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A B S T R A C T

Learning-based visual ego-motion estimation is promising yet not ready for navigating agile mobile robots
in the real world. In this article, we propose CUAHN-VIO, a robust and efficient monocular visual-inertial
odometry (VIO) designed for micro aerial vehicles (MAVs) equipped with a downward-facing camera.
The vision frontend is a content-and-uncertainty-aware homography network (CUAHN). Content awareness
measures the robustness of the network toward non-homography image content, e.g. 3-dimensional objects
lying on a planar surface. Uncertainty awareness refers that the network not only predicts the homography
transformation but also estimates the prediction uncertainty. The training requires no ground truth that is
often difficult to obtain. The network has good generalization that enables ‘‘plug-and-play’’ deployment in
new environments without fine-tuning. A lightweight extended Kalman filter (EKF) serves as the VIO backend
and utilizes the mean prediction and variance estimation from the network for visual measurement updates.
CUAHN-VIO is evaluated on a high-speed public dataset and shows rivaling accuracy to state-of-the-art (SOTA)
VIO approaches. Thanks to the robustness to motion blur, low network inference time (∼23 ms), and stable
processing latency (∼26 ms), CUAHN-VIO successfully runs onboard an Nvidia Jetson TX2 embedded processor
to navigate a fast autonomous MAV.
1. Introduction

Thanks to the rapid development of computer vision and state
estimation techniques, VIO has become a trustworthy component of
autonomous robots, such as MAVs. It expands the application scope
of MAVs to GPS-denied environments such as indoor spaces. Monoc-
ular VIO is attractive to MAVs because it only requires an inertial
measurement unit (IMU) and a single camera.

Traditional monocular VIO is built upon projective geometry.
Feature-based approaches [2–7] detect and track handcrafted feature
points along image frames. Direct approaches [8–10] directly utilize the
photometric intensities of pixels. Hybrid approaches [11,12] combine
both. Although such approaches has been widely recognized, their
vision frontends have inherent defects. They are often affected by
disadvantageous and hard-to-model environmental factors, such as
motion blur, varying illumination, and textureless regions.

An alternative is learning to predict camera ego-motion by a deep
neural network (DNN). As observed in [13–18], DNNs better cope with
visually degraded conditions than their handcrafted counterparts. Often
referred to as PoseNet, the DNN regresses to the six-degrees-of-freedom
(6-DoF) relative pose, i.e. 3-DoF rotation and 3-DoF translation, be-
tween temporally consecutive camera views. The network input is a
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concatenation of images or an optical flow map, where the camera ego-
motion is encoded. In supervised learning, PoseNet learns translational
motion with metric scale from ground-truth labels [16–21]. But the
labels are often expensive to obtain and thus limit the amount of
training data. Alternatively, self-supervised learning can be conducted
by involving co-training with another network that predicts a pixel-wise
depth map [14,22–29]. The training loss derives from the difference
between the actually captured image and the ‘‘virtual’’ one synthesized
by image warping according to the predicted relative pose and depth.

When training with monocular videos, translation and depth are
scaled mutually to best explain the visual correspondences within the
input images. Since there is no constraint on the scales in the loss
function, as pointed out in [26], networks not only suffer from scale
ambiguity but also have scale-inconsistent predictions over different
video snippets. Metric scale can be learned from calibrated stereo
images [27,28] or videos with synchronized IMU data streams [14].
But both methods raise higher demands on training data.

Besides the issue of scale discussed above, we believe that learning-
based ego-motion estimation has three major challenges on the road
to being trusted in deployment onboard MAVs. The first one is the
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Fig. 1. Visualized outputs of CUAHN-VIO evaluated on Seq. 13 of the UZH-FPV
dataset [1]. CUAHN is robust to sparse non-planar objects and motion blur. Example
image pairs are respectively shown on the left and right of the first row. The colormaps
(2nd row) show the photometric error between the current image and the previous
image warped according to the homography transformation predicted by the network.
The arrows in pink are the network-predicted optical flow vectors of the four corner
pixels. The red ellipses are the 95% confidence ellipses of the endpoint distributions of
the optical flow vectors. They are plotted according to the uncertainty estimation from
the network. The trajectory plot in the bottom left aligns and compares the trajectory
estimated by CUAHN-VIO with the ground truth. The boxplot in the bottom right shows
the relative translation errors of different sub-trajectory lengths. CUAHN-VIO rivals
SOTA approaches. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

network generalization capacity. Obviously, the requirement of fine-
tuning in every new environment is a fatal barrier to wider application.
However, to the best of our knowledge, only three works [13,15,19]
demonstrated cross-dataset generalization. All of them utilized large
datasets synthesized in simulation. In most works, the networks are
trained and tested on the same dataset. The most popular is KITTI [30],
a car dataset with 3-DoF motion. When it comes to a smaller number
of training samples and more difficult motion patterns, networks [14,
17,18,20,21] show worse accuracy than traditional approaches on
EuRoC [31], an indoor MAV flight dataset with 6-DoF motion.

The second challenge is network prediction uncertainty. It is typical
that most deep learning application works purely pursue prediction
accuracy on certain datasets. It is not enough because we lack knowl-
edge of the mechanisms of DNNs and thus highly inaccurate predictions
may appear, especially when the input sample is outside the training
distribution or distorted by noise. Such outliers can cause a big drift in
ego-motion estimation and mislead the robot. Uncertainty estimation
can remedy this problem. For example, estimating the uncertainties
of each network prediction and using them within the bundle adjust-
ment (BA) backend lead to better accuracy than constant hand-tuned
uncertainty [17,28].

The last challenge is high computation time. The causes are, for in-
stance, the network being too deep [17], combining multiple networks
that together are very large [29], or using an expensive intermediate
representation such as a dense optical flow map [13,16]. Works [13,16,
17,29] reported network inference time of more than 40 ms measured
on Nvidia GPUs designed for desktop computers.

In this article, we propose CUAHN-VIO that overcomes the three
challenges to a large extent. Instead of PoseNet, the vision frontend
is a network that predicts the planar homography transformation. It
is a pixel-level task and thus generalizes across cameras with differ-
ent intrinsics. The network input is a pair of temporally consecutive
images captured by a downward-facing camera mounted on an MAV.
2 
We show cross-dataset evaluation and real-world flight experiments
without any fine-tuning to demonstrate the decent generalization of the
network. The network prediction uncertainty is estimated with minor
extra computation. It strengthens the system’s robustness toward outlier
predictions and contributes significantly to VIO accuracy. In terms of
inference time, CUAHN-VIO runs faster than 30 frame-per-second (fps)
onboard an Nvidia Jetson TX2 mobile processor. Its robustness toward
high-speed motion is highlighted in a comparative experiment with a
traditional VIO approach. CUAHN-VIO requires the MAV to fly above
mostly planar ground, which makes it less generic than other solutions
that suit a forward-facing camera. But this requirement is not strict as
shown by the experiments, which makes it suitable for most indoor
environments.

In our previous work [15], we observed that a network with cas-
caded architecture better copes with motion blur than handcrafted
visual feature points when applied to predicting 3-DoF translational
motion. Motivated by this observation, this work aims to establish a
complete VIO system with a network-based vision frontend to pursue
accurate ego-motion estimation in agile maneuvers of MAVs. The net-
work, CUAHN, is more capable than the translation networks in [15],
featured by that CUAHN predicts homography transformation that
encodes 6-DoF camera motion, and CUAHN estimates the prediction
uncertainty.

The main contributions of this work can be summarized as:

• We propose a practical scheme of training a planar homogra-
phy prediction network in a self-supervised fashion. It has high
prediction accuracy, high-quality uncertainty estimation, and ro-
bustness toward sparse 3-dimensional (3-d) structures in view.

• We build a VIO system upon the network and an EKF-based
backend. The metric scale is maintained by the integration of
IMU measurements. The network architecture of cascaded blocks
makes full use of the EKF a priori state, contributing to both
accuracy and efficiency.

• To the best of our knowledge, CUAHN-VIO is the first learning-
based VIO that not only rivals SOTA approaches in both accu-
racy and efficiency but also has ‘‘plug-and-play’’ generality and
convenience for robot navigation in the real world.

2. Related works

2.1. Learning-based visual ego-motion estimation

For PoseNets learning to predict 3-DoF translational motion in met-
ric scale from monocular video [16,17,19,27,28], the scale in testing
is recovered by the network’s ‘‘memory’’ of the scene structure, e.g.
the size of objects, in the training set. When testing in a new envi-
ronment, the scale is possibly inaccurate because of the non-perfect
generalization. An extreme case is a miniature park. A car model
may be misidentified by the network as a real car that the network
has seen in training. Consequently, a translation of a few centimeters
may be mistaken for meters of motion. To avoid this problem, Tar-
tanVO [13] recovers up-to-scale translational motion by constraining
the normalized translation vector in training. The network is trained
on a large-scale dataset of simulation environments and generalizes
well to real-world datasets. A potential problem is that the normalized
translation is indefinite when the camera is close to stationary or
in pure rotation. In the evaluation of [13], the scale of predicted
translation is recovered by ground truth metric scale. So the potential
bad effect cannot be observed. Another drawback of this approach is
that calculating the optical flow map that is the input of PoseNet is
computationally heavy.

DROID-SLAM [32] adopts an optical flow network that iterative
refines its predictions. The predicted flow maps are used as constraints
for a BA backend that optimizes camera poses. DROID-SLAM is trained
end-to-end thanks to the differentiable BA layer. The camera pose
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and the optical flow induced by the estimated depth and pose are
supervised by the ground truth. It is a computationally demanding
system that requires a powerful NVIDIA GeForceRTX-3090 GPU for
racking and local BA to process the downsampled monocular video
f EuRoC dataset at > 10 fps.

When IMU measurements are fed along with video, two separate
subnetworks can be respectively in charge of visual and inertial pro-
cessing at different sensor rates and output two intermediate tensors.
And another subnetwork takes the concatenated intermediate tensors
as input to perform sensor fusion and pose prediction [18,20]. This
etup has a principle-level generalization issue. Networks for IMU

processing and sensor fusion implicitly ‘‘remember’’ the sensor setup
f the training set, e.g. bias and noise characteristics of IMU and the
xtrinsics between IMU and camera. Generalizing to a new sensor
etup is difficult. IMU data is low-dimensional and has well-understood
odels that are grounded in physics. Practicing this idea, an end-to-

nd supervised learning scheme for a loosely-coupled VIO is proposed
n [21]. Its backend is a differentiable EKF whose states are propagated
y integrating IMU measurements.

For self-supervised learning, SfMLearner [22] firstly proposed to
imultaneously train two networks that respectively predict 𝑇𝑡→𝑠 and
𝑡. 𝑇𝑡→𝑠 is the relative pose between source image 𝑠 and target image

𝑡. 𝑡 is the pixel-wise depth map of 𝑡. An image ̃𝑠 can be synthesized
y warping 𝑠 according to the 2-d projections of the 3-d point cloud

established from 𝑡 on the image plane of 𝑠 located at 𝑇𝑡→𝑠. Based on
the assumption that the pixels in consecutive images corresponding to
the same point in the scene have the same intensity, the supervision
signal derives from the photometric difference between ̃𝑠 and 𝑡. We
call it reprojection-based loss for simplicity. This scheme was further
developed by also predicting 𝑠 and punishing the 3-d geometric
inconsistency between 𝑡 and 𝑠 [25,26].

Also using reprojection-based loss, SelfVIO [29] performs self-
supervised learning of a depth network and three subnetworks for
pose prediction. They have the same functions as the subnetworks of
supervised-learning VIO [18,20]. IMU measurements bring in motion
information with metric scale, however, as pointed out in [14], the
IMU processing network has no knowledge of the physical model of
IMU and the reprojection-based loss does not account for scale. So the
metric scale of the IMU measurements is transformed by the trained
network and thus predictions still have no metric scale. Extended
from [21], the PoseNet prediction in [14] is also fused with the
MU-propagated a priori states by an EKF. The refined a posteriori
go-motion and the output of a depth network together minimize the
elf-supervised reprojection-based loss in training. The metric scale is
btained by explicitly integrating IMU measurement according to its
hysical model. But the authors used a 7-DoF similarity transformation
Sim3) for trajectory alignment to quantify the VIO accuracy. So we do
ot know how well the scale of their VIO output matches the metric
cale.

