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Abstract We study fluctuation fields of orthogonal polynomials in the context of particle
systems with duality.We thereby obtain a systematic orthogonal decomposition of the fluctu-
ation fields of local functions, where the order of every term can be quantified. This implies a
quantitative generalization of the Boltzmann–Gibbs principle. In the context of independent
randomwalkers, we complete this program, including also fluctuation fields in non-stationary
context (local equilibrium). For other interacting particle systems with duality such as the
symmetric exclusion process, similar results can be obtained, under precise conditions on
the n particle dynamics.

Keywords Orthogonal polynomials · Duality · Boltzmann–Gibbs principle ·
Fluctuation field

1 Introduction

The Boltzmann–Gibbs principle is an important ingredient in the study of fluctuation fields of
interacting particle systems [8]. It basically states that on the central limit scale, the fluctuation
field of local functions can be replaced by a constant times the density fluctuation field, or
in other words, it can be replaced by its projection on the one dimensional space generated
by the density fluctuation field (where projection has to be understood in an appropriate
Hilbert space of macroscopic quantities [1]). The aim of the present paper is to refine and
quantify the Boltzmann–Gibbs principle in the context of particle systems with duality, using
fluctuation fields of orthogonal polynomials. Indeed, it turns out that replacing the fluctuation
field of a local function by its projection on the density field corresponds to the projection
on the fluctuation fields of orthogonal polynomials of order one. Therefore, the Boltzmann–
Gibbs principle easily follows from an estimation of the covariance of fluctuation fields
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of orthogonal polynomials of order two and higher. In this paper, for independent random
walkers we quantify the precise order of these covariances of fluctuation fields of orthogonal
(Charlier) polynomials of order n for all n ∈ N, and thereforewe are able to give an orthogonal
decomposition of the fluctuation field of any local function, which is a generalization of the
Boltzmann–Gibbs principle. Next, still in the context of independent random walkers, we
are able to extend this result in a non-equilibrium setting, using the fact that product of
Poisson measures are preserved under this dynamics, i.e., a strong form of propagation of
local equilibrium holds in that context.

Oneof the basic ingredients of our approach is stochastic duality, a property shared by a cer-
tain class of interacting particle systems such as independent random walkers [2], exclusion
process, inclusion process, brownian energy process, etc. (see [3] for a review on the subject).
Thanks to duality the n-body correlation functions obey closed equations, not involving higher
correlations. This has many implications, such as the possibility to study the decay properties
of correlation functions [6] and to study small perturbation of the original process [4].

In this paper we exploit a duality property with orthogonal polynomials (see e.g. [11])
combined with precise estimates (of local limit type) of the n particle dynamics. Therefore,
the results immediately apply in the context of the stationary symmetric exclusion process,
and more generally for particle systems where these precise estimates (of local limit type)
of the n particle dynamics can be obtained (e.g. via the log-Sobolev inequality [9]). Next we
consider the orthogonal polynomial fluctuation fields themselves and prove that they converge
in the sense of generalized processes, i.e., as a random space-time distribution. The rest of
our paper is organized as follows: In Sect. 2 we formally introduce our system of random
walkers, and the basic concepts and properties needed for the development of this paper. In
Sect. 3, on the context of stationarity, we start by introducing our results for the simplest
non-trivial example of second order and move to a generalization first to higher orders and in
a next stage to more general functions. We present in Sect. 4 an extension of these last results
to a non-equilibrium setting. Finally in Sect. 5 we show how under additional assumptions
our results can be extended to other interacting particle systems.

2 Basic Notions

2.1 Independent Random Walkers

We consider a system of independent random walkers (IRW), an interacting particle system
where particles randomly hop on the lattice Zd without interaction and with no restrictions
on the number of particles per site. Configurations are denoted by η, ξ, ζ and are elements
of � = N

Z
d
(where N denotes the natural numbers including zero). We denote by ηx the

number of particles at x in the configuration η ∈ �. The generator working on local functions
f : � → R is of the type

L f (η) =
∑

i, j

p(i, j)ηi ( f (η
i j ) − f (η)) (1)

where ηi j denotes the configuration obtained from η by removing a particle from i and putting
it at j . Additionally, we assume that p(i, j) is a translation invariant, symmetric, irreducible
Markov transition function on Zd , i.e.,

1. p(i, j) = p( j, i) = p(0, j − i).
2.
∑

j∈Zd p(i, j) = 1.

123



982 M. Ayala et al.

3. There exists R > 0 such that p(i, j) = 0 for |i − j | > R.
4. For all x, y ∈ Z

d there exist i1 = x, . . . , in = y such that
∏n

k=1 p(ik, ik+1) > 0.

For the associated Markov process on �, we use the notation {η(t) : t ≥ 0}, i.e., ηx (t)
denotes the number of particles at time t at location x ∈ Z

d .
It is well known that these particle systems have a one parameter family of homoge-

neous (w.r.t. translations) reversible and ergodic product measures νρ̄, ρ > 0 with Poisson
marginals

νρ(n) = ρn

n! e
−ρ

This family is indexed by the density of particles, i.e.,
∫

η0dνρ̄ = ρ

Remark 2.1 Notice that for these systems the initial configuration has to be chosen in a subset
of configurations such that the process {η(t) : t ≥ 0} is well-defined. A possible such subset
is the set of tempered configurations. This is the set of configurations η such that there exist
C, β ∈ R that satisfy |η(x)| ≤ C |x |β for all x ∈ R

d . We denote this set (with slight abuse of
notation) still by �, because we will always start the process from such configurations, and
this set has νρ̄ measure 1 for all ρ. Since we are working mostly in L2(νρ̄) spaces, this is not
a restriction.

2.2 Orthogonal Polynomial Self-duality

The self-duality of the process we introduced and which we need in the sequel is as follows.
We denote by � f the set of configurations with a finite number of particles (we denote by
‖ξ‖ =∑x ξx this number of particles), and the self-duality function will then be a function
D : � f × � → R such that the following properties hold.

1. Self-duality:
Eη

[
D(ξ, ηt )

] = Eξ

[
D(ξt , η)

]
(2)

for all ξ ∈ � f , η ∈ � (where we remind that η ∈ � is always chosen such that the
process {η(t) : t ≥ 0} is well-defined when starting from η).

