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Greedy Sensor Selection: Leveraging Submodularity
Based on Volume Ratio of Information Ellipsoid
Lingya Liu , Member, IEEE, Cunqing Hua , Member, IEEE, Jing Xu , Geert Leus , Fellow, IEEE,

and Yiyin Wang , Member, IEEE

Abstract—This article focuses on greedy approaches to select the
most informative k sensors from N candidates to maximize the
Fisher information, i.e., the determinant of the Fisher information
matrix (FIM), which indicates the volume of the information ellip-
soid (VIE) constructed by the FIM. However, it is a critical issue for
conventional greedy approaches to quantify the Fisher information
properly when the FIM of the selected subset is rank-deficient in
the first (n − 1) steps, where n is the problem dimension. In
this work, we propose a new metric, i.e., the Fisher information
intensity (FII), to quantify the Fisher information contained in the
subset S with respect to that in the ground set N specifically in the
subspace spanned by the vectors associated with S. Based on the
FII, we propose to optimize the ratio between VIEs corresponding
to S and N . This volume ratio is composed of a nonzero (i.e.,
the FII) and a zero part. Moreover, the volume ratio can be easily
calculated based on a change of basis. A cost function is developed
based on the volume ratio and proven monotone submodular. A
greedy algorithm and its fast version are proposed accordingly to
guarantee a near-optimal solution with a complexity of O(Nkn3)
and O(Nkn2), respectively. Numerical results demonstrate the
superiority of the proposed algorithms under various measurement
settings.

Index Terms—Greedy sensor selection, Fisher information
intensity, change of basis, volume ratio, submodularity.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted great
attention in applications and services related to surveil-

lance, environmental and climate monitoring, etc. Sensors are
deployed for distributed sensing at particular locations to extract
relevant information [1]. Specifically, for linear observation
models, the physical field of interest can be estimated from
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sensor observations/measurements by solving a linear inverse
problem [2], [3]. Thus, sensor selection, i.e., the problem of
selecting k sensors that acquire the most informative measure-
ments from an available pool of N sensors to minimize the
estimation error, is a fundamental design task in WSNs. It is
essentially a combinatorial optimization problem involving

(
N
k

)
searches and intractable even for small-scale networks [4]. This
motivates numerous heuristics and approximate algorithms for
the sensor selection problem.

A. Related Prior Works

The sensor selection problem is formulated as an optimization
problem in [2], where the objective is to maximize the logarithm
of the determinant (log det) of the inverse error covariance
matrix. The problem is approximated to a convex problem by
relaxing the Boolean constraints, which indicate whether the
sensor is selected or not. Such kind of convex relaxation has
been applied in many other sensor selection works [4], [5],
[6], [7]. For example, it is used in [4] for a general non-linear
observation model to optimize different performance criteria,
e.g., the D-optimality, A-optimality, and E-optimality criterion.
In this context, solutions to the related convex optimization
problem with a simple rounding procedure may lead to an
ill-conditioned observation model due to the approximation of
constraints [8]. The local optimization technique [2] and the
iterative rounding procedure [7] can enhance the results but
with a high computational cost. As a result, convex relaxation
methods are very effective for small-scale problems [2], [9], but
less compelling for large-scale ones [3], [8].

On the other hand, greedy methods enjoy much less compu-
tational cost compared with convex relaxation methods. Greedy
methods determine the sensors one by one via optimizing some
proxies of the estimation accuracy, such as the volume of the con-
fidence ellipsoid (VCE) [3], the mean squared error (MSE) [10],
and the worst-case error variance (WCEV) [8]. These proxies
correspond to the D-, A-, and E-optimality criterion, respec-
tively. The theoretical foundation of some greedy approaches
is drawn from submodular function optimization [11]. For in-
stance, the VCE index is a monotone submodular function and
optimized in the pioneering work [3] by a greedy algorithm,
which guarantees a (1− 1/e) optimal solution with a run time
ofO(Nkn2), where e is Euler’s number and n is the problem di-
mension. Numerical results verify that optimizing the MSE [10],
[12] and WCEV [8] via greedy methods can also obtain similar
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suboptimal solutions. For example, a frame potential-based cost
function called FrameSense is proposed in [12] to approxi-
mate the MSE but it has the submodularity property, and thus
guarantees a near-optimal solution. However, FrameSense is
unable to exploit the information contained in the norms of the
measurement vectors, as it can only be applied to measurement
vectors with uniform norms. The maximal projection on mini-
mum eigenspace (MPME) algorithm is proposed for optimizing
the WCEV in [8]. In each step, it selects the sensor whose
observation has the maximum projection onto the minimum
eigenspace spanned by the currently selected sensor set. In the
examples of [8], the MPME algorithm outperforms the convex
relaxation method [2], FrameSense [12], and SparSenSe [13]
in terms of the WCEV and MSE, where SparSenSe determines
the minimum number of required sensors for a prescribed MSE
by utilizing the sparsity of the selection vector. The MPME
algorithm is also computationally efficient with a complexity of
O(Nkn2). More recently, a fast MSE-based sampling algorithm
is proposed for linear-model signals varying from vectors to
tensors in [14], where the complexity is reduced to O(Nk2). It
achieves the same performance as [3] for vector signals.

In the aforementioned greedy methods, the optimization met-
ric is closely related to the currently selected sensors. This raises
two fundamental issues that directly affect the performance of
greedy algorithms. Firstly, the optimization metric in the first
(n− 1) steps is ill-conditioned due to the rank-deficiency of the
FIM. It is remedied by adding a full-rank matrix with very small
eigenvalues [3]. However, the influence of this remedy is yet to
be investigated as it changes the rank of the observation matrix.
Moreover, the dependency of the metric on the current set leads
to a cumulative effect. An improper selection in previous steps,
where some better solutions are missed, may deteriorate the
overall solution. In some recent works, it has been alleviated ei-
ther by iteratively reserving a group of topL (i.e., the group size)
suboptimal candidates but at the cost of an increased complexity
of O(NkLn2) [15], or by introducing randomization into the
selection to reduce the algorithm complexity for problems with
large N [16].

B. Contributions

In this article, we are particularly interested in greedy sensor
selection approaches for linear measurement models [2], [3]. We
define the determinant of the Fisher information matrix (FIM) as
the volume of its corresponding information ellipsoid (Info-E).
The volume of the Info-E (VIE) is a valid counterpart of the
VCE. That is, minimizing the VCE is equivalent to maximizing
log det(FIM), which can be geometrically interpreted as to max-
imize the corresponding VIE. With all measurement vectors of
the network available, the FIM associated with the ground sensor
set, hereinafter called the full FIM, is necessarily nonsingular.
The Info-E determined by the full FIM confines all the Info-E’s
related to the subsets of the ground sensor set. In order to make
the best use of the profile of the largest Info-E corresponding to
the full FIM, we propose to optimize the volume ratio of the VIE
for the selected sensors to the maximum VIE. We summarize the
contributions of this paper as follows.

1) We propose a novel metric, i.e., the Fisher information
intensity (FII), which has a clear geometric interpretation.
It represents the ratio between the VIEs associated with
the selected subset (S) and the ground set (N ) in the
subspace spanned by the vectors related to S . The FII
is more elaborate than the Fisher information especially
when the FIM of S is singular. We further propose to
optimize the ratio between VIEs corresponding to S and
N in the n-dimensional (n-D) space, where the nonzero
part of the volume ratio is the FII.

2) The volume ratio can be achieved using the transformed
measurement vectors. The linear transform is accom-
plished using the basis that results from the eigenvalue
decomposition of the full FIM. The change of basis can
also be adopted by existing greedy algorithms for perfor-
mance improvement.

3) A novel cost function is constructed based on the volume
ratio. It consists of two components corresponding to the
nonzero and zero parts of the volume ratio, respectively.
The nonzero component is exactly the FII, while the zero
component is replaced by a very small constant when the
number of selected sensors is smaller thann. The proposed
cost function is proven monotone submodular.

4) A greedy algorithm is proposed to optimize the proposed
cost function in two domains, which correspond to the
first n steps and the remaining (k − n) steps, respectively.
As the cost function is monotone submodular, a (1− 1/e)
optimal solution is guaranteed. A fast greedy algorithm is
designed to further reduce the complexity to O(Nkn2).

The rest of the paper is organized as follows. The sensor
selection problem based on linear measurements is briefly re-
viewed in Section II, where its geometric interpretations are
presented. The problem is then transformed into the volume
ratio formulation based on the FII. Section III presents the
greedy algorithm and its fast counterpart. Section IV provides
a theoretical analysis of the proposed algorithm comparing it
with a conventional submodular algorithm. Numerical results
are illustrated in Section V, whereas Section VI concludes the
paper.

Notations: Upper case calligraphic and bold face upper
(lower) case letters, e.g., A and A (a), denote sets and matrices
(column vectors), respectively. We use [a]i to denote the ith
element of the vector a. An identity and a zero matrix with
proper dimensions are represented by I and 0, respectively. The
operators (·)T, ‖ · ‖, det (·) and rank(·) correspond to the trans-
pose, norm, determinant and rank operations. The expression
A � 0 (A � 0) denotes A is a positive (semi)definite matrix.
The canonical basis is given by {ei}ni=1, whereei is a zero vector
of length n except for the ith entry which is 1.

II. PROBLEM ANALYSIS AND STATEMENT

In this section, we will comprehensively review the sensor
selection problem based on linear measurement models and
show new insights from a geometric perspective. We further
design a novel performance metric, i.e., the volume ratio of the
VIEs, to recast the sensor selection problem as the maximization
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of the volume ratio between the VIE of the selected sensors and
the maximum VIE associated with the ground set of sensors.