2.2. Network uncertainty estimation in computer vision tasks

According to the taxonomy of [33], for a deep network model,
here are two major types of uncertainty that can be modeled. Aleatoric
ncertainty captures noise inherent in the network input. It can be
earned from the real data distribution by the network [34]. The loss
unction is the negative log-likelihood (NLL) loss. We referred to it as
redictive uncertainty to emphasize how it is obtained.
Epistemic uncertainty reflects the ignorance about the perfect model

that maps clean noiseless input to the desired output. It can be ex-
plained away given enough data. Bayesian neural networks [35] model
the trainable network parameters as distributions instead of determin-
stic values to explain the epistemic uncertainty in the parameters. Since
xact Bayesian inference is computationally intractable for DNNs [36,

37], practical strategies of approximate inference were developed such
as ensembles of DNNs (deep ensembles) [36] and Monte Carlo Dropout
 A

3 
(MC-Dropout) [38]. Given a certain input, these methods estimate
the distribution of the network prediction by combining the multiple
outputs of an empirically sampled subset of all the possible network
instances.

The models of deep ensembles are different point estimates (instead
f distribution) of model parameters. They are trained independently
o de-correlate their predictions. Ensemble members can be trained on
ifferent randomly sampled subsets of the entire training set, referred to
s bootstrapping. To approximate a similar effect in a computationally
ore efficient way, MC-Dropout requires only a single network model

rained with dropout, while also deploying dropout during inference,
uch that multiple independent models are randomly sampled via mul-
iple forward passes. Epistemic uncertainty is referred to as empirical
ncertainty in this article to highlight its acquisition approach.

The above introduced uncertainty estimation approaches have been
applied to computer vision tasks. Predictive uncertainty has been
proven effective in the prediction of object pose [39], camera ego-
motion [14,17,21,40,41], monocular depth [33,40,42], optical flow
43], semantic segmentation [33], and image classification [36]. Re-

cently, the authors of [44] utilize the predictive uncertainty of optical
flow to navigate a flying robot by detecting obstacles, gaps, etc. For
empirical uncertainty, deep ensembles were evaluated in image classi-
fication [36], optical flow [43], and monocular depth [42]. Likewise,
MC-Dropout was adopted in networks for optical flow [43], monoc-
lar depth [33,42], semantic segmentation [33], and camera pose

regression [45].
Our purpose in studying network uncertainty estimation is for a

better knowledge of visual measurement to benefit Bayesian state esti-
mation. With the similar aim, Kaufmann et al. [39] fuse the network-
predicted gate pose and its uncertainty with outputs of a VIO system by
an EKF. The purpose is to compensate for the gate displacement and the
accumulating error of VIO in autonomous drone racing. Embedded in
a traditional VO, D3VO [28] leverages the predictive uncertainty. The
uncertainty map of photometric matching acts as the weights of the
photometric energy in the BA backend. The relative pose network of
D3VO has no uncertainty estimation, so the weights in the optimization
of pose energy are set as constant. In [17], six predictive standard
deviations of 6-DoF relative pose are used in BA that optimizes a
pose graph and achieve higher accuracy than constant hand-tuned
ovariance. Differently, Li et al. [21] proposed to learn predictive

uncertainty through the Bayesian nature of a differentiable EKF instead
f the widely used NLL loss. The supervision signal is the gradient

flow coming from the a posteriori ego-motion that is a function of the
measurement noise covariance matrix 𝑹 in EKF updating. Since the a
posteriori states are functions of the whole filter, the learning of 𝑹 is
mplicitly affected by the EKF hyperparameters, e.g. the process noise

covariance matrix 𝑸, which poses a potential of overfitting.
The proposed approach of [46] estimates the empirical uncertainty

of pose predictions by MC-Dropout and the predictive uncertainty by
additional layers attached to the PoseNet. The uncertainty estimation
is utilized in fusing the pose predictions with the pose estimation from
a traditional geometric VO by a Kalman filter. It is not shown how to
use the proposed network itself for robot navigation. Regarding time
efficiency, the network inference achieves more than 90 Hz running
on a big GPU for desktop computers. The authors claim the possibility
of achieving real-time performance on embedded processors but no
experimental data is shown. We are cautiously skeptical, because of the
heavy optical flow encoding network and the fact that multiple image
pairs (5 in [46]) are required to be processed for a single pose pre-
diction, due to the long short-term memory (LSTM) layers that model
temporal dependencies across consecutive image pairs. [46] performs
supervised learning, and the training and testing are conducted on the
ame dataset. All of these facts make its capacity to deploy onboard
obots questionable.

Most works adopt uncertainty estimation in supervised learning.
bout self-supervised learning, Poggi et al. [42] made a step in the
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field of monocular depth. A strategy called Self-Teaching was proposed
to decouple depth from pose. The network that outputs predictive
uncertainty is trained by the NLL loss and supervised by the outputs
of an already trained depth network with the same architecture. The
self-supervised EKF-based VIO [14] learns predictive uncertainty of
relative camera pose from the error of a posteriori ego-motion, same
as the supervised VIO [21]. Because the current network prediction
affects the later a posteriori states, the network is supposed to adjust
the current covariance prediction according to the error of a posteriori
ego-motion in the future. So sequential training data having enough
length is required.

2.3. Deep planar homography

When a camera films a 3-d point on a planar surface from different
poses, the 2-d projections of this point on the image planes can be
mapped by a planar homography transformation. It is a function of the
ego-motion of the camera and thus useful for a VIO system. It can be
inferred by a DNN from an input image pair. Both supervised [47–49]
and self-supervised [50,51] learning schemes have been proposed.

A planar homography transformation can be based on visual corre-
spondences between the image pair. Multiple cascaded network blocks
can predict the transformation parameters incrementally [15,48,49].
In this scheme, image warping and synthesizing operation is inserted
between every two adjacent blocks. After the inference of each block,
an image is synthesized by warping the original one using bilinear in-
terpolation [52] according to the prediction(s) of the previous block(s).
The next block infers from the synthesized image and the other image.
Between them, there are supposed to be fewer visual disparities than
the original image pair. In this way, each block predicts a part of the
total transformation. Compared with a single deep network, this strat-
egy can lead to higher accuracy and less difficulty in training thanks to
the involvement of geometric knowledge and shallower architectures
of network blocks.

In many applications, it is not the case that all the visual corre-
spondences can be explained by homography transformation. Masking
out the non-homography pixels, e.g. the ones filming 3-d structures
or dynamic objects, has the goal of boosting accuracy. In [49], a
convolutional decoder is added to the homography network for mask
prediction. Two masks for the input image pair are predicted together
and then concatenated with the images. The concatenation is the input
to the next cascaded network block. In this work, mask prediction
is learned from the ground truth labels. Instead, Zhang et al. [51]
implicitly learn the mask in a self-supervised way. An extra subnetwork
predicts a mask for each input image. And then the mask is multiplied
with the feature map of the image. The idea behind this is that the
mask can weigh down the influence of non-homography pixels. The
homography network infers from the mask-weighted feature maps
for the transformation that is constrained by the self-supervised loss
function.

3. System overview

Fig. 2 illustrates that CUAHN-VIO applies to MAVs that are equipped
with an IMU and a downward-facing monocular camera. From a pair
of temporally consecutive images, the vision frontend, a DNN (Fig. 5),
predicts the planar homography transformation and the uncertainty.
They are utilized in updating the EKF backend as shown in Fig. 3.

Learning-based VIO approaches [14,18,20,21,29] perform end-to-
end learning, i.e., the ego-motion inferred from both inertial and visual
measurements is under constraint in the loss function. The whole VIO
system is obtained from a single training attempt. But there are dis-
advantages. First, videos with synchronized IMU streams are required
in training. They are expensive to collect, which places a barrier to
enlarging the training set. Besides, extra work is required to obtain
the initial poses of data sequences in self-supervised learning [14].
4 
Fig. 2. An overview illustration of the application scenario, sensor setup, and coor-
dinate definition. W stands for world frame and B stands for body frame, i.e., IMU
frame.

Fig. 3. An overview data flow diagram of CUAHN-VIO.

Second, although training the VIO submodules together contributes to
in-domain accuracy, the VIO system can overfit the sensor setup of the
training set.

By contrast, the DNN of CUAHN-VIO is trained alone, totally de-
coupled from the VIO system. The benefit is the better generalization
capacity. The network has no requirement for camera intrinsics or
the camera-IMU extrinsics. Changes to the sensor set only require
modifying the backend parameters without any change in the network.
Besides, we do not require sequential training data. A large number of
easy-to-obtain simulation image pairs (Section 4.1) enable the network
to generalize to real-world scenes without any fine-tuning.

In the context of no ground-truth label, our approach requires
training two networks. They are the student network acting as the
VIO frontend and the teacher network. The teacher network has more
layers than the student network to gain more accuracy. It is trained
by a self-supervised loss function based on photometric matching (Sec-
tion 4.2). Content-aware pixel-wise masks are predicted to mitigate
the negative impacts of the pixels whose photometric error cannot
be reduced by a better homography transformation (Section 4.3). The
teacher network is required because its mean value predictions of
homography transformations are needed by the student network as
targets to learn predictive uncertainty by the NLL loss (Section 5.2). The
student network estimates empirical uncertainty by deep ensembles
or MC-Dropout (Section 5.3). Uncertainty estimation turns out to be
important in improving the VIO accuracy.

The backend of CUAHN-VIO is a simple extended Kalman filter
(EKF), as shown in Fig. 3 and introduced in detail in Section 6.2. It
is propagated by IMU integration that explicitly maintains the metric
scale. The network-predicted homography transformation 𝒛𝑡 and its
uncertainty 𝝈2

𝑡 update the filter at the frame rate. The a priori ho-
mography transformation parameterized as four optical flow vectors
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Fig. 4. An example of 8-d corner flow 𝒇 .
Source: Images are adapted from [53].

𝒇 𝑡|𝑡−1 is utilized for pre-warping the current image 𝑡. The new image
̃𝑡,prior synthesized by warping is more similar to the previous image
𝑡−1 unless the EKF totally diverges. The smaller visual disparities make
the task of the network easier. This is especially helpful in fast flight
when the optical flow is big. With this prior information, running fewer
network blocks produces higher accuracy.

4. Planar homography network

4.1. Datasets

The training dataset is the same as [15]. It is a big-scale (more
than 80 thousand training samples) synthetic dataset with a wide
variety of textures, realistic motion blur, and diverse motion patterns.
It consists of independent image pairs with small baselines filming
perfectly planar surfaces. We refer to it as the Basic Dataset in this
article.

To involve non-planar and dynamic content, we collected a flight
dataset by a MYNT EYE D1000-120 camera downward-facing mounted
on a quadrotor MAV. It has 20 videos in which 44,837 image pairs were
selected for training, 3,904 for validation, and 4,577 for testing. We put
many objects of various heights on the floor that the camera filmed.
Some of them moved due to the downwash from the MAV propellers.
The ground-truth homography transformations were calculated from
the camera poses measured by an OptiTrack motion capture system.
Example images are shown in the left three columns of Fig. 6. This
dataset is called the MYNT Dataset.

The inputs of all networks in this article are required to be undis-
torted grayscale images with the resolution of 320 × 224. There is no
requirement on camera intrinsics.

4.2. Self-supervised cascaded network blocks

When the network acts as a VIO vision frontend, its input images
are temporally consecutive, so we refer to them as the previous image
𝑝 and the current image 𝑐 . The homography transformation is param-
eterized as four 2-d optical flow vectors in the image plane of 𝑐 . They
point from the image corners to the pixels corresponding to the corners
of  , as illustrated in Fig. 4. For simplicity, they are called 8-d corner
𝑝

5 
flow 𝒇 . This four-point parameterization of homography transforma-
tion is widely adopted by learning-based homography estimation [47–
50] and it shows better performance than 3 × 3 homography matrix
when using traditional methods [54].