2. Factorized polynomials:
D(ξ, η) =

∏

i∈Zd

d(ξi , ηi ) (3)

where d(0, n) = 1, and d(k, ·) is a polynomial of degree k.
3. Orthogonality: ∫

D(ξ, η)D(ξ ′, η)dνρ̄(η) = δξ,ξ ′a(ξ) (4)

where a(ξ) = ‖D(ξ, ·)‖2
L2(νρ̄ )

.

Notice that these functions will depend on the parameter ρ, but we suppress this dependence
in order not to overload notation.

The duality functions which, for independent random walkers, satisfy properties (2),(3)
and (4) are known in the literature as Charlier polynomials. These polynomials can be
expressed in terms of hypergeometric functions as follows:

d(k, n) = 2F0

[−k − n

− ;− 1

ρ

]
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the single site duality functions d (k, n) satisfy the three terms recurrence relation

d(k + 1, n) = d(k, n) − n

ρ
d(k, n − 1) (5)

additionally to this recurrence relation, at least two more relations can be found.

Remark 2.2 To avoidminor confusions please notice that in [7] a relation between “classical”
and new orthogonal duality polynomials is given.Where with classical polynomials wemean

d(k, n) = n!
(n − k)! (6)

and the way they relate is given by

D(ξ, η) =
∏

x∈Zd

ξx∑

j=0

(
ξx

j

)
(−ρ)ξx− j ηx !

(ηx − j)! (7)

However expression (7) differs by a factor −ρ|ξ | from the traditional form of the Charlier
polynomials found in the literature:

D̃(ξ, η) =
∏

x∈Zd

ξx∑

j=0

(
ξx

j

)
(−ρ)− j ηx !

(ηx − j)! (8)

The factor −ρ||ξ || is however invariant under the dynamics of our process that conserves
the total number of particles ||ξ(t)||, and hence its addition preserves the duality property.
Duality function (8) is precisely the one that satisfies the relation given in (5) when starting
with d(0, n) = 1.

For more details on orthogonal duality and a proof of self-duality with respect to this
function we refer to [7] and [11]. In those papers a more complete study is provided, which
includes the case of other processes such as exclusion and inclusion, among others.
We denote by pt (ξ, ξ ′) the transition probability to go from the configuration ξ to ξ ′ in time
t . A key ingredient for our proof of the Boltzmann–Gibbs principle and its extensions is the
following elementary consequence of duality with orthogonal duality functions.

Lemma 2.1 Let ξ, ξ ′ ∈ � f , then
∫

Eη(D(ξ, ηt ))D(ξ ′, η)dνρ̄(η) = pt (ξ, ξ ′)a(ξ ′) (9)

Proof We use self-duality to compute
∫

Eη[D(ξ, ηt )]D(ξ ′, η)dνρ̄(η) =
∫

Eξ [D(ξt , η)]D(ξ ′, η)dνρ̄(η)

=
∑

ζ

pt (ξ, ζ )

∫
D(ζ, η)D(ξ ′, η)dνρ̄(η)

= pt (ξ, ξ ′)a(ξ ′)

that proves the result. �	
Remark 2.3 Notice that (9) in particular implies that if η0 is initially distributed according
to νρ then

Covνρ̄

(
D(ξ, ηt )D(ξ ′, η)

) ≥ 0 (10)

i.e. duality orthogonal polynomials are positively correlated.
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984 M. Ayala et al.

Lemma 2.1 provides a big simplification since it allows to transfer most of the uncertainty of
our process to the transition kernel pt (ξ, ξ ′) of two configurations in � f . Here {ξ(t), t ≥ 0}
is a Markov process with countable state space, conserving only ‖ξ(t)‖ in the course of time,
and then easier to treat. In the Appendix we provide an estimate of this kernel by means of
the local limit theorem.

2.3 Fluctuation Fields

LetS (Rd) be the set of Schwarz functions onRd , and denote byS ′(Rd) the corresponding
distributions space. Moreover we denote by τx the spatial shift, i.e., τx (η)y = ηy+x ,. Fix
ϕ ∈ S (Rd) and let f : � → R be a local function, we define its fluctuation field on scale
N as

XN( f, η;ϕ) := aN ( f )
∑

x∈Zd

ϕ
( x
N

)
(τx f (η) − ψ f (ρ)) (11)

where

ψ f (ρ) :=
∫

f dνρ̄, τx f (η) := f (τxη) (12)

and aN (·) is a suitable normalization constant depending on f . The field XN( f, η; ·) is a
Schwarz-distribution associated to the configuration η. An important case is the density
fluctuation field, where we chose f (η) = η0, aN ( f ) = N−d/2.
The time-dependent fluctuation field at scale N is then defined as

XN( f, t;ϕ) = XN( f, η(N 2t);ϕ) (13)

the diffusive rescaling anticipates the natural macroscopic time-scale in this symmetric pro-
cess, which has the linear heat equation as hydrodynamic limit. {XN( f, t; ·), t ≥ 0} is then
a Schwarz-distribution valued stochastic process.

2.4 Boltzmann–Gibbs Principle

TheBoltzmann–Gibbs principlemakes rigorous the idea that the densityfluctuationfield is the
fundamental fluctuation field, because the density is the only (non-trivial) conserved quantity
in the process under consideration. This means that one can replace, in first approximation,
the fluctuation field of a function f by its “projection on the density field”. For a local function
f this projection is the fluctuation field of the function P1( f ) := ψ ′

f (ρ)(η0 − ρ), where
ψ f (ρ) = ∫ f dνρ̄ .
The standard statement of the Boltzmann–Gibbs principle is given in the following theorem.

