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a b s t r a c t

Commercial operation and maintenance of wind farms always involves trying to find the most cost-
effective solution from various possible options. In this paper, a maintenance action within a Spanish
wind farm was studied, whereby a blade replacement was required to prevent catastrophic failure. The
conducted replacement was accompanied by an underperformance resolved in a later blade re-pitching.
We analyse the decision taken in terms of the power performance and net present value from the cash
flow resulting from the energy sales. The impact of the timing of the maintenance is discussed in various
what-if scenarios. The sensitivity to environmental causes of underperformance is compared by varying
the duration of blade icing and comparing the performance in different wind directions. Country dy-
namics and subsidy impacts are hypothetically evaluated for the prevailing electricity market conditions
as if the turbine were operating in either Spain, Netherlands or the UK. The findings highlight the un-
certainty in power performance and the importance of maintenance accuracy. It is shown that the
decision-making of operators should not only consider the seasonality of the wind resource, but also the
seasonality in electricity markets.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

There has been a significant amount of research into the
financial feasibility of wind farm installations. Application of
various evaluation frameworks has showed e.g. that the feasibility
is strongly influenced by capacity factor and electricity market price
fluctuation, whereas the nominal power and inflation rate were
found as only slightly influential on the payback period of an in-
vestment [1]. Further studies have discussed the importance of the
wind resource, turbine selection, farm layout and country policies
[2e4].

With increasing importance of operation and maintenance
(O&M) costs, sensitivity studies to maintenance policies have
gained more attention. Wind farm maintenance simulation and
optimisation tools have been developed and results have showed
that turbine availability was sensitive to the shift length of the
service team and failure rates of components [5e7]. Repair time,
equally to this work.
inspection timing and inspection accuracy were found to be
strongly affecting whether corrective, preventive or predictive
maintenance strategies were most effective [8e11]. Kerres et al.
[12] state that corrective maintenance is the most cost-effective
strategy for the components of the drive train. Leigh and Dunnet
[13] show that periodical replacements of subsystems significantly
decrease the number of required corrective maintenance visits. A
maintenance decision is also highly dependent on the environ-
ment, since environmental variables are significantly correlated
with failure occurrences [14] and accessibility is also dependent on
the weather [15]. Most research on optimising wind farm mainte-
nance focused on generic strategies, however the complexity of real
maintenance decisions and their financial consequences have not
gained much attention.

To analyse the impact of maintenance decisions, the wind tur-
bine performance has to be evaluated. The common way of
addressing the performance, is by deriving a power curve using
0.5m/s bins of the wind speed and calculating mean values of the
power production for each bin [16]. Improving the method of bins
by accounting for the non-linear power vs wind speed relationship
and deriving multiple curves for different direction sectors has
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Fig. 1. Layout of wind farm. The terrain complexity is illustrated with the slopes of four
planes fitted with the selected turbine (0e5, 5 to 10 and 10 to 20 times the turbine
diameter, respectively).

Fig. 2. Wind rose for July 2012eMay 2017 with 10� sectors.

Table 1
Summary of case study data.

Category Variable Resolution

Turbine SCADA Wind speed mean 10min
Wind speed variance 10min
Active power mean 10min
Ambient temperature mean 10min
Generator speed mean 10min
Nacelle direction meana 10min

Wind farm met mast Pressure 10minb

Met station [30] Pressurec 1 dayd

NCEP [31] Relative humidity (at 850mbar) 6 h
ENTSOE [32] Day-ahead market price Spain 1 h

Day-ahead market price UK 1 h
Day-ahead market price Netherlands 1 h

OECD [33] Consumer price index 1month
Long-term interest rate 1month

a Approximation for unavailable wind direction.
b Incomplete data for 2013, 2014 and June 2016.
c Substitute for missing data, altitude corrected.
d Average of daily minimum and maximum recording.
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been discussed [17]. Other work compared different types of
parametric power curves [18]. Further non-parametric models have
been developed by applying machine learning and data mining
techniques to wind turbine power curves [19e22]. Other work has
also investigated multivariate models, i.e. models that do not only
consider wind speed as an input, but also other parameters [23,24].
Schlechtingen et al. [23] showed the advantage of an adaptive
neuro-fuzzy inference system (ANFIS) considering the ambient
temperature and wind direction. However, these advanced models
have not yet been compared with real data from more challenging
conditions like complex terrain and stall-regulated turbines. In
addition, simplistic assumptions of losses were often taken in the
context of financial studies of maintenance strategies without
considering measured performance at all.