As shown in Fig. 5, the proposed network has four cascaded blocks
that are gradual in terms of the number of layers and the resolution
of the input. The 1st block is the shallowest and its input is the most
downsampled. The 4th block is the deepest and it infers from full-
resolution images. An input tensor to a network block is made of
two (downsampled) images concatenated along the channel dimension.
The 1st block infers from the downsampled 𝑝 and 𝑐 and regresses
to 𝒇 1. The direct linear transformation (DLT1) solver calculates the
homography matrix 𝑯1 from 𝒇 1. The correspondence between the float
pixel coordinate (𝑢𝑐 , 𝑣𝑐 ) in 𝑐 and the integer pixel coordinate (𝑢𝑝, 𝑣𝑝)
in 𝑝 is

𝜆[𝑢𝑐 , 𝑣𝑐 , 1] = 𝑯1[𝑢𝑝, 𝑣𝑝, 1]𝑇 . (1)

Homography transformation has 8 DoFs while homography matrix 𝑯
has nine elements. 𝜆 is a scalar that makes the equation true when 𝑯
is given. With (𝑢𝑐 , 𝑣𝑐 ), a new image can be synthesized by warping 𝑐
using differentiable bilinear interpolation [52]. The synthesized image
is referred to as ̃𝑐 ,1, the warped 𝑐 according to 𝒇 1. ̃𝑐 ,1 is then
downsampled and concatenated with the downsampled 𝑝 to form up
the input tensor of the 2nd block. 𝒇 2, the prediction of the 2nd block,
is supposed to point from the corners of ̃𝑐 ,1 to the pixels in ̃𝑐 ,1 that
have the same intensities as the corners of 𝑝. 𝑯2 is integrated with
𝑯1 by matrix multiplication to produce the updated 𝑯 integ.,2 = 𝑯1𝑯2.
𝑯 integ.,2 is used to warp 𝑐 to synthesize ̃𝑐 ,2, which is an input to
the 3rd block. The same processes repeat for the 3rd and 4th blocks.
The later warping is based on the refined 𝑯 integ.,𝑖 = 𝑯1𝑯2 ⋯𝑯 𝑖. Thus
there should be fewer discrepancies between the pair of (downsampled)
images that are input to the next block. In this way, blocks running
earlier are trained to capture bigger disparities and the later blocks are
good at refining 𝑯 integ.,𝑖 by inferring from the more-and-more similar
images. The final prediction 𝒇 total is the total corner flow between 𝑐
and 𝑝. It is obtained by

𝜆(𝒇 total,𝑗 + 𝒄𝑗 ,𝑐 ) = 𝑯 integ.,3(𝒇 4,𝑗 + 𝒄𝑗 ,̃𝑐 ,3 ), (2)

where 𝑗 indexes over the four corners and 𝒄𝑗 is the corner pixel
coordinate. (𝒇 4,𝑗 + 𝒄𝑗 ,̃𝑐 ,3 ) is the predicted coordinate of the pixel in ̃𝑐 ,3
corresponding to the 𝑗th corner of 𝑝. (𝒇 total,𝑗 + 𝒄𝑗 ,𝑐 ) is the coordinate
of a pixel in 𝑐 that has the same intensity as the pixel at (𝒇 4,𝑗 + 𝒄𝑗 ,̃𝑐 ,3 )
in ̃𝑐 ,3. Here pixel coordinates are 3-d homogeneous coordinates.

The similarity between ̃𝑐 ,𝑖 and 𝑝 indicates how accurate is 𝑯 integ.,𝑖.
The self-supervised loss function is established as Eqs. (3) and (4).

𝑖 =
1
|𝑉 |

∑

𝑘∈𝑉
(𝑖,𝑘) (3)

(𝑖,𝑘) = 𝛼
2
(1 − SSIM(𝑖,𝑘)) + (1 − 𝛼) ⋅ |𝑝,𝑘 − ̃𝑐 ,𝑖,𝑘| (4)

1 An asterisk indicates that further elaboration is available in Supplementary
Document. Applying to the whole article.
Fig. 5. The architecture of cascaded network blocks for planar homography transformation prediction. The downward arrow in the foot marker of 𝑖,↓ indicates that it has been
downsampled. Data flows correspond to training. In inference, loss terms are not calculated and there is no DLT solver for 𝒇 4. The network output 𝒇 total is obtained by Eq. (2).
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Fig. 6. From the top row to the bottom row: original image, photometric error maps
of the network trained by Eq. (7), uncertainty maps (𝑏𝑘) in Eq. (7), photometric error
maps of the network trained by Eq. (5), explainability maps (𝐸𝑘) in Eq. (5) (𝜆r eg. =2e-
3), and photometric error maps of the baseline network. The photometric error map is
made of |𝑝,𝑘 − ̃𝑐 ,𝑘|, where ̃𝑐 is the warped 𝑐 according to the predicted 𝒇 total and 𝑘
is the pixel index. Dark blue means a low error. The 5th row shows the maps of 1 −𝐸𝑘.
Pixels having a small weight in the loss are in yellow, consistent with other rows. The
three columns on the left show example images from the MYNT Dataset. The object in
the center of the leftmost column is an artificial plastic tree with leaves swaying due
to the downwash. The rightmost column shows an image from the Basic Dataset. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

𝑉 denotes the set of all valid pixels excluding the ones sampled outside
the border of 𝑐 . It is a mask calculated from 𝑯 integ.,𝑖. 𝑖 denotes the
aggregation of 𝑝 and ̃𝑐 ,𝑖. Same as other works [28,40,42,55], we
involve both the 𝐿1 loss of pixel-wise photometric error and Struc-
tured Similarity Index Measure (SSIM) loss in the loss function of
self-supervised learning, as shown in Eq. (4) where 𝛼 = 0.85. Multi-
stage losses are calculated from each 𝑖. Their weights are respectively
0.1, 0.2, 0.3, and 0.4 from earlier to later blocks.

The planar homography network is implemented1 in a Python
environment with PyTorch library and trained on the Basic Dataset
by the self-supervised loss. We employed bidirectional training, i.e.
concatenating an image pair in two opposite orders. The average error
of the predicted 𝒇 total on the testing set of the Basic Dataset is 0.275
pixels. It is the average of the absolute values of elements of the
8-d error vector that represents the difference between the network
prediction and ground truth, i.e. 1

8
∑4

𝑗=1 |𝒇 𝑗 ,𝑢 − 𝒇 𝑗 ,𝑢,GT|+ |𝒇 𝑗 ,𝑣 − 𝒇 𝑗 ,𝑣,GT|.
Note that this is different from the optical flow endpoint error (EPE)
utilized by other works [47,49,51], which is the average 𝐿2 distance,
i.e. 1

4
∑4

𝑗=1 ‖𝒇 𝑗 −𝒇 𝑗 ,GT‖2. The reason for element-wise averaging is that,
as introduced later, the uncertainty of each element of 𝒇 is estimated
independently. The error-variance data pairs for evaluating uncertainty
estimation are element-wise. We refer to the trained network as the
Basic Model. Its average inference time cost of a single image pair is
28.20 ms in Python environment and 21.16 ms in C++1, measured on
a TX2 processor in Max-P ARM power mode.

4.3. Content-aware learning

The major assumptions made in the self-supervised loss function
Eq. (4) are that 1) the camera is facing a single perfectly planar
6 
surface, and 2) the overlapping content of both images meets the
brightness consistency constraint. However, these assumptions can be
easily violated in the real world by 3-d structures, moving objects,
occlusions, and reflective materials. A straightforward idea is to learn a
content-aware (CA) mask to down-weight the losses of pixels violating
the assumptions. The mask is supposed to be learned without ground
truth. It only acts on the loss function and thus is not required during
testing.

To predict such a mask, 4th block is expanded to a UNet-like [56]
architecture with skip connections. Its convolutional layers serve as the
encoder part. The upsampling decoder part is added and connected
to the last convolutional layer. A single mask is inferred from 3.
The mask-involved loss function is applied to the final homography
transformation prediction 𝑯 total. The rest blocks keep their original
architectures and 𝑯 integ.,𝑖, 𝑖 ∈ {1, 2, 3} are still constrained by Eq. (4)
without taking the mask into account, assuming that the ratio of
assumption-violating pixels is not big enough to greatly deteriorate the
supervision signal.

We compare two content-aware loss functions. The first one is
proposed in [22]. The predicted mask is called the explainability map.
Its elements 𝐸𝑘 are bounded between zero and one by a Sigmoid activa-
tion. 𝐸𝑘 indicates the network’s belief in how much the assumptions are
satisfied for the 𝑘th pixel of 𝑝. The pixel-wise loss is weighted by 𝐸𝑘 as
shown in Eq. (5). A regularization term r eg.(𝐸𝑘) encourages non-zero
𝐸𝑘 by minimizing the cross-entropy loss with 1.0 so as to prevent the
network to minimize the loss by outputing small values for all 𝐸𝑘. If the
network predicts the 𝑘th pixel to meet the assumptions well, the value
of 𝐸𝑘 would be close to 1.0 and (4,𝑘) would be fully minimized. On
the contrary, (4,𝑘) would be ignored if 𝐸𝑘 is close to zero.

CA,Exp. =
1
|𝑉 |

∑

𝑘∈𝑉
𝐸𝑘 ⋅ (4,𝑘) + 𝜆r eg. ⋅ r eg.(𝐸𝑘) (5)

Another approach considers the content-aware mask and homog-
raphy transformation as parameters of a Laplacian probability dis-
tribution. The nature of the mask is an uncertainty map. This ap-
proach was adopted for structure from motion [28,40] and optical flow
estimation [43]. Given the Laplacian probability density function (PDF)

𝑝(𝑥|𝜇 , 𝑏) = 1
2𝑏

𝑒
−|𝑥−𝜇|

𝑏 , (6)

since we use 𝐿1 loss in Eq. (4), the term |𝑥 − 𝜇| can be replaced
by photometric matching loss (4,𝑘) calculated from the homography
prediction. The parameter 𝑏 in Eq. (6) is related to the variance 𝜎2 = 2𝑏2
of the Laplacian distribution. The predicted mask is made of the 𝑏𝑘 that
corresponds to the 𝑘th pixel of the photometric matching map 4. The
learning objective is to maximize the PDF, i.e., minimize the NLL loss

CA,Lap. =
1
|𝑉 |

∑

𝑘∈𝑉

(4,𝑘)
𝑏𝑘

+ log 𝑏𝑘. (7)

𝑏𝑘 can be understood intuitively as the uncertainty of the indi-
rectly predicted (4,𝑘), i.e. photometric matching uncertainty. From
the perspective of the uncertainty of network prediction, 𝑏𝑘 encodes
the predictive uncertainty induced by the content-related observation
noise. If pixel 𝑘 potentially violates the assumptions and is too diffi-
cult for photometric matching, Eq. (7) allows the learning process to
increase the value of 𝑏𝑘 to down-weight (4,𝑘) and reduce the overall
loss. log 𝑏𝑘 prevents 𝑏𝑘 to overgrow.

The content-aware networks are trained and tested on the MYNT
Dataset. Except for the randomly initialized mask prediction decoder,
all parameters are initialized by the Basic Model. The average error of
the predicted 𝒇 total, CA of each setup is shown in the 3rd row of Table 1.
The 2nd column is the baseline network without mask prediction and
trained by the original loss function Eq. (3). The network of the 3rd
column is trained by Eq. (7). The remaining three columns correspond
to networks trained by Eq. (5) with different hyperparameters 𝜆r eg..
Their pixel-wise average values of the predicted explainability maps
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Table 1
Comparison of content-aware homography networks (CAHN). The unit of average error
is pixel. The three columns on the right correspond to the networks predicting the
explainability map 𝐸𝑘. The three values in the first row are the weights 𝜆r eg. of the
regularize r eg.(𝐸𝑘).

Setups No mask Lap. 1e−3 2e−3 3e−3

Avg. 𝐸𝑘 – – 0.383 0.640 0.779
Avg. Error ↓ 0.8768 0.8477 0.8483 0.8471 0.8487

on the training set are listed in the 2nd row. A bigger value means that
more photometric error is taken into account in the loss function.

The lowest errors are obtained by using the context-aware masks.
owever, given the considerable 3-d structure in the MYNT dataset, the
ifference with the baseline is quite modest. As shown in the 6th row
f Fig. 6, the example photometric error maps of the baseline look very

similar to the 2nd and 4th rows that are outputs of the content-aware
networks. The reason behind this modest difference is that the baseline
DNN trained with the original loss function Eq. (3) is already by itself
rather robust to non-planar scenes.

As shown in Fig. 6, the uncertainty map (3rd row) is clear and
orresponds well to the photometric error (2nd row) caused by non-
omography image content. The explainability mask (5th row) is very
oisy and prone to discount the textures because they cause bigger
hotometric errors than uniform regions. Besides, the sensitivity of the

explainability mask toward 𝜆r eg. may induce extra work of parameter
tuning. Therefore, we believe the uncertainty map trained by Eq. (7) is
the better choice for content-aware learning.

The 2nd and 3rd rows of Fig. 6 show the positive correlation
etween the predicted uncertainty maps and the photometric error
aps. The photometric error can be caused by non-homography image

ontent and inaccurate homography transformation. When obvious
on-homography pixels exist, we can observe that most pixels with
igh predicted uncertainty fall on 3-d structures as shown in the three
olumns on the left. When the scene is perfectly planar, as shown
n the rightmost column, the non-zero uncertainty predictions are
otally caused by the homography prediction error. So, a content-aware
ask is not ideal for semantic plane segmentation. Its only duty is to
own-weight the non-homography pixels in training.

5. Network uncertainty estimation

In Section 2.2, we introduced practical approaches for estimat-
ng predictive uncertainty and empirical uncertainty. In this section,
hey are implemented for uncertainty estimation of the homography
etwork. We gain the knowledge of their uncertainty estimation qual-
ty, effects on prediction accuracy, and additional time consumption.
ncertainty-Aware Homography Networks (UAHN) in this section are

rained and evaluated on the Basic Dataset. Content-aware learning is
ot involved.

