
 
 

Delft University of Technology

Adaptive Activation Functions for Deep Learning-based Power Flow Analysis

Kaseb, Zeynab; Xiang, Yu; Palensky, Peter; Vergara, Pedro P.

DOI
10.1109/ISGTEUROPE56780.2023.10407913
Publication date
2024
Document Version
Final published version
Published in
Proceedings of 2023 IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2023

Citation (APA)
Kaseb, Z., Xiang, Y., Palensky, P., & Vergara, P. P. (2024). Adaptive Activation Functions for Deep
Learning-based Power Flow Analysis. In Proceedings of 2023 IEEE PES Innovative Smart Grid
Technologies Europe, ISGT EUROPE 2023 IEEE.
https://doi.org/10.1109/ISGTEUROPE56780.2023.10407913
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISGTEUROPE56780.2023.10407913
https://doi.org/10.1109/ISGTEUROPE56780.2023.10407913


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Adaptive Activation Functions for Deep
Learning-based Power Flow Analysis

Zeynab Kaseb1, Yu Xiang2, Peter Palensky1, Pedro P. Vergara1
1Intelligent Electrical Power Grids, Delft University of Technology, The Netherlands

2Alliander N.V., The Netherlands
Emails: Z.Kaseb@tudelft.nl, Tony.Xiang@alliander.com,

P.Palensky@tudelft.nl, P.P.VergaraBarrios@tudelft.nl

Abstract—This paper investigates the impact of adaptive ac-
tivation functions on deep learning-based power flow analysis.
Specifically, it compares four adaptive activation functions with
state-of-the-art activation functions, i.e., ReLU, LeakyReLU,
Sigmoid, and Tanh, in terms of loss function error, convergence
speed, and learning process stability, using a real-world distribu-
tion network dataset. Results indicate that the proposed adaptive
activation functions improve learning capability over state-of-
the-art activation functions. Notably, adaptive ReLU activation
shows the most improved learning process, with convergence
speed up to twice as fast as ReLU. Adaptive Sigmoid and Tanh
activation functions exhibit superior performance in terms of
loss function error, outperforming ReLU and LeakyReLU by
up to two orders of magnitude. Furthermore, the proposed
adaptive activation functions lead to smoother and more stable
learning processes, especially during early training, improving
convergence. The practical implications of this study include the
potential application of these adaptive activation functions in
distribution network modeling, forecasting, and control, leading
to more accurate and reliable power system operation.

Index Terms—Machine learning, model-based neural net-
works, energy systems, power flow, distribution networks.

I. INTRODUCTION

Ensuring the safe and efficient operation of distribution
networks requires the fundamental task of power flow anal-
ysis. Traditional techniques for power flow analysis rely on
iterative numerical algorithms, which can be computationally
expensive for large-scale distribution networks, or inaccurate
under certain circumstances (e.g., [1], [2]). In recent years,
deep learning has shown great potential in this field, with
successful applications to power flow analysis and modeling
(e.g., [3]), optimal power flow (e.g., [4]), and unit commitment
(e.g., [5]). By training deep neural networks on large datasets,
it becomes possible to learn highly complex nonlinear relation-
ships between input and output variables. As a result, accurate
and fast solutions for power flow formulations can be obtained
[6].

The trainable parameters of deep neural networks depend
heavily on the derivative of the loss function. Likewise, the
derivative of the loss function depends on the derivative of
the activation function. Thus, the activation functions play a

Copyright notice: 979-8-3503-9678-2/23/31.00©2023 European Union

crucial role in introducing non-linearity to the neural network
model, which ultimately increases their generalization capabil-
ities [7]. The speed of convergence, avoidance of local minima,
generalization to new data, and ability to capture complex re-
lationships between input and output variables, among others,
are all affected by the type of activation function. Therefore,
choosing the right activation function is crucial in achieving
high accuracy and efficiency in deep learning applications,
such as distribution networks analysis and modeling [8].

While traditional activation functions such as ReLU,
LeakyReLU, Sigmoid, and Tanh have been widely used in
deep learning models, they have limitations that can neg-
atively affect model performance. For example, ReLU and
LeakyReLU suffer from the ”dying ReLU” problem, where
a large portion of neurons may become inactive and output
zero during training. This can slow down or even prevent
convergence and decrease the model’s expressive power [9].
Sigmoid and Tanh can suffer from vanishing gradient prob-
lems, which can make it difficult to train deep neural networks
[10]. Additionally, these traditional activation functions have
fixed functional forms that cannot adapt to the data distribution
or the training process [7].

