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A B S T R A C T   

In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource re
covery from waste streams. This approach has evolved beyond its traditional role in energy generation to 
encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, 
propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due 
to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced syn
thetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste 
streams offers significant eco-friendly opportunities but comes with several key challenges. These include low 
VFA production yields, unstable acid compositions, complex and expensive purification methods, and post- 
processing needs. Among these, production yield and acid composition stand out as the most critical obstacles 
impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining 
complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of 
microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate 
acid profiles through the integration of omics and bioreactor data.   

1. Introduction 

Resource recovery from waste streams has become an increasingly 
promising area of study in recent years, with anaerobic digestion tech
nology emerging as a leading approach. Beyond its established role in 
energy recovery, this technology has expanded to include the produc
tion of carboxylic acids, particularly volatile fatty acids (VFAs) such as 
acetic acid, propionic acid, and butyric acid. These VFAs are of signifi
cant interest to a variety of industries and biobased product applications 
due to their diverse functionality (Millati et al., 2023). Despite 
increasing global demand, >90% of the produced VFA is currently 
synthetically derived from petrochemicals (Agnihotri et al., 2022). In 

the face of fast-depleting fossil resources, their adverse environmental 
effects, rising energy and material demands, a profound increase in 
greenhouse gas emissions and carbon footprints, and substantial waste 
generation from conventional processes, there is an urgent need for the 
industry to redirect its focus toward environmentally friendly bio-based 
VFA production. 

Unlocking the potential of industrial-scale biobased production of 
VFAs from waste streams holds tremendous promise. However, several 
challenges need to be addressed for its successful implementation such 
as low production yield of biobased VFAs, unstable acid composition, 
complex and costly purification and separation methods, and post- 
processing requirements (Aghapour Aktij et al., 2020; Martinez et al., 
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2016; Reyhanitash et al., 2017; Rocha et al., 2017). 
Among these challenges, production yield and product spectrum are 

the most significant issues. Low production yield mainly hampers eco
nomic competitiveness in both production and recovery processes. 
Simultaneously, the acid composition wields a substantial influence on 
both upstream and downstream applications of VFAs. Operational pa
rameters, such as pH and substrate type, have a significant impact on the 
product spectrum. 

Under acidic conditions (pH < 5), acetic acid production is often 
favored, whereas near-neutral pH (pH: 6.5–7.5) tends to result in a more 
balanced mixture of acetic, propionic, and butyric acid (Fang and Liu, 
2002). However, contrasting results have been reported in other studies. 
For instance, Atasoy et al. (2019) showed that acetic acid dominated at 
pH 7, whereas the combination of acetic and butyric acid was prevalent 
at pH 5, and butyric acid was the primary product at pH 10 during 
glucose fermentation. In contrast, Jankowska et al. (Jankowska et al., 
2015) reported that propionic acid prevailed at pH 4 and pH 5, with 
acetic acid becoming dominant at pH 10. Furthermore, the choice of 
substrate types, such as carbohydrates, proteins, or lipids, significantly 
influences the product spectrum due to variations in their chemical 
structures. Carbohydrate breakdown primarily yields a mixture of ace
tic, propionic, and butyric acids, whereas lipid degradation can produce 
medium and long-chain fatty acids like caproic acid (Bevilacqua et al., 
2021; Ma et al., 2017). In addition to the substrate type, the physical 
structure of the substrate – whether it is in liquid, solid, mixed waste- 
stream form, etc. – is another crucial parameter that influences the 
anaerobic degradation process. However, for the scope of this paper, our 
primary focus lies on the production of VFA from wastewater. Besides, 
different microbial species have varying pH tolerances and substrate 
preferences, which can further influence the VFA spectrum. Addition
ally, several other factors (e.g., retention time, inoculum source, biore
actor type, operation mode, etc.) affect the product spectrum as well. 
Therefore, it is very challenging to predict and control the acid 
composition. 

Steering VFA production toward specific products not only eases the 
separation and purification of these products but also produces 
customized carbon sources for diverse applications, such as carbon 
sources for denitrification or bioplastic production (Elefsiniotis and 
Wareham, 2007; Zhang et al., 2023). In order to unravel the effects of 
several parameters on acid composition and to allow steering the acid 
profile, a wide range of studies have been conducted focusing on sub
strate selection (Jankowska et al., 2017; Shen et al., 2017; van Aarle 
et al., 2015), manipulation of microbial communities (Atasoy and 
Cetecioglu, 2021; Blasco et al., 2020; Jiang et al., 2015), optimization of 
operational and environmental conditions (Calero et al., 2018; Gar
cia-Aguirre et al., 2017; Jankowska et al., 2015), inhibitor management 
(Lukitawesa et al., 2020), product separation and recovery methods (Liu 
et al., 2020; Reyhanitash et al., 2017; Zacharof and Lovitt, 2014), 
metabolic engineering (Jang et al., 2014), hybrid processes and biore
actor design (Parchami et al., 2023). Even though these studies identi
fied the effects of numerous parameters on VFA composition and 
production yield, steering the acid profile remains a considerable chal
lenge due to the intricate interplay of diverse factors within the complex 
microbial ecosystems responsible for VFA production. Mainly, a dy
namic consortium of microorganisms with varying metabolic prefer
ences and multiple metabolic pathways as well as the exhibition of 
complex synergetic and competitive interactions in the microbial com
munity contributes to the difficulty of steering VFA production toward 
specific products (Atasoy and Cetecioglu, 2021; Lv et al., 2022; 
Ramos-Suarez et al., 2021; She et al., 2020). 

In summary, experimentalists have endeavored to master the VFA 
production process and steer its selectivity but have faced challenges 
due to inherent uncertainties. To address these uncertainties and opti
mize production yield, while controlling product profiles, a profound 
understanding of microbial communities is essential. This understand
ing should encompass metabolic networks, production kinetics, and the 

impacts of operational and environmental variables. 
To achieve this, the combination of kinetic modeling (i.e., models for 

simulating at the reactor level how microorganisms or cells grow, 
interact, and produce desired products within the reactor based on their 
biological kinetics and environmental conditions) and microbial com
munity modeling (i.e., models for simulating intercellular level complex 
interactions and dynamics among multiple microorganisms in a biore
actor to understand their population dynamics, metabolic processes, and 
overall ecosystem behavior) offers a comprehensive insight into VFA 
production systems, emphasizing microbial dynamics under specific 
conditions. 

Moreover, modeling approaches enable the extrapolation and pre
diction of community dynamics and behavior under untested opera
tional and environmental conditions, facilitating efficient and rapid 
optimization of the VFA production process. This paper offers a broad 
perspective on how different modeling approaches, including kinetic 
and microbial modeling, can be used to understand the complex dy
namics of microbial communities and metabolic pathways involved in 
VFA production. The modeling reviewed here should be used to create a 
roadmap for combining omics and bioreactor data to improve produc
tion efficiency and control acid profiles precisely. Our audience includes 
both experimental microbiologists interested in modeling and compu
tational biologists looking to apply their skills in practical biochemical 
contexts. We explore various modeling approaches, from basic Lotka- 
Volterra models to more detailed microbe-effector models based on 
ordinary differential equations, as well as comprehensive genome-scale 
metabolic models. By merging hands-on experimentation with compu
tational insights, our goal is to foster a deeper and more multifaceted 
understanding while promoting collaborations that push the boundaries 
of biobased VFA production. 

2. Comprehending microbial dynamics in the production of VFA 

One of the most important parameters for bio-based VFA production 
is the inoculum source. It has been stated that open mixed cultures offer 
a stable and robust VFA production process that can adapt to varying 
environmental and operational conditions (Perrotta et al., 2017; van 
Aarle et al., 2015). Moreover, the multi-step transformations in mixed 
cultures allow for a shorter acclimation time, leading to increased pro
liferation and, ultimately, higher total production yields (Schmidt, 
2021). 

However, employing mixed microbial cultures for VFA production 
presents a major bottleneck, as their complex structure is challenging to 
comprehend. Microbial communities in these mixed cultures exhibit 
high diversity and versatile metabolism encompassing various functions 
for metabolic networks (Płaza et al., 2021; Sidhu et al., 2017) syntrophic 
interactions (McInerney et al., 2009; Stams and Plugge, 2009), and 
dynamic responses to operational and environmental changes (Li et al., 
2015; Lv et al., 2022). These factors collectively contribute to the 
complexity of mixed microbial cultures, making them difficult to predict 
and control. Understanding microbial interactions and their functions is 
essential to identify key metabolic pathways and enzymes that can be 
targeted for process optimization. Furthermore, this understanding can 
facilitate the identification of strategies to mitigate inhibition and 
enhance process performance, which is crucial for attaining stable and 
efficient VFA production. 

To model a microbial community, it is essential to have a compre
hensive understanding of the structure of the community, as well as the 
functions and interactions of the microorganisms within it. Next- 
generation sequencing offers invaluable insights into microbial com
munity dynamics, which is essential for identifying key metabolic 
pathways and enzymes for optimizing VFA production (Kim et al., 
2022). While various studies have successfully identified microbial 
community composition in anaerobic mixed cultures, the relation be
tween the dynamic behavior of microbial communities and their 
response to operational/environmental parameters for the production 
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and composition of VFAs remains unexplored. In this section, the 
application of -omics technologies for gaining insights into the microbial 
dynamics involved in VFA production as well as their applications for 
kinetic and microbial community models, are discussed. 

