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Methods Note/

Pastas: Open Source Software for the Analysis
of Groundwater Time Series
by Raoul A. Collenteur1 , Mark Bakker2, Ruben Caljé3, Stijn A. Klop2,4, and Frans Schaars3

Abstract
Time series analysis is an increasingly popular method to analyze heads measured in an observation well.

Common applications include the quantification of the effect of different stresses (rainfall, pumping, etc.), and the
detection of trends and outliers. Pastas is a new and open source Python package for the analysis of hydrogeological
time series. The objective of Pastas is twofold: to provide a scientific framework to develop and test new methods,
and to provide a reliable ready-to-use software tool for groundwater practitioners. Transfer function noise modeling
is applied using predefined response functions. For example, the head response to rainfall is simulated through
the convolution of measured rainfall with a Gamma response function. Pastas models are created and analyzed
through scripts, ensuring reproducibility and providing a transparent report of the entire modeling process. A
Pastas model can be constructed in seven simple steps: import Pastas, read the time series, create a model, specify
the stresses and the types of response functions, estimate the model parameters, visualize output, and analyze
the results. These seven steps, including the corresponding Python code, are applied to investigate how rainfall
and reference evaporation can explain measured heads in an observation well in Kingstown, Rhode Island, USA.
The second example demonstrates the use of scripts to analyze a large number of observation wells in batch to
estimate the extent of the drawdown caused by a well field in the Netherlands. Pastas is free and open source
software available under the MIT-license at http://github.com/pastas/pastas.
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Introduction
Over the past few decades, time series analysis has

become an accepted and frequently applied methodol-
ogy in the field of groundwater hydrology. A particularly
popular subdiscipline of time series analysis is transfer
function noise (TFN) modeling, which attempts to trans-
late one or more input series to an output series using a
statistical model. TFN models can be used, for example,
to decompose observed head time series into the contribu-
tions of the different hydrological stresses that cause the
head fluctuations. Applications of TFN models include the
estimation of the effect of interventions in the groundwa-
ter system (such as groundwater pumping and changes in
surface water levels), the detection of trends, the improve-
ment of data quality by identifying outliers and other
suspicious data values, and the forecasting of heads.

The first TFN models used in hydrogeology were
autoregressive-moving average models, which originate
from econometrics (see Box and Jenkins 1970; Gehrels
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et al. 1994; Hipel and McLeod 1994). These models
were extended with Kalman filters to deal with the
irregular timesteps often found in time series of heads
measured in an observation well (e.g., Berendrecht et al.
2004). Von Asmuth et al. (2002) introduced a new type
of TFN models based on the principles of convolution
and predefined impulse response functions. This type of
model has been applied in a variety of studies including
the decomposition of hydrological stresses (von Asmuth
and Knotters 2004; von Asmuth et al. 2008; Shapoori
et al. 2015b), the estimation of aquifer parameters (e.g.,
Obergfell et al. 2013; Shapoori et al. 2015a), the statis-
tical interpolation of groundwater time series (Peterson
et al. 2018), the analysis of nation-wide groundwater
monitoring networks (Zaadnoordijk et al. 2018), and the
estimation of recharge (Obergfell et al. 2019).

The concepts of TFN modeling based on impulse
response functions have been incorporated in the commer-
cially available software Menyanthes (von Asmuth et al.
2012) and the open source software HydroSight (Peterson
and Western 2014). Both programs are written in Matlab
and are operated through a graphical user interface (GUI),
while HydroSight also offers the possibility to run models
through Matlab scripts. Autoregressive-moving average
models are readily available to hydrogeologists in popular
open source programming languages such as R and Python
(e.g., the Python package StatsModels, Seabold and Perk-
told 2010). Prior to this paper, no open source alterna-
tives were available to perform TFN modeling based on
impulse response functions in either R or Python. The new
Python package Pastas is developed to fill this gap.