To address these limitations, adaptive activation functions
have been proposed to improve the learning process. These
functions can dynamically adjust their shape based on the
input data distribution, which allows them to better capture
complex relationships between input and output variables. By
adaptively modifying their functional form, these activation
functions can mitigate the vanishing and exploding gradient
problems and improve the model’s stability and convergence.
As a result, exploring adaptive activation functions has become
an active area of research in deep learning, with promising
results in various applications [11]–[13].

To the best of the authors’ knowledge, the impact of
adaptive activation functions on deep learning-based power
flow analysis has not yet been systematically investigated. The
significance of conducting a systematic investigation lies in the
potential to provide valuable insights into the effectiveness of
adaptive activation functions in enhancing the accuracy and ef-
ficiency of deep learning-based power flow analysis, which, in
turn, contributes to the safe and stable operation of distribution
networks. In this paper, therefore, the focus is on the impact
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of four adaptive activation functions on the loss function error,
convergence speed, and learning process stability of deep
learning-based power flow analysis. The proposed activation
functions are then systematically compared with the state-of-
the-art activation functions that are conventionally used for
power flow applications, i.e., ReLU, LeakyReLU, Sigmoid,
and Tanh.

II. DEEP LEARNING-BASED POWER FLOW ANALYSIS

A. Power Flow Formulation

The power flow analysis is a fundamental task in distribu-
tion network modeling, which aims to calculate the voltage
magnitude and phase angle at each bus of the network. In this
study, the power flow analysis is performed based on the AC
power flow equations, which are a set of nonlinear equations
that relate the complex voltage, current, and power at each
bus of the network. The AC power flow equations can be
formulated as follows:

pi =

n∑
j=1

(vivj(gij cos δij + bij sin δij)) (1)

qi =

n∑
j=1

(vivj(gij sin δij − bij cos δij)) (2)

where i and j are the indices of the buses, n is the total number
of buses in the network, vi and δi are the magnitude and phase
angle of the complex voltage at bus i, pi and qi are the active
and reactive power injection at bus i, gij and bij are the real
and imaginary parts of the admittance between buses i and j,
and δij = δi − δj is the phase angle difference between the
voltages at buses i and j.

The power flow equations represent the physical laws that
govern the flow of power in a network and are typically
solved iteratively until a convergence criterion is met. In this
study, the Newton-Raphson method is used to solve the power
flow equations. This method is widely used in power system
analysis due to its efficiency and robustness in handling both
radial and meshed networks (e.g., [14], [15]).

B. Neural Network Architecture

The neural network architecture is designed to accurately
capture the nonlinear relationship between the input and output
variables while preventing overfitting and ensuring the stability
of the learning process. Two fully-connected neural networks,
NN |v| and NNδ , are developed to approximate the voltage
magnitude and voltage angle of all the buses involved in a
distribution network, respectively, based on the active and
reactive power injections at all the buses. Accordingly, the
number of neurons in the input layer is twice the number of
buses involved, while the number of neurons in the output
layer is equal to the number of buses involved. The neural
networks representation is given by equation (3):

yi = σ(
∑

(wixi) + b) (3)

where xi and yi are the ith input and output vectors, respec-
tively, w and b are the network weights and bias, respectively,
and σ is the nonlinear activation function, which is applied
to the output of each (input/hidden) layer before the next
(hidden/output) layer.

1) Loss function: The mean squared error (MSE) is used
as the evaluation metric, i.e., loss function, to assess the
performance of the trained neural networks. The goal of
training the deep neural networks is to find optimal weights
and biases that minimize the loss function. The loss function
is defined as a supervised loss term, which is represented by
equation (4):

MSE =
1

N

n∑
i=1

(yi − f(pi, qi))
2 (4)

where yi represents the ground-truth data obtained from the
Newton-Raphson method, which corresponds to the ith voltage
magnitude or voltage angle for NN |v| and NNδ , respectively.
N is the total number of samples, pi and qi denote the
active and reactive power at node i, and f(pi, qi) is the
output obtained from the neural network. The loss function
is minimized by adjusting the weights and biases during the
training process, which in turn improves the accuracy of the
power flow analysis.