5.1. Configurations

The correlations between the uncertainty of network outputs are
often neglected in practice. The covariances between the pixel-wise
predictions are not considered in monocular depth and semantic seg-
mentation [33,40,42]. The uncertainty of 𝑢 and 𝑣 components of an
ptical flow vector are separately estimated in [43]. As for pose pre-

diction [14,17,21,39], the six elements are modeled as independent
f each other. In this work, we neglect the covariances as well and
eave them for potential future works. A scalar variance is estimated for
ach element of the 8-d mean prediction of homography transformation
total.

As introduced before, our network has four cascaded blocks that
infer from their own inputs. It is not necessary for all of them to
estimated the prediction uncertainty. The uncertainty of 𝒇 estimated
4 a

7 
by the last (4th) block is enough to obtain the uncertainty of 𝒇 total by
he following way. The 4th block infers from ̃𝑐 ,3 and 𝑝 and outputs
he mean prediction 𝒇 4,𝑗 and the variances 𝜎2𝑢,𝑗 , 𝜎

2
𝑣,𝑗 of the endpoint of

𝒇 4,𝑗 in the 2-d image plane of ̃𝑐 ,3. 𝑗 indexes over the four corner pixels.
4,𝑗 is a 3-by-3 diagonal matrix whose diagonal elements are 𝜎2𝑢,𝑗 , 𝜎

2
𝑣,𝑗

nd zero. The coordinate of the pixel in 𝑐 that has the same intensity
as the endpoint of 𝒇 4,𝑗 can be obtained by Eq. (2). Thus the variance of
this pixel coordinate, i.e., the variance 𝜮total,𝑗 of 𝒇 total,𝑗 , is calculated
as

𝜆2𝜮total,𝑗 = 𝑯 integ.,3 ⋅𝜮4,𝑗 ⋅𝑯𝑇
integ.,3. (8)

Note that the 𝜆 here has the same value as the 𝜆 in Eq. (2). Based on the
bove explanation, the first three blocks of UAHN stay the same as the
asic Model. Only the 4th block is modified for uncertainty estimation.
𝜮4,𝑗 is a diagonal matrix but 𝜮total has non-zero non-diagonal

elements because of the matrix multiplication. These non-diagonal ele-
ments are two orders of magnitude smaller than the diagonal elements
in general. So we neglect them and form up the error-variance pair for
evaluation by the 2-d error of 𝒇 total,𝑗 and the first two diagonal elements
of 𝜮total,𝑗 . In this way, a testing image pair has eight error-variance
pairs.

Same as [42,43], we adopt Area Under the Sparsification Error
AUSE) as a metric to evaluate the quality of uncertainty estimation.
USE derives from the ‘‘sparsification plot’’ that reflects how well

high errors and high uncertainty coincide. To form a sparsification
lot, error-variance pairs are descendingly sorted according to variance.
airs with the highest variances are removed gradually. If the variances

and errors coincide well, the average error of the remaining pairs
should decrease while we are removing the data. In contrast, there
would be little change in the average error if the variance does not cor-
relate with the error. The ideal sparsification i.e., oracle sparsification, is
obtained by removing data pairs with the highest errors gradually. An
example is the rightmost subplot of Fig. 8. The horizontal and vertical
coordinates are respectively the ratio of removed data and the average
error of remaining data.

The difference between the sparsification formed up by the es-
timated variances and the ideal sparsification reflects the quality of
variance estimation. A sparsification error curve is calculated by sub-
tracting the ideal sparsification from the estimated one. AUSE is the
area of the region below the error curve. A lower AUSE means better
ariance estimation. In practice, to reduce the computation, data pairs
re removed in batches. In this article, we remove ten pairs at each step
o get a data point of the sparsification curve. An AUSE value shown
ater is the sum of the vertical axis coordinates of all the data points of
he sparsification error curve.

AUSE only reflects the relative values among the variances without
howing how well their values reflect the values of the errors. For exam-
le, for three errors, 1, 2, and 3, the corresponding variances estimated
y two approaches are 0.1, 0.2 0.3, and 10, 20, 30, respectively. In this
ase, their sparsification plots are the same but obviously the former
pproach underestimates and the latter overestimates the uncertainty.
o we use another metric as a complement. It is the percentage of
he testing errors falling into the three standard deviations (3𝜎) inter-
al, abbreviated as ‘‘Inside Rate’’. A low Inside Rate means that the
ncertainty is underestimated.

5.2. Predictive uncertainty

As introduced in Section 4.3, an additional decoder network predicts
the photometric matching uncertainty per image pixel, with the pur-
pose of content-aware learning. Here we shift the focus to the predictive
uncertainty of the homography transformation parameterized as the
8-d corner flow 𝒇 4. The approach proposed in [34] is adopted. A
subnetwork of two fully-connected (FC) layers is added to the 4th
lock to infer the predictive uncertainty from input. It has the same
rchitecture and input tensor as the layers predicting the mean values.
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Fig. 7. Comparison of different approaches to learning predictive uncertainty. Left three subplots: three times of the predictive standard deviations 𝜎 and the corresponding
prediction errors (absolute values) of GT-Teach, Master-Teach, and Self-Teach, sorted according to the errors of GT-Teach. The 5,000 samples with the biggest testing errors are
shown. Because 3𝜎 is very noisy, a Gaussian filter is adopted to produce the smoothed curves (in dark red) that allow more intuitive views. Rightmost subplot: comparison of the
sparsification error curves of the three supervision schemes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 8. Predictive uncertainty of the randomly initialized Master-Teach model (1st row of Table 3). Error-variance pairs of the testing set are sorted according to the variances. To
avoid overly dense data points in plots, we show one point every ten pairs. Small and big variances are shown respectively in the left and middle subplots with different ranges
of 𝑦-axis for better visualization.
Table 2
Comparison of supervision signals for predictive uncertainty.

Super-
vision

Avg.
Error
(pixel) ↓

Avg.
Imitation
Error (pixel)

Avg. Var.a
(pixel)

AUSE
↓

Inside
Rate (%)
(3𝜎) ↑

GT 0.454 0.489 16.66 370.0 97.63
Master 0.428 0.336 7.69 357.3 86.96
Self 0.408 0.208 1.83 565.9 79.08

a The networks predict rare unreasonably big variances. The averages are calculated
after removing the 0.1% biggest values.

The outputs are eight logarithmic variances, log 𝜎2𝑢,𝑗 and log 𝜎2𝑣,𝑗 . The
training loss is the NLL loss

Gaus. =
8
∑

𝑛=1

1
2𝜎2𝑛 (3)

‖𝑡𝑛 − 𝜇𝑛(3)‖2 +
1
2
log 𝜎2𝑛 (3). (9)

𝑡𝑛 denotes the learning target of the mean value. 𝜇𝑛 and 𝜎2𝑛 are respec-
tively the means and variances inferred from the input 3. 𝑛 indexes
over the elements of 𝒇 4.

Since we aim to build a self-supervised pipeline, ground-truth 𝑡𝑛 is
not available. Inspired by the Self-Teach scheme proposed in [42], the
pseudo label 𝑡𝑛 can be generated by a network trained in self-supervised
fashion. A student network predicting both mean and variance can be
trained by Eq. (9) under the supervision of the trained teacher network
that outputs only the mean predictions. The student is trained to imitate
the teacher by outputting 𝜇𝑛 closer and closer to 𝑡𝑛. The predictive
variance 𝜎2𝑛 learns to capture how good is the imitation. Thus 𝜎2𝑛 only
reflects the imitation error ‖𝑡𝑛−𝜇𝑛‖2 instead of the true error of 𝜇𝑛 w.r.t.
the ground truth.

The Basic Model has decent accuracy and thus is an option for the
teacher network. We referred to it as Self-Teach, same as [42]. Besides,
we propose an enlarged version of the Basic Model called the Master
Model. It has six network blocks in total. The first three are the same as
the Basic Model. The following three blocks have the same architecture
as the 4th block of the Basic Model. They together can be treated as a
8 
more capable ‘‘last block’’. In the refining training of the Master Model,
we initialized the last three blocks by the parameters of the 4th block
of the Basic Model. A small improvement in accuracy was achieved
and the final testing average error is 0.144 pixels, better than the Basic
Model (0.275). The scheme using the Master Model as teacher is called
Master-Teach.

Self-Teach and Master-Teach are compared in Table 2. To gain
more insight, we also trained a student network supervised by ground-
truth 𝑡𝑛, abbreviated as GT-Teach. 𝑡𝑛,GT, i.e. 𝒇 4,GT, is calculated from
𝒇 total, GT and 𝑯 integ.,3 that is predicted by the first three blocks. The 4th
blocks of all the student networks in Table 2 are randomly initialized
before training. When a training epoch has been finished, the average
imitation error is calculated on the validation set. The set of network
parameters achieving the smallest average imitation error are recorded
for testing.

Table 2 shows that GT-Teach has the lowest prediction accuracy
but the highest Inside Rate and average variance. The AUSE of Master-
Teach is the lowest but its advantage over GT-Teach is small. For all
other metrics, Master-Teach achieved the middle places. The smallest
imitation error and variance indicate that the student model imitates
the teacher best in the Self-Teach scheme. But the AUSE and Inside
Rate tell us the predictive uncertainty of Self-Teach is the poorest.
The low Inside Rate and average variance show that the uncertainty
is underestimated.

To visualize the comparison better, we plot the prediction errors
and predictive variances in Fig. 7. For most testing samples, their error
and predictive variance are both small. Here we show the 5,000 error-
variance pairs with the biggest errors. Inaccurate predictions like them
are dangerous for VIO if the corresponding high variances are not
correctly predicted. The error-variance pairs from different supervision
schemes are aligned by data indexes and sorted according to the errors
of GT-Teach. In this way, the data points with the same index in the
three subplots correspond to the same element of the corner flow of
the same image pair. We can observe that the three schemes have
similar errors for the same testing sample, consistent with the similar
average errors in Table 2. 3𝜎 grows with error as a general trend.
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Table 3
Comparison of different network initializations.

Conv.
Layers

FC Layers
(mean
value)

Avg.
Error
(pixel) ↓

Avg.
Imitation
Error
(pixel)

Avg.
Var.
(pixel)

AUSE ↓ Inside Rate
(%) (3𝜎) ↑

Random Random 0.428 0.336 7.69 357.3 86.96
Basic Random 0.376 0.282 5.98 400.0 57.05
Basic Basic 0.352 0.258 4.37 387.9 62.65

3𝜎 of GT-Teach is the noisiest and biggest. In contrast, Self-Teach
has the smallest 𝜎 that is sluggish toward the increasing error and
ends to underestimate especially the big errors. The sparsification error
urves shown in the rightmost subplot have peaks at a very low ratio,
hich means that, statistically, the quality of predictive variance is

poor when the prediction error is big. For most of the testing data,
redictive variance is effective, as evidenced by the low sparsification
rror curves.

In training, the prediction error of a student network is caused by
two factors, the imitation error ‖𝑡𝑛−𝜇𝑛‖2 and the prediction error of the
eacher. As mentioned before, 𝜎2𝑛 can only capture the imitation error.
o when the imitation errors are big and the teacher errors are small, 𝜎2𝑛

well reflects the prediction errors. Conversely, when imitation error is
small but the teacher predictions are inaccurate, 𝜎2𝑛 keeps a small value
and becomes almost irrelevant to the student prediction error. Master-
Teach and Self-Teach respectively correspond to the former and latter
cases above. Thus Master-Teach produces better predictive uncertainty.

For a sparsification curve, when the ratio of removed data goes
higher, remaining data pairs have smaller 𝜎2𝑛 . As shown in the rightmost
ubplot of Fig. 7, Self-Teach has an increasing sparsification error curve,

which indicates that a smaller 𝜎2𝑛 coincides worse with the actual error.
he reason for a small 𝜎2𝑛 can be that the student network is confident

that its mean value prediction is close to the teacher network that
supervised it in training. In this case, the student prediction error is
close to the unknown teacher error that is not reflected by 𝜎2𝑛 .