A. Sensor Selection Based on Linear Models

Consider a physical field, where α ∈ Rn collects the param-
eters of interest, measured by a full network of N (N � n)
sensors with linear measurements given by

yi = φ
T
i α+ zi, i = 1, . . . , N, (1)

whereφi ∈ Rn is the measurement vector of the ith sensor. The
noise zi of the ith sensor is independent identically distributed
(i.i.d.) additive white Gaussian noise (AWGN) with zero mean
and unit variance1, i.e., zi ∼ CN (0, 1). The full measurement
matrix is then given by ΦN = [φ1,φ2, . . . ,φN ]T ∈ RN×n,
whereN is the collection ofN sensors. The known measurement
matrix ΦN is assumed to be a full column rank matrix.

Assuming a subset S ⊆ N , the measurement matrix ΦS ∈
R|S|×n (|S| is the cardinality of S) is the submatrix of ΦN that
selects the rows related to S . Denoting the maximum-likelihood
estimate ofαmeasured by the sensors in S as α̂, the estimation
error α− α̂ has zero mean and covariance

ΣS =
(
ΦT

SΦS
)−1

. (2)

Note thatΦT
SΦS is required to be full-rank. Otherwise,α cannot

be estimated due to the rank-deficiency of ΦT
SΦS . According to

the data model (1), the error covariance ΣS attains the Cramér-
Rao bound (CRB) defined by the Fisher information matrix
(FIM), i.e., ΣS = F−1(S), where F(S) is the FIM associated
with S and given by

F (S) = ΦT
SΦS =

∑
i∈S
φiφ

T
i . (3)

We now introduce the information ellipsoid2 based on F(S) as
follows.

Definition 1 (Information Ellipsoid): The information ellip-
soid (Info-E) of a FIM F(S) is defined as the set of points
fulfilling the following condition{

w ∈ Rn | wTF−1 (S)w ≤ 1
}
, (4)

where the center of the Info-E is at the origin, and F(S) deter-
mines how far the ellipsoid extends in every direction from the
origin.

Obviously, the directions and the lengths of the semi-axes of
the Info-E are decided by the eigenvectors and the square roots
of the eigenvalues of F(S), respectively. Fig. 1(a) depicts an
example of the Info-E with n = 2, where the Info-E determined
by F(N ) with N = {1, 2} is illustrated.

Note that the Info-E is a concept similar to the η-confidence
ellipsoid [2], which represents the ellipsoid that containsα− α̂
with probability η. It is well-known that the volume of the

1With the knowledge of the noise variances {σ2
i }ni=1, we can always

prewhiten the noise (i.e., set the variance to 1) by φi := φ̄i/σi, where φ̄i
is the original ith measurement vector.

2The concept of information ellipsoid can be found in [17], [18], where
it is specifically defined in the 2-dimensional (2-D) space for 2-D network
positioning.

Fig. 1. Geometrical illustration of the Info-E: two 2-D measurement examples.
(a) and (c) show the Info-E’s associated with F(N ) and F(N′) (the solid line)
with N = {1, 2} and N′ = {1, 2, 3}, respectively, whereφ1 = [0,

√
3],φ2 =

[1, 0], and φ3 = [0,−1]. (b) and (d) illustrate the Info-E’s normalized as unit
balls with transformed vectorsψi’s andψ′

i’s, respectively. The vectorsφi’s (or
ψi’s and ψ′

i’s) are marked by red arrows, while the numbers attached are the
‖φi‖’s (or ‖ψi‖’s and ‖ψ′

i‖’s). .

η-confidence ellipsoid (VCE) is a scalar measure of the estima-
tion quality. Based on the definition of the Info-E, minimizing
the VCE is now equivalent to maximizing the volume of the
Info-E (VIE), i.e., det(F(S)). Thus, the VCE and VIE are dual
counterparts. The sensor selection problem based on a linear
model is to find a subset S of k (k ≥ n) sensors out of N
available candidates, to maximize the VIE associated with S .
It is formulated as [2]

P0 : max
S⊆N

log det (F(S)) (5)

s.t. |S| = k. (5a)

In particular, P0 selects S to maximize log det(F(S)), which
indeed gives a quantification of how informative the collection of
the measurements φi (i ∈ S) is. In a nutshell, P0 aims to select
the most informative subset in terms of the Fisher information.

Problem P0 indeed is a combinatorial optimization, which is
hard to solve. In [3], a greedy algorithm is proposed to address
the approximated P0, which is denoted as Papprox and given by

Papprox : max
S⊆N

log det (F(S) + εI) (6)

s.t. |S| = k, (6a)

with ε > 0 being a very small constant. Note that F(S)
is replaced by F(S) + εI in (6). This modification ensures
the applicability of the greedy approach to Papprox, since
log det(F(S) + εI) is a monotone submodular function w.r.t.
S [3, Lemma 1]. Let us briefly review the greedy algorithm [3,
Algorithm 1] for Papprox. Adapting [3, eq. (13)] to the notations
of this article, and assuming l < k sensors have already been
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found, i.e., |S| = l, the following problem needs to be solved in
the (l + 1)th iteration:

maxi∈N\S logdet
(
F(S) + εI+ φiφ

T
i

)
.
= maxi∈N\S φ

T
i (F(S) + εI)−1φi, (7)

where “
.
=” indicates the equivalence of two optimization prob-

lems. Here, the addition of εI to F(S) helps to resolve the
rank-deficiency of F(S) when |S| = l < n. Thus, the impact
of εI is essential when F(S) is rank-deficient. As mentioned by
[3], the auxiliary term εI plays a role of prior knowledge about
the covariance matrix of α. However, this kind of assumption
cannot be validated. Furthermore, when the greedy algorithm
starts from the null set S = ∅ (i.e., |S| = l = 0), the first sensor
is selected by solving maxi∈N φ

T
i (εI)

−1φi
.
= maxi∈N ‖φi‖2.

Such a selection is unfair since it only compares the norms of the
measurement vectors, and neglects their direction correlations.
Due to the cumulative effect, the improper selection in the first
step may deteriorate the overall solution.

In order to solve P0 directly instead of solving Papprox and
avoid the aforementioned issues, we recall the fact that S should
be selected from the ground set N , which provides a priori
information. The profile of the Info-E with respect to (w.r.t.)
F(N ) would thus affect the optimal solution to P0. Hence,
we raise the key question of how to make use of F(N ) to
properly quantify the measurement vectors for a fair comparison
in the sensor selection. We answer this question in the following
subsection.

B. Problem Reformulation and Analysis

1) Leveraging the Full FIM F(N ): The FIM F(N ) (i.e.,
ΦT

NΦN ) creates an n-D Info-E with the maximum volume
according to Definition 1. The Info-E w.r.t. F(S) is bounded
by the one w.r.t. F(N ), and they are exactly the same when
S = N . Accordingly, 0 ≤ det(F(S))/det(F(N )) ≤ 1 for any
S ⊆ N . It is thus intuitive to consider the profile of the Info-E
determined by F(N ) and investigate det(F(S)) accordingly.
This can be accomplished by a change of basis.

Note that F(N ) is a real symmetric matrix. Thus, the eigen-
value decomposition of F(N ) is denoted by

F (N ) = ΦT
NΦN = VΛVT, (8)

where Λ = diag([λ1, . . . , λn]) and V = [v1, . . . ,vn] with λi’s
andvi’s (i = 1, . . . , n) being the eigenvalues and corresponding
eigenvectors, respectively. Throughout this article, the eigenval-
ues of a matrix are by default arranged in nonincreasing order,
i.e., λi ≥ λi+1. Let us then decompose φi in the orthogonal
basis {

√
λivi}ni=1 as

φi = VΛ
1
2Λ− 1

2VTφi

=

[√
λ1v1, . . . ,

√
λnvn︸ ︷︷ ︸

basis w.r.t. F(N )

]
ψi (9)

with

ψi := Λ− 1
2VTφi (10)

being the transform of φi w.r.t. the orthogonal basis
{
√
λivi}ni=1. Note that the norms of the orthogonal basis vectors

are not necessarily 1. The linear transform (10) fromφi toψi is
a one-to-one mapping, which results in a matrix ΨN ∈ RN×n

being the transform of ΦN w.r.t. the basis {
√
λivi}ni=1. It is

given by

ΨN := [ψ1, . . . ,ψN ]T = ΦNVΛ− 1
2 , (11)

with its ith row being ψT
i . Furthermore, we can also extend (9)

to a matrix form as ΦS = ΨSΛ
1
2VT, where ΨS is defined as

ΨN with S replacing N in (11). Thus, it can readily be derived
that

det (F(S)) = det
(
VΛ

1
2ΨT

SΨSΛ
1
2VT

)
(12)

= det
(
ΨT

SΨS
)︸ ︷︷ ︸

ratio factor

· det (Λ)︸ ︷︷ ︸
det(F(N ))

, (13)

wheredet(F(S)) is decomposed into two independent parts, i.e.,
det(ΨT

SΨS) and det(Λ). The FIM F(N ) is thereby elegantly
taken into account in (13). Meanwhile, det(ΨT

SΨS) can be
interpreted as a ratio factor. It takes a value from [0, 1] and its
maximum value is reached when S = N as

det(ΨT
NΨN ) = det(Λ− 1

2VTΦT
NΦNVΛ− 1

2 ) = det(I) = 1.
(14)

We can better understand the impact of the change of basis with
the help of two 2-D selection examples. Fig. 1(a) shows the
first example, where φ1 is orthogonal to φ2 and N = {1, 2}.
Because ‖φ1‖ > ‖φ2‖, the greedy algorithm [3] first chooses
φ1. However, we consider the first and the second sensors to
be equally important despite the fact that ‖φ1‖ > ‖φ2‖, as they
contribute the same (i.e., 100%) in their specific direction. It
can be proven that when the info-E of F(N ) is normalized
to a unit ball via the change of basis as shown in Fig. 1(b),
then the norms of the transformed vectors are the same, i.e.,
‖ψ1‖ = ‖ψ2‖. Fig. 1(c) shows the second example, where a
new vectorφ3 in parallel toφ1 is added andN′ = {1, 2, 3}. The
greedy algorithm [3] keeps φ1 as the first selection, as it has the
maximum norm. However, only the second sensor associated
with φ2 contributes 100% in its direction. On the other hand,
both φ1 and φ3 contribute to the FIM in the direction of φ1,
where their importance is proportional to their norms. Therefore,
we consider the second sensor to be the most important and
choose it at the first step. This can also be justified by the fact
that when the info-E of F(N′) is normalized to a unit ball as
shown in Fig. 1(d), then the transformed vectors ‖ψ′

1‖ =
√
3/2,

‖ψ′
2‖ = 1, and ‖ψ′

3‖ = 1/2. According to Fig. 1(d), the second
sensor has the largest norm. The following remark is now in
order.