2.1. Profiling microbial members and their potential activities within a 
community 

2.1.1. Who is there and potentially doing what? 
DNA sequencing constitutes the primary stage of -omics technologies 

aimed at characterizing a given microbial community by analyzing the 
DNA of all its members. This approach involves recovering genetic 
material from the environmental matrix, commonly referred to as 
metagenomes i.e., the collective genome of a microbial community 
(Pérez-Cobas et al., 2020). Microbial DNA-targeted sequencing has been 
widely applied to identify microbial communities in anaerobic systems 
using various approaches, including amplicon-based marker gene 
sequencing (e.g., 16S ribosomal RNA gene), gene-centric metagenomics, 
and genome-centric metagenomics (Zhang et al., 2021). 

Most studies investigating microbial community profiles for VFA 
production have relied on the 16S rRNA gene for assessing community 
composition and relative abundance of community members. This 
technique, also frequently referred to as metataxonomics, provides de
tails on microbial taxonomy, and depending on the chosen target region 
of the 16S rRNA gene, can leverage information at different levels of 
taxonomic resolution. To this end, current standard approaches based on 
short read sequencing typically only allow identification up to the genus 
level, and can be used to some extent to predict potential metabolic 
functionalities (Zhang et al., 2021). Despite the microbial community 
profile being able to be shifted by several operational and environmental 
parameters, the most commonly reported dominant phyla associated 
with VFA production include Bacillota (previously Firmicutes), Bacter
oidota (Bacteroidetes), and Pseudomonadota (Proteobacteria) (Atasoy and 
Cetecioglu, 2022; Feng et al., 2009; Owusu-Agyeman et al., 2022; 
Strazzera et al., 2021). Within these phyla dominant members at family 
and genus levels have been shown to differ significantly according to the 
experimental foundation of the studies. On the other hand, phyloge
netically related species may have different metabolic capabilities, 
which can lead to misinterpretation of their functionalities (Wenzel 
et al., 2018). Furthermore, species with a relative abundance of <1% in 
the microbial community may be eliminated during post – analysis in 
terms of their functional significance, despite their substantial roles (Yin 
et al., 2022). While no studies have yet identified rare species exclu
sively involved in VFA production, uncovering such species could aid in 
engineering microbial communities for enhanced selective VFA 
production. 

However, due to PCR bias and in most cases lack of species-level 
information, 16S rRNA gene-based methods cannot offer precise in
sights into microbial population functionality (Kim et al., 2022). To this 
end, the gene-centric metagenomics approach involves sequencing all 
genes present in a microbial community to gain an understanding of its 
metabolic potential. Although this approach yields information on 
overall metabolic pathways, it does not classify them into taxonomic 
units, thus limiting its ability to identify specific taxa and their func
tional roles within the community (Kleinsteuber, 2019). In contrast, the 
genome-centric approach enables the identification of functional po
tential within individual microbial members of a community. While this 
approach offers a more detailed analysis of the metabolic and functional 
potential of each taxon, it is more technically challenging than other 
approaches due to the large amount of data. In their study, Greses et al. 
(2023) identified 58 metagenome-assembled genomes and investigated 
the impact of pH variations on microbial dynamics and their corre
sponding functions in the production of VFAs through food waste 
fermentation. Their results revealed that a decrease in pH from 6.5 to 6.1 
caused a shift in metabolite production from acetate, butyrate, and 
ethanol to caproate and hydrogen. However, this change did not affect 

the microbial community profile. Further analysis and a suitable model 
could have provided more profound insights into how the pH drop 
shifted the product profile. 

Fontana et al. (2018) applied a genome-centric metagenomics 
approach to evaluate the performance of single and two-stage thermo
philic anaerobic digesters in fermenting cheese wastewater. They have 
identified 50 population genomes (PGs), 22 of which were newly 
discovered. By correlating the presence of key metabolites with the 
abundance of the PGs, they estimated the metabolic pathways encoded 
in these genomes. Their findings revealed that a higher abundance of 
Clostridium spp. was associated with greater specialization in hydrolytic 
and acidogenic activities, leading to improved process efficiency (Fon
tana et al., 2018). Although genome-centric metagenomics can reveal 
the functional potential of each taxon within a community, it is essential 
to note that this approach sequences all genomes in a microbial com
munity, regardless of whether they play an active role in the process 
studied. Therefore, while it offers valuable insights into the potential 
metabolic pathways of individual taxa, it may not be the most suitable 
approach for identifying the functional roles that microbial members 
actively play within the community under a specific set of conditions 
(Kim et al., 2022). Many studies have been conducted to profile mi
crobial communities during anaerobic digestion (Jankowska et al., 
2017; Vanwonterghem et al., 2015; Zhang et al., 2020a). Nevertheless, 
few studies identified the functional potential and active participation of 
microbial community members within the metabolic networks of VFA 
production (Hao et al., 2020; Luo et al., 2021; Wang et al., 2023). 

2.2. Identification of the functional roles of microbial community 
members 

2.2.1. What are their actual functionalities? 
Metatranscriptomics is a method for identifying microbial func

tionalities, via sequencing and analyzing the messenger RNA (mRNA) 
transcripts (Aguiar-Pulido et al., 2016). Identifying the expressed genes 
and their level of expression provides a more direct assessment of the 
active functional roles of individual microbial members within the 
community at a given moment. In addition to identifying the expressed 
genes and their level of expression, metatranscriptomics can provide 
insights into differential gene expression under various environmental 
conditions. In this way, it offers a more comprehensive understanding of 
community function and dynamics over time, beyond the simple 
description of active members and expressed genes (Shakya et al., 
2019). The combination of metatranscriptomics and metagenomics 
and/or marker gene based approaches can be used to investigate the 
dynamics of microbial communities and their responses to changing 
environmental conditions. To date, a limited number of studies have 
employed metatranscriptomics to identify the functional roles of mi
crobial communities for VFA production (Luo et al., 2021; Scarborough 
et al., 2018) due to the experimental and computational challenges (e.g., 
the instability of RNA molecules and the incomplete genomic informa
tion for many microorganisms in a given environment, making it com
plex to attribute RNA sequences to specific organisms and genes and 
interpret the data) in addition to financial constraints. 

Luo et al. (2021) reported a 6.5-fold increase in VFA production from 
food waste fermentation by supplementing with linear alkylbenzene 
sulphonates (LAS), which enhances organic compound solubilization, at 
a concentration of 50 mg/L. Their findings indicated that the addition of 
LAS improved the hydrolysis efficiency of carbohydrates, proteins, and 
lipids in food waste, and facilitated membrane transport of substrates. 
Metatranscriptomics coupled with metagenomics revealed the expres
sion of several functional genes, such as accA, accC, and accD, associated 
with fatty acid biosynthesis by the microbial community in LAS-treated 
reactors (Luo et al., 2021). Another study that employed metatran
scriptomics to understand functions of the microbial community in 
medium-chain fatty acid (MCFA) production proposed that thioesterase 
instead of coenzyme A (CoA) transferase should be used as the terminal 
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enzyme of the reverse β-oxidation pathway for an efficient chain elon
gation process (Scarborough et al., 2018). Furthermore, the authors also 
used metabolic reconstruction in combination with metatranscriptomic 
analysis to predict that Lactobacillus and Coriobacteriaceae species would 
degrade carbohydrates and ferment sugars to lactate and acetate, while 
species belonging to the Lachnospiraceae and Eubacteriaceae would 
transform these fermentation products to MCFA (Scarborough et al., 
2018). Ultimately, Scarborough et al. (2018) identified thioesterase as a 
pivotal enzyme in the reverse β-oxidation pathway, enhancing the effi
ciency of MCFA production. 

While DNA-based approaches and metatranscriptomics provide 
valuable information about microbial communities, these approaches 
only provide a view of potential metabolic capabilities and gene 
expression under certain conditions. However, VFA production is highly 
dynamic, involving complex metabolic pathways involving both known 
and unknown microbial species. In some cases, these metabolic net
works and microbial species are interdependent and regulated by a 
range of operational and environmental factors. Therefore, to gain a 
comprehensive understanding of microbial community dynamics and 
metabolic networks involved in VFA production, it is essential to 
reconstruct and integrate metabolic networks via modeling approaches, 
which provide a dynamic view of the metabolic products and substrates 
involved in VFA production. 

2.3. Uncovering metabolic networks: an integrated approach to 
understanding microbial communities 

To comprehensively investigate the dynamic responses of microbial 
communities to different environmental and operational conditions, it is 
necessary to integrate the identification of active community functions 
with the metabolic networks. Moreover, the identification of particular 
metabolic pathways can uncover the part played by individual microbial 
taxa in the fermentation process and their contribution to the production 
of VFAs. Metabolomics is one of the most powerful approaches to 
metabolic pathway analysis (Aguiar-Pulido et al., 2016). It aims to 
determine and quantify intracellular and extracellular metabolites, 
which are low-molecular-mass compounds (Lamichhane et al., 2018; 
Pinu et al., 2017). Recent studies showed that metabolomic analysis 
reveals time-dependent specific responses by the microbial community 
in a dynamic environment (De Sousa et al., 2018; Puig-Castellví et al., 
2022; Sasaki et al., 2014). Furthermore, linking gene expression levels 
with metabolite production through metabolomics provides key insights 
into microbial interactions. Also, to determine microbial interactions, it 
is essential to establish a link between the gene expression level and 
produced metabolites. 