Pastas is an open source Python package to perform
time series analysis of heads measured in an observation
well. Python scripts are used to import data, construct
models, optimize parameters, and postprocess the results.
The use of scripts ensures reproducibility and provides a
transparent report of the entire modeling process (Bakker
2014; Fienen and Bakker 2016; Hutton et al. 2016), in a
similar way that FloPy (Bakker et al. 2016) can be used
to construct a MODFLOW groundwater model. Pastas
has an object-oriented design that allows for the quick
implementation of new modeling concepts. Combined
with the ability to use scripts, this serves the main purpose
of Pastas: to provide a scientific framework to improve
existing methods or develop and test new methods, while
at the same time provide a reliable ready-to-use software
tool for groundwater practitioners in the field. A guiding
principle during Pastas development is to give the user
full control of the modeling process; sensible default
values and options are selected for practitioners without
restricting adventurous expert users.

The Pastas software and the workflow suggested in
this paper fully comply with the four steps suggested
by Hutton et al. (2016) to improve reproducibility in
computational hydrology. First, the code is modularized
into well-documented functions and classes to make
it readable and reusable. Second, the use of Python
scripts and Jupyter Notebooks ensures well-documented
workflows that can be shared easily. Third, the source

code is available on a Github repository which provides
full version control of the software. And fourth, it is
possible to refer to specific versions of the code by
referring to a Pastas version and its related digital object
identifier (DOI) on Zenodo (e.g., version 0.11.0, DOI:
10.5281/zenodo.3252035; Collenteur et al. 2019).

Basics of TFN Modeling
TFN modeling tries to explain an observed time

series (in this case observed heads) by one or more other
observed time series. The basic model structure of a TFN
model to simulate heads may be written as:

h(t) =
M∑

m=1

hm(t) + d + r(t) (1)

where h(t) are the observed heads, hm (t) is the contribu-
tion of stress m to the head, d is the base elevation of the
model, and r(t) are the residuals. Each model can have
an arbitrary number of stresses (M ) that contribute to the
head; hydrological stresses include rainfall, evaporation,
river levels, and groundwater extractions. The contribution
of stress m to the head is computed through convolution:

hm(t) =
∫ t

−∞
Sm(τ)θm(t − τ)dτ (2)

where S m is a time series of stress m , and θm is the
impulse response function for stress m . A commonly
used impulse response function is the scaled Gamma
distribution (e.g., Besbes and De Marsily 1984):

θ(t) = A
tn−1

an �(n)
e−t/a t ≥ 0 (3)

where A is the scaling factor, a and n are shape
parameters, and � is the Gamma function. The scaled
Gamma distribution is often used to simulate the response
to areal recharge. Other impulse response functions have
been suggested to simulate the effects of other stresses.
For example, one of the response functions suggested for
the response to pumping is the Hantush function (Hantush
and Jacob 1955), which may be written in parametric
form as:

θ(t) = −A
t−1

2K0(2
√

b/a)
e−t/a−b/t t ≥ 0 (4)

where A is a scaling factor, a and b are shape parameters,
and K0 is the modified Bessel function of the second kind
and order zero.

There are three types of response functions. The
impulse response is the head response due to an instan-
taneous stress event of unit magnitude at time t = 0,
for example an instantaneous precipitation event of unit
amount. The head response due to a uniform stress is
called the step response, for example, a well turns on
and starts pumping with a constant discharge. The head
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Figure 1. The one-day block response and the step response
functions for the scaled Gamma response function with
parameters A = 100, n = 1.5, and a = 15 days and the
Hantush response function with parameters A = 100, b = 4,
and a = 15.

response due to a uniform stress for 1 day is called
the one-day block response and can be obtained through
superposition of two step responses.

The step response �(t) due to a constant and unit
stress starting at t = 0 may be obtained from the impulse
response through integration:

�(t) =
∫ t

0
θ(t)dt (5)

The step response corresponding to the scaled
Gamma impulse response function (Equation 3) can be
integrated analytically. The step response corresponding
to the Hantush impulse response function is computed
here using the approximation of Veling and Maas (2010).
The step response eventually reaches a steady state value.
For the Gamma function, the steady value due to a unit
stress equals A, while for the Hantush function, the steady
response equals-A (a positive discharge results in lower
heads). Examples of the block response and step response
functions for the scaled Gamma and the Hantush functions
are shown in Figure 1.

