v

i
t

)2

σ 2
i

. (7)

Once the input variable vector space is decided, the proba-
bility of non-exceedance of a forecast error is calculated em-
pirically by sampling from the conditional error distribution:

Ct (et |v = vt ) ≈ Cp
(
e|rp ≤ rk

)
= j/k, (8)

where j is the rank of value e (for which the probability of
non-exceedance is being computed) in the ascending array
of k error values. The kNN search is thus employed to gen-
erate a sample and to build an empirical error distribution for
this predictive uncertainty quantification. Such a mathemat-
ical description does not employ explicit regression models
for predicting quantiles, which can be seen as a disadvantage
in extrapolating outside available data. Also, as this configu-
ration of kNN used in this research generates residual error
quantiles, which capture the mismatch between measurement
values and simulated values, the uncertainty in observational
data is not considered. The generated quantiles are aimed at
capturing the measured system response and do not attempt
to capture the true response of the hydrologic system.

As one would expect, due to the nature of our sampling
approximation (Eq. 8), the number of nearest neighbours, k,
will affect the empirical conditional probability distribution
of errors. If k is very large, many data points that are quite
distant from vt (Fig. 1) will be selected and the condition-
ing on the current forecast situation will not be valid. Large
values of k will thus yield error distributions with larger un-
certainty intervals – resembling the marginal error distribu-
tion. If k is small, the set of k errors will be small and subject
to sampling error, so this set will not adequately represent
the uncertainty distribution at vt . The tail of a distribution is
more prone to sampling errors compared to its mean. Thus,
to attain an acceptable degree of convergence, many more
samples are required for quantiles corresponding to bigger
prediction intervals (van der Vaart, 1998). For improved per-
formance, the value of k can be subject to optimization of
some cost function: the optimal value of k could be the one
that enables a reasonable estimate of the uncertainty quan-
tiles and additionally we may require that the sensitivity of
the error distribution to k is small. In this study, we carry out
such optimization using quite a simple heuristic guideline –
the value of k is varied until the probability distribution of
errors stabilizes and becomes less sensitive to the value of k
for a few model predictions. We also demonstrate the sen-
sitivity of uncertainty intervals to the value of k in one of
the case studies. The choice of this relatively simple proce-
dure for error quantile generation using kNN resampling is
a reasonable starting point to assess its potential for residual
uncertainty. This study explores the potential of uncertainty

estimation using kNN in as simple a way as possible, and
then compares its performance to two other residual uncer-
tainty estimators. More advanced application of kNN, for ex-
ample using fuzzy weights and kNN sampling to assign pre-
diction intervals (Shrestha and Solomatine, 2008) or through
explicit consideration of uncertainty in parameter and input
by sampling them from their distributions, has been success-
fully shown (Sikorska et al., 2015).

To summarize, the steps for uncertainty quantification us-
ing kNN resampling are as follows.

1. Compose the input variable vector space (v) on which
uncertainty will be conditioned. Correlation analysis
can help find the most relevant variables.

2. Set the number of neighbours k.

3. For a forecast at prediction time step t , identify the set
of k nearest neighbours to the input vector vt . This set
represents the hindcasts (forecasts in retrospect) most
similar to vt .

4. Use the residual errors from these k points to build
an empirical error distribution for the forecast at time
step t .

5. Finally, identify the errors corresponding to the required
quantiles (probabilities of non-exceedance) from this
empirical distribution (in this paper, we use the 5–95
and 25–75 % quantiles).

2.2 Validation methods

Three statistical measures have been employed in this
study to check the effectiveness of uncertainty estimation
techniques, namely prediction interval coverage probabil-
ity (PICPPI), the mean prediction interval (MPIPI) (see e.g.
Shrestha and Solomatine, 2008; Dogulu et al., 2015) and the
Alpha Index (Renard et al., 2010). PICPPI represents the per-
centage of observations (C) covered by a prediction interval
(PI) corresponding to a certain probability of occurrence (in
our case 90 and 50 %).