Theorem 2.1 For all f local, and ϕ ∈ S (Rd) and for all T > 0

lim
N→∞Eνρ̄

[(
1

Nd/2

∫ T

0
(XN( f, t;ϕ) − XN(P1( f ), t;ϕ)) dt

)2]
= 0. (14)

We refer to [8] for the proof of Theorem and for a comprehensive discussion of the result
that is valid in a more general context and not only for the process considered in the present
paper.
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2.5 Fluctuation Fields of Orthogonal Polynomials

For n ∈ N we denote by Hn the (real) Hilbert spaces generated by the polynomials D(ξ, ·)
with degree at most n, i.e. ||ξ || ≤ n.We have of course the inclusionH0 = R ⊂ H1 ⊂ H2 ⊂
. . . and the union of the spaces Hn is dense in L2(νρ). Moreover, for every f ∈ L2(νρ) its
projection on Hn is given by

fn =
∑

ξ∈� f :‖ξ‖≤n

〈 f, D(ξ, ·)〉D(ξ, ·)
a(ξ)

(15)

where 〈·, ·〉 denotes the L2(νρ̄) inner product.
The aim of what follows is to show that the Boltzmann–Gibbs principle is an instance of a
more general statement concerning the fluctuation behavior of functionswhich are orthogonal
toHn for some n ∈ N. This is (in some sense to be explained below) the case for the function
f − P1( f ).
For ξ ∈ � f , ϕ ∈ S (Rd) we define the n-th order polynomial fluctuation field as

XN (ξ, η, ϕ) :=
∑

x∈Zd

ϕ
( x
N

)
D(ξ, τxη)

=
∑

x∈Zd

ϕ
( x
N

)
D(τxξ, η). (16)

3 Stationary Case

3.1 Second Order Polynomial Field

We start with the simplest non-trivial example for independent random walkers started from
a product measure with homogeneous Poisson marginals. To illustrate our point let us start
with a simple computation, which contains all the important ingredients of the more general
Theorem 3.1 below. Consider the field

X (2)
N (η;ϕ) := XN (2δ0, η, ϕ) =

∑

x∈Zd

ϕ
( x
N

)
D(2δx , η) (17)

The notation X (2)
N suggests that this is in some sense the ”second order” polynomial field. In

the orthogonal polynomial language, this is the field of the second order Charlier polynomial:

D(2δx , η) = ηx (ηx − 1) − 2ρ(ηx − ρ) − ρ2 (18)

recall from earlier that

a(2δ0) =
∫

(D(2δx , η))2dνρ(η)

then we have the following.

Proposition 3.1 The second order polynomial field X (2)
N (η;ϕ) is such that

1. For t > 0 we have

Eνρ̄

[
X (2)
N (η(t);ϕ) X (2)

N (η(0);ϕ)
]

= a(2δ0)
∑

x,y∈Zd

ϕ( x
N )ϕ(

y
N )(pt (x, y))

2 (19)
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986 M. Ayala et al.

2. As a consequence, for t > 0 we have

lim
N→∞Eνρ̄

[
X (2)
N (η(N 2t);ϕ)X (2)

N (η(0);ϕ)
]

= d · a(2δ0)

(2π t)d

∫

R2d
e− d|x−y|2

t ϕ(x)ϕ(y)dxdy

(20)

Proof The first statement follows from self-duality and Lemma 2.1. For the second statement
we use that ϕ has compact support, call this support S, and define

M := max{d(x, y) : x, y ∈ S} (21)

it follows from Theorem 6.2 that there exists c = c(M) such that

sup
x :|x |≤MN

√
t

pRWN2t (x) ≤ p̄N2t (x)

(
1 + c

N
√
t

)

with p̄t (·) as defined in (71). Then from (28) it follows that

Eνρ̄

[
X (2)
N (η(t);ϕ)X (2)

N (η(0);ϕ)
]

= a(2δ0)
∑

x,y∈S
ϕ( x

N )ϕ(
y
N ) p̄N2t (x) p̄N2t (y)

(
1 + c

N
√
t

)2

= a(2δ0) · d

(2π t)d
· 1

N 2d

∑

x,y∈S
ϕ( x

N )ϕ(
y
N )e

− d(z−y)2

t N2

(
1 + c

N
√
t

)2

and letting N → ∞ we obtain the r.h.s. of (20). �	
In the current context the Boltzmann–Gibbs principle for the fluctuation field of the function
f = η0(η0−1) is a consequence of Proposition 3.1.Wemake this statementmore transparent
with the following corollary

Corollary 3.1 The field X (2)
N (η(N 2t);ϕ) is such that for all T > 0 and for all N big enough

1

Nd

∫ T

0

∫ T

0
Eνρ̄

[
X (2)
N (η(N 2t);ϕ)X (2)

N (η(N 2s);ϕ)
]
ds dt ≤ C(T )N− 2d

2+d (22)

More precisely, (20) gives a better estimate of the order of the covariance of the fluctuation
field in the diffusive time-scale as N → ∞.

Proof Given the fact that the RHS of (20) has an indetermination at t = 0. Hence we derive
the following estimate for the integrand in (22)

1

Nd
Eνρ̄

[
X (2)
N (η(N 2t);ϕ)X (2)

N (η(N 2s);ϕ)
]

= Kρ

1

Nd

∑

x∈Zd

ϕ( x
N )pN2(t−s)(x, y)

∑

y∈Zd

ϕ(
y
N )pN2(t−s)(x, y)

≤ Kρ pN2(t−s)(0, 0)‖ϕ‖1Exϕ( Xt
N )

≤ Kρ pN2(t−s)(0, 0)‖ϕ‖1‖ϕ‖∞
at this point we could have concluded (22) by naively estimating pN2(t−s)(0, 0) by one.
Nevertheless our aim is to provide a more quantitative statement. Hence, we distinguished
the cases |t − s| ≥ εN and |t − s| < εN where εN is to be optimized. By the LCLT

pN2(t−s)(0, 0) ≤ d

(2πN 2(t − s))d/2 (23)
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then

pN2(t−s)(0, 0) ≤
⎧
⎨

⎩

d
Ndε

d/2
N

, if |t − s| ≥ εN

1 if |t − s| < εN

(24)

Hence the integral is bounded by
∫ T

0

∫ T

0

1

Nd
Eνρ

[
X (2)
N (η(N 2t);ϕ)X (2)

N (η(N 2s);ϕ)
]
ds dt

≤ Kρ‖ϕ‖1‖ϕ‖∞
T 2

2

[
d

Ndε
d/2
N

+ dεN

]
(25)

Assume εN is of the form N−α , optimality then comes from solving for α

N−α = N−d Nd/2α

after elementary computations we find α = 2d
d+2 . Which in fact not only shows that the

Boltzmann–Gibbs principle holds, but also provides us with a better estimate of the order of
convergence. �	

Back to the second order polynomial fluctuation fields, and for the sake of transparency,
we make explicit the dependency on the “coordinate points” x1, x2 and redefine the fields in
terms of the orthogonal duality polynomials as follows:

X (2)
N (x1, x2, η;ϕ) :=

∑

x∈Zd

ϕ
(

x
N

)
D(δx1+x + δx2+x , η) (26)

Notice then, that in Proposition 3.1 we treated for x1 = x2 = 0. It is necessary then to verify
that Proposition 3.1 is not only result of this particular choice we made, consider then for
x1 �= x2 the field

X (2), �=
N (x1, x2, η, ϕ) =

∑

x∈Zd

ϕ( x
N )(ηx+x1 − ρ)(ηx+x2 − ρ) (27)

where the upper index �= refers to the fact that x1 �= x2.We then have the following analogous
of Proposition 3.1.