Remark 1 (Why is the change of basis (10) effective?): Based
on the change of basis, the eigenvalues of ΨT

NΨN are normal-
ized to ones, and all directions are made equally important. The
change of basis preserves the relative relationship of the projec-
tions of φi on each direction. It thus enables fair comparisons
of the norms/determinants of vectors/matrices in different direc-
tions/subspaces of the same dimension. It is particularly effective
when F(N ) has divergent eigenvalues. If F(N ) has identical
λi’s (λi = λ,∀i = 1, . . . , n), the change of basis only scales the
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measurement vectors by the same amount. i.e., ψi =
1
λφi. It

would not have any impact on the greedy sensor selection.
Given a collection of φi’s (i ∈ S), let V̄rs = [v̄1, . . . , v̄rs ]

collect the eigenvectors corresponding to the rs nonzero eigen-
values of F(S), where rs := rank(F(S)) and 0 < rs ≤ n. As
a result, {φi | i ∈ S} span an rs-D subspace denoted by S =
span{v̄1, . . . , v̄rs}. Note that det((F(S)) = 0, when rs < n.
To address the rank-deficiency of F(S), we propose to measure
the Fisher information contained in S w.r.t. N focusing on the
rs-D subspace instead of the full n-D space. Note that V̄T

rs
ΦT

S
and V̄T

rs
ΦT

N are the projections ofΦT
S andΦT

N onto the subspace
S, respectively. The following definition is established.

Definition 2 (Fisher Information Intensity): We define the
ratio between the squared volumes of the rs-D parallelepipeds
spanned by V̄T

rs
ΦT

S and V̄T
rs
ΦT

N as the Fisher information
intensity (FII) of S w.r.t. N . It is given by

κ (S|N ) :=
det

(
V̄T

rs
ΦT

SΦSV̄rs

)
det

(
V̄T

rs
ΦT

NΦN V̄rs

)
=

det
(
V̄T

rs
F(S)V̄rs

)
det

(
V̄T

rs
F(N )V̄rs

) . (15)

For any S ⊆ N , the FII κ(S | N ) takes a value from [0,1].
It, in essence, provides the ratio of the Fisher information (in
terms of determinant) contributed by S to N in the direc-
tions v̄1, . . . , v̄rs . Note that det(V̄T

rs
ΦT

SΦSV̄rs) counts for
the nonzero eigenvalues of F(S). Hence, the FII κ(S | N ) is
closely related to the VIE determined by {ψi | i ∈ S}. Then,
the following definition is introduced.

Definition 3 (Volume Ratio): With the basis {
√
λivi}ni=1, the

Info-E associated with F(S) is reformed into F̃(S), which is
given by

F̃(S) := ΨT
SΨS =

∑
i∈S
ψiψ

T
i , (16)

and the corresponding VIE is derived as

det
(
F̃(S)

)
: = det

(∑
i∈S
ψiψ

T
i

)
(17)

= det
(
Λ− 1

2VTΦT
SΦSVΛ− 1

2

)
(18)

= det
(
F(S)F−1(N )

)
. (19)

It exactly represents the volume ratio of the VIE associated with
F(S) to the VIE of F(N ), i.e., det(F(S))/det(F(N )).

Let F̃(S) = ṼΛ̃ṼT, where Λ̃ = diag([λ̃1, . . . , λ̃n]) and
Ṽ = [ṽ1, . . . , ṽn] with the λ̃i’s and ṽi’s being the eigenvalues
and corresponding eigenvectors, respectively. Note that F̃(S)
has the same rank as F(S), i.e., rank(F̃(S)) = rs. Let us de-
fine Λ̃rs = diag([λ̃1, . . . , λ̃rs ]), and Ṽrs and Ṽn−rs collect the
eigenvectors corresponding to the rs nonzero and the (n− rs)
zero eigenvalues of F̃(S), respectively. Separating the nonzero
and zero eigenvalues of F̃(S), we obtain

det(F̃(S))= det(ṼT
rs
F̃ (S)Ṽrs) det(Ṽ

T
n−rs

F̃(S)Ṽn−rs)

= det(Λ̃rs) 0
n−rs . (20)

On the other hand, according to (19), the VIE det(F̃(S)) can
also be decomposed as

det(F̃(S))

= det(V̄T
rs
F(S)F−1(N )V̄rs) det(V̄

T
n−rs

F(S)F−1(N )V̄n−rs)

= κ (S | N ) 0n−rs , (21)

where κ(S | N ) is defined in (15).
Note that (20) and (21) provide two ways of calculating

det(F̃(S)), which is decomposed into the nonzero and zero
parts. The VIE det(F̃(S)) is the product of the determinants
of the F̃(S)’s projections onto the rs-D subspace and its cor-
responding (n− rs)-D nullspace. As det(Λ̃rs) in (20) and
κ(S | N ) in (21) represent the determinant of the identical
projection on the same rs-D subspace, i.e., the nonzero part
of det(F̃(S)), we arrive at

κ (S | N ) = det(Λ̃rs), (22)

which reveals that the FII κ(S | N ) is specified by the rs
nonzero eigenvalues of F̃(S). Therefore, the linear transform
(10) from φi to ψi naturally leads to the transform from the
Fisher information to the FII, which provides clear geometric
interpretations for any S as analyzed below.
� When S = {i} and rs = 1, (15) and (22) reduce to

κ (S | N ) =
‖φi‖2∑

j∈N
∥∥Projφi

φj

∥∥2 = ‖ψi‖2 , (23)

where Projφi
φj is the projection ofφj ontoφi. It implies

that the squared norm of ψi w.r.t. the basis {
√
λivi}ni=1

provides the FII of the ith measurement φi in the direc-
tion of φi. Apparently, 0 ≤ ‖ψi‖2 ≤ 1 for any i ∈ N .
The maximum value 1 of ‖ψi‖2 is reached when φi �= 0
and all the other measurements are orthogonal to φi, i.e.,
∀j �= i,φT

i φj = 0. It implies that the Fisher information
in the direction of φi is fully contributed by the ith sensor
(i.e., φi) itself. Note that φ2 in the toy examples of Fig. 1
is exactly the show case here.

� When rs < n, the FII κ(S | N ) can be calculated either by
(15) or (22). It is the ratio between the VIEs associated with
the projections of F(S) and F(N ) on the rs-D subspace
spanned by {ψi | i ∈ S}.

� When rs = n, the FII κ(S | N ) is extended to the full
n-D space. It essentially turns into the ratio of the VIEs
associated with F(S) and F(N ), i.e.,

κ (S | N )= det
(
F(S)F−1(N )

)
= det

(
F̃(S)

)
. (24)

We remark here that the volume ratio is discussed in the
n-D space, while the FII focuses on the rs-D subspace that
is spanned by {ψi | i ∈ S}. They are exactly the same for
rs = n.

2) Problem Reformulation Based on the Volume Ratio: In-
spired by (20) and (21), we investigate the volume ratio
det(F̃(S)) as the nonzero part (i.e., the FII) and the zero part
separately. In order to prevent the zero eigenvalues from nullify-
ing the nonzero ones, we replace zero with a very small positive
constant ε to distinguish it from ε in (6). The novel cost function
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w.r.t. S is proposed as follows

f(S) := log det

(
Ṽ

[
Λ̃rs 0
0 εIn−rs

]
ṼT

)
(25)

= log(κ (S | N ) εn−rs) (26)

= log κ (S | N ) + (n− rs) log ε, (27)

where κ(S | N ) =
∏rs

i=1 λ̃i is the FII of S . When rs < n,
f(S) includes two terms, which are related to the rs nonzero
eigenvalues λ̃1, . . . , λ̃rs and (n− rs) zero eigenvalues, respec-
tively. When rs = n, it follows from (27) that the auxiliary
term (n− rs) log ε disappears. Thus, f(S) is exactly equal to
log det(F̃(S)) for the nonsingular F̃(S). Note that ε > 0 is
chosen to be a very small constant and used to replace log 0
by log ε (as log 0 is an invalid operation) in f(S). It is merely
for theoretical analysis purposes, not to change the rank ofF(S).
In this article, we choose a sufficiently small ε, which satisfies

ε < min

{(
κ (T | N )

κ (S | N )

) 1
rt−rs

, min
j∈N

‖ψj‖
}
, (28)

for any S, T ⊂ N \ {∅} and rs = rank(F̃(S)) <
rank(F̃(T )) = rt, where κ(T | N ) is defined in the same
way as κ(S | N ) with T replacing S in (15).