PICPPI =
Nin

Nobs
· 100%, (9)

whereNin is the number of observations located within the PI
and Nobs is the total number of observations. These metrics
are calculated using the following equations:

PICP90 =
1
n

n∑
i=1

C90 · 100%, PICP50 =
1
n

n∑
i=1

C50 · 100%, (10)

C90 =

{
1, if qi, 0.05 ≤ qi ≤ qi, 0.95
0, else

}
,

C50 =

{
1, if qi, 0.25 ≤ qi ≤ qi, 0.75
0, else

}
, (11)
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where qi, 0.95 and qi, 0.05 are values with 95 and 5 % proba-
bilities of non-exceedance at time i. Thus the region bound
within these two values will have a confidence interval of
90 %. Similarly, qi, 0.75 and qi, 0.25 represent the boundaries
for 50 % C. The MPI is the average width of the confi-
dence intervals corresponding to a particular probability. It
is a measure of the magnitude of the uncertainty.

MPI90 =
1
n

n∑
i=1

(
qi, 0.95− qi, 0.05

)
MPI50 =

1
n

n∑
i=1

(
qi, 0.75− qi, 0.25

)
(12)

We also quantify the reliability of the predicted error quan-
tiles by comparing it to the observed error quantiles. The mis-
match between the observed (qobs, j ) and predicted (j/100)
error quantiles can be summarized by the Alpha Index (α).

α′ =
1

100

100∑
j=1

∣∣qobs, j − j/100
∣∣ (13)

α = 1− 2α′ (14)

There have been discussions whether an isolated verifica-
tion index can capture all the aspects that make a probabilis-
tic forecast good or bad (Laio and Tamea, 2007). The choice
of a verification index for an uncertainty estimation tech-
nique should also be dependent on the purpose of hydrologic
forecast. For example, Coccia and Todini (2011) evaluate the
performance of model conditional processors for flood fore-
casting using the predicted and observed probabilities of ex-
ceedance over a threshold. Also, in their study predicted error
quantiles are compared to observed error quantiles. López
López et al. (2014) and Dogulu et al. (2015) use PICP and
MPI, among other verification measures, to access the per-
formance of QR and UNEEC. This study will limit the com-
parison of kNN resampling with other techniques to PICP
and MPI only, which give a reasonable assessment of perfor-
mance. Nevertheless, it does not preclude the possibility that
the uncertainty estimation techniques perform differently if
evaluated using other indices.

3 Case studies

The performance of kNN resampling was evaluated by ap-
plying the technique to hydrological forecasting for several
catchments in two different parts of England. The two case
studies provide two different hydrologic conditions for test-
ing and include different models for prediction. Also, differ-
ent kinds of system responses are being predicted in the two
case studies – water level and discharge. The accuracy of the
quantified prediction intervals was deduced by using valida-
tion data sets. Also, the first case study was used to evaluate
the impact of changing lead time on uncertainty of hydro-
logic models and its quantification using kNN resampling.

0 20 40 km

Catchment
Urban area

Forecasting location
River stream

Figure 2. Upper Severn subcatchments with gauging stations (from
López López et al., 2014).

3.1 Upper Severn catchment

3.1.1 Catchment description

The Upper Severn region is located in the Midlands, UK
(Fig. 2). The River Severn, with a total length of 354 km,
is the longest river in the UK. Its course acts as a geographic
delineation between England and Wales, finally draining into
the Bristol Channel. The overall River Severn catchment area
is 10 459 km2. Around 2.3 million people live in this region.
The area is predominantly rural, but there are also a num-
ber of highly urbanized parts. The area covering the upper
reaches of the River Severn, from its source on Plynlimon to
its confluence with the River Perry upstream of Shrewsbury
in Shropshire, is called the Upper Severn catchment. The Up-
per Severn catchment is predominantly hilly. It is dominated
on the western edge by the Cambrian Mountains and a sec-
tion of Snowdonia National Park (River Severn CFMP; EA,
2009).