If the financial impact of underperformance is to be analysed,
the details of the income generation need also to be considered.
Most European wind farms sell electricity to the electricity market
and/or might get some form of country-specific subsidy [25e27].
The complex interactions of country policies and market dynamics
have been investigated in life cycle analyses [4], but not addressed
in the context of optimising O&M from the perspective of a wind
farm operator.

Case studies based on real data can give an insight into the
complexity and sensitivity of decisions that simulation tools cannot
provide. In this paper, we address maintenance decisions based on
extensive case study data while addressing how the financial
consequences can be calculated most realistically.

This work discusses a sensitivity study of a maintenance deci-
sion in a Spanish onshore wind farm, namely a preventative blade
repair to avoid catastrophic failure. The intervention caused a
temporary underperformance of the turbine. The energy losses are
quantified in a performance analysis and revenue is evaluated with
a discounted cash flow. Possible alternatives to the decision taken
are investigated and compared with the sensitivity to environ-
mental effects such as icing and wind directional distribution. The
impact of country characteristics such as electricity prices, sub-
sidies and taxes is discussed and compared for three countries:
Spain, UK and Netherlands. A preliminary study by the authors
highlighted already differences between the impact of Spanish and
UK electricity market prices in this context [28].

The remaining part of the paper is structured in six parts. Sec-
tion 2 introduces the case study data, section 3 describes the
approach used and section 4 shows the results of the performance
analysis. The analysis of the sensitivity to the various effects is given
in section 5. The two subsequent sections 6 and 7 cover the dis-
cussion about and the conclusions of the study, respectively.

2. Case study data

The study is conducted based on data from a Spanish wind farm
with stall-regulated turbines with a rated power of 900 kW, which
were commissioned in 2002. The turbines are located on ridges in
complex terrain at altitudes of approximately 1500m. One turbine
is selected for this analysis, but the observations are representative
for many turbines in the farm.

Fig. 1 illustrates the farm layout and an assessment of the terrain
(according to [29]). It can be seen that the terrain slopes are mostly
higher than 10% with values up to 30% for some sectors. The
selected wind turbine has wake free sectors for 93� to 210� and
306� to 355�, with the latter corresponding to the predominant
wind direction as shown in Fig. 2.

Available operational data consist of SCADA records and met
mast measurements from mid-2012 to mid-2017. Missing infor-
mation is approximated with data from a met station at approx.
35 km distance [30] and NCEP reanalysis results for the turbine
location [31]. The financial studies are conducted with hourly day-
ahead electricity market prices from the European Network of
Transmission System Operators [32] and interest rates given by
Organisation for Economic Co-operation and Development [33].



Fig. 3. Photograph of a blade replacement in the wind farm investigated (copyright,
CETASA).
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The data variables used are summarised in Table 1.
Maintenance has been documented in service reports and un-

structured comments in spreadsheets. A simplified summary of the
maintenance history for mid-2012 to 2015 is given in Table 2
excluding routine services. The major interventions are the
replacement of the blades in May 2015, illustrated in Fig. 3, and a
re-pitching of the blades in September 2015. In the current industry
practice for stall-regulated turbines, blades are replaced with a
pitch angle which might be sub-optimal. In the subsequent months
the performance is checked with a focus on matching the designed
rated power of the generator. Then a re-pitching takes place to
increase or decrease the power output. In the farm investigated, the
re-pitching was required to increase the power output. Re-pitching
of blades is feasible from inside the nacelle without a crane. This
optimisation procedure is based on the technician's experience and
involves a degree of ‘trial and error’.

3. Methodology

This study aims to analyse the detailed impact of a blade
replacement. The impact is evaluated by firstly analysing the power
performance with respect to the maintenance history. Subse-
quently, the financial consequences are assessed by establishing a
cash flow for the maintenance investment and revenue from en-
ergy generation.

Finally, a what-if sensitivity study is conducted in which
different maintenance timing scenarios are compared in terms of
the energy generated and financial results.

3.1. Performance monitoring

Performance monitoring of wind turbines is different to moni-
toring other machines, as the expected power is fluctuating and a
function of the unobserved wind speed in front of the turbine. To
properly analyse the efficiency of the turbine, environmental ef-
fects should be first excluded. The most critical assessment of the
turbine's performance is usually conducted in the period after the
installation of the machine, based on additional met masts, and
standard procedures [29].

In operation, wind farm owners might focus on collecting the
turbine's power production, nacelle wind speed and temperature
data inside the turbine as maintaining met masts and meteoro-
logical sensors over the turbine's lifetime is costly. Consequently
real ambient temperature, pressure, relative humidity, precipita-
tion and icing data might not be recorded continuously.