Relying on (28), we can readily verify the following lemma.
Lemma 1: If (28) holds true for ε, then f(S) < f(T ) holds

for any S, T ⊂ N and rank(F̃(S)) < rank(F̃(T )).
Proof: See Appendix A. �
Consequently, the cost function f(S) is critical for the design

of greedy algorithms to solve the sensor selection problem.
According to Lemma 1, the Fisher information contained in any
arbitrary FIM can now be properly quantified and compared
using f(S), even when the FIM is singular. It can be derived
from (27) that f(∅) ≤ f(S) ≤ f(N ), where f(∅) = n log ε
and f(N ) = 0. Therefore, in this paper, we propose to refor-
mulate the sensor selection problem as follows

Pratio : max
S⊆N

f(S) (29)

|S| = k, (29b)

which is well-defined for any S .
Lemma 1 is particularly valuable for the greedy sensor selec-

tion of the first n steps. The following remark is important.
Remark 2 (How to select the first n sensors for Pratio?): Sin-

gular FIMs related to candidate subsets should be first compared
by means of the rank. The one with the larger rank results in a
larger cost function according to Lemma 1, and thus is the better
one. FIMs of the same rank need to be further compared by the
FII of S , i.e., κ(S | N ), which collects the nonzero eigenvalues
of F̃(S).

In addition to Lemma 1, we have another important property
of f(S).

Lemma 2: If (28) holds true for ε, then the cost function f(S)
(27) is a monotone submodular function w.r.t. S .

Proof: See Appendix B. �
Lemma 2 shows thatf(S) (conditioned on (28)) is a monotone

submodular function. It thus ensures the applicability of the

submodular approach to Pratio and guarantees a (1− 1/e)
optimal solution, as will be illustrated in Section IV.

III. ALGORITHM DESIGN: OPTIMIZING VOLUME RATIO

In this section, we develop greedy algorithms to solve Pratio

(29) iteratively. A greedy algorithm and its fast extension are
proposed accordingly, where the fast one has lower complexity
than its counterpart by further exploring the specific structure of
the cost function.

A. A Greedy Algorithm for Pratio

The greedy algorithm is proposed over the two ranges of |S|,
i.e., 0 ≤ |S| < n andn ≤ |S| < k, respectively. Denote the sub-
set determined at the lth (1 ≤ l ≤ k) step byS(l) = {s1, . . . , sl}
and let S(0) = ∅.

1) 0 ≤ |S| < n: Given S(0) = ∅, the 1st sensor s1 is deter-
mined by

s1 = argmax
i∈N

f({i})

= argmax
i∈N

log
(
κ ({i} | N ) εn−1

)
= argmax

i∈N
‖ψi‖2,

(30)

which depends not only onφi but also on the full measurements
ΦN as can be seen from (23). Thus, both the norms and direc-
tional correlations of the measurement vectors are taken into
account. According to (23), the selection of s1 based on (30)
is also reasonable due to the geometric interpretation of ‖ψi‖2.
This makes our proposed algorithm different from the one in [3]
from the beginning.

Subsequently, given S(l) at the (l + 1)th (1 ≤ l < n) step, the
sensor sl+1 can be determined by optimizing

max
i∈N\S(l)

f(S(l) ∪ {i})

.
= max

i∈N\S(l)
log

(
κ
(
S(l) ∪ {i} | N

)
εn−(l+1)

)
(31)

.
= max

i∈N\S(l)
log det

(
ΨS(l)∪{i}Ψ

T
S(l)∪{i}

)
, (32)

where (32) follows from (31) as ΨS(l)∪{i}Ψ
T
S(l)∪{i} has

the same nonzero eigenvalues (counting multiplicity) as
F̃(S(l) ∪ {i}) = ΨT

S(l)∪{i}ΨS(l)∪{i}. Particularly, when l < n,

note that (31) and (32) force ΨS(l)∪{i}Ψ
T
S(l)∪{i} to have only

nonzero eigenvalues so that det(ΨS(l)∪{i}Ψ
T
S(l)∪{i}) �= 0. Thus

log det(ΨS(l)∪{i}Ψ
T
S(l)∪{i}) = log

∏rs
i=1 λ̃i = log κ(S(l) ∪

{i} | N ). In addition, since εn−(l+1) is not dependent on i, it
does not appear in (32). Note that to maximize f(S(l) ∪ {i}),
the participation of a new sensor i is desired to increase the rank
of F̃(S(l) ∪ {i}) by 1 in the case of 1 ≤ l < n. Otherwise, it
will violate Lemma 1. This result is consistent with the insights
gained from Remark 2.

2) n ≤ |S| < k: Following the above greedy steps, we
are led to the (l + 1)th step (l ≥ n) given S(l) and rs =
n. As F̃(S(l)) is nonsingular, f(S(l)) is exactly equal to
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Algorithm 1: Ratio Greedy Algorithm.

log det(F̃(S(l))). Thus, f(S(l) ∪ {i}) can be derived as

f
(
S(l) ∪ {i}

)
= log det

(
F̃(S(l) ∪ {i})

)
= log

(
det

((
I+ψiψ

T
i F̃

−1(S(l))
)
F̃(S(l))

))
(33)

= log
((

1 +ψT
i F̃

−1(S(l))ψi

)
det

(
F̃(S(l))

))
= log

(
1 +ψT

i F̃
−1(S(l))ψi

)
+ f(S(l)), (34)

where (33) is obtained by plugging in F̃(S(l) ∪ {i}) = F̃(S) +
ψiψ

T
i and (34) is due to the fact that det(I+ abT) = 1 + bTa

for any a,b ∈ Rn. Consequently, given S(l), the (l + 1)th sen-
sor can be determined by optimizing

max
i∈N\S(l)

f(S(l) ∪ {i}) .= max
i∈N\S(l)

ψT
i F̃

−1(S(l))ψi. (35)

It is notably in the same form3 as (7), except that there is no εI
here for the nonsingular F̃(S(l)).

In this way, Pratio can be addressed in a greedy fashion.
The overall greedy algorithm is sketched in Algorithm 1, where
lines 4 ∼ 7 are for 0 ≤ |S| < n to determine the first n sensors
by maximizing (32) iteratively. Meanwhile, lines 9 ∼ 12 of
Algorithm 1 determine the remaining sensors according to (35).
Note that f(S) is greedily maximized and increases along the
iteration of Algorithm 1.

It is worth mentioning that ε does not appear in Algorithm 1.
This is because we leverage Lemma 1 to bypass the rank-
deficiency of F̃(S) by expanding the rs-D subspace dimension-
by-dimension (Algorithm 1 lines 4 ∼ 7), and to ensure that f(S)
greedily increases. In this way, we do not need the inverse of the
FIM to derive the next sensor when rs < n, and ε is not required
when implementing the ratio greedy algorithm. We find out that
the first n iterations of Algorithm 1 coincide with those of the
maximal projection on minimum eigenspace (MPME) algorithm

3It is derived in [3] that det(F(S ∪ {i}) + εI) = (1 +φT
i (F(S) +

εI)−1φi) det(F(S) + εI), which leads to (7).

in [8]. At each of the first n iterations, the MPME chooses the
sensor, whose observation has the maximum projection onto
the minimum eigenspace of the current FIM (which is termed
the dual observation matrix in [8]). Note that the minimum
eigenspace [8, Definition 1] of the FIM F̃(S) is exactly the
nullspace ofΨT

S in our work. Thus, the selection principle of the
first n sensors by the MPME algorithm is coincidentally similar
to the proposed ratio greedy algorithm. The main difference lies
in whether the linear transform (10) of measurement vectors is
carried out or not. The MPME algorithm uses φi, meanwhile
we employ ψi, which is a linear transform of φi. This will par-
ticularly affect the first n steps of the sensor selection, and thus
results in different solutions. Moreover, the MPME algorithm
optimizes the WCEV criterion in the remaining (k − n) steps,
and no theoretical performance analysis is provided in [8].

Algorithm 1 first obtains the full FIMF(N ) and its eigenvalue
decomposition, which costs O(Nn2 + n3) flops. Obtaining
ΨN = ΦNVΛ− 1

2 requires O(Nn2) flops. The greedy iteration
(lines 4 ∼ 12) costs O(Nkn3) flops. As N > n in general,
the computational cost of Algorithm 1 is O(Nkn3). The most
high-cost calculations of Algorithm 1 are the determinant oper-
ation of det(ΨS(l)∪{i}Ψ

T
S(l)∪{i}) (line 5) and the propagation of

F̃−1(S(l)) (line 10), which can be simplified to develop a fast
greedy algorithm.

B. A Fast Greedy Algorithm for Pratio

In this subsection, we develop a fast implementation
of Algorithm 1 by simplifying the calculation of
det(ΨS(l)∪{i}Ψ

T
S(l)∪{i}) and the propagation of F̃−1(S(l))

therein. Likewise, we will investigate the two ranges of
0 ≤ |S| < n and n ≤ |S| < k, respectively.