The Severn catchment has a diverse geology. The head-
waters of the river rise on Silurian mudstones, siltstones and
grits and flow eastwards over these same rock formations.
These rock formations do not allow water to flow easily
through them. Therefore they are classified as non-aquifers
with only limited potential for groundwater abstraction. Fur-
ther west, in the Middle Severn section, the River Severn en-
counters sandstones, which are classified as a major aquifer
and are highly permeable, highly productive and able to sup-
port large groundwater abstractions (River Severn CFMP;
EA, 2009). The climate of the Severn catchment is gener-
ally temperate, experiencing modest to high precipitation de-
pending on topography. Welsh mountains can receive over
2500 mm of precipitation per annum, whereas the rest of the
catchment receives rainfall similar to the UK average – less
than 700 mm per annum. The test forecast locations used in
this study are Llanerfyl, Llanyblodwel and Yeaton. Table 1
lists the basin and hydrological information for these sub-
catchments (López López et al., 2014).

www.hydrol-earth-syst-sci.net/21/4021/2017/ Hydrol. Earth Syst. Sci., 21, 4021–4036, 2017
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Table 1. Basin information for Upper Severn subcatchments (EA,
2013; Marsh and Hannaford, 2008).

Catchment Area Mean Mean Max
(km2) annual flow water

rain (m3 s−1) level
(mm) (m)

Llanerfyl 125 1077 > 10 3.59
Llanyblodwel 229 1267 6.58 2.68
Yeaton 180.8 767 1.6 1.13

3.1.2 Experimental set-up

The flood forecasting system for the River Severn is orga-
nized in a sequential manner, being composed of a number of
separate systems that are effectively linked. This forecasting
system works with a high degree of automation and efforts
have been made to involve a minimum amount of human in-
tervention. The UK Environment Agency uses the Midlands
Flood Forecasting System (MFFS) to do flood forecasting
and to help in warning operation. The MFFS in turn is based
on the Delft-FEWS (Flood Early Warning System) platform
(Werner et al., 2013). Within the MFFS, there are lumped nu-
merical models for rainfall–runoff (MCRM; Bailey and Dob-
son, 1981) and models for hydrologic (DODO; Wallingford,
1994) and hydrodynamic routing (ISIS; Wallingford, 1997).
The rainfall input for the MFFS is acquired from ground
measurements via rain gauges, from radar measurements or
from numerical weather prediction data. The MFFS predicts
ahead in time the response of the Upper Severn subcatch-
ments but, as expected, the quality of forecast deteriorates
with increasing lead time.

To do uncertainty analysis for the MFFS, hindcasting or
reforecasting is done and then results are compared to the
observed data. All the input time series used for hindcasting
are taken from measured data. In this study, the reforecasting
period was kept equal to the one employed in the studies of
López López et al. (2014) and Dogulu et al. (2015). The cho-
sen period is from 1 January 2006 to 7 March 2013. Data in
the period till 6 March 2007 are used for the model spin-up.
The remaining period is used for the calibration and valida-
tion of the uncertainty estimation techniques. Forecasts are
made on a 12-hourly basis – at 08:00 and 20:00 daily, up to
a lead time of 48 h. kNN resampling was applied for fore-
casts at 10 different lead times: 1, 3, 6, 9, 12, 18, 30, 36, 42,
and 48 h. To choose an input variable vector for kNN resam-
pling, correlation analysis was done between residual error
and contenders for input variable vector space, namely sim-
ulated water level (H sim), measured water level (H obs) and
residual error (Eobs) from various time steps t . The analysis
was done to assist in a manual selection of input variable
vectors. The correlation between residual error and water
level reduces fast with time lag between the two time series.