Guidance on performance evaluation based on nacelle mea-
surements and influencing external effects is given in the dedicated
IEC standard [16]. However, these procedures are not necessarily
applied in practice and detailed guidelines for pre-processing data
are lacking.
Table 2
Maintenance history of the investigated turbine.

Number Date Type Event

1 09/2012 Repair Brake pad replacement
2 05/2013 Inspection Blade inspection
3 07/2013 Repair Anemometer replacement

07/2013 Inspection Main bearing inspection
4 09/2013 Repair Blade repair on site
5 04/2014 Repair Tower repair
6 08/2014 Repair Communication repair
7 10/2014 Repair Converter repair
8 05/2015 Major repair Preventative blade replacement

05/2015 Repair Repair of brake pumps
9 09/2015 Optimisation Re-pitching of blades
If the wind speed is measured on the top of the nacelle, the
characteristics of the flow are changed due to the interaction of the
turbine itself, though some attempt is often made to adjust mea-
surements using a nacelle transfer function during the certified
power curve testing at a test site. Procedures to generate a ‘free-
stream’ wind speed from nacelle measurements require an initial
calibration with a met-mast [16], but this is not necessarily feasible
for a farm in complex terrain.

The air density affects the generated power linearly and a
correction of the power to a reference density might be appro-
priate. Air density is usually indirectly derived with supporting
variables such as pressure, temperature and relative humidity [16].
If necessary, missing data might be complemented by nearby
meteorological stations and atmospheric re-analysis databases
such as NCEP [34]. Where humidity, temperature or pressure
measurements are missing or incomplete, air density calculations
rely, in the case of this farm, on secondary information as listed in
Table 1. A mean air density of 1:0219 kg=m3 is calculated with a
standard deviation of 0:0274 kg=m3 (note the altitude of approx.
1500 m). Density can be corrected with a factor using the instan-
taneous density and a reference or average density [16]. In our case,
density correction does not result in any improvement of the power
curve accuracy, but even a slight worsening (scaled mean absolute
error (sMAE) increases from 4.07% to 4.11%). This might be influ-
enced by the use of secondary information for relative humidity
and pressure. Based on these findings, it was decided to omit
density correction in the further part of this study.

Periods that coincide with icing of blades should be filtered in
advance of any power performance analysis [16]. Since precipita-
tion and icing data are not available in this case study, icing is
assumed if relative humidity > 80% and temperature < 2 �C ac-
cording to current practice [35]. This filtering results in a clear
improvement of the power curve (sMAE from 4.07% reduced to
3.61%) giving the best trade-off between accuracy and complete
data.
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The wake of neighbouring wind turbines will affect the perfor-
mance, but we do not limit the study to the sectors that are unaf-
fected by a wake in order to get a complete picture of the turbine's
performance in reality. Further environmental effects on the wind
turbine performance are wind turbulence and gusts, wind shear
and atmospheric stability, 3-dimensionality of flow and topo-
graphic effects. These effects are rarely measured or analysed in
operation, but may have a significant impact [36,37].

Sufficient data from representative operation are needed to
derive a power curve representing all seasons. If different power
curve modelling techniques shall be compared, a second period is
required for validation of the prediction performance. Two periods
of one year were identified that were at least affected by mainte-
nance intervention: September 2013 to August 2014 (training) and
October 2015 to September 2016 (validation). It should be noted
that this implies that the validation takes place after the blade
replacement of the turbine, but a better test case was not feasible.

A standard power curve based on the method of bins was
compared with two multivariate versions of the method of bins
considering seasonality and wind directions, respectively. The
seasonality is addressed by deriving one power curve for each three
month season. The effect of wind direction was considered by
classifying in 12 wind direction sectors, i.e. 30� each, and deriving
an individual power curve for each one. Further on, the ANFIS
model as proposed in Ref. [23] was analysed with four configura-
tions addressing the same multidimensional character of
performance:

a) Univariate model: wind speed
b) Multivariate model: wind speed, temperature
c) Multivariate model: wind speed, nacelle direction
d) Multivariate model: wind speed, temperature, nacelle

direction

The prediction accuracy of the models was evaluated with
metrics scaled to the turbine rated power as proposed in Ref. [23]:
mean absolute error (sMAE), mean error (sME), root mean squared
error (sRMSE) and standard deviation (sSD).