Proposition 3.2 The second order polynomial fluctuation field X (2), �=
N (x1, x2, η;ϕ) is such

that

1. For t > 0 we have

Eνρ̄
(X (2), �=

N (x1, x2, η(t);ϕ)X (2), �=
N (x1, x2, η(0);ϕ))

= a(δx1 + δx2)
∑

x,y∈Zd

ϕ
( x
N

)
ϕ
( y
N

)
pt (x + x1, x + x2; y + x1, y + x2)

+ a(δx1 + δx2)
∑

x,y∈Zd

ϕ
( x
N

)
ϕ
( y
N

)
pt (x + x1, x + x2; y + x2, y + x1)

(28)

2. As a consequence, for t > 0 we have

lim
N→∞Eνρ̄

(
X (2), �=
N (x1, x2, η(N 2t);ϕ)X (2), �=

N (x1, x2, η(0);ϕ)
)

= 2a(δx1 + δx2)d

(2π t)d

∫

R2d
e− d|x−y|2

t ϕ(x)ϕ(y)dxdy. (29)
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Proof The argument for the first statement is similar to the one in the proof of Proposition
3.1, the difference is that now

D(δx+x1 + δx+x2 , η) = (ηx+x1 − ρ)(ηx+x2 − ρ)

is the product of two first order Charlier polynomials, which by the assumption of factorized
polynomials allows us to proceed in the same way than before. Furthermore, in this case we
have

pt (δx+x1 + δx+x2 , δy+x1 + δy+x2)

= pt (x + x1, x + x2; y + x1, y + x2) + pt (x + x1, x + x2; y + x2, y + x1)

(30)

which is the source of the second term in (28). In the second statement is necessary to verify
that x1 and x2 do not play a role in the leading order

Eνρ̄
(X (2), �=

N (x1, x2, η(N 2t);ϕ)X (2), �=
N (x1, x2, η(0);ϕ))

= a(δx1 + δx2)
∑

x,y∈Zd

ϕ( x
N )ϕ(

y
N )pN2t (x + x1, x + x2; y + x1, y + x2)

+ a(δx1 + δx2)
∑

x,y∈Zd

ϕ( x
N )ϕ(

y
N )pN2t (x + x1, x + x2; y + x2, y + x1)

(31)

The first term in the RHS of (31) can be treated in the same way than before. For the second
term, we just have to notice

|x + x1 − y − x2|2 + |x + x2 − y − x1|2 = 2|x − y|2 + 2|x1 − x2|2
and proceed in the same way. �	

Now we show how to generalize this result and discuss the case of higher order fields.

3.2 Higher Order Fields

Let k ∈ N and denote by x ∈ Z
kd the coordinates vector x := (x1, . . . , xk), with xi ∈ Z

d ,
i = 1, . . . , k. We denote by ξ(x) the configuration associated to x, i.e. ξx (x) =∑k

i=1 1x=xi .
We define ||x|| := ||ξ(x)|| = k. Here xi is the position of the i-th particle, where particles
are labeled in such a way that the dynamics is symmetric. For a more extensive explanation
of the labeled dynamics we refer the reader to [5]. We denote by τ̂z , z ∈ Z

d the shift operator
acting on the coordinate representation:

τ̂zx = (z + x1, . . . , z + xk), and then τzξ = ξ(τ̂zx) (32)

Because of the translation invariance of the dynamics we have that

pt (ξ(τ̂yx), ξ(τ̂zx)) = pt (ξ(x), ξ(τ̂z−yx)) (33)

With an abuse of notation, we keep denoting by pt (x, y) the transition probability of the
labeled particles in the coordinate representation.

Remark 3.1 The relation between the transition probabilities in the coordinate and in the
configuration representations is given by

pt (ξ(x), ξ(y)) =
∑

x′:ξ(x′)=ξ(y)

pt (x, x′) (34)
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Notice that it is presicely from relation (34) that a factor of 2 appears in Proposition 3.2 and
not in Proposition 3.1. We can expect that in this general setting the difference among cases
will become more cumbersome. To avoid any further notational difficulties we introduce the
following:

Let Pk be the set of permutations of {1, . . . , k}, for σ, σ ′ ∈ Pk we define the following
equivalence relation:

σ ∼ σ ′ mod x iff xσ(i) = xσ ′(i) ∀i ∈ {1, . . . , k} (35)

and define Pk(x) := Pk/ ∼x. Then we have

|Pk(x)| = k!∏
i∈Zd ξi (x)! (36)

For each σ ∈ Pk(x) we define the new coordinate vector x(σ ) such that

x(σ )
i = xσ(i) (37)

thus we can write

pt (ξ(x), ξ(τ̂zx)) =
∑

x′:ξ(x′)=ξ(τ̂zx)

pt (x, x′) =
∑

σ∈P k (x)

pt (x, τ̂zx(σ )) (38)

With a slight abuse of notation we denote by

XN (x, η, ϕ) :=
∑

z∈Zd

ϕ
( z

N

)
D(τ̂zx, η), (39)

define the k-th order fluctuation field associated to the k-particles configuration x. Then we
have

Theorem 3.1 Let k := ||x||, then the k-th order fluctuation field XN (x, η, ϕ) is such that

1. For all t > 0

Eνρ̄
[XN (x, η(t), ϕ)XN (x, η(0), ϕ)]

= a(ξ(x))
∑

σ∈P k (x)

∑

y,z∈Zd

ϕ
( y

N

)
ϕ
( z

N

)
pt (x, τ̂z−yx(σ )) (40)

2. As a consequence, for t > 0

lim
N→∞ Nd(k−2)

Eνρ̄

[
XN (x, η(N 2t), ϕ)XN (x, η(0), ϕ)

]

= |Pk(x)|a(ξ(x))
dk/2

(2π t)dk/2

∫

R2d
e−kd|z−y|2/2tϕ(z)ϕ(y)dzdy (41)

Proof The first statement of the theorem is a direct application of Lemma 2.1 and the fact
that the function a(·) is translation invariant, i.e. a(ξ(τ̂zx)) = a(ξ(x)), for all z ∈ Z

d .