A stress can also be the combination of multiple
stresses. An example of this is the linear model that is
often used to simulate the net groundwater recharge R(t)
from the rainfall P (t) and reference evaporation E r (t)
(e.g., von Asmuth et al. 2008):

R(t) = P(t) − fE r (t) (6)

where f is a parameter. The net recharge R(t) is sub-
stituted for S m in Equation 2 and convoluted with a
response function to obtain the effect of recharge on the
head. This approach to compute the net recharge works
well for shallow groundwater levels in temperate climates
with negligible runoff (e.g., Zaadnoordijk et al. 2018).
For observation wells in more arid climates or in areas
with deeper groundwater tables, recharge can not be
estimated as a linear relationship of rainfall and reference
evaporation, but a more complicated recharge model
is needed (e.g., Berendrecht et al. 2004; Peterson and
Western 2014).

The residuals of TFN models of heads often exhibit
strong autocorrelation, violating the conditions that enable

statistical inferences (e.g., parameter uncertainties and
uncertainty of simulated heads). The residuals are mod-
eled with a noise model (hence the name TFN modeling).
An autoregressive model of order one is often used for
time series with constant timesteps (Hipel and McLeod
1994). The equivalent for a time series with irregular
timesteps is a noise model with exponential decay of the
residuals (e.g., von Asmuth and Bierkens 2005):

r(ti) = υ(ti) + r(ti−1)e
−�ti/α (7)

where α is the decay parameter, �t i is the timestep
between observations at t i and t i − 1, and υ(t i ) is the
(approximate) white noise that is the result of a random
process. The parameters of the TFN model may be
estimated by optimizing an appropriate objective function,
for example the sum of weighted squared noise (e.g.,
von Asmuth and Bierkens 2005). Many different methods
are available to estimate optimal parameters and their
uncertainty, varying from nonlinear least squares to
Bayesian analysis.

TFN Modeling with Pastas
In this section, it is described how TFN models are

implemented in the Pastas software. The typewriter font
(e.g., python_function) is used to refer to Python
code. Information on how to download Pastas is given in
the Acknowledgment section at the end of this paper.

Object-Oriented Design
The object-oriented design of Pastas is relatively

simple. Unified modeling language (UML) diagrams
for the three most important classes are shown in
Figure 2. The main class of the Pastas code is the
Model class. A Model object stores the observed
head series (oseries), keeps track of all the stresses
and response functions that cause the head variations
(stressmodels), the parameters in the model, the base
level d (constant), the noise model, and basic model
settings.

The model components to translate a stress (or two
stresses in case of recharge) to a head contribution hm (t)
are called stress models in Pastas. Each stress is stored
separately in a StressModel object, together with the
type of response function θm that is used to simulate the
head response. Different response functions are available,
including Exponential, Gamma, and Hantush. Each
StressModel has a method to compute the contribution
of that specific stress to the head variation, for example
using convolution (Equation 2), or another method.

A specific stress model class is available for the
effect of groundwater recharge. This class is called
RechargeModel and simulates the combined effect of
rainfall and reference evaporation by using Equation 4
to compute the net groundwater recharge. Nonlinear
concepts for the calculation of groundwater recharge
(e.g., Berendrecht et al. 2004; Peterson and Western
2014) are planned for a future version of Pastas. A
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Figure 2. Unified modeling language (UML) diagrams of the
three Pastas classes outlined in this section. Each diagram
shows three boxes, from top to bottom: the class name, the
main attributes, and the main methods.

RechargeModel object stores two stresses, the rainfall
and (reference) evaporation time series, and one response
function.