2) Activation function: Activation functions are used to
introduce nonlinearity into the neural networks. The following
commonly-used activation functions are used:

• Rectified Linear Unit (ReLU): f(x) = max(0, x)

• Leaky Rectified Linear Unit (LeakyReLU): f(x) =
max(0, x) + vmin(0, x)

• Sigmoid: f(x) = 1
1+exp (−x)

• Hyperbolic Tangent (Tanh): f(x) = exp (x)−exp (−x)
exp (x)+exp (−x)

In this study, adaptive activation functions are employed to
perform model-based nonlinear transformations for the two
developed neural networks. Two trainable parameters, α and
β, are introduced to implement the nonlinearity by scaling
and shifting the output results of the activation function based
on the input features. α is a positive trainable parameter that
scales the input (e.g., [7]), and β is a trainable parameter
that adds to it. Figures 1 and 2 show the impact of α and β
on the activation functions. The formulations of the adaptive
activation functions are given by:

• Adaptive ReLU: f(x) = max(0, αx+ β)

• Adaptive LeakyReLU: f(x) = max(0, αx + β) +
vmin(0, αx+ β)

• Adaptive Sigmoid: f(x) = 1
1+exp (−(αx+β))

• Adaptive Tanh: f(x) = exp (αx+β)−exp (−(αx+β))
exp (αx+β)+exp (−(αx+β))

During each iteration of the optimization process, the
gradients of the loss function with respect to the trainable
parameters, ∇w,b,α,βL, are computed using the chain rule of
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differentiation. The resulting gradients are then backpropa-
gated through the network to update and optimize the weights
w, biases b, scaling parameter α, and shifting parameter β.
This process enables the network to learn the optimal values
of α and β, in addition to w and b, leading to improved per-
formance in approximating the output variable. More detailed
information about adaptive activation functions can be found
in [16].

Fig. 1. Impact of the scaler α on the activation functions: (a) ReLU, (b)
LeakyReLU, (c) Sigmoid, and (d) tanh.

Fig. 2. Impact of β on the activation functions: (a) ReLU, (b) LeakyReLU,
(c) Sigmoid, and (d) tanh.

III. RESULTS

A. Model Setup

The neural networks are trained using the Adam optimiza-
tion algorithm with a learning rate of 1 × 10−4 and a batch

size of 128. A real-world medium-voltage distribution network
comprising 369 buses is used as the basis for the dataset,
which includes a total of 10,000 data points randomly sampled
from a given time series in 2021. The input features of the
dataset are the active and reactive power injection/consumption
of all the buses, while the output features consist of the
voltage magnitude and voltage angle of all the buses. The high-
resolution Newton-Raphson numerical method is employed to
generate the ground-truth data using the Power Grid Model
package [17]. The dataset is divided into two subsets, where
60% of the data is used for training, and the remaining 40%
is used for testing.

The number of neurons in the hidden layers is chosen
to be 512, 256, 256, and 128, respectively, resulting in a
total of four hidden layers and 655,985 trainable parameters.
Dropout regularization is also implemented after each hidden
layer with a probability of 20% to prevent overfitting. The
training process is stopped after 1000 epochs. Note that the
architecture of the neural networks is achieved through a
sensitivity analysis conducted on a subset of the dataset, which
aims to find the optimal number of hidden layers, neurons per
hidden layer, dropout percentage, learning rate, and batch size.

B. Model Performance

This section evaluates the impact of using the proposed
adaptive activation functions on the deep learning model per-
formance by comparing their impact on the learning process
with that of four commonly-used activation functions, namely
ReLU, LeakyReLU, Sigmoid, and Tanh. The evaluation is
based on three criteria: (i) the loss function error, measured
by the mean squared error after the first 400 epochs, (ii)
the convergence speed, and (iii) the stability of the learning
process. The results are presented in the following subsections,
providing insights into the effectiveness of the adaptive acti-
vation functions in improving the performance and efficiency
of deep learning models for power flow analysis.

1) Loss function error: The impact of the adaptive activa-
tion functions is evaluated based on the model’s ability to
reduce the loss function error during the training process.
The loss function error is measured after 400 epochs for
all the commonly-used and the adaptive activation functions
investigated in this study. The results presented in Table I show
that the proposed adaptive activation functions outperform the
corresponding commonly-used activation functions in terms
of loss function error for both voltage magnitude and voltage
angle. Particularly, the adaptive Sigmoid and Tanh activation
functions show the lowest loss function error after 400 epochs.
It should be noted that Tanh and Sigmoid are prone to
vanishing gradients, which may affect the performance of the
model in deeper neural networks.