3.2. Cash flow analysis

Before any fixed asset is purchased, the decision about expen-
dituremust be evaluated by taking into account associated possible
future profits [38]. The estimated profits are derived in a discounted
cash flow analysis that considers the time value of money. Any
investment can be compared with the risk-free alternative of
keeping this money in the bank (or similar investments), which
defines the minimum attractive rate of return (MARR). The selec-
tion of MARR can be done based on long term interest rates and
inflation rate (consumer price indexes).

Financial assessment of engineering decisions can be clustered
into various groups such as a) Equipment or process selection from
various options, b) Replacement of the existing equipment [38]. The
cash-flow set-up and the evaluation procedure vary for the two
categories. Although the maintenance decision studied in this pa-
per is a blade replacement, the decision does not belong to the
second category above as in replacement analyses the change of
equipment is optional, where the annual equivalent cost estima-
tions are required for the remaining useful life-time of the existing
asset and service life-time of the candidate asset. Here, the
replacement is mandatory and only various options are possible in
terms of the procedure and timing. For the evaluation of the
alternative options, candidate indicators can be listed as Net Pre-
sent Value (NPV), payback period, internal rate of return (IRR) and
inflation adjusted rate of return (IARR).
Table 3 shows the advantages and disadvantages of the in-
dicators with NPV emerging as the most suitable measure for this
study.

NPVði;NÞ ¼
XN

t¼0

Ct
ð1þ iÞt (1)

In the NPV equation, t is the time step, C stands for cash flow, i
represents interest rate and N the total number of time periods.
Common time steps are one year, one quarter or onemonth. Annual
cash flow is most popular, however, it requires an annually aver-
aged interest rate and does not consider the timing in the year. NPV
decision rule states that the selection from alternatives can be
made according to ranking of NPVs. NPV can be used to make a
decision amongmutually exclusive projects, whichmeans selection
of one causes the exclusion of others [39].
3.3. Sensitivity study setup

What-if studies are conducted to analyse the financial impact of
the maintenance intervention with the main consequence of
underperformance due to a sub-optimal pitch angle. This under-
performancewas studied by changing the delay of the optimisation
and the timing in the year. Total losses due to downtimewere given
to examine in contrast. The financial consequences were compared
with results of performance changes due to variations of environ-
mental conditions, namely icing occurrence and wind direction.
The impact of country characteristics was evaluated by comparing
Spain, UK and Netherlands and with different taxes and subsidies.

The financial evaluation was set with a discounted cash flow
focusing on the maintenance action, the blade replacement and the
re-pitching of blades. As the real cash flow in a wind farm is very
complex and case specific, a simplified chronology was used with
an initial investment for the repair costs which was payed off in the
subsequent years. The acquisition of the turbine was neglected and
all generated income was utilised to balance the maintenance ex-
penses. We limit the utilised energy sales to two years to consider
that in reality income is not only used for the maintenance costs.
The resulting cash flow was not realistic in terms of the values, but
serves for a relative comparison. The repair costs were back-dated
to 2014 as spare blades needed to be acquired before the actual
repair could take place. Energy sales were considered starting from
May 2015 as this period covers the blade replacement.

For the baseline of the sensitivity study, the energy production
in the two years was taken as recorded by the SCADA system
without any filtering except for invalid signals. For the study of the
various effects, the performance was modified by conducting the
following steps:

1. Check which condition applies in the investigated time period
2. Define power curve for reference and each applicable condition

of the turbine (see section 4.2)
3. Interpolate power production according to reference power

curve with wind speed measurement
4. Interpolate power production according to power curve for first

applicable condition with wind speed measurement
5. Check that the turbine operates and the actual production is not

already higher than in the power curve of condition (in case of
power increase, or lower in case of decrease)

6. Derive difference of interpolated power production as power
correction

7. Filter the correction to allow only up to 5% deviation from the
new power curve (with only upper limit for power increase and
only lower limit for power decrease)



Table 3
Financial indicator selection [38,39].

Indicator Advantages Disadvantages

IRR independent of the accuracy of interest rate misleading for the selection among the projects, difficult to compute
IARR shows the effect of the inflation dependent on IRR
Payback period simple low resolution, no time value of money
NPV tracks the direct impact of the project dependent on the accuracy of interest rate estimation, long computing time
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8. Repeat steps 4e7 for all conditions and apply the power
correction resulting in the lowest power production for each
time step.

This procedure was taken to make sure that the original vari-
ability in performance due to further effects remained. It also
ensured that the worst power curve was applied if multiple causes
of underperformance happened simultaneously.