Therefore it is enough to choose relatively simple and small-
dimensional input variable vector spaces. For lead times, l,
up to 6 h we chose

v =
[
H sim
t ,H obs

t−l ,e
obs
t−l

]
. (15)

For higher lead times, uncertainty has only been conditioned
onH sim

t as the residual error becomes less and less correlated
with variable values as measured several hours behind the
prediction time.

v =
[
H sim
t

]
(16)

Ninety-nine values of residual errors were sampled from
the nearest neighbourhood to generate an empirical distri-
bution at each prediction step. This allowed us to get the
“resolution” of 1 percentile in the generated empirical dis-
tribution. To develop confidence in the chosen value of k, we
checked for a few prediction steps how sensitive the gener-
ated empirical distribution is to the value of k. Four different
instances of vt were chosen. Each instance represents a pre-
diction step in the input variable vector space (the red circle
in Fig. 1), with different hydrologic conditions. The plots of
the cumulative mean square difference between probability
density functions (pdfs) of varying k were generated. Cumu-
lative mean square difference (Eq. 17) serves as an index to
show how much the empirical pdfs change with changing k.
We get a decreasing slope with increasing k. It shows that the
pdfs become almost identical for values of k around 100. If
Pki (e) is the probability density for a residual error e calcu-
lated through ki nearest neighbours using kNN resampling,
for probability functions corresponding to discrete bin size
1e, the cumulative difference is defined as

cumulative difference

=

ki=k∑
ki=10

last e bin∑
first e bin

[
1e ·Pki (e)−1e ·Pki−1 (e)

]2
. (17)

The various values of ki that were tested are −10, 30, 50,
70, 90, 100, 110, 130 and 150. Using the information from
Fig. 3, a value of k = 99 does not seem to be heavily affected
by sampling errors. Nevertheless, it is not a mathematically
calibrated value of k and therefore is likely to be sub-optimal.
However, it should still be able to provide reasonably repre-
sentative samples from the error distribution, as is suggested
by Fig. 3.

3.1.3 Results

Figure 4 shows two hydrographs for the same event, where
model predictions were made at different lead times. From
the graph of lead time 48 h it is evident that the error quan-
tiles that kNN resampling produces are not forced to have
zero mean. Therefore the model prediction can sometimes lie
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Figure 3. Dependence of the residual error probability function on
the value of k for three didactic values of vt (in each row in this
plot). The probability is computed for error bins of size 0.005 units
each. The graphs show that for k from around 90 to 120, the corre-
sponding empirical error distributions become almost identical.

outside the predicted quantiles. This is because kNN resam-
pling learns from past instances where the model has consis-
tently underpredicted or overpredicted the flow, so it corrects
for this bias. The hydrographs capture the low flows and the
peaks well. It can also be seen that for high flows the errors
are usually higher than for medium and low flows. The resid-
ual error distribution is thus heteroscedastic, i.e. the variance
depends on the magnitude of the predicted flow. The auto-
correlation can be checked by plotting errors versus time,
whereas performance of an error model with regard to het-
eroscedasticity can be estimated by plotting reliability dia-
grams for different magnitudes of flow, which would mean
different water levels in this case.

The plotting of error time series (Fig. 5) for various lead
times shows some recurring trends across all three subcatch-
ments. The errors are small for small lead time forecasts and
the spread of error time series increases with increasing lead
time. Moreover, the errors do not look autocorrelated for
smaller lead times, whereas for the higher lead times auto-
correlation becomes more prominent. This can be ascribed
to the memory of the hydrologic system. If the system re-
sponse is higher than what the model simulates for a particu-
lar lead time, then the system response is likely to be higher
for the next time step as well. As the errors become larger,
they tend to lose their independence property. This is cap-
tured by the error samples generated by kNN resampling as
well. The rate at which autocorrelation deteriorates for ob-

Table 2. Alpha Index (α) for high flows corresponding to different
lead times of Upper Severn subcatchments.

Lead time (h) 1 12 24 48

Llanerfyl 0.92 0.87 0.79 0.64
Llanyblodwel 0.93 0.95 0.93 0.90
Yeaton 0.97 0.94 0.94 0.75

served residual errors corresponds well to the kNN resam-
pling error samples’ autocorrelation. It can be seen that kNN
resampling preserves the autocorrelation in the error time se-
ries without using an autoregressive model.