Primarily, metabolomics is applied in environmental systems to 
determining biodiversity by mapping metabolic activities to specific 
community functions (Kyrpides, 2009), metabolic cooperation to un
derstand the synergetic relationships in the microbial community (Raes 
and Bork, 2008), cell-to-cell communication between microorganisms 
(Bassler and Losick, 2006) and identifying novel biomarkers (Krohn 
et al., 2022). In this context, the application of metabolomics is pivotal 
in comprehending the metabolic networks associated with VFA pro
duction. Metabolomics plays a crucial role in uncovering the intricate 
metabolic interactions within microbial communities, offering a snap
shot of their metabolite profiles (Lamichhane et al., 2018; Tang, 2011). 
This approach enables the identification of the metabolic pathways 
involved in VFA synthesis, while also facilitating the discovery of key 
metabolites and enzymes critical to these processes. 

In contrast, the application of metabolomics for the targeted iden
tification of the VFA production network is limited due to its complexity 
(e.g., preparation of samples, identification and quantification of me
tabolites, analysis of data). However, a few studies have successfully 
employed metabolomics to explore both taxonomic and metabolic pro
files within anaerobic digesters, primarily focusing on biogas production 
(Krohn et al., 2022; Puig-Castellví et al., 2022; Sasaki et al., 2014). 

Mainly, these studies investigated the effects of operational and envi
ronmental conditions on a metabolic network of methanogenesis in 
terms of the digestibility of different substrates (Beale et al., 2016; Puig- 
Castellví et al., 2022; Sasaki et al., 2014). These investigations high
lighted the significant role of metabolomics as a valuable tool for 
uncovering unknown aspects, especially concerning front-end processes 
(such as pretreatment of substrate). However, these studies underscore 
the essentiality of integrating diverse omics approaches to attain a 
comprehensive understanding of the entire system. Which questions can 
be addressed by metabolomics for VFA production is presented in Fig. 1. 

Another -omics approach that plays a key role in confirming active 
metabolic pathways and functions of microbial communities by identi
fying and quantifying proteins within a given system is metaproteomics 
(Kleiner, 2019). While metaproteomics offers valuable insights into the 
functions of microbial communities and their contributions to the 
metabolic network, a comprehensive understanding often requires its 
integration with other -omics approaches. The recent study by Wang 
et al., (Wang et al., 2022) identified key enzymes involved in amino acid 
metabolism for VFA production from protein-rich waste. The combina
tion of metaproteomics and metagenomics analyses revealed funda
mental mechanisms of amino acid configuration that affect bacterial 
behaviors via chemotaxis and quorum sensing signals (Wang et al., 
2022). Their result provided new insights into how L-AA metabolism 
differs from that of D-AAs, as well as why protein-rich wastes accumu
late more D-AAs during VFA production (Wang et al., 2022). 

Industrial-scale biobased VFA production necessitates a compre
hensive understanding of microbial community dynamics and metabolic 
networks. The utilization of a multi-omics approach provides an 
exceptional opportunity to elucidate the functional roles of individual 
microbial members and their collective activities. By addressing these 
fundamental questions, we can not only enhance production yield but 
also optimize bioaugmentation strategies to achieve tailor-made VFA 
production. This approach holds enormous potential, particularly for the 
recovery of raw materials in the form of VFA from industrial wastewater, 
thereby promoting the establishment of a circular economy within the 
industry. 

While the multi-omics approach is effective in profiling microbial 
communities and elucidating metabolic networks as stated in Fig. 1, it 
alone falls short in comprehending microbial interactions and the inte
gration of metabolic networks with microbial community data. Conse
quently, the construction of a model utilizing these datasets becomes 
imperative for understanding the entire system. Therefore, the subse
quent sections of this perspective paper will be focused on how the 
integration of -omics and bioreactor data into diverse models can pro
vide insights into the entire VFA production system, thereby increasing 
production efficiency and manipulating acid profiles. 

3. Interpretation of the -omics data is not efficient without 
modeling approaches – microbial community models 

Various aspects of microbial communities can be explored through 
different -omics approaches, as outlined in Fig. 1. However, to establish 
solid connections between these datasets and unveil deeper insights into 
interactions, behaviors, and contributions of microbial populations to 
the metabolic network, microbial community models are essential. 

High-throughput sequencing technologies, combined with multi- 
omics approaches, have significantly advanced our understanding of 
how microorganisms facilitate the production of VFAs, revealing the 
intricate metabolic pathways and regulatory networks at play. However, 
many of these approaches merely infer relationships and provide limited 
mechanistic insights about microbial physiology or community func
tionality because they are unable to capture the cause and direction of 
interactions, and/or they may not be able to determine important time- 
dependent properties. Moreover, the combinatorial nature of experi
mental testing required to investigate the myriad of abiotic and biotic 
factors impacting microbial communities often makes multi-omics 
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strategies cost-intensive. To effectively design synthetic microbial 
communities or devise augmentation strategies for mixed cultures, it is 
crucial to understand the mechanisms underlying community behavior 
(Faust, 2019; Song et al., 2014). 

Computational modeling of microbial communities efficiently re
veals mechanistic insights into microorganisms and their impact on 
carboxylic acid production. For example, the role of individual members 
in microbial communities in the production of carboxylic acids from 
food waste digestion can be understood by microbial community 
models. Furthermore, these models can help us understand microbial 
interactions, predict microbial community dynamics, design microbial 
communities, and identify key microbial taxa and functional genes 
(Qian et al., 2021). 

Several different types of descriptive and predictive computational 
models have been used to provide new insights into the functioning of 
microbial communities. In addition, the selection of the type of model 
depends on the investigation and the data available to determine 
essential parameters. In the intricate pursuit of understanding VFA 
production within microbial communities, especially in systems such as 
anaerobic digesters or mixed microbial communities, it is essential to 
discern the appropriate modeling methodology. An overview of the 
models along with their specifications, is summarized in Table 1. 

The choice of model largely hinges on the specific objectives and the 
granularity of data available: Ecological Models: These are ideal for 
high-level community interactions, particularly when the primary focus 
is on species-level interactions that govern VFA production dynamics. 
Given their emphasis on broader ecological dynamics such as competi
tion, predation, and symbiosis, they are well-suited to contexts where 
understanding inter-species relationships and community structures is 
pivotal. Kinetic (or Process) Models: When the data set encompasses 
time-series concentration values of various microbial constituents, these 
models are particularly apt. They are grounded in mass-action kinetics, 
thus making them highly effective when there is a need to model the 
rates of VFA formation, substrate assimilation, or microbial growth and 
death, especially in reactor settings. Statistical Models: These models 
shine in situations characterized by rich data sets, but perhaps a limited 
understanding of the underlying biological mechanics. They are pre
dominantly data-driven, hinging on observed patterns to forecast VFA 

production. While they may not always capture the depth of biological 
mechanisms, they can swiftly identify trends and correlations in VFA 
production. Metabolite-mediated models, alternatively referred to 
as microbe-effector models: encompassing MacArthur consumer- 
resource models and trait-based models, constitute a specialized 
framework within microbial community modeling. These models high
light the pivotal role of specific metabolites in governing interactions 
and dynamics within microbial communities. Genome-scale Metabolic 
Models: For those looking to dive deep into the biochemical intricacies 
of microbial metabolism influencing VFA synthesis, these models are 
paramount. They are particularly advantageous when there is access to 
genome-scale data or when the objective is to predict nuanced metabolic 
shifts and VFA yields under varying conditions. The applications of the 
models outlined above, employed for VFA production or anaerobic 
digestion systems, are summarized in Table 2. Each example encom
passes the basic equations of the model alongside its respective outputs. 
In summary, the optimal modeling approach is contingent upon both the 
specificity of the research objective and the granularity of the available 
data. In the domain of VFA production, striking a judicious balance 
between these elements can pave the way for robust and insightful 
analyses. 

3.1. Generalized Lotka-Volterra (gLV) modeling and their applications 
for VFA production 

Ecological models represent a broad category of models that have 
been applied to study microbial communities using 16S rRNA-based 
sequence read abundance data (see recent reviews for more details 
(Kumar et al., 2019; Qian et al., 2021; van den Berg et al., 2022). These 
models are capable of predicting and analyzing population dynamics. 
Moreover, ecological models can assess temporal changes in the abun
dance of each member and can infer interactions without considering 
underlying molecular mechanisms (Berry and Widder, 2014). Although 
the boundaries among the types of ecological models can sometimes be 
tenuous rather than rigid, in general, model types can be broken down 
into four groups: generalized Lotka-Volterra (gLV) models, MacArthur 
consumer-resource models, trait-based models, and individual-based 
models. gLV models are rooted in describing predator-prey and 

Fig. 1. Multi-omics Approaches in VFA Production: which questions can be addressed? (Created in BioRender.com)  
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competitive interactions within ecosystems (Bunin, 2017). Furthermore, 
gLV models use differential equations to capture the growth of pop
ulations, incorporating both cooperative and competitive interactions 
among species. MacArthur consumer-resource models tend to focus on 
the interactions between consumers and their resources emphasizing 
how species compete for a limited set of resources (Chesson, 1990). They 
are instrumental in predicting community structure and understanding 
the mechanisms that allow for species coexistence based on resource 
utilization patterns. Another approach, trait-based models, prioritizes 
the functional traits of organisms over their identities. 

From this alternative perspective, these models can be used to pre
dict community responses to environmental changes, focusing on how 
traits affect ecosystem functions (Krause et al., 2022). One more 
approach, individual-based models, strives to simulate ecosystems using 
a bottom-up approach, modeling the behavior and interactions of indi
vidual organisms. This can permit for exploring how micro-scale pro
cesses lead to emergent community-level patterns and allows for 
analyzing heterogeneous microbial populations (Hellweger et al., 2016). 