Figure 3 compares the actual voltage magnitude of all the
buses for an extreme point in the testing dataset with those
predicted by ReLU and adaptive ReLU after 400 epochs.
Using an adaptive version of ReLU, the neural network NN |v|
can provide better approximations of voltage magnitude at
extreme points, as evidenced by a lower maximum error of
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TABLE I
LOSS FUNCTION ERROR AFTER 400 EPOCHS.

Activation Function MSE [pu2] MSE [rad2]

ReLU 5.645× 10−5 6.081× 10−5

Adaptive ReLU 1.2× 10−6 2.443× 10−6

LeakyReLU 1.408× 10−3 2.923× 10−3

Adaptive LeakyReLU 3.262× 10−4 1.882× 10−4

Sigmoid 9.538× 10−5 9.842× 10−6

Adaptive Sigmoid 7.164× 10−6 1.016× 10−6

Tanh 3.047× 10−6 3.262× 10−5

Adaptive Tanh 2.33× 10−7 2.59× 10−6

Fig. 3. Comparison of ReLU and adaptive ReLU performance in approxi-
mating voltage magnitudes at all buses for an extreme point in the testing
dataset.

0.012 pu compared to the error of 0.031 pu observed with
ReLU after 400 epochs. This is of great importance in the
operation of distribution networks where unexpected events
can cause voltage magnitude to deviate significantly from
nominal values, and accurate predictions are necessary for safe
and stable operation.

2) Convergence speed: The impact of the adaptive activa-
tion functions on the convergence speed is evaluated based
on the point at which the loss function reached a plateau,
defined as a tolerance of 10−3, indicating negligible changes
in the loss. Figures 4 and 5 compare the convergence speeds
of the adaptive activation functions with the corresponding
commonly-used activation functions for NN |v| and NNδ ,
respectively. The findings demonstrate that the adaptive ac-
tivation functions achieved faster convergence compared to
their commonly-used counterparts. Specifically, in the case
of voltage magnitude, the ReLU function did not converge
even after 1000 epochs, whereas the adaptive ReLU function
converged after 600 epochs, as shown in Figure 4a. Similar
results were obtained for the voltage angle. Note that the y-
axis of the diagrams is scaled to better visualize the changes.

Fig. 4. Comparison of the convergence speed of the neural network to
approximate voltage magnitude for: (a) ReLU and Adaptive ReLU, (b)
LeakyReLU and Adaptive LeakyReLU, (c) Sigmoid and Adaptive Sigmoid,
and (d) Tanh and Adaptive Tanh.

3) Learning process stability: The stability of the learning
process is analyzed for both the commonly-used activation
functions and the adaptive activation functions. A closer look
at Figures 4 and 5 reveals that the adaptive activation functions
exhibit greater stability than their commonly used counter-
parts. Specifically, the adaptive activation functions were less
prone to oscillations during the learning process, which led to a
smoother convergence. This improved stability of the adaptive
activation functions is an important advantage, as it can help
prevent the model from getting stuck in local minima and
contribute to the model’s overall accuracy.

IV. CONCLUSION

The present study evaluates the impact of using adap-
tive activation functions on deep learning-based power flow
analysis of distribution networks. The performance of the
deep learning models is evaluated based on the loss function
error, convergence speed, and stability of the learning process,
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Fig. 5. Comparison of the convergence speed of the neural network to
approximate voltage angle for: (a) ReLU and Adaptive ReLU, (b) LeakyReLU
and Adaptive LeakyReLU, (c) Sigmoid and Adaptive Sigmoid, and (d) Tanh
and Adaptive Tanh.

and is compared with that of four commonly-used activation
functions, namely ReLU, LeakyReLU, Sigmoid, and Tanh.

Results indicated that the proposed adaptive activation
functions significantly improve the accuracy and reliability
of deep learning-based power flow analysis of distribution
networks. This is achieved by adaptively modifying their shape
to better fit the input data, thereby effectively capturing the
nonlinear relationships between input and output. The study
also highlights the increased stability of the learning process
offered by the adaptive activation functions, resulting in less
oscillations and more consistent performance.
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