The performance modifications due to different maintenance
scenarios were purely calendar-based. For the investigation of
different timings of the intervention in the year, the duration of the
underperformance was unchanged, i.e. the underperformance was
only ‘shifted’ by a number of months. Scenarios involving addi-
tional icing were set by applying the condition to the dates with
lowest temperatures. The variation of the turbine performance
related towind directionwas applied only to the two selected wind
direction sectors.

In the next step, income was generated by applying the power
production to the electricity prices. In general, electricity markets
are based on the selection of the generation with the lowest mar-
ginal costs, also known as merit order. In many cases, there are
wholesale electricity markets for different temporal dimensions
such as forward and future, day-ahead and intra-day markets. In
this study, day-ahead market data were used.

The general seasonality of energy prices in the relevant period is
shown in Fig. 4. Production values were grouped to fit the hourly
time resolution of the market data. A monthly cash flow was
established by summation of revenue on a monthly basis. The NPV
analysis considered the real interest rate [38] with inflation and
interest rates as shown in Fig. 5.
Fig. 4. Electricity prices in Spain, Netherlands and UK as monthly average and extremes [32]
same scale.
The comparison of country dynamics was implemented under
the assumption that the market prices were not correlated to the
wind conditions of the country. To justify this assumption, the
Kendall correlation of the electricity market price with the wind
energy production as given by ENTSO-E [32] is shown in Table 4. In
addition, the correlation of the market price with the wind speed at
the location of selected large onshore wind farms (Spain: Mar-
achon, Netherlands: Westereems, UK: Whitelee) taken from NCEP
[31] is given. It can be seen that wind speed and wind energy
production are both negatively correlated with the market prices.
The correlation is somehow significant in Spain, but negligible in
Netherlands and UK. That means that applying Netherlands and UK
electricity prices to a Spanish farm with possibly different wind
speeds, should not introduce significant bias. Investigating UK
country characteristics requires a conversion of the initial invest-
ment from EUR to GBP. The final NPV results are converted back to
EUR for comparability. We used a fixed exchange rate of 1
EUR¼ 0.7871 GBP as the average from May 2014 to May 2017 for
both conversions.

The taxable income can be calculated by deducting expenses
from energy sales and thus depends on the operator's financial
situation. For simplicity, we applied corporation tax to 10%, 20%,
30% of the sales revenue. The tax rate varies in the countries being
25% to 28% for Spain, 25% in Netherlands and 20%e21% for UK
depending on the year [40].

The impact of subsidy schemes was also investigated. Although
there has been recently some attempt to harmonise and liberalise
state aid in the EU [41], there are still various subsidy frameworks
for wind energy in force such as fixed feed-in tariffs, premiums,
green certificates and tax exemption rules. Fig. 6 illustrates the
. Note that UK maximums up to 999 GBP/MWh are now shown in order to maintain the



Fig. 5. Inflation and interest rates based on [33].

Table 4
Correlation of market prices p (EUR), onshore wind production ew (MW), and wind
speed v (m/s) for 2015.

Country p ew v

Spain p 1 � 0:371 � 0:279
ew 1 0.535
v 1

Netherlands P 1 � 0.121 � 0.079
ew 1 0.570
v 1

UK p 1 � 0.145 � 0.068
ew 1 0.452
v 1
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history of subsidies for Spain, Netherlands and UK [27,42,43].
Simplified subsidies were applied based on the farm commis-

sioning date of 2002. In Spain, two schemes had been available for
the operator to choose: a fixed feed-in tariff of 77.47 EUR/MWh or a
premium based tariff with a guaranteed rate of 75.41 EUR/MWh
and an upper cap of 89.87 EUR/MWh. Both subsidy schemes were
investigated separately. Although subsidy schemes are available in
the Netherlands, the combination of the commissioning date and
Fig. 6. Simplified history of wind energy su
the age of the farm resulted in no subsidies for 2015e2017. In UK,
the Renewable Obligation scheme were applicable for this farm
with one issued certificate per generated MWh. We applied the
monthly lowest auction price for the certificates recorded by the
Non-Fossil Purchasing Agency [44] as a premium. With monthly
revenue, corporation tax and subsidy, the cash flow is uneven as
sketched in Fig. 7. The setup of the NPV analyses is summarised in
Table 5.
4. Performance analysis

Different modelling approaches were compared in a first step of
the performance analysis. Thereafter, the evolution of performance
was analysed by discussing power curves for various conditions.
4.1. Comparison of different power curve models

A clear impact of the different wind directions can be identified
in Fig. 8 for power curves obtained by filtering individual wind
direction sectors in the training period. The turbine shows better
performance for wind from south to east and is slightly
bsidies in Spain, Netherlands and UK.