To check the performance of kNN resampling for various
flow magnitudes, the simulation values were divided into low
and high flows – the lowest and highest 10 % of water levels
simulated in the validation phase respectively. The reliability
diagrams (Fig. 6) show that the overall performance of error
quantiles for all water levels is good for low and medium lead
times. The reliability decreases with high lead times (24 h
and above). The reliability plots show that kNN resampling
performs better for high flows compared to low flows, even
for higher lead times. For low flows and high lead times, the
forecast probability of non-exceedance is higher than the ob-
served relative frequency. Nevertheless, from 0.90 probabil-
ity of non-exceedance and above, the reliability curve comes
back to the desired 45◦ line. For flood forecasting it is impor-
tant to model the high and medium flows well. kNN resam-
pling delivers quite reliable quantiles for such flow regimes.
The deteriorating model performance with higher lead times
gets reflected in the performance of kNN resampling quin-
tiles as well.

To assess the performance of kNN resampling relative to
other established post-processor uncertainty estimation tech-
niques, comparisons with QR and UNEEC have been carried
out. The results for QR have been taken from López López
et al. (2014) and the results for UNEEC from Dogulu et
al. (2015). QR results for uncertainty estimation were avail-
able for all the lead times as done using kNN resampling
and, from UNEEC, only for lead times of 1, 3, 6, 9, 12, and
24 h. Values of PICP and MPI are shown in Fig. 7, together
with results from UNEEC and QR. The Alpha Index (α) is
reported for several lead times in Table 2. As expected, the
MPI of all the uncertainty estimation techniques increases
with increasing lead time. Comparison between kNN resam-
pling and QR has been made for three locations and 10 lead
times in the validation period. Model simulations were run
two times each day. Verification indices for uncertainty anal-
ysis were calculated separately for each lead time and each
location. Considering the 90 and 50 % quantiles as two pre-
diction intervals, this allowed for the evaluation of PICP and
MPI 60 times (Fig. 7). kNN resampling has a higher PICP in
67 % of the cases and a smaller MPI for 73 % of the cases.
A comparison between kNN resampling and UNEEC was
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Figure 4. Prediction intervals for the Yeaton catchment using kNN resampling. The hydrographs are shown for the two different lead times.
The 50 % prediction interval is the interval between the 25 and 75 % quantiles of residual error, and the 90 % quantile is the interval between
the 5 and 95 % quantiles. The reporting time interval is 12 h.

made for three locations and five lead times for the valida-
tion. For each location and each lead time, the 90 and 50 %
quantiles were generated, which allowed for the evaluation
of PICP and MPI 30 times (Fig. 7). The PICP of kNN resam-
pling is higher in 60 % of the cases and the MPI is smaller
in 36 % of the cases. Based on these results we concluded
that, for this case study, kNN resampling generally produces
narrower confidence bands and provides a better coverage of
the probability distribution than the other methods in the ma-
jority of forecasts, especially showing better performance for
the larger lead times.

3.2 River Brue

3.2.1 Catchment description

The River Brue, located in the south-west of England, has a
history of severe flooding. The test forecast location used in
this study is Lovington, where the upstream catchment area is
135 km2 (Fig. 8). The catchment is predominantly rural and
the soil consists of clay and sand. This kind of soil and the
modest relief give rise to a slowly responsive flow regime.
The mean annual rainfall in the catchment is 867 mm; the
mean river flow is 1.92 m3 s−1 and has a maximum flow of
39.58 m3 s−1. This catchment has been extensively used for
research on weather radar, quantitative precipitation forecast-
ing and hydrologic modelling.