One of the most popular types of applied ecological models is the gLV 
model. gLV models contain a set of non-linear, coupled first-order dif
ferential equations. This class of ecological models can describe com
munity member growth rates as a function of time using the intrinsic 
growth rate as well as infer linear effects from other populations. 
Therefore, gLV models consist of a relatively simple set of parameters: a 
vector of intrinsic growth rates for each community member and a 
matrix interaction of coefficients for all the member pairs. gLV modeling 

has several benefits, including understanding the dynamics of interact
ing populations, predicting the effects of perturbations, and informing 
experimental design. However, the approach has some limitations, such 
as oversimplification - employing constant parameters to simulate 
temporally changing environments and inherent sensitivity to initial 
conditions – containing first-order Taylor expansion of ecological in
teractions near equilibrium (Letten and Stouffer, 2019). 

Despite its limitations, gLV modeling has been employed in many 
studies to assess interactions among key species and understand dy
namic growth behavior within communities (Atasoy et al., 2023; Buffie 
et al., 2015; Coyte et al., 2015; Marino et al., 2014; Mounier et al., 2008; 
Palafox-Sola et al., 2023). Originally, gLV models were applied to link 
species interactions to community dynamics in gut microbial commu
nities (Fisher and Mehta, 2014; Venturelli et al., 2018). However, gLV 
modeling has recently been applied to model growth kinetics and 
community interactions to discern the impact of key taxa within 
anaerobic digesters (Chen et al., 2020; Schwan et al., 2020; Shaw et al., 
2020). For instance, the work of Schwan and coworkers employed gLV 
modeling to understand how certain chemical stressors affect micro
biomes within anaerobic digesters (Schwan et al., 2020). Their findings 
suggested that the massive resilience and stability of the methanogenic 
communities, coupled with the surprising flexibility of particular mi
crobial key taxa, play a role in VFA production (Schwan et al., 2020). In 
general, gLV modeling can be a solid option when a coarse under
standing of microbial communities is sufficient or when molecular 
quantitative measurements are lacking. 

Table 1 
Overview of the microbial community and kinetic models.   

Description Advantages Limitations Reference 

Ecological 
Models 

Predicting and analyzing population 
dynamics;   

o Generalized Lotka-Voltrerra (gLV) 
Model  

o Generalized Consumer – Resource 
Model  

o Trait – based Model  
o Individual – based Model 

The existing time-series species abundance 
data can be used directly to quantify different 
properties of communities, including the 
stability of biological systems across different 
conditions and perturbations. 

Only specific simplified aggregate interactions 
between organisms are feasible, often 
remaining static and disconnected from 
cellular attributes like the metabolic state of 
cells. 

(Antoniewicz, 
2020; van den Berg 
et al., 2022) 

Kinetic Models Understanding and optimizing 
bioreactor performance;   

o Monod Model  
o Andrews Model  
o Contois Model  
o Haldane Model  
o Logistic Growth Model 

A simplified modeling approach of the kinetic 
models using bioreactor data enables the 
prediction of growth rates, substrate 
utilization, and product formation under 
varying operational and environmental 
conditions. 

Simplifying biological systems may not fully 
encapsulate their complexity, leading to 
estimations that may lack accuracy and 
precision. Additionally, adapting existing 
models to different systems or conditions often 
necessitates further adjustments. 

(González- 
Figueredo et al., 
2018) 

Statistical 
Models 

Analyzing bioreactor data and 
optimization of processes;   

o Response Surface Methodology 
(RSM)  

o Multivariate Data Analysis (MVDA)  
o Artificial Neural Networks (ANN)  
o Bayesian Models  
o Time Series Analysis 

For data analysis and decision-making, 
statistical models serve as powerful tools. 
They enable the inference of relationships 
between variables and the interpretation of 
results, providing valuable insights into 
underlying processes. 

These models often depend on simplifying 
assumptions about the data-generating 
process, which can lead to misinterpretation of 
the results. 

(Bezerra et al., 
2008) 

Genome-scale 
Metabolic 
Models 

Identifying gene-protein-reaction 
associations in microorganisms and 
simulating metabolic fluxes for 
different system-level metabolic 
studies. 

It offers a comprehensive understanding of 
cellular metabolism by mapping out the 
entire metabolic network of a 
microorganism. Additionally, they enable 
predictions of metabolic behaviors in diverse 
conditions, thereby facilitating deeper 
insights into cellular functions and responses. 

It requires extensive and reliable data, while 
their computational demands can be 
significant. This complexity renders them 
challenging to interpret and analyze 
effectively. Moreover, the reliance on diverse 
assumptions and simplifications may 
introduce uncertainty into the predictions. 

(Gu et al., 2019) 

Metabolite 
Mediated 
Models 

Focusing on the interactions and 
transformations of metabolites within 
cellular metabolism;   

o Stoichiometric models  
o Constraint-based models – Flux 

Balance Analysis (FBA)  
o Dynamic models – Ordinary 

Differential Equation (ODE) 

These models offer valuable insights into 
cellular metabolism and can predict 
metabolic flux distributions under varying 
conditions. Additionally, they serve as a 
useful tool for metabolic engineering, aiding 
in the design of microbial strains for the 
targeted production of specific VFAs. 

It requires comprehensive and high-quality 
data on metabolic reactions, enzyme kinetics, 
and metabolites. Additionally, their 
applications often involve computationally 
intensive processes, making it challenging to 
interpret and analyze the resulting data. 

(Ang et al., 2018;  
Brunner and Chia, 
2019)  
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Table 2 
Applications of microbial community and kinetic models in anaerobic digestion.   

Description of the study Equation Notes Outputs Reference 

Ecological Models 
– Generalized 
Lotka–Volterra 
(gLV) Model 

Schwan et al. (2020) utilized 
the gLV model to explore the 
impact of various 
perturbations (nalidixic acid, 
γ-aminobutyric acid, and 
sodium phosphate) on 
microorganism interactions 
during the anaerobic 
digestion of glucose. 

dxi

t
= xi

(

ri +
∑n

j=1∝ijxj

)
dxi

dt
: the rate of growth of 

species xi, ri: the intrinsic 
growth, ∝ij: interaction 
coefficient 

In this study, the outcomes 
derived from utilizing the 
Lotka–Volterra model 
revealed that the anaerobic 
digester microbiomes are 
both robust and flexible in 
their microbial interactions. 
Maintaining constant digester 
conditions could facilitate 
manipulation of these 
interactions more effectively. 

(Schwan et al., 
2020) 

Kinetic Models 
Regueira et al. (2021) 
elaborated a kinetic and 
stoichiometric model for VFA 
production from protein 
fermentation. 

Mass balances: 
dSi

dt
= D⋅

(
Sfeed,i − Si

)
+ ri 

The protein consumption rate is 
described by a Monod equation: 

qs = qs,max •
S

KS + S
• X 

The production rate of any product 
(including biomass) is given by: 
ri = qs • Fi 

qs: the specific 
consumption rate (gCOD 

Protein/ gCOD 

Biomass•h), 
qs,max: maximum specific 
consumption rate (gCOD 

Protein/ gCOD 

Biomass•h), S: protein 
concentration (gCOD 

Protein/L), 
X: biomass concentration 
(gCOD Biomass/L), 
ri: specific production 
rate of the ith product 
(gCOD i/gCOD Biomass⋅h). 
Fi: stoichiometric factor 
of the ith product (gCOD 

i/gCOD Protein). In the 
case of biomass the 
stoichiometric factor is 
the biomass yield. 

The model developed in this 
study, along with the 
simulation framework 
proposed, demonstrated to 
reproduce well VFA 
production from protein-rich 
substrate and its effectiveness 
in selecting optimal design 
parameters was shown. This 
led to the design of highly 
selective and productive 
processes which can be used 
as an stage design for 
converting protein-rich 
wastes into VFAs. 

(Regueira 
et al., 2021) 

Statistical Models 
Nabaterega et al. (2022) used 
a regression model to predict 
VFA production from 
municipal sludge as well as to 
statistically analyze the 
interactions between 
temperature, pH and sludge 
retention time. 

y = β0 +
∑

iXi + βijXiXj y: predicted response, 
Xi independent variables 
(X1:SRT; X2:temperature; 
X3:pH), 
XiXj: the interactions of 
the independent 
variables, 
β0: the intercept, 
βi and βij : regression 
coefficients 

Their results indicated that 
the multiple linear regression 
model accurately predicted 
the fold increase in VFAs of 
acidic fermenters, achieving 
R-squared value of 0.9999. 
The contour plots constructed 
revealed elevated VFAs levels 
associated with relatively 
high fermenter pH (7.5–8.0), 
shorter SRT (2–2.2 days), and 
lower temperatures 
(45–48 ◦C). 

(Nabaterega 
et al., 2022) 

Genome-scale 
Models Basile et al. (2020) built 836 

genome-scale metabolic 
models to reveal functional 
capabilities of anaerobic 
digestion microbiome. They 
represented GEMs with flux 
balance analysis. Interactions 
among the dominant 
members and analysis of the 
metabolic exchanges 
performed using MICOM 
(v.0.10.0) (Diener et al., 
2020). 

μc =
∑

iαiμi μc: the community 
growth rate, 
μi: individual growth 
rates, 
αi: the relative 
contribution of species i. 