Fig. 7. Illustration of uneven cash flow set-up.

Table 5
Parameters for cash flow setup and NPV analyses.

General parameter Definition

Duration May 2014 to May 2017
t Monthly
N 37
i Monthly long term interest rate - consumer price index
Currency Baseline: EUR, UK case: GBP

Setting Relevant month(s) Cash flow Details

Baseline 1 cash-out Blade costs: 70000 EUR
13e37 cash-in Monthly sum (hourly energy * hourly electricity price)

Subsidies included 13e37 cash-in Monthly sum (hourly energy * subsidy)
Tax included 20,32,37 cash-out Annual sum (hourly energy * hourly electricity price * profit rate * tax rate)
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underperforming in wind from northerly directions. This cannot be
explained by wakes or terrain slopes (cp. Fig. 1). It is possibly that
this is caused by different wind shear and turbulence due to local
weather and winds [45].

A seasonal variation of the performance can be seen in Fig. 9
with a comparison of quarterly power curves in the training
period. The performance is lower in summer, but similarly high for
winter, spring and autumn. The illustrated behaviour remains un-
changed if the previously discussed density correction is applied
and is also similarly visible in other years.

The prediction errors of the different univariate andmultivariate
models are given in Table 6 for the validation period. It can be seen;
Fig. 8. Power performance for diff
that different rankings of the models emerge for the various met-
rics. There is a marginal improvement for quarterly and directional
power curves for all metrics except sME, though it should be
stressed that these models may not satisfactorily predict the power
for the entire range of wind speeds. For example, 1% of predictions
are undefined for the directional power curves as they did not see
certain higher wind speeds in the training dataset. The different
ANFIS models show lower errors when considering temperature
and wind direction for most metrics. However, there is no signifi-
cant benefit of using the ANFISmodel instead of themethod of bins.

The ANFIS prediction errors (scaled to the turbine rated power)
from Ref. [23] are added to Table 6 for comparison. It is apparent
erent wind direction sectors.



Fig. 9. Seasonal variation in power performance.

Table 6
Prediction errors of different method of bins (MOB) and ANFIS approaches (as
percentage of the turbine rated power).

Model sMAE sME sRMSE sSD

MOB 3.6145 �0.4111 6.8775 6.6700
Quarterly MOB 3.4427 �0.6267 6.5605 6.1583
Directional MOB 3.0902 �0.6348 6.5983 5.9494
ANFIS a 3.4767 �0.3647 6.7972 6.7875
ANFIS b 3.4283 �0.5776 6.5470 6.5216
ANFIS c 2.9188 �0.6219 6.4825 6.4527
ANFIS d 2.8991 �1.0687 6.4304 6.3411
ANFIS in literature [23] 1.60 e 2.30 2.30
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that they achieved far lower errors, although it has to be noted that
this was obtained from a pitch regulated turbine and fewer data.
Other research attempting to model power curves for small stall-
regulated turbines showed a clearly higher sMAE of 5.3% of rated
power [46].

All in all, it can be seen that the power curve of this turbine
shows a large degree of spread in power output at higher wind
speeds as shown in Fig. 10. This uncertainty is not sufficiently
addressed by any of the models used. Accordingly, we use the
simple method of bins for the subsequent part of the study.
4.2. Performance in different conditions

The derived reference power curve can be used to assess the
evolution of the power performance. In Fig. 11, the performance is
illustrated for July 2012 until April 2017 by showing the monthly
deviation from the expected energy per wind speed bin. For this
Fig. 10. Power curve uncertainty shown with 5 and 95 percentiles for each bin.
visualisation, the pre-processing included only filtering of invalid
signals and non-operation. The maintenance interventions listed in
Table 2 are marked and labelled with the corresponding number.
The training period is also indicated by dashed lines. The power
curve is based on the performance within this period. There are
several periods with underperformance that result in a loss of up to
four rated power hours per wind speed bin (yelloweredeblack
colour). Performance significantly better than the reference is
limited (greeneblue). If the icing exclusion rule is applied for this
analysis, most of the underperformances disappear, as shown in
Fig. 12. The remaining underperformance in May to June 2013 is
probably caused by a faulty anemometer which was replaced in the
subsequent month (maintenance intervention 3). A second
underperformance was clearly visible in May 2015, i.e. after the
blade replacement, but before the blade re-pitching (maintenance
interventions 8 and 9). Noticeably, the energy loss in June to August
2015 was not as high as in May although the re-pitching did not
take place before September 2015. This might be explained by the
lower wind speeds in these months.