1) 0 ≤ |S| < n: We will first simplify the calculation
of det(ΨS(l)∪{i}Ψ

T
S(l)∪{i}) by leveraging its specific struc-

ture. Specifically, adopting the Cholesky decomposition of
ΨS(l)∪{i}Ψ

T
S(l)∪{i} results in

det
(
ΨS(l)∪{i}Ψ

T
S(l)∪{i}

)
=

∣∣∣∣ΨS(l)ΨT
S(l) ΨS(l)ψi

ψT
i Ψ

T
S(l) ψT

i ψi

∣∣∣∣ =
∣∣∣∣L(l) 0

(c
(l)
i )T d

(l)
i

∣∣∣∣
∣∣∣∣∣
(
L(l)

)T
c
(l)
i

0T d
(l)
i

∣∣∣∣∣
=
(
d
(l)
i

)2
det

(
L(l)

(
L(l)

)T)
=
(
d
(l)
i

)2
det

(
ΨS(l)ΨT

S(l)

)
,
(36)

whereL(l)(L(l))T is the Cholesky decomposition ofΨS(l)ΨT
S(l) ,

andL(l) is an invertible lower triangular matrix. It can be derived
from (36) that the vector c(l)i ∈ Rl and the scalar d(l)i > 0 satisfy

L(l)c
(l)
i = ΨS(l)ψi, (37)(

d
(l)
i

)2
=
∥∥∥ψi

∥∥∥2 − ∥∥∥c(l)i

∥∥∥2 . (38)

Therefore, given S(l), optimizing log det(ΨS(l)∪{i}Ψ
T
S(l)∪{i}) is

equivalent to optimizing log d
(l)
i based on (36). With |S(l)| = l,

the index of the next selected sensor is thus given by

sl+1 = arg maxi∈N\S(l) log d
(l)
i . (39)
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Algorithm 2: Fast Ratio Greedy Algorithm.

For each candidate i, c(l)i and d
(l)
i can be updated incrementally

using the information from iteration l − 1. Recall that S(l) =
S(l−1) ∪ {sl}. Based on (37), we arrive at

L(l)c
(l)
i =

[
L(l−1) 0(
c
(l−1)
sl

)T
d
(l−1)
sl

]
c
(l)
i =ΨS(l)ψi=

[
ΨS(l−1)ψi

ψT
sl
ψi

]
.

(40)

Observing (40), we can rewrite c
(l)
i in an iterative way, i.e.,

c
(l)
i = [(c

(l−1)
i )T, q

(l)
i ]T with

q
(l)
i =

(
ψT

sl
ψi −

(
c(l−1)
sl

)T
c
(l−1)
i

)
/d(l−1)

sl
. (41)

Plugging (41) into (38), we arrive at(
d
(l)
i

)2
=
∥∥ψi

∥∥2 − ∥∥c(l)i

∥∥2 =
∥∥ψi

∥∥2−∥∥c(l−1)
i

∥∥2− (q
(l)
i )2

=
(
d
(l−1)
i

)2 − (
q
(l)
i

)2
. (42)

The propagation of (31) is simplified in this way, and summa-
rized in lines 4 ∼ 11 of Algorithm 2.

2) n ≤ |S| < k: Simplifying the propagation of F̃−1(S) in
line 10 of Algorithm 1 seems more straightforward. Specifically,
given F̃−1(S) and a new sensor i, the FIM F̃−1(S ∪ {i}) can
be obtained by recursion [3] based on the Sherman-Morrison
Formula as follows

F̃−1 (S ∪ {i}) = F̃−1(S)− F̃−1(S)ψiψ
T
i F̃

−1(S)
1 +ψT

i F̃
−1(S)ψi

, (43)

thus reducing the computational cost.

The fast greedy algorithm is summarized in Algorithm 2,
which leverages (36) and (43) to reduce the complexity of the
iteration down to O(Nkn2). Thus, Algorithm 2 has an overall
complexity of O(Nkn2).

IV. THEORETICAL PERFORMANCE ANALYSIS

In this section, we provide a performance analysis of the
proposed greedy algorithm for Pratio. As a comparison, we will
also analyze the near-optimal result of the classical submodular
algorithm [3] that solves Papprox. Note that the theoretical
analysis is presented here with k ≥ n, as it is required for the
measurement problem. In the rest of this article, we name the
proposed algorithm (outlined in Algorithm 1 and its fast counter-
part in Algorithm 2) theRatio algorithm. The greedy algorithm
proposed in [3] is referred to as the Approx algorithm.

A. Effectiveness of the Basis Change: A Toy Example

Let us first show the effectiveness of the proposed change of
basis via a toy example. The Ratio algorithm leverages the
knowledge of F(N ) for sensor selection, and takes both the
norms and direction correlations of the measurement vectors
into account using the FII. This greatly affects the step-by-step
selection mechanism of greedy methods as the sequential sen-
sors are selected based on the former ones. It can be visualized
geometrically via the following 2-D measurement example.

Fig. 2 illustrates a toy example of a 2-D measurement set-up
with N = 5 and n = 2, where the evolution of the Info-E
obtained by the Approx and Ratio algorithms is shown in
Fig. 2(a)∼(d) and (e)∼(h), respectively. In general, the VIE re-
lated to the set obtained by both algorithms increases along with
the participation of more sensors and gradually approaches the
full Info-E (marked by purple ellipsoids in Fig. 2), corresponding
to det(F(S)F−1(N )) = 1 with S = N .

The Approx algorithm selects sensors in the order of
{5, 3, 2, 1}, where the 1st sensor s1 = 5 is the one with the max-
imum measurement norm and the subsequent sl+1’s are sequen-
tially selected using the inverse of the updated F(S(l+1)) + εI.
On the other hand, the Ratio algorithm selects sensors in the
order of {2, 1, 5, 4}, which happens to be different from the
Approx algorithm at each step. As shown in Fig. 2, the Ratio
algorithm achieves a larger volume ratio det(F(S)F−1(N ))
over the entire range, i.e., 1 ≤ l < N . It implies that the mod-
ification of the first n steps is essential, as it could lead to a
significant change to the overall solution.

B. Near-Optimal Results for Pratio

Since the cost function f(S) is monotone submodular (see
Lemma 2), theRatio algorithm guarantees a (1− 1/e) approx-
imation of Pratio’s optimal result. Let S(k)

opt denote the optimal
solution to the original problem P0. For Pratio (29) with the
cost function f(S), we have the following result.

Lemma 3: The optimal solution S(k)
opt to problem P0 is also

optimal to problem Pratio.
Proof: Given any S(k) ⊂ N with |S(k)| = k and S(k) �=

S(k)
opt, det(F(S

(k)
opt)) > det(F(S(k))), implying that S(k)

opt is the
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Fig. 2. Evolution of the Info-E along with the greedy sensor selection: a toy example of a 2-D measurement set-up, where N = 5 and
ΦN = [−0.932, 0.121; 0.015,−0.859;−0.625, 0.393; 0.890,−0.166;−0.752,−0.631]. (a)∼(d) The Approx [3] solution. (e)∼(h) The Ratio (proposed)
solution. Candidate and selected sensors are marked by grey and red circles, respectively, while selected φi’s are marked by red arrows. The purple and blue
ellipsoids denote the Info-E associated with N and S(l), respectively. The number displayed in each subgraph is the value of det(F̃(S(l))).

optimal solution to P0. To prove S(k)
opt is also optimal to Pratio,

we need to prove f(S(k)
opt) > f(S(k)). When rank(F̃(S(k))) <

n, according to Lemma 1, f(S(k)
opt) > f(S(k)) readily holds

noting that rank(F̃(S(k)
opt)) = n. When rank(F̃(S(k))) =

n, f(S(k)
opt) > f(S(k)) is equivalently transformed into

log det(F(S(k)
opt)F

−1(N )) > log det(F(S(k))F−1(N )), which

is readily established. Thus, S(k)
opt is optimal to Pratio as well.

This completes the proof of Lemma 3. �
Theorem 1: The Ratio algorithm greedily maximizes f(S)

and guarantees

f
(
S(k)
ratio

)
≥
(
1− 1

e

)
f
(
S(k)
opt

)
+

(
1− 1

k

)k

n log ε, (44)

where S(k)
ratio is the solution obtained by the Ratio algorithm

and S(k)
opt is the theoretical optimal solution to P0. Let us define

k̃ = (1− 1/k)k. It follows from (44) that

log det
(
F
(
S(k)
ratio

))
≥
(
1− 1

e

)
log det

(
F
(
S(k)
opt

))
+

1

e
log detF(N ) + k̃n log ε.

(45)

Proof: The result of (44) follows from the fact that
(f(S(k)

opt)− f(S(k)
ratio))/(f(S

(k)
opt)− f(∅)) ≤ (1− 1/k)k,

which is straightforward as f(S) is a monotone submodular
function [11], [19]. SinceF(S(k)

ratio) andF(S(k)
opt) are nonsingular

FIMs, we can plug f(S(k)
ratio) = log det(F(S(k)

ratio)F
−1(N )) and

f(S(k)
opt) = log det(F(S(k)

opt)F
−1(N )) into the earlier equation.

It readily yields (44) and (45). This completes the proof of
Theorem 1. �

The last term in (44) and (45) is due to the fact that f(S) is
not normalized, i.e., f(∅) = n log ε �= 0. Moreover, the last two
terms of (44) and (45) are all related to the ground set. Theorem 1
implies that the performance bound of the submodular algorithm
is closely related to the ground set N . This is reasonable.

C. Near-Optimal Results for Papprox

In this subsection, we attempt to study the impact of ε on the
Approx Algorithm and its near-optimal solution, which to the
best of our knowledge has not been discussed in existing works.

Unlike the Ratio algorithm where ε is not really used, the
Approx algorithm needs to use (F(S) + εI)−1 throughout the
greedy iterations to optimizePapprox according to (7). Although
the value of ε does not affect the monotonicity and submodu-
larity of the cost function log det(F(S) + εI) to guarantee a
(1− 1/e) approximation factor, it decides the approximation of
Papprox to P0. This is because the optimal solution to Papprox

(denoted by S(k)
approx−opt) is sensitive to ε.