The five main methods of the Model class are
(1) a method to estimate the parameters in the model,
(2) a method to compute the simulated heads, (3) a
method to compute the residuals, (4) a method to
compute the noise, and (5) a basic method to plot the
results. The method to compute the simulated heads is
an implementation of Equation 1. The method loops
through all M stress models and adds their contributions
hm (t) to the head variations, then adds a base level
d . The method to compute the residuals r(t) subtracts
the simulated heads from the observed heads. The noise
method applies Equation 7 to the residuals to compute
the noise υ(t).

The Pastas Package and Modeling Workflow
Pastas builds heavily on Pandas, a data analysis

package for Python that efficiently deals with time
series data (McKinney 2010). All time series need
to be specified as Pandas Series or DataFrame
objects. Observed heads may be measured at arbitrary
times. Pastas uses regularly spaced stress series in the
simulations, and has functionality to convert irregular
time series to regularly spaced series.

The basic workflow of a Pastas model is as follows:

1. Import the Pastas package.
2. Read the time series from files and store them as

Pandas Series or DataFrame objects.
3. Create a Model object and supply the observed head

series.
4. Create StressModel objects by supplying the

observed stress and specifying a response function, and
add each StressModel object to the Model object.

5. Estimate the parameters of the Model and compute fit
statistics.

6. Visualize output.
7. Analyze residuals and noise.

Each of the Steps 3 to 6 has a number of default set-
tings that may be changed interactively, as demonstrated
in the next sections. Pastas has separate subpackages
for visualization and statistical analysis. The visualiza-
tion capabilities include plotting of the model fit including
contributions of the different stresses, and plotting of the
response function(s). The statistical capabilities include
computation of various measures of the model fit (e.g., r2,
root mean squared error [RMSE], and the Nash-Sutcliffe
coefficient), the Akaike and Bayesian information criteria,
and a function to compute the autocorrelation of the resid-
uals or the noise that deals with irregular time steps (based
on Rehfeld et al. 2011). Other metrics to evaluate the
model fit are available in Hydrostats (Roberts et al. 2018),
a Python package that includes over 70 metrics to compare
hydrological time series, working seamlessly with Pastas.

Parameter Estimation
The default method in Pastas to estimate the param-

eters is to apply a nonlinear least squares algorithm to
minimize the sum of weighted squared noise, according
to von Asmuth and Bierkens (2005). It is important to
choose reasonable initial values of the parameters to
improve performance of the least squares algorithm.
Initial values are estimated from the data when possible.
For example, the initial value for the constant d in
Equation 1 is estimated as the mean of the observed
heads h(t), and the initial value for the scaling parameter
of the response functions (e.g., A in Equations 3 and 4)
are computed as 1/σ s , where σ s is the standard deviation
from the stress time series. Pastas includes methods to
set different initial values for any of the parameters.

Parameter bounds are specified based on a physical
interpretation of the parameters. For example, the scaling
parameter A of the Gamma response functions has a
lower bound of zero, so that the heads will go up in
response to positive recharge. The evaporation factor f is
bounded by 0 and −2, so that the actual evaporation can
vary between zero and twice the reference evaporation.
Pastas includes methods to set different minimum and
maximum values for any of the parameters. In addition,
it is possible to fix a parameter to its initial value. This
can be helpful for parameters that do not significantly
affect the outcome of the model.

Pastas currently includes only one option for the
objective function to be minimized and two options
to estimate the parameters while several others are
under development. The present default is Scipy’s least
squares method, which uses a Trust Region Reflective
algorithm to minimize the objective function and works
well with bounds (Branch et al. 1999); this method is
used in the first example. The other option is the LmFit
solver (Newville et al. 2019), using Levenberg-Marquardt
minimization including bounds on the parameters; this
method is used in the second example.

4 R.A. Collenteur et al. Groundwater NGWA.org



Example 1: A Cookbook Recipe to Analyze
Measured Heads Using Pastas

A Python script must be written for the seven steps
to build a Pastas model defined in the previous section. In
this first example application, it is shown how a simple
TFN model is constructed using Pastas in a few lines
of Python code. The objective is to investigate how
well the heads measured in an observation well near
Kingstown, Rhode Island, can be simulated using rainfall
and reference evaporation.