3.2.2 Experimental set-up

For the Brue catchment the simplified version of the HBV
rainfall–runoff model has been used (Bergström, 1976). The
HBV-96 model is a lumped conceptual model (Lindström et
al., 1997). Like most other conceptual models, HBV consists
of subroutines for snow accumulation and melt, soil moisture
accounting and surface runoff, and employs a simple routing
scheme. The input for the HBV model consists of precipi-
tation (basin average), air temperature and potential evapo-
transpiration (estimated by the modified Penman method us-
ing automatic weather data available). Historical input data
are available for a period of 1994–1996. Predictions are only
made for 1 h lead time. Uncertainty analysis is done for a
chosen period from 24 June 1994 to 31 May 1996. Hindcasts
were made on a daily basis, using a warm state from a histor-
ical run. The hindcasts were split into calibration and valida-
tion set at 24 June 1995 for the uncertainty estimation tech-
niques. The calibration data set was used to calibrate (train)
UNEEC and QR, and for the resampling of errors using the
kNN algorithm. The resampled errors were used to estimate
prediction intervals for the predictions from the validation
data set. Each of the two data sets represents almost a full
year of observations. Three input variable vectors were cho-
sen based on the results of correlation analysis, from sim-
ple to complex. This allows us to study the dependence on
the choice of search space. Input variable vector (ivv) 3 for
kNN resampling and UNEEC is the same for this compari-
son, whereas QR only uses Qsim (Dogulu et al., 2015). The
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Figure 5. Plots of error samples and their autocorrelation (ACF). The error time series generated using kNN resampling are in red. Black
circles represent the observed errors, i.e. obtained after measuring water level and comparing it to the simulated water level. M stands for
measured and S for simulated. The lead times for each row are (a) 3 h, (b) 24 h and (c) 48 h.
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Figure 6. Reliability diagram from Upper Severn subcatchments
for (a) low, (b) high and (c) all flows (Llanerfyl: blue; Llanyblod-
wel: green; Yeaton: red).

Figure 7. PICP and MPI comparison for Upper Severn subcatch-
ments – (a) Llanerfyl, (b) Llanyblodwel and (c) Yeaton.

three input variable vectors used are

v(ivv1) =
[
Qsim
t

]
, (18)

v(ivv2) =
[
Qsim
t ,eobs

t−1

]
, (19)

v(ivv3) =
[
Robs
t−8,R

obs
t−9,R

obs
t−10,Q

obs
t−1,Q

obs
t−2,Q

obs
t−3,

eobs
t−1,e

obs
t−2

]
, (20)

where R is the effective rainfall, Q is the discharge and e
is the residual error. Considering t as the prediction time,
then the subscripts of the various input variables represent
the time and the superscripts sim and obs mean they are sim-
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Figure 8. Brue catchment (from Shrestha and Solomatine, 2008).

ulated and observed values respectively. The number of near-
est neighbours was chosen to be 99 and 199, to analyse its
influence on uncertainty quantification. Uncertainty analysis
was done for a calibrated HBV model as well as a model with
a unit systematic bias. The bias was introduced to the simu-
lation results of the calibrated model by simple addition. The
aim of a biased model for uncertainty quantification using
kNN resampling is to assess the performance of kNN resam-
pling when the residuals are not zero mean.

3.2.3 Results

kNN resampling was applied to a single historical simulation
and compared to observations. The simulated hydrographs
for the highest discharge event with 50 and 90 % predic-
tion intervals are shown in Fig. 9. The residual distribution
of kNN resampling is generally a non-zero mean. Therefore
we see that the prediction intervals may sometimes deviate
from the deterministic model prediction quite significantly.
The ability of kNN resampling to search for similar hydro-
logic conditions, like rainfall, and discharge in the past, and
to learn from the residuals, allows it to make more represen-
tative error distributions. For example, in Fig. 9, the falling
limb of the hydrograph shows that the prediction band gen-
erated by kNN resampling captures the observed flow for in-
put variable vectors 2 and 3, even though the model shows
a noticeable mismatch with the measurements. This can be
explained by considering the history of errors that the model
made during such hydrologic conditions in the past. And as
kNN resampling learns that the model consistently underes-
timates in such cases, the corresponding error distribution
corrects for this bias. The results of the PICP and MPI are
shown in Table 3 together with results from UNEEC and QR
(Dogulu et al., 2015). As can be seen from the table, kNN re-
sampling’s performance is comparable to that of UNEEC and

QR for this case study. The prediction intervals generated by
kNN resampling are smaller, compared to the other two un-
certainty estimation techniques, while the coverage probabil-
ity is similar. It indicates that kNN resampling is able to learn
well from past data and condition the probability of residual
errors well. The Alpha Index for the validation phase is also
high (0.96). We also notice that three different input variable
vectors show different degrees of performance (Fig. 9). The
past errors, eobs

t−1, seem to be informative in this case, provid-
ing very narrow conditional error probabilities.