Eνρ̄
[XN (x, η(t), ϕ)XN (x, η(0), ϕ)]

= a(ξ(x))
∑

y,z∈Zd

ϕ
( y

N

)
ϕ
( z

N

)
pt (ξ(τ̂yx), ξ(τ̂zx)) (42)
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Then, from (33) and (42) it follows that

Eνρ̄
[XN (x, η(t), ϕ)XN (x, η(0), ϕ)]

= a(ξ(x))
∑

σ∈P k (x)

∑

y,z∈Zd

ϕ
( y

N

)
ϕ
( z

N

)
pt (x, τ̂z−yx(σ )) (43)

For the second stament observe that from translation invariance we have

pIRWN2t (x, τ̂z−yx) =
(
pRWN2t (z − y)

)k
(44)

Define BM,N := {x ∈ Z
d : |x | ≤ NM}, then, since ϕ has a finite support we have that there

exists M ≥ 0 such that, for
∑

y,z∈Zd

ϕ
( y

N

)
ϕ
( z

N

)
pIRWN2t (x, τ̂z−yx)

=
∑

y,z∈BM,N

ϕ
( y

N

)
ϕ
( z

N

) (
pRWN2t (z − y)

)k

=
( √

d

(2π t)d/2

)k (
1 + c

N
√
t

)k 1

Nkd

∑

y,z∈BM,N

ϕ
( y

N

)
ϕ
( z

N

)
e− kd| z

N − y
N |2

2t

for a suitable c = c(M), the last inequality coming from Theorem 6.2. We have

lim
N→∞

1

N 2d

∑

y,z∈Zd

ϕ
( y

N

)
ϕ
( z

N

)
e− kd| z

N − y
N |2

2t =
∫

R2d
ϕ (y) ϕ (z) e− kd|z−y|2

2t dxdz.

�	

3.2.1 Quantitative Boltzmann–Gibbs Principle

On the same spirit than Corollary 3.1 we can now state a refined quantitative version of the
Boltzmann–Gibbs principle for higher order fields.

Theorem 3.2 The field X (k)
N (η(N 2t);ϕ) is such that for all T > 0 there exists C(T ) such

that for all N big enough

1

Nd

∫ T

0

∫ T

0
Eνρ̄

[
XN (x, η(N 2t), ϕ)XN (x, η(N 2s), ϕ)

]
ds dt ≤ C(T )N− 2(k−1)d

2+(k−1)d (45)

Proof Analogously to the case of two particles ( see the proof of Corollary 3.1), and using
observation (44) we first obtain the following estimate

1

Nd
Eνρ̄

[
XN (x, η(N 2t), ϕ)XN (x, η(N 2s), ϕ)

]

≤
(
pRWN2(t−s)(0)

)k−1 |Pk(x)|a(ξ(x))‖ϕ‖1‖ϕ‖∞ (46)

again, by the LCLT

(
pRWN2(t−s)(0)

)k−1 ≤
⎧
⎨

⎩

d
N (k−1)dε

(k−1)d/2
N

, if |t − s| ≥ εN

1, otherwise
(47)
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allowing us to bound the integral

∫ T

0

∫ T

0

1

Nd
Eνρ̄

[
X (2)
N (η(N 2t);ϕ)X (2)

N (η(N 2s);ϕ)
]
ds dt

≤ |Pk(x)|a(ξ(x))‖ϕ‖1‖ϕ‖∞
T 2

2

[
d

N (k−1)dε
(k−1)d/2
N

+ dεN

]
(48)

the same anzats, εN = N−α , results on the optimal value

α = 2(k − 1)d

2 + (k − 1)d
. (49)

�	
3.3 Fluctuation Fields of Projections onHN

We can further generalize part (2) of Theorem 3.1 to a wider class of functions f . In this
section we make such a generalization for a particular subset of L2(νρ). For f ∈ L2(νρ) we
can use the fact that the union of the spaces Hn is dense in L2(νρ) to express f as follows

f (η) =
∑

n≥0
ξ∈� f :‖ξ‖=n

Cn,ξ D(ξ, η) (50)

for the rest of this section we restrict ourselves to the set of functions f ∈ L2(νρ) satisfying
the following condition

∑

ξ,ξ ′∈� f :‖ξ‖=‖ξ ′‖
|Cn,ξCn,ξ ′ |a(ξ ′) < ∞ (51)

In particular all linear combinations of orthogonal duality polynomials satisfy (51).

Theorem 3.3 Let f be a function such that the condition (51) is satisfied, and as before let
fk−1 denote the projection of f on Hk−1, then the field

XN( f − fk−1, η;ϕ) =
∑

x∈Zd

(τx f (η) − τx fk−1(η))ϕ
( x

N

)

satisfies

Eνρ̄

[
XN( f − fk−1, η;ϕ)XN( f − fk−1, η(N 2t);ϕ)

] = O(N−d(k−2))

Proof After some simplifications due to orthogonality the field reads

XN( f − fk−1, η;ϕ) =
∑

x∈Zd

ϕ
( x

N

) ∑

n≥k
ξ∈� f :‖ξ‖=n

Cn,ξ τx D(ξ, η)
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We then compute

Eνρ̄

[
XN( f − fk−1, η;ϕ)XN( f − fk−1, η(N 2t);ϕ)

]

=
∑

x,y

ϕ
( x

N

)
ϕ
( y

N

) ∑

n≥k
ξ∈� f :‖ξ‖=n

∑

l≥k
ξ ′∈� f :‖ξ ′‖=l

Cn,ξCl,ξ ′

∫
τx D(ξ, η)Eη

[
τy D(ξ ′, η(N 2t))