The heads (site id 412918071321001) are obtained
from the Groundwater Climate Response Network (CRN)
of the USGS (downloaded from https://groundwaterwatch
.usgs.gov). While the heads are available on a daily basis,
only biweekly observations are used in this example for
demonstration purposes. The rainfall data is taken from
the Global Summary of the Day dataset (GSOD) available
from the National Climatic Data Center (NCDC) for
Kingston station (station number, NCDC WBAN: 54796),
located at 41.491

◦
, −71.541

◦
. The reference evaporation

is estimated using Thornthwaite’s method (Pereira and
Pruitt 2004) from the daily mean temperature for the
same location.

The following steps describe the Python code used to
create a Pastas model and analyze the heads:

1 Import the Pastas package. Import the Pandas and
Pastas packages and, if desired, give them short aliases.

import pandas as pd
import pastas as ps

2 Read the time series. Time series can be imported
using a variety of methods and need to be transformed
into a Pandas Series. The easiest approach is
probably to use the read_csv method of Pandas,
which can be used to read almost any comma-separated
file.

obs = pd.read_csv('obs.csv',
index_col='Date', parse_dates=True)

rain = pd.read_csv('rain.csv',
index_col='Date', parse_dates=True)

evap = pd.read_csv('evap.csv',
index_col='Date', parse_dates=True)

The time series of the heads, rainfall and reference
evaporation are stored in the variables obs, rain, and
evap, respectively, and are plotted in Figure 3.

3 Create a model object. A Model instance is created
and stored in the variable ml, where the observed heads
obs and a name are the input arguments.

ml = ps.Model(obs, name='Kingstown')

4 Add stress models. A RechargeModel instance
is created and stored in the variable rm, taking the
rainfall and reference evaporation time series as input
arguments, as well as a name and a response function.

Figure 3. Time series of the observed heads, precipitation,
and reference evaporation for Example 1.

In this example the Gamma response function is
used (accessible as ps.Gamma). After creation, the
RechargeModel instance is added to the model.

rm = ps.RechargeModel(rain, evap,
rfunc=ps.Gamma, name='recharge')

ml.add_stressmodel(rm)

5 Estimate model parameters. The model parameters
are estimated by calling the solve method of the Model
instance:

ml.solve(tmax='2014')

In this example, tmax='2014' is used, mean-
ing that the model is calibrated on the avail-
able head observations up to 2014. A noise model
and Scipy’s least squares method (implemented as
ps.LeastSquares) are used to estimate the param-
eters (default option). The solve method returns a report
summarizing the model settings, the model fit, and the
optimal parameter values and their estimated uncertain-
ties, as shown in Figure 4 (default option).

6 Visualize model results. The results can be visualized
with any of the predefined plotting methods, for
example, the basic plot method. Here, the input
argument tmax='2018' is used to simulate and plot
the heads up to 2018 (the default is to plot for the
calibration period only).

ml.plot(tmax='2018')

7 Analyze residuals and noise. The residuals, noise, the
autocorrelation of the noise, and a few other subplots
to analyze the residuals and noise may be plotted with
the following command:

ml.plots.diagnostics()

The plot resulting from Step 6 is shown in Figure 5
(with small modifications for this publication). The model
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Figure 4. Fit report returned by the solve method, showing
information on the model settings, the fit statistics and the
estimated parameters.

simulation shows a good fit with the observed heads in the
calibration period, supported by a low RMSE of 12 cm,
and a high Pearson r2 value of 0.89 (see fit report in
Figure 4). The model also performs well in the validation
period with a RMSE of 13 cm and r2 of 0.84 for that
period.

The estimated step response is shown in the inset
of Figure 5 (added for this publication and not part of
ml.plot()). The step response shows that the final level
of 337 is reached after ∼300 d, which means that if it
rains continuously 1 mm/d, the head in the observation
well will eventually rise 337 mm after ∼300 d.

The observed head shows a peak in 2010 that is
underestimated by the TFN model. The peak follows an
extremely high rainfall event caused by the northeastern
storms in New England in March of 2010. Apart from
this extreme event, the observed heads can be simulated
well with rainfall, reference evaporation (estimated from
temperature data), and a simple TFN model.