Apart from evaluating the usability of kNN resampling for
calibrated models, the performance of kNN resampling quan-
tiles generated by kNN resampling for a model with system-
atic bias was also checked. Figure 10 shows that the perfor-
mance of kNN resampling does not diminish under system-
atic bias. The reliability of the generated quantiles remains
almost unfazed. As a systematic bias will not affect the au-
tocorrelation structure of the residual errors, the autocorre-
lation of error samples generated through kNN resampling
also remains unchanged. Nevertheless, we see a shift in the
mean of the sample time series, which is roughly equal to
unity. The reliability of quantiles generated using kNN re-
sampling for high flows (highest 10 % in the validation pe-
riod) is poorer than for all flows. The invariance of kNN re-
sampling performance to model bias makes it a robust post-
processor technique; however, unlike in the case of Upper
Severn subcatchments, the technique’s performance dimin-
ishes for high flows.

4 Discussion and conclusions

The application of kNN resampling to two case studies shows
that the forecast uncertainty intervals are relatively narrow
and still capture the observations well. The expected in-
crease in uncertainty for longer lead times is also reproduced
well and the probability coverage of kNN resampling re-
mains good, as verified from historical observations. This is
in accordance with previous research (Sikorska et al., 2015).
The error samples generated by kNN resampling reproduce
two important characteristics of residual errors in hydro-
logic models, namely autocorrelation and heteroscedasticity.
Also, for applications to flood modelling, the high flows are
most important and the uncertainty quantification by kNN re-
sampling for the Upper Severn shows reasonable reliability
for this high-flow regime. For the Brue, the performance is
poorer. This can be attributed to the inadequacy of represen-
tative high flows in the calibration phase in combination with
the choice of the input variable vector. The highest flow in
calibration time series is 15.4 m3 s−1, whereas in validation
time series it is 29.9 m3 s−1. It is also shown that the tech-
nique is generally robust to the performance of the underly-
ing deterministic model. If the model has systematic biases,
kNN resampling learns from the past errors of the model and
recreates the systematic bias in the empirical error distribu-
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Figure 9. The 50 and 90 % prediction intervals for the Brue catchment using kNN resampling. The hydrographs are shown for two different
k values (99, 199) and three different input variable vectors given by (a) Eq. (18), (b) Eq. (19) and (c) Eq. (20). This is the largest event in the
validation time series. (The 50 % prediction interval is the interval between the 25 and 75 % quantiles of residual error, and the 90 % quantile
is the interval between the 5 and 95 % quantiles. MPI and PICP correspond to the whole validation time series.)

Table 3. Performance of various uncertainty estimation techniques for the Brue catchment. For kNN resampling and UNEEC the same input
variable vector is used (Eq. 20). For QR only Qsim is used.

PICP MPI
(expected 90 %) (m3 s−1)

UNEEC QR kNN UNEEC QR kNN

Calibration 91.19 90.00 86.3 1.58 1.69 0.51
Validation 88.29 82.33 84.42 1.37 1.39 0.21

tion mean, thus maintaining the performance of prediction
intervals. Our results on systematic error correction by kNN
resampling substantiate the findings from previous research
on forecast updating using kNN (Akbari and Afshar, 2014).

These findings from this study are confirmed by three quan-
titative indicators of forecast reliability. The comparison of
kNN resampling uncertainty estimates to those generated by
QR and UNEEC shows that the mean prediction intervals
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Figure 10. Effect on reliability of quantiles and autocorrelation of error samples on adding a systematic bias to the model artificially. kNN
samples, generated using input variable vector 3 (Eq. 20), are plotted in red, and observed errors in black circles. M stands for measured and
S for simulated.