Fig. 8 diagrams how the predictive variances cover the prediction
errors in a different view from Fig. 7. The left subplot shows around
90% of the testing data. Most data points fill up the area between −3𝜎
and 3𝜎. The local Inside Rate is 86.02%. In the middle subplot, it is
oticeable that the variances are much bigger for the remaining 10%
f the data. Although the distribution of the errors becomes broader,
ut not as much as 3𝜎 increases, i.e. the extent of overestimation
rows with 3𝜎. The local Inside Rate is 95.38%. As observed in the
parsification plot (right subplot of Fig. 8), when the data pairs with the

biggest predictive variances (less than 5% of the total) are removed, the
average error drastically drops to less than 0.1 pixels. It indicates that,
for most testing samples, the Master-Teach student network achieves
igh prediction accuracy. The uncommon outliers can be revealed by
he big predictive variances. The above results corroborate that the
uality of Master-Teach predictive uncertainty is generally satisfactory.
ll the uncertainty-aware networks in the rest of this article are trained

n Master-Teach scheme.
Besides random initialization, the student network can be initialized

ith the trained parameters of the Basic Model. It is clearly shown in
Table 3 that initializing both convolutional layers and FC mean predic-
tion layers (3rd row) with the Basic Model is better than convolutional
ayers alone (2nd row). Random initialization (1st row) has the best

predictive uncertainty and worst prediction accuracy. The high predic-
tion accuracy of the 3rd row comes from the initial parameters. They
also make the imitation error smaller. Thus the predictive variances
are smaller and reflect the prediction errors less well, leading to worse
predictive uncertainty.
 i
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5.3. Empirical uncertainty

Deep ensembles [36] and MC-Dropout [38] are implemented on the
tudent networks with predictive uncertainty. They both require multi-
le forward passes to get the samples from the distributions of network
arameters. The variance is calculated empirically from the outputs

of the forward passes. Same as [33,42,43], we combine empirical and
predictive uncertainty. The total variance 𝜎2𝑛 of the 𝑛th element of 𝒇 4
is shown in Eq. (11) as the sum of the empirical variance of the mean
value predictions 𝜇𝑚,𝑛 and the average of predictive variances 𝜎2𝑚,𝑛. 𝑚
indexes over the network model samples.

𝜇𝑛 =
1
𝑀

𝑀
∑

𝑚=1
𝜇𝑚,𝑛 (10)

𝜎2𝑛 = 𝜎2𝑛,pred. + 𝜎2𝑛,emp.

𝜎2pred. =
1
𝑀

𝑀
∑

𝑚=1
𝜎2𝑚,𝑛, 𝜎2emp. =

1
𝑀

𝑀
∑

𝑚=1
(𝜇𝑚,𝑛 − 𝜇𝑛)2

(11)

The idea of deep ensembles is to train 𝑀 network models indepen-
dently as the samples. Training the models with different bootstrapped
subsets of the training data enhances independence. But meanwhile,
less training data harms the prediction accuracy. We follow the practice
of [36] that using the entire training set for every model, assuming
random initialization along with random shuffling of training data
produce sufficient independence. We trained eight independent models
respectively for the 1st and 3rd initialization schemes in Table 3. An
ensemble combines eight models at most because the increasing time
consumption makes it impossible for real-time inferencing on a mobile
processor.

For MC-Dropout, we implement two schemes and two dropout rates.
One scheme randomly initializes all parameters and performs dropout
before all layers. The other initializes the convolutional layers with
the parameters of the trained Basic Model. Following the practice
of [45], that is deploying dropout only before layers that are randomly
initialized, dropout is only effective before FC layers.

The above-introduced schemes are compared in Fig. 9 by four
metrics. We find that performing dropout before all layers leads to
much worse accuracy and AUSE, besides long inference time. So it is
eliminated without being shown. The leftmost subplot shows that in-
creasing the number of sampled network models only slightly improves
prediction accuracy. While, the AUSE values shown in the 2nd subplot
from left vary with the number of samples significantly, especially
for deep ensembles. The same trend is observed in Inside Rate (3rd
subplot). An ensemble of three network models has significantly better
uncertainty estimation than a single one. In contrast, more forward
passes of MC-Dropout networks produce relatively smaller improve-
ments. The higher dropout rate (10%) performs worse than the lower
one (5%) in terms of both accuracy and AUSE, while better in Inside
Rate.

As for the two initialization schemes, random initialization has bet-
ter and bigger predictive uncertainty as shown before. Thanks to more
randomness in network parameters, random initialization in theory has
better and bigger empirical uncertainty as well and thus has better
overall uncertainty estimation. As shown in Fig. 9, the two initializa-
tion schemes are respectively advantageous in prediction accuracy and
uncertainty estimation quality.

For deep ensembles, the time consumption increases significantly
ith the number of sampled networks. We failed to find a way in our

urrent implementation to speed up, though the samples of the 4th
etwork block are independent and, in theory, can run in parallel. Due
o the real-time requirement of VIO, we only consider the ensembles
f less than three network samples. For MC-Dropout, instead of infer-
ncing multiple times temporally serially, the intermediate tensors can
e duplicated along the batch dimension before dropout to obtain the
ame effect. The time consumption increases insignificantly as shown
n the rightmost subplot of Fig. 9. Based on the overall consideration of
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Fig. 9. Comparison of approaches for empirical uncertainty in terms of prediction accuracy, uncertainty estimation quality (AUSE and Inside Rate), and inference time consumption.
he 𝑥-axis for deep ensembles is the number of independent network models. For MC-Dropout, the 𝑥-axis is the number of forward passes. Deep ensembles indicated by blue
tars and magenta triangles correspond respectively to the 1st and 3rd row of Table 3. The inference time was measured on a TX2 processor running network inference in a C++
nvironment. We show the inference time of one of the two networks using MC-Dropout because the other has the same in theory. Same for the deep ensembles. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
r

o

s
i

T

𝒆
c

the four metrics, we select three candidates that act as the VIO vision
frontend and are compared in terms of the resulting VIO accuracy in
Section 7.2. They are 1) the ensemble of randomly initialized models
indicated by the blue stars in Fig. 9), 2) the ensemble of models

initialized by the Basic Model (magenta triangles), and 3) 5% dropout
before FC layers with 16 forward passes (red squares).

Supplementary Document shows the magnitudes of 𝜎2emp. and 𝜎2pred.
and their correlation for interested readers.

6. Visual-inertial odometry

6.1. Homography network as the vision frontend

We have introduced how to train CAHN (Section 4) and UAHN
Section 5). In the following, we describe the way of combining both to
et a content-and-uncertainty-aware homography network (CUAHN),
nd how it acts as the vision frontend of a VIO system.

As discussed in the previous section, Master-Teach is a good choice
for the student network to learn the predictive uncertainty. To gain
igher accuracy through the robustness toward non-homography image

content, we train the Master Model by the content-aware loss Eq. (7),
different from the Master Model in Section 5.2 that minimizes the pho-
ometric error of all the pixels. Three upsampling decoders are respec-
ively attached to the last three blocks to predict the content-related
hotometric matching uncertainty maps, as introduced in Section 4.3.

The decoders share parameters. In this way, each of the last three blocks
has its predicted uncertainty map and the photometric matching map
obtained from the integrated homography transformation prediction
𝑯 integ.,𝑖. The training loss is the sum of the content-aware losses of the
three blocks.

It is important for the training set to have enough non-homography
ontents and also be generic. In this article, the six sequences with
ublic available ground truth of UZH-FPV are used for evaluation.
e take the 6,070 image pairs from the rest four sequences without

round truth for training and name them the UZH-FPV training set.
ogether with the generic Basic Dataset, the aggregated dataset is used
or training CUAHN.

As introduced in Section 5, an uncertainty-aware network estimates
he 8 × 8 covariance matrix 𝑹net. of the corner flow prediction. Theoret-
cally, it should be used directly as the measurement noise covariance
atrix 𝑹meas. in the measurement update of EKF. But because the

performance of the EKF is under the effects of noise matrices, it is
better to have the freedom of tuning the measurement noise. Thus we
introduce a manually tuned scalar hyperparameter 𝑘var. to linearly scale
𝑹net. as 𝑹meas. = 𝑘var. ⋅ 𝑹net.. In practice, it is easy to tune since the
system is not very sensitive to 𝑘var..

6.2. EKF-based backend

The VIO backend is a simple and very efficient EKF. IMU measure-
ments drive the state propagation and network outputs drive the visual
 S

10 
measurement updates. To simplify the filter, we assume that a single
plane is observed by the camera throughout the whole video and the
plane is orthogonal to the gravity vector. These assumptions apply to
many flight arenas, especially indoor environments. The origin of the
world frame lies on the plane and the 𝑧-axis is parallel to the gravity
vector as shown in Fig. 2. The EKF state vector is defined as:

𝒙 ∶=
[

𝒑, 𝒒, 𝒗, 𝒃𝑎, 𝒃𝑔 ,𝒇 𝑗
]

, 𝑗 ∈ {𝑢𝑙 , 𝑏𝑙 , 𝑏𝑟, 𝑢𝑟}. (12)

𝒑 is the position of IMU relative to the origin of the world frame,
expressed in the IMU frame. 𝒒 is the Hamilton quaternion reflecting
the relative rotation between the world frame and the IMU frame. 𝒗 is
the translational velocity of IMU expressed in the IMU frame. 𝒃𝑎 and 𝒃𝑔
are respectively the additive bias on accelerometer and gyroscope. 𝒇 𝑗
indicates the optical flow vector of the 𝑗th corner pixel between two
consecutive frames. It is expressed in the current frame, pointing from
the corner to the pixel that is supposed to have the same intensity as the
corner of the previous frame. The foot markers of 𝒇 𝑗 are respectively
the abbreviations of upper left, bottom left, bottom right, and upper
ight.

As shown in Eq. (13), IMU measurements are modeled as the sum
f the desired actual value (𝒂̂ and 𝝎̂), additive bias (𝒃𝑎 and 𝒃𝑔), and

white Gaussian noise (𝒘𝑎 and 𝒘𝑔).

𝒂𝑚 = 𝒂̂ + 𝒃𝑎 +𝒘𝑎, 𝝎𝑚 = 𝝎̂ + 𝒃𝑔 +𝒘𝑔 (13)

The initialization of 𝒒, 𝒃𝑎, and 𝒃𝑔 is based on the average IMU mea-
urements within a period of time when the MAV stays stationary,
mplemented in the code of [6].
𝒑̇ = −[𝝎̂]×𝒑 + 𝒗 +𝒘𝒑,

𝒗̇ = −[𝝎̂]×𝒗 + 𝒂̂ +𝑹(𝒒)−1𝒈,

𝒒̇ = 1
2
𝒒 ⊗

[

0
𝝎̂

]

,

𝒃̇𝑎 = 𝒘𝒃𝑎 , 𝒃̇𝑔 = 𝒘𝒃𝑔 ,

𝒇̇ 𝑗 = −(𝑰 − (𝒄𝑗 + 𝒇 𝑗 )𝒆𝑇𝑧 )𝑯(𝒄𝑗 + 𝒇 𝑗 )

(14)

Eq. (14) shows the IMU-driven state dynamics (𝒙̇). [𝝎̂]× represents
the skew-symmetric matrix associated with 𝝎̂. 𝒘𝒑 is the process noise
in position integration. 𝑹(𝒒) is a transformation function from 𝒒 to
SO3 rotation matrix that maps a vector expressed in the IMU frame
to its expression in the world frame. 𝒈 = [0, 0, 𝑔]𝑇 is the gravity vector
expressed in the world frame. ⊗ denotes quaternion product. We utilize
the techniques introduced in [57] for quaternion-related calculation.

he propagation of 𝒇 𝑗 is based on the continuous homography trans-
formation. The formula derivation can be found in [53]. 𝒄𝑗 stands for
the 2-d coordinate of the 𝑗th corner pixel. It is a constant parameter
calculated from the camera intrinsics. 𝑰 is a 3 × 3 identity matrix.
𝑧 = [0, 0, 1]𝑇 . In our implementation, 𝒇 𝑗 and 𝒄𝑗 are homogeneous
oordinates in the camera frame instead of pixel coordinates, which

means that they are expressed on the 𝑧 = 1 plane of the camera frame.

o camera intrinsics are not needed in state propagation.
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𝑯 ∈ R3×3 relates the camera motion to the optical flow 𝒇̇ 𝑗 . It is
known as the continuous homography matrix:

𝑯 = [𝝎̂𝑐 ]× + 1
𝑑𝑐

𝒗𝑐𝝁𝑇
𝑐 (15)

where
̂ 𝑐 = 𝑹𝐶 𝐼 𝝎̂,
𝒗𝑐 = 𝑹𝐶 𝐼 (𝒗 + [𝝎̂]×𝒕𝐼 𝐶 ),

(16)

and
𝝁𝑇
𝑐 = 𝑹𝐶 𝐼𝑹−1(𝒒)𝒆𝑧,

𝑑𝑐 = −𝒆𝑇𝑧 𝑹(𝒒)(𝒑 + 𝒕𝐼 𝐶 ).
(17)

̂ 𝑐 and 𝒗𝑐 are respectively the angular and translational velocity vectors
f the camera expressed in the camera frame. 𝝁𝑐 is the normal vector of

the plane expressed in the camera frame. Based on our assumption, it
as the same direction as the gravity vector. 𝑑𝑐 is the distance from the
amera to the plane. We define the 𝑧-axis to be downward as shown in

Fig. 2. In the cases where the 𝑧-axis points up, minus signs should be
added to the right of the equal signs in Eq. (17).