The residuals and noise are shown in Figure 6, and
the autocorrelation plot of the noise is shown in Figure 7.
Both plots are part of the diagnostics plot that is
created in Step 7, but are shown separately for this
publication. The residuals can indicate if a stress is
missing from the model, for example when a clear trend
in the residuals is visible. As expected, the residuals are

Figure 6. Plot of the residual and noise series of the model
of Example 1.

Figure 7. Autocorrelation plot for the noise of Example 1.

autocorrelated with extended periods where the modeled
heads are higher or lower than the observed heads, while
the noise shows much less autocorrelation. Based on the
autocorrelation graph (Figure 7) and the Ljung-Box test
(Ljung and Box 1978) it is concluded that there is no
significant (α = 0.05) autocorrelation in the noise, so
that statistical inferences can be made about the model
output.

Example 2: Estimate Drawdown Caused
by Groundwater Pumping

In this second example, it is demonstrated how
scripts can be used to analyze a large number of time
series. Consider a pumping well field surrounded by
a number of observations wells. The pumping wells
are screened in the middle aquifer of a three-aquifer
system. The objective is to estimate the drawdown
caused by the groundwater pumping in each observation
well.

Figure 5. Plot of the simulated (black line) and observed heads (red crosses for those used during calibration, gray dots for
unused heads), and the estimated step response (inset) for Example 1.
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Figure 8. Time series of the pumping rate of the well field
of Example 2.

Figure 9. Map of the study area of Example 2. The green
triangles are the 21 pumping wells. The orange circles are
the 44 observations wells (some of them nested), where the
circle size indicates the depth of the well screen below surface
level.

Water extracted by the well field is used for drink-
ing water supply in the southern part of the Netherlands.
The well field consists of 21 pumping wells with screen
depths between 110 and 170 m below surface level. A
time series of the total extraction rate of all 21 pumping
wells combined is available for modeling (Figure 8). The
average total extraction rate calculated over the period
2007-2018 is 34790 m3/d, or 12.7 · 106m3/year. The sur-
rounding monitoring network consists of 44 observation
wells at 23 locations (some are nested wells with screens
at different depths) (Figure 9). Daily rainfall measure-
ments are obtained from weather station Oudenbosch, and
Makkink reference evaporation (de Bruin and Lablans
1998) is obtained from weather station de Bilt, both
operated by the Royal Dutch Meteorological Institute
(KNMI, https://www.knmi.nl).

A Pastas model is created for each observation
well using rainfall, reference evaporation, and pumping
discharge as input series. Recharge is modeled with
Equation 6. The response to recharge is modeled with the
Gamma response function and the response to pumping
with the Hantush response function.

As an example of one of the resulting models, con-
sider well B49F0232 (Screen 5), located at ∼1500 m from
the center of the well field. The model fit and the contri-
butions of the net recharge and the pumping are shown in

Figure 10. Time series model (blue line) of observed heads
(black dots) at well B49F0232 (screen 5) for 1985-2010
(top), with contributions of recharge (middle) and pumping
(bottom).

Figure 10. The model is fit for the entire period of record
(1971-2018), but only the period 1985-2018 is shown. The
pumping results in a lowering of the head between 4 and
7 m over the period shown. The net recharge contributes
to the annual head variations and the pumping wells con-
tribute mainly to the long-term variations, most notably
the lowering of the heads around 1990. The model under-
estimates the lows in the observed heads. Lower heads
may be the result of nonlinear processes in the root zone
that are not represented in the recharge model, or ground-
water withdrawals for irrigation that are not included in
the model.

Using a Python script, 44 Pastas models are created
(one for each observation well) that include the effect
of pumping. After the parameters are estimated, it is
checked whether the estimated steady contribution of the
pumping response (the scale parameter A in Equation 4)
is significantly different from zero by checking whether
the 95% confidence interval includes zero:

| A |> 1.96σA (8)

where σ A is the estimated standard deviation of parameter
A. The contribution of pumping could not be determined
with statistical significance for 9 of the 44 observation
wells; these nine wells were not considered further.