The Approx algorithm [3, Algorithm 1] that optimizes
log det(F(S) + εI) guarantees a (1− 1/e) optimal solution
S(k)
approx as follows

log det
(
F
(
S(k)
approx

)
+ εI

)
≥
(
1− 1

e

)
log det

(
F
(
S(k)
approx−opt

)
+ εI

)
+ k̃n log ε. (46)

It can be clearly seen from (46) that N also has an impact on
the performance of the Approx algorithm via ε. In addition,
there is an auxiliary term εI on both sides of (46), which is
inherited from Papprox’s cost function log det(F(S) + εI) and
cannot be removed from (46). This can be easily verified by
a counter example, i.e., log(x+ ε) ≥ (1− 1/e) log(y + ε) �
log(x) ≥ (1− 1/e) log(y) with x, y ∈ R+. Therefore, (46) is
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TABLE I
SUMMARY OF THE SENSOR SELECTION GREEDY ALGORITHMS IN THE SIMULATION

an irreducible result in the sense that it cannot decouple εI from
F(S(k)

approx) or F(S(k)
approx−opt).

Note that for any nonzero and small ε, the performance
bound (46) holds. However, we are particularly interested in
the case when Papprox has the same optimal solution as P0, i.e.,

S(k)
approx−opt = S(k)

opt. The following proposition is established to
serve for the aforementioned purpose.

Proposition 1: Problem Papprox has the same optimal solu-
tion as P0, iff for any S(k) ⊂ N of cardinality k (k ≥ n) and
S(k) �= S(k)

opt, the parameter ε satisfies

n∑
i=1

(
hi
(
λ′)− hi(λ∗)

)
εi<det

(
F
(
S(k)
opt

))
− det

(
F
(
S(k)

))
,

(47)

where λ∗ = [λ∗
1, . . . , λ

∗
n]

T and λ′ = [λ′
1, . . . , λ

′
n]

T collect the
eigenvalues of F(S(k)

opt) and F(S(k)), respectively, and hi(ζ)

is the polynomial coefficient of εi, where
∑n

i=0 h
i(ζ)εi =∏n

j=1 (ζj + ε).
Proof: See Appendix C. �
When ε fulfills (47), we obtain S(k)

approx−opt = S(k)
opt. We can

replace S(k)
approx−opt in (46) with S(k)

opt. However, the lower
bounds in (45) and (46) are still not comparable due to the
difference between ε and ε and the coupling between εI and
F(S(k)

approx) (or F(S(k)
opt)).

To summarize, the following remark is presented.
Remark 3 (Impact of ε and ε on different algorithms): The

way that ε and ε appear in the cost function influences the greedy
algorithm design and further affects the well-known (1− 1/e)
near-optimal result.
� The Ratio algorithm does not employ ε. On the other

hand, the Approx algorithm needs ε in each iteration.
� Both ε and ε help to solve the issue that the log det

operation of a singular matrix in the cost functions is not
well-defined.

� The monotonicity of f(S) is guaranteed by making ε sat-
isfy (28). Moreover, Pratio and P0 have the same optimal
solution. Meanwhile, Papprox can have the same optimal
solution as P0, when ε fulfills (47).

� The two terms (1− 1/k)kn log ε+ 1/e log detF(N ) and
(1− 1/k)kn log ε in (45) and (46), respectively, indicate
that the performance gap between the optimal solutions and

the ones provided by the submodular algorithms is closely
related to the ground set N .

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, Monte Carlo (MC) simulation results are
provided to assess the VCE and root-mean-square error (RMSE)
performance of the proposed Ratio algorithm. All the exper-
iments are implemented under two typical distributions of the
measurement vectors, i.e., the uniform distribution U [−1, 1]n

and U [0, 1]n. The measurement vectors φi are generated i.i.d.
following either one of the two distributions. All the experiments
are averaged over 103 MC runs.

For performance comparison, several greedy algorithms are
implemented as baselines. Table I summarizes the greedy al-
gorithms involved in the simulation, where the complexity is
referred to for the corresponding fast counterparts of the algo-
rithms, and the newly defined κ(S) is the product of the nonzero
eigenvalues of F(S).
� Ratio (proposed): the ratio greedy algorithm out-

lined in Algorithm 1, where line 10 will be modi-
fied to argmaxi∈N\Sψ

T
i F̃

−2(S)ψi/(1 +ψ
T
i F̃

−1(S)ψi)

to make the algorithm adapt to the MSE metric.4
� Approx: the greedy algorithm [3, Algorithm 1] that

optimizes the VCE, where (7) will be replaced by
argmaxi∈N\S φ

T
i (F(S) +εI)−2 φi/(1 + φ

T
i (F (S)

+εI)−1 φi) in each iteration to adapt to the MSE metric.
A simplified greedy algorithm [3, Algorithm 2] has also
been proposed by reducing the complexity of the matrix
inverse to O(n2) in each iteration. Therefore, Approx
also enjoys a complexity of O(Nkn2) by employing the
simplified determinant and (or) matrix inverse operations.

� MPME (modified): keeps the firstn steps of [8, Algorithm 2]
and modifies the remaining steps for the VCE (or MSE)
metric. It can be seen as a counterpart of the Ratio
algorithm but using the φi’s. Thus, it is easy to verify that
the MPME algorithm also takes a complexity of O(Nkn2)
leveraging the simplified determinant computation pro-
posed for the fast greedy ratio algorithm (see Algorithm 2).

� Ratio-Approx (proposed): maximizesdet(F̃(S) + εI)
(orTr(F̃(S) + εI)) for the VCE (or MSE) metric. It can be

4It is easy to replace the VCE metric [3, eq. (13)], [15, eq. (15)] by the MSE
metric [15, eq. (14)], [16, eq. (10)] in each iteration when the current FIM is
nonsingular.
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seen as a straightforward extension of Approx but using
the ψi’s instead of the φi’s. Comparing with Approx,
Ratio-Approx has an extra cost of O(2Nn2 + n3)
flops for the operation of basis change as we have ana-
lyzed for Algorithm 1. This is a one-off cost and N > n
in general, thus the complexity of the Ratio-Approx
algorithm remains O(Nkn2).

� Group: performs the Approx algorithm by reserving a
group of top L suboptimal candidates5 [15]. It is investi-
gated as a high-performance competitor but takes a com-
plexity ofO(NkLn2). The results of theGroup algorithm
with a group size of L = 2, 5, and 10 will be presented,
noting that Group (L = 1) reduces to Approx.

Note that the proposed Ratio (Ratio-Approx) algorithm
and the MPME (modified) (Approx) algorithm can be seen
as counterparts w.r.t. the basis {

√
λivi}ni=1 and the canonical

basis {ei}ni=1, respectively. As such, the effectiveness of the
linear transform (10) can be observed by comparing the Ratio
(or Ratio-Approx) algorithm with the MPME (modified) (or
Approx) algorithm. Meanwhile, for RMSE results, compar-
isons between the Ratio (or MPME (modified)) algorithm and
the Ratio-Approx (or Approx) algorithm demonstrate the
difference brought by the hybrid VCE and MSE metrics from the
pure MSE metric. Throughout the simulation, we set ε = 10−4

which is used by the Approx, Ratio-Approx, and Group
algorithms.

In the following, we will first study the impact of different
measurement distributions on F(N ) in Section V-A. The VCE
and RMSE results of different greedy algorithms are compared
in Sections V-B and V-C, respectively, where the impact of
measurement distributions on the greedy algorithms will also
be discussed accordingly.

A. Impact of Different Measurement Distributions on F(N )

The performance of sensor selection algorithms and their
merits may heavily depend on the measurement settings, mainly
in the form of F(N ). Following Remark 1, we are particularly
interested in the distribution of F(N )’s eigenvalues, which can
be measured by a convenient metric, i.e., the effective rank,
introduced in [20] as follows

Reff (F(N )) = exp

(
−

n∑
i=1

λ̌i log λ̌i

)
, (48)

where λ̌i = λi/(
∑

i λi) are the normalized eigenvalues of
F(N ). The expression (48) suggests that Reff(F(N )) contains
the necessary information: the larger Reff(F(N )) is, the flatter
is the distribution of theλi’s. A largerReff(F(N )) also indicates
that F(N ) is more diverse.

We present the value of Reff(F(N )) versus N in Fig. 3(a),
with φi ∼ U [−1, 1]n and φi ∼ U [0, 1]n, respectively. It shows
that Reff(F(N )) with φi ∼ U [0, 1]n is much less than that with
φi ∼ U [−1, 1]n. In the later case, Reff(F(N )) approaches n

5By simply reserving the top L candidates instead of the maximum one, the
idea of group greedy can be applied to any of the greedy approaches as needed,
including our proposed Ratio and Ratio-Approx algorithms.

Fig. 3. Some statistics of F(N ) under different measurement distributions.

with increasing N . Note that F(N ) can be seen as optimally di-
verse whenReff(F(N )) = n. Therefore, we expect more signif-
icant performance differences between the algorithms using the
linear transformation (10) for φi ∼ U [0, 1]n. Fig. 3(b) presents
the value of log det(F(N )) in parallel with Fig. 3(a). It clearly
shows that the average log det(F(N )) with φi ∼ U [−1, 1]n

is larger than that with φi ∼ U [0, 1]n under the same n and
N . This result is in accordance with Fig. 3(a), as in the two
measurement settings, the norms of the φi’s uniformly take
a value from the same range [0,1]. We remark that there is
potentially more directional diversity to be exploited from N
with φi ∼ U [−1, 1]n, corresponding to a larger Reff(F(N ))
and log det(F(N )). It in general leads to an improved VCE
and RMSE performance regardless of the algorithm. We will
discuss this in detail in the following subsections. In the rest
of this article, we refer to the two distributions φi ∼ U [0, 1]n
and φi ∼ U [−1, 1]n as the typical inhomogeneous and homo-
geneous measurement distributions, respectively.