]
dνρ̄(η)

=
∑

x,y

ϕ
( x

N

)
ϕ
( y

N

) ∑

n≥k
ξ∈� f :‖ξ‖=n

∑

l≥k
ξ ′∈� f :‖ξ ′‖=l

Cn,ξCl,ξ ′

∫
τx D(ξ, η)Eη

[
τy D(ξ ′, η(N 2t))

]
dνρ̄(η)

=
∑

x,y

ϕ
( x

N

)
ϕ
( y

N

) ∑

n≥k
ξ∈� f :‖ξ‖=n
ξ ′∈� f :‖ξ ′‖=n

Cn,ξCn,ξ ′a(ξ ′)pN2t (τyξ
′, τxξ) (52)

from the LCLT we can also obtain that

pN2t (τyξ, τxξ
′) = O(N−d‖ξ‖)

this, allows us to bound our expression of interest

Nd(k−2)
Eνρ̄

[
XN( f − fk−1, η;ϕ)XN( f − fk−1, η(N 2t);ϕ)

]

≤ Nd(k−2)
∑

x,y

ϕ
( x

N

)
ϕ
( y

N

) ∑

n≥k
ξ∈� f :‖ξ‖=n
ξ ′∈� f :‖ξ ′‖=n

M

Ndn
|Cn,ξCn,ξ ′ |a(ξ ′)

=
(

1

N 2d

∑

x,y

ϕ
( x

N

)
ϕ
( y

N

)) ∑

n≥k
ξ∈� f :‖ξ‖=n
ξ ′∈� f :‖ξ ′‖=n

M

Nd(n−k)
|Cn,ξCn,ξ ′ |a(ξ ′) (53)

At this point we need to show that the last summation does not play a role in the leading
order. But this comes from the fact that f satisfies condition (51). �	

Analogously to Theorem 3.2 we provide a quantitative version of the Boltzmann–Gibbs
principle for the current setting.

Theorem 3.4 The field XN( f − fk−1, η;ϕ) is such that for all T > 0 there exists C(T ) such
that for all N big enough

1

Nd

∫ T

0

∫ T

0
Eνρ̄

[
XN( f − fk−1, η(N 2t);ϕ)XN( f − fk−1, η(N 2s);ϕ)

]
ds dt

≤ C(T )N− 2(k−1)d
2+(k−1)d . (54)
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4 Non-stationary Fluctuation Fields

4.1 Second Order Fields

Let us now start independent walkers from a product measure of non-homogeneous Poisson,
with weakly varying density profile i.e., from the measure νρ̄ = ⊗x∈Zd νρ(x) where ρ̄ ∈
R
Z
d
and ρ(x) is given by the relation ρ̄ = (ρ(x))x∈Zd . We denote by Dρ̄ the orthogonal

polynomials, i.e.,

Dρ̄ (ξ, η) =
∏

i

Dρ(i)(ξi , ηi )

where Dρ(i) denote the orthogonal polynomials w.r.t. Poisson with parameter ρ(i).
We also denote by ρ̄t = (ρ(x))x∈Zd , where ρt (x) = Ex [ρ(Xt )] and Xt denotes the
continuous-time random walk. We now are interested in the fields

XN (ξ, ρ̄, ϕ, t) :=
∑

x∈Zd

ϕ( x
N )Dρ̄t N2 (ξ, η(N 2t)) (55)

then the second order field is

X (2)
N (ρ̄, ϕ, t) := XN (2δ0, ρ̄, ϕ, t) =

∑

x

ϕ( x
N )Dρ̄t N2 (2δx , η(N 2t)) (56)

with respect to previous notation please notice the additional dependence on the parameter
ρ̄ and in time t .

We want to prove that the covariance of X (2)
N (ρ̄, ϕ, t) and X (2)

N (ρ̄, ϕ, s) is of order 1, as
N → ∞, exactly as in the stationary case. For this we start with the following result:

Lemma 4.1 Let νρ̄ := ⊗x∈Zd νρ(x) be a product of non-homogeneous Poisson measures,
then we have

∫
Eη

[
Dρ̄t (x)(2δx , η(t))

]
Dρ(y)(2δy, η) dνρ̄(η) = k2(y) pt (x, y)

2 (57)

where

k2(y) =
∫ (

Dρ(y)(2δy, η)
)2

dνρ̄(η)

Proof Note that

Dρt (x)(2δx , ηt ) = ηx (t)(ηx (t) − 1) − 2ρt (x)(ηx (t) − ρt (x)) − ρt (x)
2

hence

Eη

[
Dρ̄t (x)(2δx , ηt )

]

= Eη [ηx (t)(ηx (t) − 1)] − 2ρt (x)Eη [ηx (t) − ρt (x)] − ρt (x)
2 (58)

We now state the following:
Claim 1:

∫
Eη [ηx (t) − ρt (x)]Dρ(y)(2δy, η) dνρ̄(η) = 0

Indeed, by duality, Eη [ηx (t) − ρt (x)] = ∑
z pt (x, z)(ηz − ρ(z)) and (ηz − ρ(z)) is in

L2(νρ̄(η)) always orthogonal to Dρ(y)(2δy, η) because for z �= y both (ηz − ρ(z)) and
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Dρ(y)(2δy, η) have expectation zero and when z = y because it is the inner product of the
first order and second order orthogonal polynomials, which is zero. So we only have to work
out the expectation Eη [ηx (t)(ηx (t) − 1)] which by duality equals

∑

u

pt (x, u)2ηu(ηu − 1) + 2
∑

u �=v

pt (x, u)pt (x, v)ηuηv

Claim 2: For all u
∫

ηuDρ(y)(2δy, η)dνρ̄(η) = 0

Indeed, for u �= y this is true because of the product character of the measure and the fact
thatDρ(y)(2δy, η) has zero expectation, and for u = y ηy = ηy − ρ(y) + ρ(y) which is the
sum of the first orthogonal polynomial and a constant, which is in L2(νρ̄(η)) orthogonal to
Dρ(y)(2δy, η).