The outcomes of the GEMs 
revealed the generation of 
metabolic models derived 
from known species identified 
in the environment through 
16S rRNA similarity searches. 
However, the presence of 
uncultivated microbes raises 
unresolved questions. 

(Basile et al., 
2020; Diener 
et al., 2020) 

Metabolite 
Mediated Models 
– Guild-Based 
Metabolic 
Models 

Scarborough et al. (2020) 
used unicellular and guild- 
based metabolic models to 
investigate production of 
medium-chain fatty acids by a 
mixed microbial community 
that is fed multiple organic 
substrates. 

Community Parsimonious Flux Balance 
Analysis (Community 
pFBA) 
Maximize the community-level objective 
function, subject to stoichiometric 
constraints 
and flux bounds: 
max

∑N
j=1wj • vbiomass,j 

∑N
j=1Sj • vj = 0 

vmin,j ≤ vj ≤ vmax,j 

Community Flux Variability Analysis 
(Community FVA) 
Determine the range of possible fluxes 
for each reaction in each organism, 
maintaining 

N: Number of organisms 
in the microbial 
community. 
wj: Weight of organism j, 
reflecting its relative 
importance or 
abundance. 
Sj : Stoichiometric matrix 
for organism j. 
vj: Vector of metabolic 
fluxes for organism j. 
vmin,j and vmax,j: Lower 
and upper bounds on the 
fluxes for organism j. 
vbiomass,j: Flux through the 

Their results from the model 
shed light on the metabolic 
pathways of three groups 
producing medium-chain 
fatty acids, unveiling 
potential approaches to 
enhance their production. 

(Scarborough 
et al., 2020) 

(continued on next page) 
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Furthermore, gLV model and other ecological models can be com
bined with other modeling approaches to provide more dynamic un
derstanding of the effects of operational and environmental parameters 
on microbial communities and their metabolism. An integrated 
approach combining kinetic models with ecological models can improve 
ecological models' predictive accuracy by providing a mechanistic un
derstanding of microbial metabolism within bioreactors. To our 
knowledge, no study has been conducted that combines ecological and 
kinetic models to approach specifically VFA production. However, a few 
studies have combined these two modeling approaches to understand 
microbial community interactions in anaerobic digestion under different 
operational conditions (Kuroda et al., 2021; Kuroda et al., 2016). In their 
study, Kuroda et al. (2016) conducted community and network analyses 
on purified terephthalic acid degradation within upflow anaerobic 
sludge blanket (UASB) reactors at varying temperatures. They uncov
ered novel networks of syntrophic metabolic interactions within 
different granules, attributed to distinct thermodynamic conditions. 
Additionally, they observed previously unseen relationships between 
methanogenic microorganisms at the UASB reactors (Kuroda et al., 
2016). In summary, while certain ecological models may draw from 
elements of kinetic models, the essence of ecological modeling lies in its 
simplicity, enabling a direct assessment of how various parameters 
impact competition dynamics. Kinetic models are tailored to uncover 
the intricacies of processes within a reactor, which may include micro
bial interactions indirectly, via the utilization of shared resources like 
substrates. Conversely, ecological models focus on revealing the cir
cumstances in which one microbial guild prevails over another, often 
tied to specific model parameters. For example, this could involve 
reducing the growth rate of a microbial population facing adverse 
conditions, such as low pH, relative to others. The primary objective is 
not to simulate VFA profiles within a reactor but to gain insight into the 
fundamental interaction dynamics among microbial populations. 

3.2. Metabolite-mediated models and their applications for VFA 
production 

Metabolite-mediated models, also known as microbe-effector 
models, which can also encompass MacArthur consumer-resource 
models and trait-based models, represent a specialized approach in 
microbial community modeling. They emphasize the mediating role of 
specific metabolites in dictating the interactions and dynamics within 
microbial communities (Qian et al., 2021). While gLV models offer a 
broader, ecologically-rooted perspective of microbial interactions, they 
often miss the detailed nuances of metabolic exchanges, making them 
less adept at predicting the intricacies of microbial behaviors driven by 
metabolites (van den Berg et al., 2022). Distinct from genome-scale 
metabolic (GEM) models, which aim to catalog an exhaustive repre
sentation of metabolic pathways within an individual organism, 
metabolite-mediated models typically encompass simpler, small-scale 
metabolic networks. This intentional reduction in complexity, con
trasting with the more generic approach of gLV models, is designed to 
focus on the most pertinent metabolic interactions, prioritizing key 

metabolites that significantly influence microbial behaviors. 
GEMs, with their comprehensive metabolic pathways, offer detailed 

insights into the metabolic potential and flexibility of individual or
ganisms. They are unparalleled when predicting an organism's meta
bolic response to a range of environmental shifts including nutrient 
levels, oxygen concentrations, salinity, presence of toxins, water avail
ability, and light conditions. For instance, a GEM modeling approach 
might be used to identify optimal pathways for volatile organic com
pound production within specific microbes such as Clostridium kluyveri 
(Benito-Vaquerizo et al., 2020; Zou et al., 2018) or Saccharomyces cer
evisiae (Scott et al., 2023). However, when it comes to modeling in
teractions within a microbial community, their exhaustive nature can 
sometimes lead to computational challenges, making them less tractable 
for simulating multi-species dynamics (Bernstein et al., 2021; Fritze
meier et al., 2017). On the other hand, ODE-based microbe-effector 
models excel in this niche. Their targeted simplicity captures essential 
metabolic exchanges that drive community dynamics. For example, in a 
mixed culture fermentation process, these models can elucidate how the 
production of a specific acid by one microorganism affects the growth 
and metabolic activity of another. This can highlight crucial feedback 
loops, such as one bacterium producing lactate that is then consumed 
and converted into acetate by another, creating a synergistic relation
ship (Wang et al., 2020). 

Microbe-effector models can be coupled with experimental data to 
simulate metabolic exchanges for a complex microbial community as 
has been shown for an E. coli community of 14 amino acid autotrophs 
(Liao et al., 2020) or combined with statistical modeling to design a 
synthetic community to steer butyrate production (Clark et al., 2021). 
This focused approach, while not capturing every enzymatic step as 
GEMs might, provides an efficient and clear representation of pivotal 
microbial interactions. By emphasizing these crucial exchanges, 
metabolite-mediated models become a powerful tool for predicting and 
manipulating community behaviors in complex environments. The 
construction of both ecological and microbe effector models follows a 
common workflow comprised of eight key steps as presented in Fig. 2. 
Ecological and microbe effector models share a common construction 
workflow based on defining research objectives, acquiring relevant data, 
and choosing an appropriate framework (Qian et al., 2021). This is 
followed by defining the model structure (species/strains, interactions, 
and environmental parameters for ecological models; key microbial ef
fectors and targets for microbe effector models), assigning parameter 
values, and calibrating and validating the model. Finally, analysis and 
interpretation of the results yield valuable insights into microbial com
munity in VFA production. 

Metabolite-mediated models can provide insight into the dynamic 
interplay of select metabolites within microbial communities and pre
sent opportunities for targeted interventions. By understanding and 
manipulating these crucial metabolic exchanges, researchers can 
potentially steer microbial communities toward optimized VFA pro
duction pathways, achieving enhanced yields and more efficient 
bioconversion processes. 

Table 2 (continued )  

Description of the study Equation Notes Outputs Reference 

community-level objectives: 
max/min vi,j 
∑N

j=1Sj • vj = 0 
vmin,j ≤ vj ≤ vmax,j 
∑N

j=1wj • vobjective,j ≥ (1 − ϵ) • vopt
objective 

Community Random Flux Sampling 
Explore the feasible space of metabolic 
states for the community: 
∑N

j=1Sj • vj = 0 
vmin,j ≤ vj ≤ vmax,j 

biomass objective 
function for organism j.  
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3.3. Genome-scale models and their applications for VFA production 

While gLV and metabolite-mediate models are capable of describing 
the dynamics of interacting species in an ecological community, GEMs 
integrate various types of biological data, including genomic, tran
scriptomic, and metabolomic data, to create a comprehensive, genome- 
wide representation of the metabolic network of an organism. Modeling 
approaches employing GEMs of microbial communities are methods that 
integrate genomic data with metabolic modeling to simulate the 
behavior of complex microbial communities (see recent reviews for 
more detail, (Heinken et al., 2021; Ibrahim et al., 2021)). It involves 
constructing mathematical models that describe the metabolic in
teractions between the different microorganisms present in a commu
nity, based on their genomes. GEMs represent a particular organism's 
metabolic capacity and can be combined with powerful approaches such 
as Flux Balance Analysis (FBA) to reflect phenotypic behavior from 
genotypic information (Orth et al., 2010). 

The first step in constructing a GEM involves assembling the ge
nomes of the individual microbes within the community, using 
sequencing data (Heirendt et al., 2019). These individual genome se
quences are then annotated to identify genes and metabolic pathways. 
Next, the metabolic networks of each microbe are integrated into a 
single community-level model or remain separate using a compart
mentalized approach, which describes the exchange of metabolites 

between different microorganisms (Colarusso et al., 2021). Once the 
community model, either at the community or individual level, is con
structed, it can be used to simulate the behavior of the microbial com
munity under different conditions, such as changes in the availability of 
nutrients or changes in environmental conditions (García-Jiménez et al., 
2021). These simulations can provide insights into the metabolic in
teractions between various microorganisms and help predict how the 
community will respond to changes in its environment. 