For the sensitivity study, several power curves were derived
representing certain performance conditions. The first additional
curve was generated for the sub-optimal pitch angle by selecting
data between maintenance interventions 8 and 9. A second power
curvewas built for icing underperformance by using all icing events
in the training period. Two further power curves were defined to
analyse the effect caused by the differences in performance of wind
directions, here with simplified sectors of 45� for north-northwest
(NNW) and west-southwest (WSW). Fig. 13 shows the resulting
power curves in the various conditions. Icing and the sub-optimal
pitch angle result in strong losses in wind speeds above 10m/s,
whereas thewind direction affects mostly the lowerwind speeds. It
should be noted that these power curves are only intended for
conducting a what-if sensitivity study, but are not necessarily ac-
curate representations of the performance as the uncertainty is
significant.

5. Sensitivity study results

The sensitivity study discusses what-if scenarios for the effects
of maintenance timing, environmental conditions and country
dynamics as listed in Table 7.

5.1. Effect of maintenance timing

Fig. 14 shows the effect of the maintenance timing in the energy
generated over the two years. Here, the baseline represents a delay
in the optimisation of 141 days (May to September) without any
downtime. The baseline NPV, i.e. for Spain without considering
subsidy or tax, emerged as 102,549 EUR. However, it should be
emphasised that relative changes of the NPV are of interest in this
study, as the absolute NPV value is a consequence of the assump-
tions taken in the cash flow setup. The baseline is compared with
various scenarios of optimisation delay, additional downtime and
shifting of the intervention (as listed in Table 7). Fig. 15 gives the
resulting NPV for the scenarios.

It can be seen that the duration of the delay has a significant
impact on both energy and NPV, but is not as dramatic as for
downtime. A direct optimisation (after 0d) results e.g. in a NPV
increase of 2130 EUR, whereas 90 days of downtime reduce the NPV
by 15,740 EUR. Energy and NPV do not change linearly with the
length of underperformance or downtime due to the varying wind
resource. The relative change of the NPV per day of under-
performance or downtime is shown in Figs. 16 and 17. The relative
NPV change per day is approx. ten times bigger for downtime
compared to underperformance.



Fig. 11. Deviation from expected energy per month.

Fig. 12. Icing-filtered deviation from expected energy per month.

Fig. 13. Power curves for several conditions.

Table 7
List of evaluated scenarios.

Category Scenario group Baseline value Tested values

Maintenance timing Optimisation delay 141 days 0, 30, 180 days
Additional downtime 0 days 15, 30, 60, 90 days
Shifting of the intervention 0 months 1, 2, 3, …12 months

Environmental condition Icing 19.7 days 0, 26.7, 33.7, 40.7 days
Wind direction 124/203 days WSW/NNW 327 days WSW, 327 days NNW

Country dynamics Country Spain Netherlands, UK
Taxed revenue 0% 10%, 20%, 30%
Subsidy no Scheme 1, Scheme 2
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Fig. 14. Effect of maintenance timing - energy.

Fig. 15. Effect of maintenance timing - NPV.
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Fig. 16. Sensitivity of NPV to optimisation delay.
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Fig. 17. Sensitivity of NPV to downtime.
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If a shifting of the maintenance intervention is compared, we
see that the real decision was nearly optimal based on the energy
produced. Only a shift of one month (underperformance in June-
eOctober) results in slightly more energy. However, a different
picture emerges if the electricity market is considered as five
possible options arise here with higher NPV than the baseline.
5.2. Effect of environmental conditions

The effects of environmental variations are shown in Fig. 18 in
comparison with the baseline, which represents 19.7 days of icing
and wind direction fractions of 17.36% for WSW (124 days) and
28.27% for NNW (203 days). It can be seen that icing-free conditions



Fig. 18. Effect of environment on NPV. Selected maintenance timing scenarios added for comparison.
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result in an increase of the NPV that is comparable to the mainte-
nance timing scenario with only 30 days' delay in the optimisation.
Again, it can be seen that the losses due to icing are not fully pro-
portional to the length of icing due to the varying wind resource
(relative NPV change per day of �0.0486% to �0.0139%).

The change in the performance for certain wind directions has a
very strong effect. If the NNW performance is applied to all winds
from NNW and WSW, the NPV is decreased to a value that is in
between of 15 and 30 days of added downtime. If the better per-
formance of WSW is used, a higher NPV is achieved than for all
other discussed scenarios. The relative NPV change is however
similar to the other underperformances with an NPV change per
day of 0.0154% and �0.0184%, respectively.