(MPIs) generated by kNN resampling are generally smaller.
A significantly smaller MPI using kNN resampling, as in the
case of the Brue, is in part due to the conditioning on in-
put variable vectors as compared to UNEEC and QR. As
the values of k in this study have been restricted to 99 and
199, the error distribution tends to be much narrower than
the marginal error distribution. The conditional distribution
will turn into a marginal distribution when the number of k is
equal to the time steps in the calibration time series. A more
quantitative dependence on the k value and MPI will need
further research. Apart from a narrow MPI, we also find that
kNN resampling is generally able to capture the expected ra-
tio of observations within its intervals (PICP) most of the
time, or at least be close to the expected value.

As in the case of all other data-driven methods, the ap-
plicability of kNN resampling depends on the availability of
sufficiently long and representative historical forecasts and
observations. The historical series should include several oc-
currences of forecasting situations that are similar to the cur-
rent situation. In extreme cases, the kind of kNN search pro-
posed here will select the most similar historical situations
which may or may not be representative of the current situ-
ation. In contrast to the methods like QR and UNEEC that
build explicit predictive regression models which are able to
extrapolate for the data which are beyond the limits of the

calibration (training set), kNN resampling does not extrap-
olate. This could be seen as a disadvantage. On the other
hand, however, the extrapolation that is done by regression
techniques could also be seen as doubtful. It is not a given
that the most extreme historical situations are less represen-
tative of the uncertainty of an extremely high flow than an
extrapolated result. The results in this paper show that kNN
resampling has a good or poor reliability for the highest val-
ues in the validation set, depending on the case study and the
choice of input variable vector. Due to the non-parametric
nature of kNN resampling, the increasing variance of resid-
ual errors for higher values of predictands is generally ade-
quately taken into account.

As kNN resampling, like other post-processors, learns
about the residual error process from the past, the histori-
cal records should be representative of the current forecast
conditions. In changing conditions, this may not be true.
Changing conditions may be caused, for example, by climate
change or more local changes in the catchment like defor-
estation and dam building. This is a common problem for all
data-driven statistical estimators and is not unique to kNN
resampling. Care needs to be taken to use data time series
which do not outright violate the assumptions regarding the
invariance of catchment and climate.
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One of the few calibration parameters of kNN resampling
is the number of nearest neighbours k. In this study, k has
been chosen by a simple heuristic technique. For optimal
performance, it would be advisable to calibrate k for each
application in a more systematic way. We do show for Brue
that the sensitivity of the uncertainty intervals to the value of
k is not significant, when changing it from 99 to 199. How-
ever, we also expect that the optimal value of k will depend
on the length of the historical data series and on the uncer-
tainty quantiles of interest. In the context of search space, in
this research, the input variable vector has been chosen by
correlation analysis. It can be recommended to use more so-
phisticated procedures for real-life applications, which can
capture the non-linear dependence between the error process
and input variable vector candidates. Improvements in per-
formance can possibly be achieved by seeking a better set
of input variables for each forecast location and lead time of
interest.

In conclusion, kNN resampling can be considered a rela-
tively simple machine learning technique to predict hydro-
logic residual uncertainty. The errors from the similar hy-
drologic conditions in the past are used as samples for the
residual error probability distribution and the samples are
collected by a k nearest-neighbour search. The application
of this technique to case studies Brue and Upper Severn sub-
catchments has shown promising results. In comparison to
many other data-driven techniques, kNN resampling has the
advantage of avoiding assumptions about the nature of the
residual error distribution: the instance-based learning ap-
proach is non-parametric and non-regressive and requires lit-
tle calibration. The method was shown to be able to quan-
tify hydrologic uncertainty to an accuracy that is compa-
rable to other techniques like QR and UNEEC. Given the
relatively small effort in setting up the method, the perfor-
mance of kNN resampling in uncertainty quantification is
more than acceptable when compared to other post-processor
error models.

5 User interface

A website has been developed as part of this research
to help generate uncertainty intervals using kNN resam-
pling for a given time series of predictions. Address: www.
modeluncertainty.com.

Data availability. Data are available upon request.
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