B. VCE Comparison to Baseline Methods

We present the VCE results, i.e., −1/2 log det(F(S)), versus
the number of sensors k (i.e., |S|) for n = 20 and N = 100
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Fig. 4. Comparison of VCE under varying k, n = 20, N = 100.

in Fig. 4, where Fig. 4(a) and (b) are for φi ∼ U [0, 1]n and
φi ∼ U [−1, 1]n, respectively. With a small ε (i.e., ε = 10−4,
which is sufficiently small compared with the norms of φi’s),
the Approx (Ratio-Approx) algorithm achieves almost the
same VCE as the MPME (Ratio) algorithm. Note that the
proposed Ratio (Ratio-Approx) algorithm can be seen
as the counterpart of the MPME (Approx) algorithm, where
the only difference is the basis of the measurement vectors.
Meanwhile, the Ratio and Ratio-Approx algorithms no-
tably outperform the MPME and Approx algorithms especially
for φi ∼ U [0, 1]n in Fig. 4(a). We attribute this improvement
to the change of basis based on F(N ) that leads us to the
optimization of the volume ratio. The performance of the Ra-
tio and Ratio-Approx algorithms are even better than the
Group (withL = 5 andL = 2 in Fig. 4(a) and (b), respectively)
algorithm, and close to the Group (with L = 10 and L = 5 in
Fig. 4(a) and (b), respectively) algorithm when k is small; but
the gap gradually reduces with increasing k. This further implies
that the change of basis based on F(N ) is valuable. Note that

the Ratio algorithm (O(Nkn2)) has a much lower complexity
than the Group (O(NkLn2)) algorithm.

Another important observation can be obtained by comparing
Fig. 4(a) with (b). That is, under the same parameter settings,
the results for φi ∼ U [−1, 1]n are in general better than that
forφi ∼ U [0, 1]n. This is not surprising since the homogeneous
measurements result in a larger log det(F(N )), as we have dis-
cussed in Section V-A. Moreover, as insighted in Remark 1, the
Ratio (Ratio-Approx) algorithm that leverages the change
of basis outperforms the MPME (Approx) algorithm much
more in Fig. 4(a) than in Fig. 4(b), noting that φi ∼ U [0, 1]n
corresponds to the F(N ) with nonuniform distributions of the
eigenvalues.

C. RMSE Comparison to Baseline Methods

In practice, the MSE result is generally more concerned in
measurement problems. Thus, we proceed to assess the RMSE
performance of the greedy algorithms in this subsection. Instead
of simply presenting the numerical RMSE in parallel with the
VCE (Fig. 4) that corresponds to the identical solutions, all
the algorithms are modified in this experiment to adapt to the
MSE optimization. As shown in Table I, the Approx and
Ratio-Approx algorithms adopt the MSE metric in each step
as an invertable FIM is conducted for each iteration. The Group
algorithm uses the same cost function as Approx. On the other
hand, the Ratio and MPME algorithms keep their first n steps
and only modifiy the remaining steps when the current FIM is
nonsingular.

The RMSE results versus k with φi ∼ U [0, 1]n and φi ∼
U [−1, 1]n are presented in Figs. 5(a) and (b), respectively.
The performance difference of the greedy algorithms is more
obvious in terms of RMSE than VCE under the same parameter
settings. The MPME algorithm is, in general, superior to the
Approx algorithm in terms of RMSE, and so is the Ratio
algorithm to the Ratio-Approx algorithm. This is due to the
VCE metric used in the first n steps of the Ratio and MPME
algorithms. As can be seen from Fig. 5, though the Ratio
and MPME algorithms at k = 20 (i.e., k = n) are inferior to the
Ratio-Approx and Approx algorithms, respectively, their
sequential steps benefit from the first n steps for the minimiza-
tion of MSE. This result is interesting, because it implies that
the determinant of a singular matrix is likely to contain more
information than the trace or minimum eigenvalue. Indeed, this
well explains the superiority of the MPME algorithm [8] over the
state-of-the-art algorithms at the time. Fig. 5 also shows that the
Ratio and Ratio-Approx algorithms outperform the MPME
and Approx algorithms, respectively, because they optimize
the volume ratio rather than the absolute value of the Fisher
information. Furthermore, in Fig. 5(a), the Ratio-Approx
algorithm outperforms the Group (L = 5) algorithm for small
k’s and gets close to the Group (L = 2) algorithm for large k’s,
whereas the Ratio algorithm even outperforms the Group
(L = 10) algorithm in the entire regime of k.

The RMSE performance versus N by fixing n and k is also
investigated in Fig. 6, where n = 20 and a fixed number k = 25
of sensors are selected from a total number of N candidates.
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Fig. 5. Comparison of RMSE under varying k, n = 20, N = 100.

In general, the RMSEs of all the involved algorithms decrease
as N increases, as a larger set N provides more information
to be exploited. However, note that the sensor selection task
becomes more difficult for a large N given n and k, thus effi-
cient sensor selection algorithms become more demanding. With
φi ∼ U [0, 1]n, it shows in Fig. 6(a) that the Ratio algorithm
notably outperforms the Group (L = 10) algorithm while the
Ratio-Approx algorithm outperforms the Group (L = 5)
algorithm, noting that the superiority gets larger as N increases.
With φi ∼ U [−1, 1]n, the Ratio algorithm in Fig. 6(b) be-
comes slightly inferior to the Group (L = 5) algorithm, while
the Ratio-Approx algorithm performs worse than Group
(L = 2) but still better than Approx, i.e., Group (L = 1).
These results well demonstrate the efficiency of the proposed
Ratio and Ratio-Approx algorithms based on the FII.

The impact of different measurement distributions can also
be studied by comparing the RMSEs in Figs. 5(a) and 6(a)
with Figs. 5(b) and 6(b), respectively, where the differences
among the algorithms are more obvious than in Fig. 4. For

Fig. 6. Comparison of RMSE under varying N , n = 20, k = 25.

φi ∼ U [−1, 1]n, the RMSEs are improved for all algorithms,
while the differences among them become smaller. This is easy
to understand via an extreme case, where the measurement
vectors are uniformly orthogonal. In this case, even a random
sampling algorithm would achieve satisfactory performance.
Because of this, it is worth mentioning that the sensor selection in
the inhomogeneous measurement scenario with φi ∼ U [0, 1]n
is indeed more challenging due to reduced effective rank and
directional diversity therein. We also find that the superiority
of the Ratio (Ratio-Approx) algorithm over the MPME
(Approx) algorithm is much larger for φi ∼ U [0, 1]n than for
φi ∼ U [−1, 1]n. This is because φi ∼ U [−1, 1]n leads to an
FIM with more uniform eigenvalues, making the change of basis
(10) become less effective as we have illustrated in Remark 1.
These results well demonstrate the advantage of the Ratio
algorithm, as it exploits the full FIM F(N ) to determine the
first crucial n sensors, where the measurement intensity and
directional diversity are jointly considered.
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VI. CONCLUSION

This article investigates the sensor selection problem based
on linear models to maximize the VIE. We propose a metric
of FII based on the change of basis that leverages a priori
information of the full FIM so that the profile of the full Info-E
is taken into account. The Fisher information contained in an
FIM is quantified more properly in terms of the FII, based on
which the sensor selection problem is transformed into a volume
ratio formulation, where the cost function is decoupled into a
nonzero and a zero part of the volume ratio between the VIEs
of the selected FIM and full FIM. The Ratio algorithm is
proposed accordingly. It guarantees a (1− 1/e) optimal solution
as the proposed cost function is shown monotone submodular. Its
fast version with complexity O(Nkn2) is further developed by
exploiting the specific structure of the volume ratio. In addition, a
comprehensive performance analysis of the proposed algorithm
is provided and compared with the Approx algorithm. Numeri-
cal results are provided to investigate how different measurement
distributions can affect the performance of greedy algorithms.
Both VCE and RMSE results demonstrate that the proposed
Ratio algorithm can perform close to the Group algorithm
but with much lower complexity.

APPENDIX A
PROOF OF LEMMA 1

Let rs and rt be the rank of F̃(S) and F̃(T ), respectively,
where 0 ≤ rs < rt ≤ n. Following f(S) (26), f(T ) can be
calculated accordingly as

f(T ) = log κ (T | N ) + (n− rt) log ε, (49)

where 0 < κ(T | N ) < 1 represents of the FII of T . Thus, the
result log κ(T | N ) takes a finite negative value.

For the case S �= ∅, the FII κ(S | N ) �= 0. Let us subtract
f(S) (27) from f(T ) (49). It yields

f(T )− f(S)=log κ(T | N )− log κ(S | N )− (rt − rs) log ε

= log
κ (T | N )

κ (S | N )
− (rt − rs) log ε > 0, (50)

where the inequality “>” holds due to (28).
For the case S = ∅, we achieve f(∅) = n log ε. As rs < rt,

we obtain T �= ∅. Let us denote Tmin, which satisfies f(T ) ≥
f(Tmin), ∀T �= ∅. Therefore, to prove f(T ) > f(S) in this
case, it suffices to prove f(Tmin) > f(∅) = n log ε. To find
Tmin, we first prove the monotonicity of f(S), i.e.,

f (S′ ∪ {i}) > f (S′) , ∀ S′ ⊂ N , i ∈ N \ S′. (51)

To verify (51), we need to consider two cases.
Case i): When rank(F̃(S′ ∪ {i})) = rank(F̃(S′)) + 1, (51)

is established by replacing T and S in (50) by S′ ∪ {i} and S′,
respectively.