Despite its many potential applications, GEMs of microbial commu
nities also have some drawbacks that should be considered: 1) data 
limitations: GEMs rely on the availability and quality of genome se
quences for individual microbes within the community (Heinken et al., 
2021). However, not all microbial species have fully sequenced ge
nomes, and those that do may have incomplete or fragmented se
quences. This can limit the accuracy and scope of GEMs; 2) complexity: 
Microbial communities are complex, dynamic systems that are difficult 
to fully capture and model. GEMs may oversimplify the complexity of 
microbial interactions and may not fully account for the variability in 
microbial behavior under different conditions (Colarusso et al., 2021); 
3) parameterization: GEMs require a large amount of experimental data 
to parameterize the models, such as measurements of microbial growth 
rates and metabolic fluxes. However, such data is often limited or 
challenging to obtain, particularly for complex microbial communities 
and computational workloads (Diener and Gibbons, 2023; Lakrisenko 
and Weindl, 2021); 4) constructing and simulating GEMs can be 
computationally intensive, requiring high-performance computing re
sources, and specialized software tools (Scott Jr et al., 2023). This can 
limit the accessibility of GEMs to researchers with limited computational 
resources. In essence, while genome-scale modeling of microbial com
munities is a promising approach, it is important to be aware of these 
limitations when designing and interpreting GEM studies. 

GEMs can be used to identify key metabolic pathways, predict VFA 
production rates, optimize feedstock composition, predict VFA compo
sition, and identify potential bottlenecks in VFA production. In a similar 
vein, Bauer and co-workers used genome-scale modeling of a multi- 
species community in the human gut to identify the key metabolic 
pathways involved in VFA production (Bauer et al., 2017). They iden
tified the specific microorganisms responsible for each step in the pro
cess to understand the impact of a diet on gut health. For instance, by 
pinpointing optimal environmental conditions through simulations, 
these models can guide adjustments in an anaerobic digester to enhance 
or tailor VFA yields. Furthermore, GEMs can potentially inform the 
strategic manipulation of microbial communities, identifying key spe
cies for VFA production and suggesting ways to promote their growth or 
suppress competing microbes. A comprehensive approach as such, 
employing GEMs, would allow for combining environmental control 
with microbial management to create a customized system for opti
mizing the VFA production efficiency. Additionally, FBA employing 
GEMs has been used to elucidate important pairwise interactions and 
their associated metabolite exchanges (Basile et al., 2020). Furthermore, 
these simulations illustrate the positive influences of microbial dy
namics, i.e., by promoting commensalism over amensalism on the rate of 
VFA production under different environmental conditions. 

Overall, the use of GEMs of microbial communities to study VFA 
production can provide valuable insights into the metabolic pathways 
and interactions between different microorganisms involved in VFA 
production. Nevertheless, the microbial community models mentioned 
above, which offer insights into intracellular processes, should be inte
grated with kinetic models. This integration is crucial for a compre
hensive understanding, optimization, and control of the intricate 
metabolic processes of VFA production. 

4. Kinetic and statistical models for VFA production 

The goal of so-called unstructured or kinetic models is to represent 
the whole microbial process in the bioreactor mass balances. In this 

Fig. 2. Workflow for the construction of ecological and microbe effector 
models (Created in BioRender.com). 
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representation, the microbial metabolism is described in low detail and 
the cells of a given species or microbial guild are treated as a black box 
(Gernaey, 2015). In essence, microorganisms are seen just as compounds 
of the system, albeit with catalytic properties and the capacity to grow. 
The main aim of these models is to predict the global dynamics of the 
system (i.e., the rate at which the substrates are consumed or at which 
the different products are generated) including all the relevant processes 
(e.g., polymer hydrolysis, biomass settling, or gas-liquid transfer). They 
consist of two main parts: the definition of the process stoichiometry 
(often described in a Petersen matrix) and the process equation rate. 
Their focus is to solve the macroscopic mass balances of the system (i.e., 
the bioreactor). One of the most well-known kinetic models is the 
Anaerobic Digestion Model NO. 1 (ADM1) for the simulation of real- 
scale anaerobic digestion processes (Batstone et al., 2002), but models 
for VFA production in open culture fermentation processes of a defined 
substrate (e.g. glucose, fructose or proteins) or real waste (e.g. manure) 
are also available in literature (Alexandropoulou et al., 2018; Bai et al., 
2017; Fernández et al., 2011; Infantes et al., 2012). 

Kinetic models have relevant inherent advantages that have 
contributed to wide use and applicability. One of the most relevant 
qualities is their modular nature, which allows them to integrate the 
simulation of all the processes and measures related to bioreactor 
operation and which potentially affect the biological processes occur
ring in a bioreactor, ranging from e.g., pH determination and salt pre
cipitation to e.g. hydraulic retention in a membrane reactor and in-situ 
product extraction). These phenomena can be simulated by ad hoc 
models and be readily integrated into the kinetic model, as they just act 
on the reactor mass balances. For example, the ADM1 model for 
anaerobic digestion was modified on different occasions to simulate 
particular processes of interest for a specific system. These include, e.g., 
Fe, P and S interactions in anaerobic digestion (Flores-Alsina et al., 
2016), phosphate accumulating organism metabolism in anaerobic 
digestion (Wang et al., 2016), sulfate reduction (Fedorovich et al., 
2003), and granular anaerobic digestion (Feldman et al., 2019). This 
flexibility provides a suitable way to describe the sequential conversion 
of a complex substrate (i.e., a real waste stream) to VFA, which may 
include different hydrolysis processes. Given that disintegration and 
hydrolysis are often critical transformation steps when dealing with 
complex substrates such as different organic waste streams (e.g., food 
waste or agrifood side-streams) these models are suitable for process 
engineering tasks: bioreactor design, substrate selection, definition of 
operating conditions. Hence, they complement the modeling approaches 
described in Section 3 which focus on providing an understanding of the 
biological transformation and are mostly used to describe the fermen
tation of simple and soluble monomers (e.g., glucose or individual 
amino acids). 

Another modeling approach that uses bioreactor data is statistical 
modeling, which plays an important role in understanding the re
lationships between product formation and changing environmental and 
operational conditions. Many studies employed statistical models to 
identify correlations between operational parameters and maximum 
VFA production yield and/or specific VFA formation (Atasoy et al., 
2019; Khatami et al., 2021; Yin et al., 2022). Some studies have even 
correlated specific acid formation with the abundance of specific mi
crobial taxa to estimate the functionalities of these groups (Atasoy et al., 
2020a, 2020b; Owusu-Agyeman et al., 2023; Yin et al., 2022). For 
instance, Owusu-Agyeman et al. (2023) showed that the total VFA 
production positively correlated with the relative abundance of Lach
nospiraceae and Atopobiaceae (Pearson coefficients of 0.620 and 0.666, p 
> 0.01), whereas the production of caproic acid was positively corre
lated with the family Atopobiaceae (Pearson coefficient of 0.865, p >
0.01) (Owusu-Agyeman et al., 2023). Similarly, Yin et al. (2022) 
correlated the acetogenic performance with the core microbial com
munity to predict functional pathways. Their study claimed that aceto
genesis might be less dependent on the diversity of the microbial 
community since all alpha diversity indexes were negatively correlated 

with acetogenic performance (Yin et al., 2022), but obviously a negative 
association also indicates a possible (inverse) effect of microbial com
munity complexity on performance. While statistical models can provide 
insights into system performance by identifying relationships between 
parameters and microbial groups, they are strictly data-driven models. 
This means that they are limited in capturing the complexity of bio
logical systems. 

5. Integrated modeling approach and future outlook 

The possible application of microbial and kinetic models for VFA 
production has been discussed in the previous sections. Here we want to 
endeavor the integration of these two approaches to have a finer 
description of microbial metabolism and improved predictability of 
process dynamics for VFA production. We believe that an integrated 
approach would provide great progress to the production of VFA if it 
could i) combine different methods to represent the current knowledge 
brought about by models, and ii) transform the available data, including 
the -omics, into information that can be used to engineer the process at 
metabolic, cell and bioreactor level. 

Microbial community models primarily emphasize VFA production 
at the microbial community level. The integration of microbial modeling 
with multi-omics data, complemented by genome-scale metabolic 
modeling, has emerged as a critical advancement in the biotechnology 
field. Such integration offers unparalleled insights into microbial in
teractions and their underlying functionalities, setting the stage for 
enhanced predictive capabilities. With the incorporation of machine 
learning (ML) techniques, these models can expect improvements in 
terms of accuracy, efficiency, and scalability. It is noteworthy to 
mention the importance of coupling GEMs with process simulation 
software, such as ASPEN (Shoabjareh et al., 2023). However, realizing 
the full potential of this coupling necessitates the integration of classical 
reactor kinetic modeling approaches. Recent studies have validated this 
integrative approach, showcasing its ability to accurately simulate 
production capabilities (Gomez et al., 2021). Nevertheless, the conver
gence of multi-omics data, genome-scale metabolic modeling, and ML 
often lacks information regarding broader aspects, such as reactor 
operation, effects of design, and process parameters. 