An advantage of many observation wells at different
locations is that the results can be analyzed spatially and
compared to the results of other (independent) estimates
of the drawdown. The steady state drawdown for the
average pumping rate over 2007-2018 is computed for
each observation well and plotted versus the distance of
the observation well from the center of the well field in
Figure 11. The markers in Figure 11 indicate in which
aquifer each observation well is screened (three wells
screened in the deep aquifer are not shown in the Figure).
The drawdown is separately computed with the multilayer
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Figure 11. Estimated steady state drawdown for a pumping
rate of 12.7 · 106m3/year vs. the distance from the center of
the well field of Example 2. The pumping wells are screened
in Aquifer 2. The error bars denote the 95% confidence
intervals of the drawdowns estimated with TFN models. The
dashed lines are the result of the TimML model.

analytic element model TimML (version 6.0, Bakker and
Strack 2003) using aquifer parameters within the range of
values reported by the Dutch geological survey (Vernes
et al. 2005), except for the transmissivity of the second
aquifer for which a slightly higher transmissivity is used.
The results of the TimML model are shown with the
dashed lines in Figure 11 and are in good agreement with
the drawdowns estimated with the TFN models.

Conclusions and Discussion
Pastas is an open source Python package for the anal-

ysis of hydrogeological time series. The two objectives of
Pastas are to provide a framework for developing and
testing new modeling concepts and to provide ready-to-
use software for practitioners. Pastas applies TFN model-
ing using predefined response functions. Multiple stresses
(e.g., rainfall or pumping) and corresponding response
functions (e.g., Gamma or Hantush) may be added to a
Pastas model. Models are created and analyzed through
scripts, which makes the modeling process transparent and
provides a full record of the entire modeling process. A
Pastas model can be created in seven steps. These seven
steps were illustrated (including corresponding Python
code) in the first example, where the heads from an obser-
vation well in Kingstown, Rhode Island are analyzed. The
second example demonstrated how a large number of time
series models can be built in batch; the results were ana-
lyzed spatially to determine the drawdown caused by a
well field.

Pastas includes a large set of functionality, varying
from a number of different response functions and the
ability to select the calibration period to visualization
and analysis of the results. All model concepts that have
been implemented so far are for linear models: when the
stress is doubled, so is the resulting head variation. This
works very well for systems that behave more or less
linearly, for example, relatively shallow (a few meters
from the surface) wells in temperate climates. Pastas

needs to be extended to be able to deal with other
systems. For example, for deeper groundwater tables, the
recharge is likely a nonlinear function of rainfall and
evaporation (e.g., Berendrecht et al. 2004; Peterson and
Western 2014). In arid regions, evaporation cannot be
modeled as a (constant) fraction of reference evaporation
(Equation 6). In more undulating terrain, rainfall may
need to be adjusted for runoff. In dry periods, response
functions may change when ditches and streams dry up
(e.g., Knotters and Gooijer 1999). Many of these nonlinear
modeling concepts will be explored for inclusion in Pastas
in the coming years.

Many other topics deserve further investigation and
development of which three are mentioned here. First,
more advanced noise models are needed, because the sim-
ple first-order noise model (Equation 7) does not always
work well for high frequency data (daily or more fre-
quent) and may even harm parameter estimation. Second,
the current least squares objective function needs to be
extended to include weighting of observations and alterna-
tive objective functions (e.g., maximum likelihood func-
tions) need to be explored. Third, more accurate parameter
estimation including estimation of the uncertainty of the
parameters and model output is needed. Many alterna-
tive approaches are available for testing, including global
searches and Bayesian approaches. The object-oriented
structure of Pastas is intended to facilitate the implemen-
tation and testing of many of these ideas and modeling
concepts. The authors welcome new code contributions,
use cases, and other suggestions from the community to
improve and increase the use of TFN modeling in ground-
water studies.
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