The visual measurement of 𝒇 𝑗 is modeled as

𝒛𝑗 ,𝑡 = 𝒇 𝑗 ,𝑡|𝑡−1 +𝒘𝑗 ,𝑡 (18)

where 𝒇 𝑗 ,𝑡|𝑡−1 is the a priori estimation of 𝒇 𝑗 propagated by Eq. (14). 𝒛𝑗 ,𝑡
s the mean value prediction of the whole homography transformation

from the network. When 𝒇 𝑡|𝑡−1 is used for pre-warping as shown in
Fig. 3, the network predicts a part of the transformation and 𝒛𝑗 ,𝑡 is
he combination of the network prediction and 𝒇 𝑡|𝑡−1. 𝒘𝑗 ,𝑡 is the mea-
urement noise. The covariance matrix of 𝒘𝑗 ,𝑡 is 𝑹meas. = 𝑘var. ⋅ 𝑹net..

Note that network outputs are in pixels. So 𝒛𝑗 ,𝑡 and 𝑹net. are required
to be scaled by the camera intrinsics (focal length) to convert to the
homogeneous coordinates in the camera frame, the coordinate system
ame as 𝒇 𝑗 ,𝑡|𝑡−1.

𝒇 𝑗 is a temporary state reflecting the transformation between two
consecutive frames. It has been propagating from zero since the acqui-
sition of the last frame. When a new frame is available, the network
nferences from the newest two frames and the difference between the

propagated prior 𝒇 𝑗 ,𝑡|𝑡−1 and 𝒛𝑗 ,𝑡 acts as the measurement residual in
KF update. After updating, 𝒇 𝑗 and its corresponding elements in the
ovariance matrix of the state vector are reset to zeros.

7. Evaluation

We first compare the proposed VIO with open-sourced SOTA VIO
pproaches, followed by an ablation study. Then, a generic and efficient
ariant UAHN-VIO is demonstrated competent for feedback control of
utonomous MAV flight in an unseen test environment. Lastly, we com-
are CUAHN-VIO with a feature-point-based VIO approach MSCKF [3,

6], focusing on analyzing the processing latency and robustness toward
fast motion.

The evaluation is mainly by means of the six indoor 45-degree
downward-facing sequences trajectories from a public MAV dataset
UZH-FPV [1]. It is known for its high flight speed and big optical flow.

nother dataset is recorded in autonomous MAV flights by the same
ardware as the MYNT Dataset. It features frequent significant motion

blur and is utilized in robustness evaluation. KITTI [30] is wildly
utilized by works of ego-motion estimation. While it does not suit this
work because it is recorded by forward-facing cameras mounted on a
ar. The cameras captured rich 3-d content. By contrast, CUAHN-VIO
s designed for a downward-facing camera mounted on an MAV and
equires most of the scene in the field of view to be a single planar
urface. EuRoC [31], a popular dataset captured by a forward-facing

camera of an MAV, cannot be used in this work for the same reason.
As is common in VIO studies, the root-mean-square error (RMSE) of

bsolute translation errors (ATE) acts as the metric for VIO accuracy.
We utilize an open-sourced tool [58] for the calculation. The estimated
trajectory and the ground truth are aligned by the 4-DoF yaw-only rigid
 r

11 
Table 4
Comparison with SOTA VIO approaches OpenVINS [6], LARVIO [7], MSCKF [3,6],
ROVIO [11], and VINS-Fusion [5]. Bold represents the best and underline represents
the best of SOTA approaches.

VIO RMSE of Absolute Translation Errors (ATE) ↓

Seq. 2 Seq. 4 Seq. 9 Seq.12 Seq.13 Seq.14

6-3 of
Table 7

0.3371 0.3139 0.3392 0.5837 0.4066 1.7905

6-4 of
Table 7

0.3479 0.3138 0.3214 0.5843 0.4095 1.7790

4-4 of
Table 7

0.3475 0.2739 0.3200 0.5826 0.3985 1.7903

OpenVINS 0.3438 0.3937 0.3772 0.6252 0.5542 1.7392
LARVIO 1.0584 0.8085 0.5069 0.8100 0.8370 2.0767
MSCKF 0.3718 0.3704 0.4189a 0.6347 0.5424 1.7405
ROVIO 0.9175a 0.4233 0.7837a 0.6234 0.4217 1.8286a

VINS-Fus. 0.4040 0.4533a 0.6439 0.6021 0.4544 1.7988a

a Without online calibration.

Table 5
Comparison with the learning-based DROID-SLAM [32]. The accuracy metric is calcu-
lated after Sim3 trajectory alignment. Bold represents better.

VIO/VO RMSE of Absolute Translation Errors (ATE) ↓

Seq. 2 Seq. 4 Seq. 9 Seq.12 Seq.13 Seq.14

6-3 of
Table 7

0.3355 0.2941 0.3382 0.5800 0.4057 1.7672

DROID 1.3882 1.1096 1.4307 7.3421 1.2826 4.3682

body transformation (1-DoF rotation and 3-DoF translation, posyaw)
corresponding to the four unobservable DoFs for VIO [58]. It reveals
ow well the scale of the estimated trajectory matches the metric scale.

The Sim3 alignment widely used by other works cannot.

7.1. Accuracy comparison with SOTA VIO

In Table 4, our approach is compared with the open-sourced SOTA
IO approaches. The tests are run on the six 45-degree downward-

acing sequences of the UZH-FPV dataset. Based on the ablation study
hown later, three variants of our approach (6–3, 6–4, and 4–4 in

Table 7) are selected. The numbers in the 1st row are the sequence
numbers. The maximum speeds of the sequences in meters per second
(m/s) are shown in the brackets following the sequence numbers in
the 1st row of Table 7. We used a laptop computer to run the VIO
pproaches to guarantee no frame was discarded because of slow

processing. We tried to get as good as possible results from the SOTA
approaches by tuning the parameters,1 e.g. IMU noise density and the
starting time of the data sequences. For approaches having the function
of online calibration, we tried both with and without this function and
put the better results in the table. ORB-SLAM3 [2] was also tried but
it failed to initialize the map or keep tracking it on any sequence. For
five sequences out of six, the smallest errors are achieved by UAHN
or CUAHN. For Seq. 4 and 9, the advantage is relatively obvious. In
general, the proposed VIO rivals the SOTA approaches.

We also compared with DROID-SLAM [32], an open-sourced
learning-based VO that can run on the evaluation dataset without
requiring retraining. Since it is a monocular VO system, the estimated
trajectories do not have the metric scale. So we used the 7-DoF Sim3
trajectory alignment for the comparison of DROID-SLAM and UAHN-
VIO, as shown in Table 5. The preprocessing and frame rate of the input
videos are the same for DROID-SLAM and UAHN. The global bundle
adjustment of DROID-SLAM was disabled in our testing. Table 5 shows
hat UAHN has an advantage in accuracy over DROID-SLAM. Regarding
ime efficiency, we run DROID-SLAM on a partition of a multi-Instance
vidia A100 GPU (four instances). The average processing frame rate

is around 10 fps. The input videos have 30 fps, so DROID-SLAM did not
un in real-time. As to be shown later, our approach ran in real-time
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Table 6
Comparison with SOTA VIO approaches DVIO-Homo [10], MSCKF [3,6], ROVIO [11], and VINS-Fusion [5]. The seven testing sequences were
collected by us and referred to as the MYNT-CyberZoo dataset. Bold represents the best and underline represents the second best. ‘‘-’’ means
very big error in trajectory estimation.

VIO RMSE (meter) of Absolute Translation Errors (ATE) ↓

hover circle1 circle2 shuttle1 shuttle2 lowTex varyLight

6-3 of Table 7 (𝑘var. = 1) 0.0153 0.2296 0.2773 0.0939 0.1996 0.4960 0.4894
6-3 of Table 7 (𝑘var. = 5) 0.0164 0.3885 0.3110 0.0903 0.1402 0.6727 0.5318
6-3 of Table 7 (𝑘var. = 25) 0.0134 0.4001 0.3023 0.0860 0.1790 0.6750 0.4490

DVIO-Homo 0.4148 0.4727 0.2067 0.6878 2.6687 0.6070 –
MSCKF 6.4930 0.1819 0.3071 0.1647 0.1989 0.1824 –
ROVIO – 0.2097 – 0.3167 – – 0.7231
VINS-Fusion 0.1054 0.7077 0.1588 0.2538 0.4036 1.8864 0.6508
ig. 10. Example images of the MYNT-CyberZoo dataset. From left to right, they are
espectively from lowTex, varyLight, and circle2.

n a small-size mobile GPU processor. Thus our approach outperforms
ROID-SLAM in terms of time efficiency.

Table 6 shows the comparison between our approach and SOTA
IO approaches on seven flight sequences collected in our flight arena
yberZoo. The MAV and sensor for data collection are the same as those

ntroduced in Section 7.3. We refer to it as the MYNT-CyberZoo dataset.
VIO-Homo [10] assumes a single planar surface in the field of view. It
stimates the ego-motion by an iterative EKF that matches pixel inten-
ities between two frames according to the continuous homography.
t is a good counterpart to compare with our approach because they
oth assume a single planar surface and utilize the planar homography.
e also tried to run DVIO-Homo on the UZH-FPV dataset but it had

ig estimation errors. Tuning the parameters in the configuration file
ailed to produce significant improvement. Therefore DVIO-Homo is not
hown in Table 4. In the hover sequence, the MAV took off and stayed
till at a point just above the takeoff point. In circle1 and circle2, the
AV had circle flight trajectories. In shuttle1 and shuttle2, the MAV

erformed shuttle flights between two waypoints. For lowTex, the flight
rajectory was also a circle but there were much less texture on the
round, as shown in Fig. 10. During the collection of varyLight, the
llumination was varied by moving the curtain and turning on/off the
ights. As shown in Table 6, our approach has the best or the second-
est accuracy in five out of seven sequences of the MYNT-CyberZoo
ataset.

6–3 of Table 7 is a variant of UAHN-VIO that is introduced in
he next subsection. UAHN-VIO is trained on the Basic dataset, which
s synthetic by simulation. Therefore, the flight arenas of the UZH-
PV and MYNT-CyberZoo datasets are strictly unknown to the DNN of
AHN-VIO, and tests on the two real-world datasets are out-of-domain

ests. As shown in Table 4, 6–3 of Table 7 is more accurate than SOTA
IOs on five out of six sequences. 6–3 of Table 7 is also evaluated

n Tables 5 and 6, and achieves competitive accuracy. These results
emonstrate the good generalization capacity of our approach.

By Table 6, we study how the hyperparameter 𝑘var. affects accuracy.
var. scales the network estimation of measurement variance. It is the
nly tunable hyperparameter in the VIO backend. Table 6 shows that
he accuracy does not vary much even if 𝑘var. is multiplied by five twice.
his experimental result demonstrates the easy-to-tune nature of our
pproach.

.2. Ablation study

In this ablation study, we aim to gain insights into how the compo-
ents and setups of CUAHN-VIO contribute to VIO accuracy. The VIO
12 
variants are shown in Table 7. The 2nd column shows the network
acting as the vision frontend of a VIO variant. The 3rd column indi-
cates the initialization method of a network. The last network block
can be initialized randomly or by the Basic Model, as introduced in
Section 5.2. The number of network blocks running in a VIO variant
is shown in the 4th column. The 5th and 6th columns tell about the
measurement covariance matrix 𝑹meas. and the estimation method of
empirical uncertainty.

VIO variants are divided into six groups according to the shared
setups. The VIO variants in Group 1 have no uncertainty estimation,
which means that 𝑹meas. stays constant for all network predictions.
The shown value in the 5th column is the identical diagonal element of
𝑹meas.. For Group 2 to Group 6, uncertainty estimation is available. The
5th column shows the 𝑘var.. Most EKF parameters, e.g. 𝑸, stay fixed and
are the same for all the VIO variants. 𝑹meas. is the only manually-tuned
parameter.

For each VIO variant, we run it on Seq. 2 several times to find the
𝑹meas. or 𝑘var. that yields good accuracy. The same value is used for all
sequences. In practice, we found that the ATE is not sensitive to 𝑘var..
Increasing 𝑘var. can produce a little bit smoother estimated trajectory
while slightly enlarging the ATE. It is also demonstrated in Table 6 that
varying 𝑘var. affects the accuracy to a very small extent.

First, we look at the benefits of having predictive uncertainty. The
VIO accuracy is improved substantially. This can be seen by comparing
Group 1 (light yellow colored) with Group 2 and 3 (light blue colored).