Kinetic models are mainly system-specific (i.e., they have a very 
limited extrapolation capacity), therefore they provide low detail in 
metabolism description. For each set of operational conditions (i.e., 
substrate type, temperature, pH) experimental data should be fed into 
the model to have representative parameters. In the context of VFA 
production, the most relevant bottleneck is the inability to predict the 
dependency of fermentation stoichiometry on different operational pa
rameters, among which the effect of pH is paramount (Arslan et al., 
2016), or the effect of the stoichiometry of interaction among bacterial 
guilds of the mixed culture. While this is not an issue in anaerobic 
digestion, since the methane to carbon dioxide ratio in biogas can be 
easily predicted by substrate composition (i.e. carbon and COD con
centration), it considerably limits the scope of the applicability of kinetic 
models for VFA production. Another limitation of kinetic models lies in 
predicting and even steering the acid profile. While kinetic models 
provide valuable insights into overall VFA production in anaerobic 
digestion, they often overlook the distribution of individual VFAs, from 
acetate (C1) to pentanoate (C5). Because the focus is on general path
ways instead of the complexities of individual chains, the complexities 
of chain formation are overlooked. In this case, metabolic models with 
their more detailed description of the metabolism are better suited to 
address this issue and describe complex phenomena such as interactions 
among microbial groups. Such metabolic models have already proved 
that they can predict VFA production stoichiometry with respect to 
changes in substrate and reactor conditions while requiring minimal 
system information (Regueira et al., 2020b; Regueira et al., 2020a; 
Scarborough et al., 2020). Our proposal seeks to combine kinetic models 
with metabolic models, which are much more capable of predicting the 
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process stoichiometry due to their finer description of microbial meta
bolism. We aim to merge the modular nature of kinetic models and their 
ability to be adapted to a myriad of processes with the prediction power 
of the metabolic model. 

Such integrated modeling approach can help us anticipate various 
crucial operational parameters, including but not limited to medium 
composition, inoculation ratio, and the retention time for specific 
products. In this way, the production of specific acids or total VFA can be 
optimized. Fig. 3 provides a visual representation of the integrated 
modeling approach for VFA production, showcasing the incorporation of 
inputs and anticipated outcomes. Given the inherent characteristics of 
individual modeling methods, their integration becomes imperative to 
attain full comprehension of VFA production. 

5.1. Integrated modeling approach for complex substrates 

One of the most practical challenges in modeling VFA production is 
the degradation of complex substrates. As mentioned in Section 3, “Ki
netic Models for VFA Production,” kinetic models have been used to 
describe the sequential conversion of complex substrates, including 
different hydrolysis processes. However, modeling the degradation of 
complex substrates (e.g., organic waste streams) requires a comple
mentary approach to understand the entire transformation pathway of 
each fraction of the complex substrate. 

One example of such an integrated approach is shown in the work of 

Saavedra del Oso et al. (2022), where a modeling framework was 
developed with the perspective of being used for the early-stage design 
of processes converting different complex real substrates into VFA. The 
framework consisted of two modules: i) a kinetic model to simulate the 
sequential bioconversion steps and to solve the reactor-level balances 
and ii) an ODE-type model to tackle the varying fermentation stoichi
ometry. The kinetic model has a library with information for kinetic 
parameters (e.g., hydrolysis rate constants, fractioning in terms of 
components such as sugars, proteins, etc.) for an array of common 
wastes with the potential to be used for VFA production. Bioenergetic 
models are a kind of metabolic modeling that can predict the effect of pH 
on the VFA fermentation stoichiometry. pH is the most relevant opera
tional parameter in fermentation systems, on glucose, protein (i.e., any 
possible combination of amino acids), and their co-fermentation 
(González-Cabaleiro et al., 2015; Regueira et al., 2020a, 2020b). The 
bioenergetic model is solved dynamically and provides the kinetic 
model with the stoichiometry of the process at the given environmental 
conditions (i.e., pH and fractions of the hydrolyzed substrate to be 
acidified). In this way, the integral model is able to predict both the 
effects of changes in operational conditions on the kinetics (something 
most metabolic models are not able to) and on the VFA stoichiometry 
(something most kinetic models are not able) and stands as a sound 
early-stage design tool. In the case studies presented in that work, one of 
the conclusions is that hydrolysis is the process with a higher control 
over the VFA production yield and, to a lesser extent, on the process 

Fig. 3. Integrated modeling approach of VFA production including inputs, data sources, and outputs. The inputs for the models are described as stoichiometric 
coefficients, kinetic parameters and rates, dynamic state and algebraic variables, design and process parameters, and data from DNA-based approaches (meta
genomics/metataxonomics), metatranscriptomics, metaproteomics, and metabolomics. The expected outputs from different models are (a) metabolite exchange and 
cross-feeding to exploring the intricate dynamics of metabolite exchange and cross-feeding within a microbial community at a genome scale, (b) metabolic pathway 
contribution for assessing how metabolic pathways are influenced and shaped through metabolite-mediated interactions within the microbial community, (c) mi
crobial community structure over time for tracking the evolving ecological landscape of the microbial community structure as it changes over time, (d) understanding 
the actual contribution of microbial communities to metabolic pathways for determining the precise impact of microbial communities on the functionality of 
metabolic pathways, (e) microbial interactions within the community for investigating the various interactions and relationships among different microbial species 
within the community, (f) competition for carbon sources for examining the kinetics and metabolite-mediated competition for carbon sources among microbial 
populations, (g) influence of operational and environmental parameters for analyzing the effects of static operational and environmental factors on the microbial 
community, (h) optimizing operational parameters for enhancing the performance of the microbial community by optimizing kinetic operational parameters. *Here 
we define genome-scale models to be a comprehensive representation of the metabolic process of the organism. Furthermore, this model contains a detailed stoi
chiometric map of all known metabolic reactions and associated genes in the organism's genome. This figure does not allude to the application of genome-scale 
models to various modeling approaches. (Created in BioRender.com). 
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stoichiometry, reinforcing the need to describe all bioconversion steps. 
With this modeling framework, different substrate combinations can be 
tested in silico to select the best one when targeting a specific VFA(s) or 
the operational conditions can be selected to maximize the yield of the 
desired VFA composition. One advantage of this approach lies in its 
modularity as other models can be integrated to simulate system vari
ations (e.g., coupling to an in-situ product removal system). Also, it can 
represent a module used to generate in silico data for an economic of 
environmental evaluation. 

Dynamic Flux Balance Analysis (dFBA) emerges as another prom
ising approach for modeling the conversion of complex substrates to 
VFAs. This method extends classical flux balance analysis by incorpo
rating a dynamic framework, enabling the simulation of degradation 
pathways for different substrate fractions (carbohydrates, lipids, pro
teins) (Willemsen et al., 2015) and their conversion into VFAs. This 
approach holds the potential to predict VFA production profiles and 
degradation pathways under various conditions. However, these ap
proaches require detailed information about individual substrate frac
tions, which can be challenging and resource-intensive to obtain in 
complex substrate matrices. Here, the integration of ML and artificial 
intelligence (AI) can potentially model complex organic matter directly 
without requiring complete fractionation, overcoming a significant 
bottleneck in current modeling practices. 

Another significant challenge in VFA production lies in the degra
dation of specific substrates. For example, the degradation of amino 
acids leads to the production of ammonium‑nitrogen in anaerobic di
gesters (Deng et al., 2023; Park and Kim, 2016). This not only inhibits 
VFA production but also complicates VFA purification and separation 
processes. However, with the integrated modeling approach, it becomes 
possible to predict the metabolic pathways of each amino acid degra
dation and the functional contributions of the microbial community 
under various operational conditions. Consequently, strategies can be 
devised to prevent the degradation of amino acids by inhibiting specific 
pathways and/or optimizing operational conditions. 

5.2. Integrated modeling approach for inoculum type 

In our previous discussion on microbial dynamics in the production 
of VFAs under Section 2 “Comprehending Microbial Dynamics in the Pro
duction of VFA”, it was highlighted that open mixed cultures stand out as 
a preferred inoculum source for VFA production from waste streams. 
This approach offers numerous advantages over pure culture fermen
tation, including reduced sensitivity to operational and environmental 
conditions, higher overall VFA production yields, and the elimination of 
the need for substrate sterilization when utilizing waste streams. 
Conversely, pure culture fermentation enables the production of specific 
acid types and simplifies the separation and purification steps (Atasoy 
et al., 2020a, 2020b). 

Moreover, as previously noted, modeling open mixed cultures for 
VFA production necessitates extensive datasets. One potential solution 
to address these challenges is the design of synthetic communities 
(Diender et al., 2021). Employing synthetic communities, or defined co- 
cultures, for VFA production offers the opportunity to customize acid 
composition, enhance substrate utilization, and improve system stability 
and robustness. However, this approach demands a deep understanding 
of the involved strains to predict their interactions, manage growth 
balance, and control environmental factors for various cultures. 
Modeling plays a crucial role in comprehending these dynamics, aiding 
in identifying the requirements of the cultures and elucidating their 
interactions (Boruta, 2023). 

While constructing and applying microbial community models is 
more straightforward for synthetic communities compared to open 
mixed cultures, challenges arise when scaling up VFA production from 
waste streams at an industrial level. Therefore, we propose an integrated 
modeling approach to understand microbial communities in the biore
actor for VFA production using open mixed cultures, combined with 

microbial and kinetic models. Subsequently, bioaugmentation of the 
system with designed synthetic communities can be implemented to 
enhance targeted acid composition (Atasoy and Cetecioglu, 2021; 
Gough and Nielsen, 2016). 

5.3. Machine learning and artificial intelligence 

ML and AI offer transformative potential for enhancing and aug
menting traditional modeling approaches in systems biology, including 
gLV, microbe-effector, and, notably, GEM modeling. The capacity of ML 
and AI to handle complex, high-dimensional data and uncover hidden 
patterns makes them invaluable tools in refining these model ap
proaches for greater accuracy and insight.ML can augment gLV and 
microbe-effector models by providing methods to estimate interactions 
or effector functions, respectively. In gLV modeling, ML can refine 
interaction coefficients based on empirical data, thereby enhancing the 
model's ecological validity (Michel-Mata et al., 2022; Wang et al., 2024). 
For microbe-effector modeling, ML can predict the impacts of specific 
metabolites or proteins on the microbiome, informing targeted experi
ments or engineering strategies (Sudhakar et al., 2021). 