Case ii): When rank(F̃(S′ ∪ {i})) = rank(F̃(S′)), both
F̃(S′ ∪ {i}) and F̃(S′) are Hermitian matrices. Moreover,
F̃(S′ ∪ {i})− F̃(S′) is Hermitian and positive semi-definite
(PSD), i.e.,

F̃(S′ ∪ {i})− F̃(S′) = ψiψ
T
i � 0. (52)

Let us define the function γj(A) to obtain the jth (1 ≤ j ≤
rank(A)) nonincreasingly ordered eigenvalues ofA. As F̃(S′ ∪
{i}) = F̃(S′) +ψiψ

T
i , according to the monotonicity theorem

of Hermitian matrices [21, Corollary 4.3.12], for any 1 ≤ j ≤ n
it holds that

γj(F̃(S′ ∪ {i})) ≥ γj(F̃(S′)). (53)

Thus, we have κ(S′ ∪ {i} | N ) > κ(S′ | N ). As a result,

f (S′ ∪ {i}) = log κ (S′ ∪ {i} | N ) + (n− rs′) log ε

> log κ (S′ | N ) + (n− rs′) log ε = f(S′),

where rs′ = rank(F̃(S′)). At this point, (51) has been verified,
i.e, f(S) is monotone.

It follows from (51) that for any T ⊆ N \ {∅}

f(T ) ≥ f(Tmin) = logmin
j∈N

{
‖ψj‖

}
+ (n− 1) log ε. (54)

According to (28), we arrive at f(Tmin) > f(∅). This completes
the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

We prove f(S) (27) is a monotone submodular function.
Monotonicity: For monotonicity, it suffices to show thatf(S ∪

{i}) > f(S), for all S ⊂ N and i ∈ N \ S . This has already
been proved in (51) Appendix A.

Submodularity: Let S ⊆ Y ⊂ N and choose a generic ele-
ment i ∈ N \ Y . To prove the submodularity of f(S), we need
to show that

f(S ∪ {i})− f(S) ≥ f(Y ∪ {i})− f(Y). (55)

Let ry be the rank of F̃(Y). As F̃(Y) = F̃(S) +∑
j∈Y\S ψjψ

T
j , thus rs ≤ ry ≤ n. Moreover, let us define

rs+1 = rank(F̃(S ∪ {i})) and ry+1 = rank(F̃(Y ∪ {i})), re-
spectively. We then need to discuss f(S ∪ {i})− f(S) and
f(Y ∪ {i})− f(Y) according to the values of rs+1 and ry+1.

Case i): When rs+1 = rs, the additional vector ψi is in the
range of Ṽrs i.e., ψi = Ṽrsxrs , where xrs is the coefficient
vector and xrs ∈ Rrs . As a result, we have

F̃(S ∪{i})=
[
ṼrsṼn−rs

][
Λ̃rs+ xrsx

T
rs

0
0 0

][
ṼT

rs

ṼT
n−rs

]
, (56)

where note that Ṽn−rs is perpendicular to Ṽrs , but not unique.
Sequentially, we arrive at

log κ (S ∪ {i}|N )= log det
(
Λ̃rs + xrsx

T
rs

)
= log det

((
Irs + xrsx

T
rs
Λ̃

−1

rs

)
Λ̃rs

)
= log

(
1 + xT

rs
Λ̃

−1

rs
xrs

)
+ log det

(
Λ̃rs

)
(57)

= log
(
1 +ψT

i ṼrsΛ̃
−1

rs
ṼT

rs
ψi

)
+ log κ (S|N ) , (58)
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where (58) is obtained by plugging xrs = ṼT
rs
ψi into (57).

Because rs+1 = rs, it follows from (58) that

f(S ∪ {i})− f(S) = log κ (S ∪ {i}|N )− log κ (S|N )

= log
(
1 +ψT

i ṼrsΛ̃
−1

rs
ṼT

rs
ψi

)
.

(59)
Meanwhile, as S ⊆ Y , it readily holds that ry+1 = ry . Follow-
ing the derivation of (59), it is easy to derive that

f(Y ∪ {i})− f(Y) = log
(
1 +ψT

i V̆ryΛ̆
−1

ry
V̆T

ry
ψi

)
, (60)

where Λ̆ry = diag([λ̆1, . . . , λ̆ry ]) and V̆ry = [v̆1, . . . , v̆ry ]
collecting the nonzero eigenvalues and corresponding
eigenvectors of F̃(Y), respectively. Note that ṼrsΛ̃rsṼ

T
rs

�
V̆ryΛ̆ryV̆

T
ry

following from F̃(S) � F̃(Y). Therefore,

ψT
i ṼrsΛ̃

−1

rs
ṼT

rs
ψi ≥ ψT

i V̆ryΛ̆
−1

ry
V̆T

ry
ψi, resulting in (59)

≥ (60). Thus, the desired result (55) is obtained.
Case ii): When rs+1 = rs + 1, i.e., ψi = Ṽrs+1xrs+1,

where Ṽrs+1 = [Ṽrs ṽrs+1] and xrs+1 = [xT
rs

xrs+1]
T ∈

Rrs+1 being the coefficient vector. Note that ṽrs+1 is obtained
from the Gram-Schmidt orthonormalization of Ṽrs andψi, i.e.,
ṽrs+1 = (ψi − Ṽrsxrs)/xrs+1. This readily leads to a partition
of Ṽ = [Ṽrs ṽrs+1 Ṽn−rs−1]. Accordingly,

F̃(S ∪ {i}) =
[
Ṽrs ṽrs+1 Ṽn−rs+1

]

×

⎡
⎣Λ̃rs+ xrsx

T
rs

xrs+1xrs 0
xrs+1x

T
rs

x2
rs+1 0

0 0 0

⎤
⎦
⎡
⎣ ṼT

rs
ṽT
rs+1

ṼT
n−rs+1

⎤
⎦,

which is easy to verify by plugging in the eigenvalue decompo-
sition of F̃(S) and ψi = Ṽrs+1xrs+1. It follows that

log κ (S ∪ {i}|N )

= log det

([
Λ̃rs + xrsx

T
rs

xrs+1xrs

xrs+1x
T
rs

x2
rs+1

])
(61)

= log
(
x2
rs+1 det

(
Λ̃rs

))
(62)

=

(
‖ψi‖2 −

∥∥∥Proj{ψj}j∈Sψi

∥∥∥2)+ log κ (S|N ) , (63)

where (62) is obtained using the formula of the determi-
nant of block matrices [22, Chapter 8.8.2] on (61). Note
that xrs+1ṽrs+1 = ψi − Ṽrsxrs , where Ṽrsxrs is the pro-
jection of ψi onto the vector space of {ψj}j∈S denoted
by Proj{ψj}j∈Sψi. Thus, x2

rs+1 = ‖ψi‖2 − ‖Proj{ψj}j∈Sψi‖2.

Meanwhile, log det(Λ̃rs) = log κ(S|N ), thus (63) readily fol-
lows from (62). As a result,

f(S ∪ {i})− f(S) = log κ (S ∪ {i}|N )+ (n− rs+1) log ε

− log κ (S|N )− (n− rs) log ε

= ‖ψi‖2 −
∥∥∥Proj{ψj}j∈Sψi

∥∥∥2 − log ε.

(64)

On the other hand, f(Y ∪ {i})− f(Y) depends on the value of
ry+1, i.e.,

f(Y ∪ {i})− f(Y)

=

⎧⎨
⎩log

(
1 +ψT

i V̆ryΛ̆
−1

ry
V̆T

ry
ψi

)
, if ry+1 = ry,

‖ψi‖2 −
∥∥∥Proj{ψj}j∈Yψi

∥∥∥2− log ε, if ry+1 = ry + 1,

(65)

where (65) can be obtained following the derivation of (64) with
the orthogonal vector ṽry+1 obtained from the Gram-Schmidt
orthonormalization of Ṽrs and ψi. When ry+1 = ry , it readily
holds (64) ≥ (60), thus yielding the desired result of (55). When
ry+1 = ry + 1, we need to compare (64) with (65). Since S ⊆
Y , ‖Proj{ψj}j∈Sψi‖2 ≤ ‖Proj{ψj}j∈Yψi‖2. Thus, we have (64)
≥ (65), i.e., f(S ∪ {i})− f(S) ≥ f(Y ∪ {i})− f(Y).

Combining the above results6 of Case i) and Case ii), f(S) has
been proved a submodular function. This completes the proof
of Lemma 2.

APPENDIX C
PROOF OF PROPOSITION 1

With ε satisfying (47), we now prove S(k)
opt is also optimal to

Papprox, i.e.,

det
(
F
(
S(k)
opt

)
+ εI

)
> det

(
F
(
S(k)

)
+ εI

)
(66)

holds for any S(k). Let us define h(ζ, ε) :=
∏n

j=1 (ζj + ε) =∑n
i=0 h

i(ζ)εi. It is easy to verify that det(F(S(k)
opt) + εI) =∏n

j=1 (λ
∗
j + ε) and det(F(S(k)) + εI) =

∏n
j=1 (λ

′
j + ε). As a

result, the r.h.s and the l.h.s of (66) can be rewritten as

det
(
F
(
S(k)
opt

)
+ εI

)
= h (λ∗, ε) , (67)

and

det
(
F
(
S(k)

)
+ εI

)
= h

(
λ′, ε

)
, (68)

respectively. Let us subtract (68) from (67). Followed by algebra
operations, it readily yields h(λ∗, ε) > h(λ′, ε) with ε fulfilling
(47). As a result, (66) is verified, and S(k)

opt is optimal to Papprox.
This completes the proof.
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