Second, we investigate whether it gives better results when empir-
ical uncertainty is also estimated, by comparing Group 2 and 3 (light
blue) with Group 4 to 6 (light green). Here, the differences are less pro-
nounced. However, most lowest ATEs are in light green groups, which
do have empirical uncertainty. Comparing deep ensembles (Group 4
and 5) with MC-Dropout (Group 6) does not lead to clear conclusions
either. Given their similar accuracy, MC-Dropout is preferable due to
its lower time consumption. Another phenomenon we observed but
is not shown in the table is that more than 16 times of sampling of
MC-Dropout produces no noticeable improvement.

Third, we evaluate the effects of content-aware learning. CAHN of
Group 1 is initialized by the Basic Model and further trained on the
UZH-FPV training set in the same way as the networks in Section 4.3. In
other groups, CUAHN is trained with the aggregated dataset. Compared
with UAHN which is trained with the Basic Dataset, CUAHN not only
performs content-aware learning but also has seen in-domain data, i.e.
the UZH-FPV training set. To see how much content-aware learning
alone helps, we trained a master network on the aggregated dataset.
Eq. (3) instead of Eq. (7) is the loss function thus it does not conduct
content-aware learning. The student network 2–4 is trained by this
master network on the aggregated dataset. The plus sign indicates that
it has the bigger training set than other UAHNs. Comparing 2–4 and 2–5
that are trained on the same dataset, 2–5 is trained with the content-
aware loss while 2–4 is not. 2–5 wins on four sequences out of six. But,
in general, the differences are small. We conclude that the contribution
of content-aware learning is small, the same as what is observed in
Section 4.3.
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Table 7
Evaluation of VIO variants by indoor 45-degree downward-facing sequences of UZH-FPV. Bold represents the best result.

ID Network Initial-
ization

Num. of
Blocks

𝑹meas.
/ 𝑘var.

Empirical
Uncertainty

Avg.
Time
Costa ↓

RMSE (m) of Absolute Translation Errors (ATE) ↓

2 4 9 12 13 14
(6.97) (6.55) (11.23) (4.33) (7.92) (9.54)

1-1 Basic rand. 4 125.0 None 20.755 5.3298 4.9616 2.6323 3.0957 2.5465 4.3532
1-2 CAHN Basic 4 35.0 None – 3.7962 5.5064 2.6658 3.3070 2.8477 7.8038
1-3 Basic rand. 3 10.0 None 19.658 1.1526 1.0022 0.5777 0.9379 1.2572 1.6455
1-4 CAHN Basic 3 1.5 None – 1.1091 1.5402 0.4282 0.7613 0.7873 1.6754

2-1 UAHN rand. 4 1.0 None 23.289 0.4033 0.5121 0.3529 0.5696 0.4171 1.7597
2-2 CUAHN rand. 4 10.0 None – 0.3747 0.3529 0.3249 0.6017 0.3884 1.7813
2-3 UAHN rand. 3 0.5 None 22.043 0.4412 0.5435 0.3796 0.5390 0.4288 1.7786
2-4 UAHN+ rand. 3 10.0 None – 0.4053 0.2965 0.3145 0.5518 0.4249 1.7886
2-5 CUAHN rand. 3 10.0 None – 0.3496 0.2930 0.3195 0.5954 0.3950 1.7869

3-1 UAHN Basic 4 30.0 None – 0.3628 0.3827 0.3779 0.5823 0.4290 1.7732
3-2 CUAHN Basic 4 15.0 None – 0.3601 0.3417 0.3225 0.5877 0.4125 1.7706
3-3 UAHN Basic 3 30.0 None – 0.3606 0.3614 0.3738 0.5866 0.4329 1.7821
3-4 CUAHN Basic 3 20.0 None – 0.3548 0.3144 0.3231 0.5879 0.4189 1.7753

4-1 UAHN rand. 3 0.5 Ensem. (2b) 26.075 0.4664 0.4497 0.3494 0.5725 0.4156 1.7731
4-2 CUAHN rand. 3 5.0 Ensem. (2b) – 0.3493 0.2846 0.3206 0.5865 0.3937 1.7880
4-3 UAHN rand. 3 0.5 Ensem. (3b) 31.519 0.4264 0.3863 0.3335 0.5749 0.4196 1.7720
4-4 CUAHN rand. 3 5.0 Ensem. (3b) – 0.3475 0.2739 0.3200 0.5826 0.3985 1.7903

5-1 UAHN Basic 3 65.0 Ensem. (2b) – 0.3575 0.3170 0.3825 0.6186 0.4047 1.8008
5-2 CUAHN Basic 3 50.0 Ensem. (2b) – 0.3445 0.3179 0.3477 0.6059 0.4035 1.7852
5-3 UAHN Basic 3 50.0 Ensem. (3b) – 0.3662 0.3126 0.4199 0.6148 0.4033 1.8052
5-4 CUAHN Basic 3 30.0 Ensem. (3b) – 0.3544 0.3072 0.3353 0.5992 0.4042 1.7811

6-1 UAHN Basicc 4 10.0 Drop. 5% (16b) 23.605 0.3577 0.3607 0.3623 0.5976 0.3871 1.7903
6-2 CUAHN Basicc 4 10.0 Drop. 5% (16b) – 0.3906 0.3437 0.3356 0.6090 0.3945 1.7816

10.0 0.3360 0.2976 0.3761 0.5989 0.3970 1.80036-3 UAHN Basicc 3 5.0 Drop. 5% (16b) 22.356 0.3371 0.3139 0.3392 0.5837 0.4066 1.7905
10.0 0.3436 0.2915 0.3417 0.5959 0.4067 1.78546-4 CUAHN Basicc 3 5.0 Drop. 5% (16b) - 0.3479 0.3138 0.3214 0.5843 0.4095 1.7790

6-5 UAHN Basicc 2 5.0 Drop. 5% (16b) 19.419 0.3533 0.3015 0.3359 0.5935 0.3964 1.7881
6-6 CUAHN Basicc 2 5.0 Drop. 5% (16b) – 0.3556 0.3044 0.3214 0.5842 0.4057 1.7759
6-7 UAHN Basicc 1 5.0 Drop. 5% (16b) 17.455 0.5862 0.3612 0.3887 0.6050 crash 6.1602
6-8 CUAHN Basicc 1 5.0 Drop. 5% (16b) – 0.4185 0.3692 0.3432 0.6005 0.4430 8.8627

a Average network inference time consumption, measured on a TX2 processor in Max-P ARM power mode. Networks with the same architectures were only measured once.
For instance, the data of 3-2 is omitted since, theoretically, it should be the same as 2-1.
b The number of independent network models in an ensemble or the number of forward passes with dropout.

c Only to initialize the convolutional layers. The FC layers are randomly initialized and have dropout layers before them.
Fourth, we assess the effects of exploiting a priori homography for
image pre-warping as shown in Fig. 3. In Table 7, except for the VIO
variants with four network blocks, a priori homography is exploited for
all other variants with less blocks. Running three blocks leads to com-
parable performance to four blocks with a small computational time
gain (∼1 ms). Reducing the number of blocks further leads to additional
time gains. But using only one block results in worse VIO accuracy, as
shown in Group 6. Pre-warping with a priori homography facilitates
VIO accuracy especially in high speed, as illustrated in Fig. 11. The
3rd row shows an example of high-speed flight. The 1st network block
fails to predict the homography transformation well, which is not
corrected by the subsequent blocks. Big estimated variances (top right
of the rightmost image) indicate the network’s low confidence in its
prediction. The 4th row shows how the a priori homography initializes
the image pair. They are close to good alignment and further refined
by the network blocks.

Fifth, we study the influence of the initialization of the student
network. Group 2 to Group 5 show no clear influence of this variable.
This may mean that the trade-off between more accurate mean value
prediction and better variance estimation is equitable and leads to
similar VIO accuracy. We notice that the manually tuned parameter
𝑘var. is quite different between the initialization schemes. This tuning
may be the partial cause of the similar accuracy. The higher values of
𝑘var. for the ‘‘Basic’’ initialization may compensate to a certain extent
for the underestimation of uncertainty, although a simple scaling factor
does not intrinsically improve the quality of uncertainty estimation.
Since we think proper uncertainty estimation is one of the keys to good
13 
Fig. 11. The top two rows show an example image pair captured at a relatively slow
speed (Seq. 12 of UZH-FPV). The bottom two rows show a high-speed example (Seq.
14). The two image pairs film the same scene. The 1st column shows the original
images and the original photometric error maps of the image pairs. The 2nd column
shows the photometric error maps of (̃𝑡,1, 𝑡−1) or (̃𝑡,prior, 𝑡−1). The 3rd to 5th columns
show the photometric error maps of (̃𝑡,𝑖, 𝑡−1), 𝑖 is the index of network block and
ranges from 2 to 4. The performance of the network 6–2 in Table 7 is shown in the
1st and 3rd rows, and network 6–4 in the 2nd and 4th rows.

generalization and robustness, we have a light preference for random
initialization.
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Table 8
Time consumption indicators measured on a TX2 processor by running Seq. 2 of UZH-FPV. Bold represents the best. Underline marks the frame rates and ATEs valid for accuracy
evaluation.

VIO Image
resolution
(pixels)

Num. of
Pts/Network
blocks

Histogram
Equaliza-
tion (HE)

Visual
processing
time (ms)

IMU
Propagation
time (ms)

EKF
updating
time (ms)

Total time
mean (ms) ↓

Total time
variance
(ms2) ↓

Ratio of
long
processing
time (%) ↓

Avg.
Processed
frame rate
(fps) ↑

RMSE (m)
of ATE ↓

MSCKF 640 × 480 300 ✓ 38.37 19.38 8.43 66.19 3.95e4 66.30 18.06 0.3142
MSCKF 320 × 240 180 ✓ 24.47 2.29 6.04 32.80 471.61 25.94 23.78 0.4058
MSCKF 640 × 480 100 ✓ 26.14 2.47 3.94 32.57 549.43 29.88 23.14 0.3386
MSCKF 640 × 480 100 22.85 2.09 3.80 28.74 460.15 24.93 24.24 0.3178
MSCKF 640 × 480 10 ✓ 15.81 1.66 1.28 18.75 233.38 12.21 26.23 0.4112
MSCKF 320 × 240 10 ✓ 11.57 1.78 1.48 14.83 157.05 7.01 26.23 0.6000

UAHN 320 × 224 2 24.00 1.48 0.12 25.61 3.32 0.44 26.11 0.3544
UAHN 320 × 224 3 27.30 1.46 0.12 28.89 2.66 0.78 26.11 0.3380
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7.3. Onboard deployment for feedback control

UAHN-VIO, 6–5 of Table 7, is deployed onboard an autonomous
MAV to produce odometry information required by the close-loop
eedback control. Sparse non-planar objects are randomly laid on the
lanar floor of the flight arena. Images from this environment are not
nvolved in network training. Thanks to the wide distribution of the
asic Dataset and the robustness toward non-planar content of the
etwork as shown in Section 4.3, theoretically, UAHN-VIO should work

in any environment requiring no fine-tuning.
The MAV for flight experiments is a quadrotor equipped with a TX2

processor. An MYNT-EYE visual-inertial sensor is mounted 90-degree
downward-facing. The image stream and IMU measurement stream are
published at 30 Hz and 200 Hz respectively. UAHN-VIO subscribes to
ensor data and publishes the estimated attitude, velocity, and position
nce it has processed the latest image. So the odometry information has
he same frequency as the image stream. We did not compensate for the

processing latency1 because it is low and stable, as introduced later.
The flight controller is a basic proportional–integral–derivative (PID)-
based position and velocity controller. It generates thrust and attitude
control commands that are sent to Betaflight4 for low-level control.

We tested three kinds of flights, hover,1 tracking a circle trajec-
tory,1 and shuttle flight between two waypoints. During autonomous
flights, the sensor data was recorded for offline replay. During the
two-waypoint shuttle flight, the controller was badly tuned on purpose
to induce larger motions, resulting in a variety of captured images.
The velocity and trajectory plots of the two-waypoint shuttle flight are
shown in Fig. 14. The link to the flight video is in Appendix A.