Finally, we remark that for all u �= y
∫

ηu(ηu − 1)Dρ(y)(2δy, η)dνρ̄(η) = 0

because of the product character of the measure and the fact that Dρ(y)(2δy, η) has zero
expectation. Finally,

∫
ηy(ηy − 1)Dρ(y)(2δy, η)dνρ̄(η) =

∫
(Dρ(y)(2δy, η))2dνρ̄(η)

because adding first order terms in ηy does not change the inner product withDρ(y)(2δy, η).
�	

As a consequence of Lemma 4.1 and using that a product of Poisson measures is repro-
duced at later times, we compute

lim
N→∞Eνρ̄

[
X (2)
N (ρ̄, ϕ, t)X (2)

N (ρ̄, ϕ, s)
]

= lim
N→∞Eνρ̄

sN2

[
X (2)
N (ρ̄, ϕ, t − s)X (2)

N (ρ̄, ϕ, 0)
]

=
∫

e− (x−y)2

t−s

2π(t − s)d/2 ϕ(x)ϕ(y) κ2(y)dxdy (59)

where

κ2(y) = lim
N→∞ k2(Ny)

which exists because the initial Poisson measure has slowly varying density profile.

4.2 Higher Order Fields: Non-stationary Case

The aim of this section is to extend the results of the previous example to higher order fields:

XN (x, ρ̄, ϕ, t) =
∑

x∈Zd

ϕ( x
N )Dρ̄t N2 (τ̂xξ, η(N 2t)) (60)

We start then with a generalization of Lemma 4.1 to higher orders. As we already stated in
Remark 2.2 in the case of independent random walkers, the orthogonal duality polynomials
are related to the classical duality polynomials in the following way:
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Dρ̄ (ξ, η) =
∏

x∈Zd

ξx∑

j=0

(
ξx

j

)
(−ρ(x))ξx− j d( j, ηx ) (61)

where d(k, n) are the classical single site duality polynomials.

Remark 4.1 Notice that due to the non-homogeneity of the product measure, the duality
property cannot be any longer guaranteed.

Despite of the previous remark, the special form of the Charlier polynomials allows us to
reach the same conclusions than in the stationary case. Let us first make a simple observation:

Define A(ξ, η, ρ̄) as the difference between the Charlier and classical polynomials of
order ‖ξ‖, i.e.

A(ξ, η, ρ̄) := Dρ̄ (ξ, η) −
∏

x∈Zd

d(ξx , ηx )

and notice that A(ξ, η, ρ̄) is a polynomial of degree strictly less than ‖ξ‖ and as a consequence
it has an expansion, in terms of orthogonal polynomials, consisting only on polynomials of
order strictly smaller than ‖ξ‖. Therefore, by orthogonality we have

∫
Eη [A(ξ, η, ρ)]Dρ0(ξ

′, η)dνρ̄0(η) = 0

for any configuration ξ ′ such that ‖ξ‖ ≤ ‖ξ ′‖. With this observation we are ready to state
the following Lemma:

Lemma 4.2 Let νρ̄ := ⊗x∈Zd νρ(x) be a product of non-homogeneous Poisson measures,
and let ρt (x) = Ex [ρ(Xt )], where Xt denotes continuous-time random walk. Then we have

∫
Eη

[
Dρ̄t (ξ, η(t))

]
Dρ̄ (ξ ′, η)dνρ̄(η) = pt (ξ, ξ ′)a0(ξ ′) (62)

where at (ξ) = ‖Dρ̄t (ξ, ·)‖2
L2(νρ̄ )

.

Proof We simply compute
∫

Eη

[
Dρ̄t (ξ, η(t))

]
Dρ̄ (ξ ′, η)dνρ̄(η)

=
∫

Eη

⎡

⎣
∏

x

ξx∑

j=0

(
ξx

j

)
(−ρt )

ξx− j d( j, η(x, t))

⎤

⎦Dρ̄ (ξ ′, η)dνρ̄(η)

=
∫

Eη

[
∏

x

d(ξx , η(x, t))

]
Dρ̄ (ξ ′, η)dνρ̄(η) +

∫
Eη [A(ξ, η, ρ̄)]Dρ̄ (ξ ′, η)dνρ̄(η)

=
∫

Eξ

[
∏

x

d(ξ(x, t), ηx )

]
Dρ̄ (ξ ′, η)dνρ̄(η)

=
∫ ∑

ζ

pt (ξ, ζ )

(
∏

x

d(ζx , ηx ) + A(ζ, η, ρ̄)

)
Dρ̄ (ξ ′, η)dνρ̄(η)

=
∫ ∑

ζ

pt (ξ, ζ )

⎛

⎝
∏

x

ζx∑

j=0

(
ζx

j

)
(−ρ(x))ζx− j d( j, ηx )

⎞

⎠Dρ̄ (ξ ′, η)dνρ̄(η)
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=
∫ ∑

ζ

pt (ξ, ζ )Dρ̄ (ζ, η)Dρ̄ (ξ ′, η)dνρ̄(η)

= pt (ξ, ξ ′)a0(ξ ′) (63)

where in the fourth and fifth line we subtracted and added zero respectively by using the
orthogonality of Dρ̄ (ξ ′, η) to lower order polynomials in the expansion. �	
We now state the non-stationary version of Theorem 3.1.

Theorem 4.1 Let νρ̄ := ⊗x∈Zd νρ(x) and ρt (x) be as before, and let k := ||x||, then
1. For all t > 0

Eνρ̄
[XN (x, ρ̄, ϕ, t)XN (x, ρ̄, ϕ, 0)]

= a0

(
k∑

i=1

δxi

)
∑

x,y

ϕ( x
N )ϕ(

y
N )pt

(
k∑

i=1

δx+xi ;
k∑

i=1

δy+xi

)
(64)

2. As a consequence, for t > s > 0

lim
N→∞ Nd(k−2)

Eνρ̄
[XN (x, ρ̄, ϕ, t)XN (x, ρ̄, ϕ, s)]

= K (x1, . . . , xk; ρ)
dk/2

(2π(t − s))dk/2

∫

R2
e−kd(x−y)2/2(t−s)ϕ(x)ϕ(y)dxdy

with ξ =∑k
i=1 δxi and K (x1, . . . , xk; ρ) defined as in the stationary case.