5.3. Effect of country dynamics

The effect of taxes and subsidies is mostly on the baseline value
for all cases as summarised in Table 8.

The relative changes of the NPV as a function of the days of delay
of the optimisation are not strongly affected by the different
country electricity market economics.

There is a trend to higher NPV losses per day of under-
performance with lower absolute NPV for the baseline for most
setups except in when comparing Netherlands to Spain. Here, the
baseline NPV is higher for Netherlands, but the daily NPV loss is
slightly bigger than in Spain. If the shifting of the maintenance
Table 8
For each country, the effect of corporation tax, wholesale electricity prices and
subsidies on the baseline.

Country Taxed revenue Subsidy NPV (1000 EUR)

Spain none no 102.5
10% no 97.9
20% no 93.3
30% no 88.7
none premium 214.9
none fixed 221.7

Netherlands none n/a 104.1
10% n/a 99.7
20% n/a 95.3
30% n/a 90.8

UK none no 150.7
10% no 145.3
20% no 139.8
30% no 134.4
none premium 151.0
interventions is compared for the different countries, Fig. 19, it can
be seen that the ranking of the best options varies somewhat.

6. Discussion

The analysis of the power production and maintenance history
of the turbine investigated reveals that the performance varied
significantly. Density correction is tested, but did not improve the
accuracy of the predicted power curve compared with actual data.
The application of a temperature and relative humidity based rule
for the identification of icing events proved to match quite accu-
rately with observed underperformance. A derived power curve
using the method of bins shows a high uncertainty related to sea-
sonal and directional effects that is also not better addressed by a
multivariate ANFIS model. However, the error in the power curve is
not unusual when compared with similar analysis in the literature
[23,46]. The impact of underperformance due to a suboptimal pitch
angle, icing and directional effects is clearly visible in separate
power curves.

The financial consequences of underperformance are shown in
the NPV of the cash flow. In this setting, 10 days of under-
performance due to the suboptimal pitch angle result in approxi-
mately the same NPV reduction as 1 day of downtime (see Figs. 16
and 17). The current industry practice of conducting a delayed
optimisation of the pitch angle could be questioned here as any
initial investment for direct optimisation that is less than 2130 EUR
would pay off in the case of the turbine investigated. This could be
implemented by a combination of performance monitoring and
blade angle determination with advanced image-capturing or un-
manned aerial vehicles (drones).

There is also optimisation potential in terms of the timing of any
maintenance that results in temporary underperformance. The
analysis of shifting the maintenance period through the year shows
that the actual timing was optimised to the seasonal wind resource
trends. The financial results indicate that the optimal timing will
change due to the different seasonality of electricity markets.
However, this is affected by the complexity of the cash flow, the
electricity market in each country, taxes and subsidies. In most
configurations, a shifting to earlier spring appears to be more
profitable.

The NPV sensitivity study with icing and wind directional per-
formance variation demonstrated that these environmental effects
are similarly important. In particular the performance changes for
the two main wind directions require more detailed investigation.
Measuring turbulence intensity and wind shear could be the first



Fig. 19. Ranking of shifting options for different frameworks and countries.
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step to understand the performance differences.
The comparison for the three countries highlights in addition

that based on the electricity markets alone, UK and Netherlands
were more attractive for the wind farm studied. If the subsidies are
included, the Spanish baseline is more advantageous. However, it
should be noted that the attractive Spanish subsidy scheme ended
and new wind farms may rely only on electricity market sales.
7. Conclusion

The maintenance, performance and revenue of a wind farm are
analysed based on the example of onewind turbine. The impact of a
sub-optimal pitch angle resulting from a blade replacement is
shown by highlighting the energy losses and net present value
(NPV) reduction in a cash flow analysis that considers the
replacement costs and energy sales from two years. A relative NPV
change of approx. �0.01% per day of the underperformance is
identified. It is found that the NPV is similarly sensitive to icing and
changes of the turbine's performance with different wind di-
rections. Downtime, however, causes a relative reduction of the
NPV per day that is more than ten times larger. An analysis of the
timing in the year indicates that shifting the blade replacement to
spring could be more cost-effective. A study with different settings
of corporation tax and subsidies in Spain, Netherlands and UK
shows that these changes mostly affect the value of the baseline
NPV, but not the relative trends for underperformances and losses.
However, the ranking of options of timing of the maintenance
differs slightly for the countries and if subsidies are included.

All in all, this study highlights the complexity of a single
maintenance decision. The methodology used could act as a tem-
plate for future evaluation of decisions and their impact in perfor-
mance and revenue.
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