7.4. Time efficiency and processing latency

We have shown the network inference time consumption in Table 7.
In the following, we further discuss the detailed time consumption and
processing latency of the whole VIO system. The 1st row of Table 8
shows the time-consumption-related indicators. We log the time con-
sumption of the three main computing procedures (visual processing,
IMU propagation, and EKF updating) of each frame. The mean and
variance of the total time consumption are calculated. Besides, we
compare the total time cost of processing each frame with the standard
time interval of the 30 Hz video (33.3 ms). The 3rd column from the
right shows the percentage of frames that take more than 33.3 ms in
all frames. In the implementation of both MSCKF and UAHN-VIO, only
when a frame has been processed, the filter state at this timestamp is
recorded and used to calculate ATE. The Average Processed Frame Rate
(2nd column from the right) equals to the number of processed frames
divided by the video duration in seconds. This is a metric for how many
frames are skipped. The cause of skipping a frame is the limited fixed
size of the image buffer. In the implementation, if the VIO processing
is too slow and more than five images are waiting for processing in
the buffer, the oldest one will be discarded to make room for the new
image.
 U

14 
The MSCKF [3] in Table 8 is implemented by [6]. We choose it
instead of other SOTA approaches because our C++ implementation
is based on the open-sourced code of [6]. Thus the comparison is as
air as possible due to the similarities in code. Besides, the efficiency
f MSCKF is also advantageous as a filter-based approach. We change
he image resolution, the number of processed feature points, and
istogram equalization of the MSCKF because all of them observably
ffect the time consumption. The data in Table 8 is measured on a

TX2 processor in the power mode that the VIO approach runs faster.
MSCKF computes everything with the CPU. It runs faster in the Max-N
power mode. The network of UAHN-VIO runs on GPU and is faster in
Max-P ARM mode. According to our observation, it applies to CUDA-
accelerated DNNs implemented in PyTorch and LibTorch running on
TX2 processors.

The MSCKF of the 2nd row of Table 8 has the same settings as the
ne in Table 4. When running on a TX2 processor, the average time cost
f processing a frame is around two times the standard time interval.
e reduce the number of feature points and downscale the images to

ower the average time to just below 33.3 ms, as shown in the 3rd and
th rows. But the variance of the total time is still very big. 25% to
0% frames require a longer time than 33.3 ms to process. And there
re still frames skipped. The 4th and 5th rows tell us that the better
obustness toward motion blur (to be introduced later) brought by
istogram equalization comes at an expense of ∼3.3 ms extra processing
ime.

The number of feature points is further reduced to only ten as shown
in the 6th and 7th rows to minimize the time cost. Only the bottom four
rows of Table 8 manage to process all the frames. The subtle difference
between 26.23 and 26.11 is caused by the different stop time of the
two VIO approaches. The frame rates are less than 30 because irregular
frame drops exist in the original 30-fps video of UZH-FPV. Comparing
ATEs of trajectories at very different frequencies is not informative. So
the ATEs in the top four rows are out of the discussion. Comparing
the ATEs of UAHN-VIO in Tables 4 and 8, they are almost the same
on different machines. The accuracy of MSCKF processing ten points
is only slightly worse than when processing 300 points as shown in
Table 4.

It is clear that for both approaches in Table 8, visual process-
ing takes most of the time. For MSCKF, the visual processing time
is significantly affected by the number of feature points and image
resolution. The variance of total time decreases with the mean value,
but it is still very big compared with the ones of UAHN-VIO. Even
if the number of points is only ten, there are still around 10% of
frames whose processing cannot be finished before the next frame
comes. In comparison, UAHN-VIO’s variance of total time cost is very
small, which indicates that the processing time is almost constant for
every frame. The very few (less than 1%) frames that take longer
processing time for UAHN-VIO are the first several of the video. The
cause of it is likely to be library related, i.e., the warm-up phase of the
network object of LibTorch. Besides the stable network inference time,

AHN-VIO has low and constant state propagation and updating time
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Fig. 12. Processing latency within 20 s of Seq. 2, UZH-FPV dataset. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

cost because of its very simple filter design. Most computation is the
network inference on the GPU. As a result, the CPU usage of UAHN-VIO
is very low.

Fig. 12 shows the processing latency measured on a TX2 processor.
It is the time gap between capturing a new image and updating the filter
states according to the image. The latency of UAHN-VIO is very stable
thanks to the image-content-independent network inference time cost
and the simple filter design. The big variation in the latency of MSCKF
corresponds to the big variance of time consumption shown in Table 8.
MSCKF using original images (yellow curve) has smaller latency than
its peer that conducts histogram equalization (blue curve). When the
number of points is reduced to only ten and the images are downscaled
to half resolution (green curve), latency significantly decreases but is
still noisy and often beyond 33.3 ms.

The above discussion about the processing time consumption of
MSCKF only applies to the current CPU implementation. There are
GPU-based implementations for handcrafted feature points such as
[59], and learning-based feature points [60–62]. VIO approaches based
on feature points adopting such techniques can achieve lower and
scene-independent stable latency in their vision frontends. But the
complicated backends that utilize the pixel trajectories of the van-
ished points [3], BA [5], or iterative EKF [11] still require serial
computing and the required CPU resources can be considerable and
scene-dependent. As far as we know, most traditional VIO approaches
only have CPU implementations. So before their GPU versions are
widely recognized, CUAHN-VIO has an advantage in processing la-
tency. Besides, it requires small CPU resources and thus allows the
deployment of computationally heavy iterative planning and control
approaches that run better on CPUs.

7.5. Robustness toward high-speed flight

A bad effect of high-speed flight on VIO is the huge optical flow in
the image plane, especially when the distance to the ground is small.
Due to the fixed sample interval and non-neglectable exposure duration
of a frame-based camera, visual disparities between consecutive images
and motion blur correspondingly grow with optical flow. Regarding big
visual disparities, in Fig. 11, we show a failure case that is solved by
the a priori homography. Confronting motion blur, in the following,
we demonstrate the advantage of using a network as the vision fron-
tend over processing handcrafted feature points. Same as before, we
compare UAHN-VIO and MSCKF. A big percentage of images captured
during the two-waypoint shuttle flight (Fig. 14) have significant motion
blur thus this sequence is used to evaluate the robustness toward blur.
The quadrotor MAV maximized its tilt angle to speed up and down.
When the speed reached a peak, the MAV rotated to slow down. In this
case, the optical flow was caused together by the fastest translation and
rotation thus it achieved a peak.
15 
Fig. 13. The outputs of UAHN-VIO (6–5 of Table 7) and MSCKF (2nd row of Table 8)
processing the two-waypoint shuttle flight sequence. The average of the network-
estimated variances of the eight elements of the corner flow and the average of the
absolute values of the eight elements of the corner flow are downscaled for better
illustration. The well-tracked points are the ones that fulfill the epipolar constraint
calculated within a RANSAC scheme. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 14. UAHN-VIO (6–5 in Table 7) and MSCKF (100 feature points) with and without
histogram equalization are evaluated on the two-waypoint shuttle flight sequence,
running on a TX2 processor. The left subplot shows the velocity expressed in the body
frame. The right subplot is the trajectory evaluation of UAHN-VIO plotted by [58].
The groundtruth was recorded by an Optitrack motion capture system. The average
and maximum speeds during the flight are respectively 2.87 m/s and 5.41 m/s. The
distance to the ground (𝑧-axis) is stabilized at one meter. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

A well-known problem of handcrafted visual feature points is that
detection and tracking become more difficult in the presence of grow-
ing motion blur. The bottom subplot of Fig. 13 shows the sharp declines
in the number of points when optical flow was around its peaks. With
histogram equalization, the number of points drops to less than 20%
of before. Without histogram equalization, the number drops to and
stays at zero until the speed is slow enough. The lack of visual updating
causes the MSCKF to drift as shown in the left subplot of Fig. 14. Fig. 15
shows an image captured when the optical flow is close to a peak. It is
too blurry for FAST feature point [63] that relies on local gradients.
Histogram equalization increases the image gradients and produces
several points without lowering the threshold for feature detection and
tracking. But it also induces noise. Most point trajectories only have
two frames and very few have three, which indicates that it is hard
to keep tracking the already hard-to-detect points. In contrast, despite
the severe reduction of local gradients, there are remaining gradients
at bigger scales that can be captured by the network. As shown by
the photometric error map (bottom right of Fig. 15), the network is
able to retrieve a reasonable homography transformation that aligns
the images well.
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Fig. 15. An example of the highly blurry images captured during the two-waypoint
shuttle flight (the shuttle2 sequence of MYNT-CyberZoo dataset shown in Table 6).
Feature point tracking results of MSCKF with and without histogram equalization are
shown on the left and middle respectively. These two images are from the visualization
module of [6]. In the left image, there are a few point tracking trajectories visualized
by small points and thin line segments in red color. They are better to be viewed after
zooming in. There is no point tracking trajectory in the middle image. The top right is
the undistorted and resized image that is the input of the network. The bottom right is
the photometric error map corresponding to the prediction of network 6–5 in Table 7.
Dark blue indicates small photometric error. The average of the network-estimated
variances of the eight elements of the corner flow is 31.12 (pixel2). Images in this
figure are shown in the actual resolutions when fed into the VIO approaches. The
network uses the smaller resolution. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

A clear phenomenon shown by the top subplot of Fig. 13 is that the
network is more likely to have big uncertainty estimation at high speed.
On most occasions when the network-estimated variance grows, the
number of feature points dramatically declines or is already low, which
is an indicator of emerging motion blur. Motion blur can be treated as
noise in the input of the network and thus it outputs big predictive
uncertainty. Fig. 11 shows an example that for similar image content
with different amounts of blur, based on the reasonable ranges spec-
ulated from the photometric error map, the variance is overestimated
when the blur is more. Overestimated variances make the relatively
accurate mean predictions less trusted in the measurement updates of
EKF and thus cause suboptimal results. More examples of uncertainty
estimation for blurry images and the positive correlation between speed
and estimated uncertainty are available in Supplementary Document for
interested readers.

To summarize, VIO approaches that utilize feature points would
not necessarily drift because of the lack of points caused by motion
blur. Histogram equalization as image pre-processing can significantly
increase the number of useful points. Besides, the well-designed VIO
backends compensate for the effect of fewer points to some extent.
We did not use datasets with long periods of ongoing motion blur
in this article, but expect that these would be more problematic for
feature-based approaches. The network suffers from the overestimated
uncertainty caused by motion blur. But we have not observed that
the accuracy of mean prediction is noticeably affected. Also because
of the higher accuracy of UAHN-VIO than other approaches in most
tests in this article, we believe that the proposed network has advanced
robustness toward motion blur.

7.6. Potential improvements

About reaching the end of this article, we discuss the shortcomings
of CUAHN-VIO and ideas that can possibly improve its performance. In
this work, we mainly focus on the network that is the vision frontend.
Compared with other VIO solutions, the EKF backend of CUAHN-VIO is
very simple and toy-like. The benefit is high time efficiency. However,
it lacks a recovery mechanism. One failure case was observed in a real-
world flight experiment when the MAV was landing and very close to
the ground. The shadow of the body of the MAV was captured by the
downward-facing camera and caused an outlier network output. The
estimated height was wrongly updated as a minus value, and the VIO
crashed. A proper recovery mechanism requires more research.

CUAHN-VIO only updates the current filter state. It is possible to
apply the Keyframe mechanism that achieved big success in many
16 
VIO solutions to CUAHN-VIO following the similar scheme proposed
in [10]. Loop closure and relocalization functions that are impor-
tant for a SLAM system have not been developed in this work. A
keyframe mechanism may contribute to the loop closure and relocal-
ization functions, which is an interesting topic for future research.
Besides, involving camera poses at multiple time steps into a sliding
window may help achieve smoother estimated trajectories. Note that
the CUAHN-VIO introduced in this paper can only be applied to envi-
ronments where the planar surface is orthogonal to the gravity vector.
But it is possible to extend the application scenario to a slope by
improving the EKF backend. An interested reader can refer to [10,53],
whose proposed methods estimate the unit normal vector of the plane
in the field of view and thus can be applied to a slope.

In training, the four network blocks are trained to handle the whole
homography transformation. When the a priori corner flow propagated
by the EKF is utilized for pre-warping, the distribution of the network
input can be different from the training set. It can be helpful to fine-
tune the network when running the whole VIO on a video. We do not
implement this idea mainly due to the concern of overfitting to the
scene and motion pattern of the fine-tuning videos.

8. Conclusions

In this article, we propose CUAHN-VIO. Its vision frontend is a
homography transformation network with uncertainty awareness and
the backend is a simple EKF. Evaluations show its comparable accuracy
to SOTA traditional VIO approaches and its advantages in processing
latency. The robustness toward motion blur, a trait of learning-based
approaches, is observed again in this article. The synthetic big-scale
training set is proven to enable a homography network to general-
ize well to the real world. Comparative studies show that, in our
context, content-aware learning helps the accuracy to a small extent
while uncertainty estimation from the network contributes signifi-
cantly. Most importantly, different from pursuing better performance
through deeper networks and complicated loss functions, this work
points out that, without requiring ground truth, a small-size network
with a practical training scheme for uncertainty estimation can also
stand out.
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Appendix A. Supplementary material

A video of CUAHN-VIO runtime performance is available at https:
//youtu.be/_NgDkgON-nE. Supplementary Document and the software
code developed for CUAHN-VIO are stored at https://github.com/tude
lft/CUAHN-VIO.
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