ML and AI significantly amplify the capabilities of GEM modeling, 
bridging mechanistic modeling with data-driven algorithms to stream
line the reconstruction process, boost predictive accuracy, and improve 
interpretability (Kim et al., 2021). Through automated annotation and 
functional prediction, ML algorithms efficiently process genomic data to 
predict gene functions and metabolic pathways significantly reducing 
manual reconstruction efforts. For instance, recent gap-filling algo
rithms have incorporated ML to increase the accuracy and applicability 
of GEM modeling to study lesser-known organisms (Chen et al., 2023). 
By leveraging multi-omics data integration, ML refines and validates 
metabolic network connections, correcting improper annotations, and 
filling missing links to create more accurate and comprehensive models 
(Zampieri et al., 2019). 

The contribution of ML to GEM modeling significantly enhances their 
predictive power through parameter optimization and adaptive learning 
from experimental data. This optimization process aligns model pa
rameters, such as reaction flux rates, more closely with experimental 
observations, thereby enhancing the model's ability to accurately 
simulate metabolic behaviors under various conditions. For example, 
Faure et al. (2023) demonstrated how hybrid neural-mechanistic models 
could improve phenotype predictions of microorganisms by integrating 
ML with constraint-based metabolic models, significantly outperforming 
traditional models with smaller training set sizes (Faure et al., 2023). By 
applying ML algorithms that adaptively learn, genome-scale models can 
continuously refine their accuracy, making precise predictions about 
metabolic responses to genetic or environmental changes. Furthermore, 
ML extends the predictive reach of GEM modeling into lesser-explored 
parts of metabolism by identifying patterns in known processes, 
thereby predicting reactions and pathways not yet fully understood. 
Zhang et al. (2020b) highlighted the effectiveness of combining mech
anistic and ML models for predictive engineering and optimization of 
tryptophan metabolism in yeast, showcasing ML's ability to guide 
metabolic engineering efforts toward significant improvements in pro
duction (Zhang et al., 2020b). These advancements underscore ML's 
pivotal role in enhancing the predictive capabilities of GEM modeling, 
offering a promising avenue for exploring and understanding complex 
metabolic systems. 

Improving the interpretability of GEMs is crucial for advancing our 
understanding of complex biological systems. ML techniques, such as 
feature selection and importance, play a pivotal role in identifying the 
most critical reactions and pathways within GEMs. This approach not 
only makes the intricate network of interactions more interpretable but 
also guides targeted experimental designs and hypothesis generation. 
For instance, Culley et al. (2020) demonstrated a machine-learning 
approach that integrates gene expression profiles with mechanistic 
metabolic models to characterize cell growth in Saccharomyces 
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cerevisiae, revealing unknown interactions between biological domains 
and enhancing model interpretability (Culley et al., 2020). Similarly, 
model simplification, achieved by focusing on significant metabolic 
pathways and reactions, can render GEMs more accessible without 
sacrificing accuracy. This simplification is facilitated by ML's ability to 
uncover complex relationships between genotype and phenotype, as 
illustrated by Askland et al. (2021), who developed an ML analytic 
pipeline that translates genotypic data into biologically contextualized 
features, thereby enhancing the interpretability of complex genetic ar
chitectures (Askland et al., 2021). Furthermore, the linkage of genotypic 
and phenotypic data through ML models elucidates how genetic varia
tions influence metabolic capabilities and outcomes, providing a clearer 
view of how genetic information translates into metabolic functions. 

5.4. Techno-economic aspects of an integrated modeling approach 

As discussed in Section 1: Introduction, the production of biobased 
VFAs is influenced by various operational and environmental factors. 
Furthermore, the use of open mixed cultures as an inoculum source, 
comprising numerous unknown microbial groups, complicates the 
assessment of system performance. Consequently, prior to system 
operation, it is common practice to conduct batch mode tests to assess 
the impacts of different parameters. Despite preliminary screening, 
achieving reproducible results with alternative inocula or substrate 
sources remains a considerable challenge. Hence, adopting an integrated 
modeling approach offers a viable solution to minimize the number of 
experiments conducted, thereby significantly reducing the consumption 
of both single-used plastic products and chemicals (Leak et al., 2023) as 
well as a decreased requirement for labor. Furthermore, microbial 
community models offer a cost-effective way to describe and engineer 
microbial communities (García-Jiménez et al., 2021). 

Moreover, economic parameters can be incorporated into the inte
grated model to provide insights into the economic feasibility of pro
posed systems, particularly when considering scaling up for industrial 
production of VFAs. For instance, BioSTEAM is a techno-economic 
analysis tool used to forecast the inputs and outputs of an entire sys
tem (Cortes-Peña et al., 2020), providing investment and cost analysis 
based on the results derived from the integrated modeling approach. 

6. Conclusions 

Volatile fatty acids stand as a remarkably promising category of 
biobased chemicals, holding substantial potential for resource recovery 
from waste streams. Despite their potential, their replacement of syn
thetic derivatives is currently limited by challenges in the production 
and recovery processes. These challenges predominantly hinge upon the 
need for a deeper understanding of microbial communities and biore
actor performance. In this paper, we have presented an integrated 
approach that combines kinetic models with microbial community 
models to provide a comprehensive perspective that enhances both 
production efficiency and the manipulation of acid profiles. Through the 
manipulation of acid profiles, we can ease separation and purification 
processes through the design of specific recovery processes tailored to 
each acid type based on its chemical structure. By bridging the gap be
tween the interpretation of microbial communities with bioreactor 
performance together, this integrated modeling framework is expected 
to advance the utilization of VFAs, making significant contributions 
toward sustainable resource recovery and the adoption of biobased 
chemicals. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

The authors would like to sincerely thank Robbert Kleerebezem for 
his insightful comments and constructive feedback on the manuscript. 
The authors acknowledge the Dutch Research Council for its financial 
contribution to the UNLOCK Project (NWO:184.035.007 and NRGWI. 
obrug.2018.005). 

References 

Aghapour Aktij, S., Zirehpour, A., Mollahosseini, A., Taherzadeh, M.J., Tiraferri, A., 
Rahimpour, A., 2020. Feasibility of membrane processes for the recovery and 
purification of bio-based volatile fatty acids: a comprehensive review. J. Ind. Eng. 
Chem. 81, 24–40. https://doi.org/10.1016/j.jiec.2019.09.009. 

Agnihotri, S., Yin, D.M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu- 
Imer, D.Y., Taherzadeh, M.J., 2022. A glimpse of the world of volatile fatty acids 
production and application: a review. Bioengineered. https://doi.org/10.1080/ 
21655979.2021.1996044. 

Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., 
Narasimhan, G., 2016. Metagenomics, metatranscriptomics, and metabolomics 
approaches for microbiome analysis. Evol. Bioinform. https://doi.org/10.4137/EBO. 
S36436. 

Alexandropoulou, M., Antonopoulou, G., Lyberatos, G., 2018. A novel approach of 
modeling continuous dark hydrogen fermentation. Bioresour. Technol. 250, 
784–792. https://doi.org/10.1016/j.biortech.2017.12.005. 

Ang, K.S., Lakshmanan, M., Lee, N.-R., Lee, D.-Y., 2018. Metabolic modeling of microbial 
community interactions for health, environmental and biotechnological 
applications. Curr. Genomics 19 (8), 712–722. https://doi.org/10.2174/ 
1389202919666180911144055. 

Antoniewicz, M.R., 2020. A guide to deciphering microbial interactions and metabolic 
fluxes in microbiome communities. In: Current Opinion in Biotechnology, 64. 
Elsevier Ltd., pp. 230–237. https://doi.org/10.1016/j.copbio.2020.07.001 

Arslan, D., Steinbusch, K.J.J., Diels, L., Hamelers, H.V.M., Strik, D.P.B.T.B., Buisman, C.J. 
N., De Wever, H., 2016. Selective short-chain carboxylates production: a review of 
control mechanisms to direct mixed culture fermentations. Crit. Rev. Environ. Sci. 
Technol. 46, 592–634. https://doi.org/10.1080/10643389.2016.1145959. 

Askland, K.D., Strong, D., Wright, M.N., Moore, J.H., 2021. The translational machine: a 
novel machine-learning approach to illuminate complex genetic architectures. 
Genet. Epidemiol. 45 (5), 485–536. 

Atasoy, M., Cetecioglu, Z., 2021. Bioaugmentation as a strategy for tailor-made volatile 
fatty acid production. J. Environ. Manag. 295, 113093 https://doi.org/10.1016/j. 
jenvman.2021.113093. 

Atasoy, M., Cetecioglu, Z., 2022. The effects of pH on the production of volatile fatty 
acids and microbial dynamics in long-term reactor operation. J. Environ. Manag. 319 
https://doi.org/10.1016/j.jenvman.2022.115700. 

Atasoy, M., Eyice, O., Schnürer, A., Cetecioglu, Z., 2019. Volatile fatty acids production 
via mixed culture fermentation: revealing the link between pH, inoculum type and 
bacterial composition. Bioresour. Technol. 292 https://doi.org/10.1016/j. 
biortech.2019.121889. 
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