Proof Is a consequence of Lemma4.2 togetherwith the fact that a product of Poissonmeasure
is reproduced at later times. �	

With this last theorem, we have now the ingredients to obtain a quantitative Boltzmann–
Gibbs principle.

Corollary 4.1 For all T > 0 there exists C(T ) such that for all N big enough

1

Nd

∫ T

0

∫ T

0
Eνρ̄

[XN (x, ρ̄, ϕ, t)XN (x, ρ̄, ϕ, s)] ds dt ≤ C(T )N− 2(k−1)d
2+(k−1)d (65)

Proof The proof is essentially the same than in all the previous cases. �	

5 Particle Systems with Orthogonal Duality

In the context of stationarity, the results of this paper are not exclusive for independent
random walkers. Hence in this section we extend our results to a wider class of IPS. i.e. to
those particle systems that enjoy the existence of orthogonal self-duality and that satisfy an
additional condition in the transition kernel. Let then {ηt }t≥0 be an IPS for which there exists
an orthogonal self-duality function D : � f × � → R satisfying all the properties stated in
Sect. 2.2. As in the same section, we denote by pt (ξ, ξ ′) the transition probability to go from
configuration ξ to ξ ′ in time t . Then, immediately follows the following:

Lemma 5.1 Let ξ, ξ ′ ∈ � f , then
∫

Eη(D(ξ, ηt ))D(ξ ′, η)dνρ̄(η) = pt (ξ, ξ ′)a(ξ ′) (66)
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furthermore, let us assume that for all ξ, ξ ′ ∈ � f , the transition kernel satisfies the following
estimate

pt (ξ, ξ ′) ≤ C

(1 + t)‖ξ‖d/2 (67)

This assumption is reasonable, since in [9] estimates of this kind were already found for a
wide class of interacting particle systems that for example includes generalized exclusion
processes. The results of [9] are applicable as long as the process satisfies a logarithmic
Sobolev inequality for the symmetric part of the generator. As before, for a fix x ∈ Z

dk we
define the polynomial fluctuation field

XN (x, η, ϕ) :=
∑

z∈Zd

ϕ
( z

N

)
D(τ̂zx, η), (68)

from assumption (67) we can also conclude.

Theorem 5.1 For all T > 0 there exists C(T ) such that for all x ∈ Z
dk and for all N big

enough

1

Nd

∫ T

0

∫ T

0
Eνρ̄

[
XN (x, η(N 2t), ϕ)XN (x, η(N 2s), ϕ)

]
ds dt ≤ C(T )N− 2(k−1)d

2+(k−1)d (69)
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6 Appendix

6.1 Local Limit Theorems

In this section we state and prove a local central limit theorem for independent random
walkers in continuous time. The motivation of this section comes from the fact that, despite
of being common knowledge, we were not able to find a reference that includes the proof
of such a result. However we do have access to many versions of the discrete case. We state
now the version included in [10], since we consider is the most suitable to then jump to the
continuous time case. Theorem 6.1 below is a direct consequence of Theorem 2.1.1 in the
same reference [10].

Theorem 6.1 (LCLT for discrete-time random walk) Let x ∈ Z
d and pDRWn (·) be the prob-

ability distribution of a discrete-time random walk in Z
d , then, for any fixed M ≥ 0 there

exists c = c(M) such that

sup
|x |≤M

√
n

∣∣∣∣
pDRWn (x)

p̄n(x)
− 1

∣∣∣∣ ≤
c

n
(70)

where

p̄t (x) :=
√
d

(2π t)d/2 e− d|x |2
2t (71)

The way we generalize this theorem is by means of the following.

123

http://creativecommons.org/licenses/by/4.0/


998 M. Ayala et al.

Theorem 6.2 (LCLT for continuous-time random walk) Let x ∈ Z
d and pRWt (·) be the

probability distribution of a continuous-time random walk in Z
d , then, for any fixed M ≥ 0

there exists c = c(M) > 0 s.t.

sup
|x |≤M

√
t

∣∣∣∣
pRWt (x)

p̄t (x)
− 1

∣∣∣∣ ≤
c√
t

(72)

Proof We can always decompose

pRWt (x) =
∞∑

n=0

P(Nt = n) pDRWn (x) (73)

with Nt a Poisson process of rate 1. First by Proposition 2.5.5 in [10] we have

P(Nt = n) = 1√
2π t

e− (n−t)2
2t exp

{
O

(
1√
t

+ |n − t |3
t2

)}
(74)

Now for ε > 0, we assume that |n − t |
t

≤ ε

after some manipulation we obtain the following relations

1

n
= 1

t

(
1 + O

( |n − t |
t

))
,

1

nα
= 1

tα

(
1 + O

( |n − t |
t

))
(75)

combining (75) with Theorem 6.1 we have

pDRWn (x) =
√
d

(2πn)d/2 e− d|x |2
2n

(
1 + O

(
1

n

))

=
√
d

(2π t)d/2 e− d|x |2
2n exp

{
O

( |x |2|n − t |
t2

)}(
1 + O

(
1

t

))(
1 + O

( |n − t |
t

))

(76)

Finally, substitution of (74) and (76) in (73) and further manipulations gives

∞∑

n=0

P(Nt = n)pDRWn (x)

=
∞∑

n=0

1√
2π t

e− (n−t)2
2t exp

{
O

(
1√
t

+ |n − t |3
t2

)}

×
√
d

(2π t)d/2 e− d|x |2
2t exp

{
O

( |x |2|n − t |
t2

)}(
1 + O

(
1

t

))(
1 + O

( |n − t |
t

))

(77)

Assuming |x | ≤ M
√
t and using (6.1), we get the following,

exp

{
O

( |x |2|n − t |
t2

)}
= exp {O (ε)} (78)
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Hence, more applications of (6.1) give

∞∑

n=0

P(Nt = n)pDRWn (x)

=
(
1 + O

(
1

t

)) √
d

(2π t)d/2 e
− d|x |2

2t exp {O (ε)} (1 + O (ε)) exp

{
O

(
1√
t

)}

×
∞∑

n=0

1√
2π t

e− (n−t)2
2t exp

{
O

( |n − t |3
t2

)}

= p̄t (x)

(
1 + O

(
1√
t

))

�	
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