
Bounds for codes correcting insertion, deletion
and substitution errors

Philippe van Elderen

Supervisor: Jos Weber
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft Universtiy of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Applied Mathematics

January 9, 2025

Name of the student: Philippe van Elderen
Final project course: AM3000 Bachelorproject
Thesis committee: Jos Weber, Joost de Groot

Layman’s summary

Data is stored using symbols like ones and zeros. In the process of reading and
storing data, errors occur which are corrected by adding redundant symbols to
the data. The manner in which we do this, is called an error-correcting code.
We are interested in some properties of these codes such as size and efficiency.
In earlier research, bounds on the size of error-correcting codes that can correct
different kind of errors have been established. However, these bounds use the
size of an unknown set V . In this thesis, the size of V will be examined, in
order to be able to give some insight in earlier found bounds on error-correcting
codes.

1

Summary

When data is stored, transmitted or read, errors occur. In order to be able to
correct these errors, error-correcting codes are used. These codes add redundant
information, in order to be able to correct errors that might occur. There are
three types of errors that might occur, namely substitution, insertion and dele-
tion errors. Substitution errors are errors where the original symbol is wrongly
decoded or stored and the receiver reads another symbol. Insertion errors are
errors where the receiver reads a symbol at a location where there should not
be a symbol and a deletion error is an error where the receiver does not read a
symbol while the reader should have. Substitution errors are the most common
and therefore, codes which correct these type of errors are more extensively ex-
amined. There are however methods of storing data, for example storing data
using DNA as medium, for which insertion and deletion or indel errors occur at
a significant rate and therefore error-correcting codes should not only be able
to correct substitution errors, but also indel errors.[1] [2]We want codes to be
as efficient as possible, in other words, to be able to correct as many errors as
possible by adding as few redundant symbols as possible. The size of a code
is the number of codewords in a code and we would like this number to be as
big as possible. Ward Spee has done research into the maximum size of error-
correcting codes that can correct exactly t′ deletions, exactly t′′ insertions and
at most s substitutions for his masters thesis at the University of Technology
Delft.[3] In his research he has found various bounds on the size of these error-
correcting codes. These bounds contain the size of a set V which is not known.
This bachelor thesis project revolves around determining bounds on this size.

Later in this thesis, the set V will be explained further. For now it suffices
to say it depends on a word x, the maximum number of substitutions s, the
number of deletions t′ and the number of insertions t′′. Firstly, the need and
workings of error-correcting codes will be explained. Subsequently, the set V
will be defined and explained in more detail and we will show the results ob-
tained by Ward Spee, for which this set is essential. Lastly we will examine the
size of V for different parameters and apply our findings to the bounds provided
by Spee.

The main findings of this thesis are the construction of an exact expression
for the size of V for specific t′, t′′ and s which is then used in the bounds found

2

by Ward Spee on the maximum size of codes. The behavior of these bounds is
discussed and some insight is given into the problem for larger values of t′, t′′

and s.

3

Contents

1 Introduction 6
1.1 The quality of codes . 7
1.2 Indel errors . 8
1.3 Definition of the set Vt′,t′′,s(x) 8
1.4 Results found by Ward Spee . 9
1.5 Organisation of this thesis . 10

2 Exclusively indel or substitution errors 11
2.1 Exclusively substitution errors 11
2.2 Exclusively indel errors . 12

2.2.1 Insertion only . 12
2.2.2 Deletion only . 12

3 Combinations of substitution and indel errors 17
3.1 Size of V1,0,1(x) . 17
3.2 Size of V0,1,1(x) . 18
3.3 Behaviour of lower and upper bound |V0,1,1(x)| 25
3.4 The size of V1,1,1(x) . 25
3.5 Upper bound for |V1,1,1(x)| . 27
3.6 Bounds on |Vt′,t′′,s(x)| . 27

3.6.1 An upper bound . 28
3.6.2 Finding an expression for |Dt′,t′′,s(x)| for specific x 29
3.6.3 Arbitrary x . 29

4 Application to bounds on codes 31
4.1 Bounds using |Vt,t,2s(x)| . 31
4.2 Upper bound using |V1,1,1(x)| . 31
4.3 Behaviour of an upper bound on Mq(n, 2, 1) 32

5 Conclusions & Recommendations 33

Appendices 36

A Proof of Theorem 2 37

4

B Derivation of expressions for |Vt′,t′′,s(x)| 39
B.1 Derivation of Lemma 9 . 39

C Python code 42

5

Chapter 1

Introduction

When storing, transmitting or reading data, binary or of another kind, errors
can occur. The most well known and studied type of errors are substitution
errors. These are errors where a symbol is substituted by a different symbol.
Without error-correcting codes, this can lead to errors in the transmission of
information. Suppose one wants to communicate the wind direction. Then we
first need to assign binary words to each wind direction, say south = 00, west
= 01, north = 11 and east = 10. These words are called information words.
Assume the wind blows from the north, then in order to communicate this, we
need to send the word 11. However, if an error occurs, say in the second posi-
tion, the receiver may receive and decode the information as follows

North −−−−−−→
encodes to

11 −−−−−−−→
error occurs

10 −−−−−−→
decodes to

East

We usually cannot prevent errors from occurring, however we can correct errors
by adding extra bits. These bits are called redundant bits, since they do not
contain information. The words we obtain by adding these redundant bits are
called codewords and all codewords together form the error-correcting code.
One of the simplest error-correcting codes is the three repetition code. As the
name suggests, this code simply repeats the information words three times. The
information words and codewords are shown in Table 1.1 where the redundant
bits are coloured blue.

When decoding codewords, one always assumes as few errors as possible.
Thus if the received word differs from all codewords, we decode to the closest
codewords from our list of codewords. Now if we again want to communicate
that the wind direction is north, we send the codeword 111111. If an error
occurs at the second position the receiver reads the word 101111 which is not a
codeword. The distance between two words x, y of equal length is defined as

d(x, y) = the number of places where x and y differ

Since d(101111, 111111) = 1, d(101111, 000000) = 5, d(101111, 101010) = 2 and
d(101111, 010101) = 4 we decode as follows

6

Wind direction Information word Codeword
South 00 000000
West 01 010101
North 11 111111
East 10 101010

Table 1.1: Example of three repetition code on wind direction

North −−−−−−→
encodes to

111111 −−−−−−−→
error occurs

101111 −−−−−−−→
corrects to

111111 −−−−−−→
decodes to

North

Thus we can accurately correct this error.

1.1 The quality of codes
In the example we were able to correct one error, but how can we be sure this
is always possible? Are there instances in which we can correct more than one
error? These questions can be answered by looking at the minimal distance
between the codewords. Suppose the minimal distance between two codewords
is 2s + 1. We will show that we can correct up to s errors by contradiction.
Suppose we cannot correct s errors. Then there exist codewords c1, c2 such that
there exists a word x with d(c1, x) = s and

d(c2, x) ≤ d(c1, x) = s (1.1)

however, by the triangle inequality we have that

d(c1, x) + d(x, c2) ≥ d(c1, c2) = 2s + 1 (1.2)

But this gives us a contradiction, since by 1.1 we have that

d(c1, x) + d(x, c2) ≤ 2 · d(c1, x) ≤ 2s (1.3)

thus we can always correct at least s errors.

A quick example shows us that we cannot always correct s + 1 errors. Let

c1 = 11 . . . 11︸ ︷︷ ︸
2s + 1 ones

, c2 = 00 . . . 00︸ ︷︷ ︸
2s + 1 zeros

Then d(c1, c2) = 2s+1. If we send c1 and s+1 errors occur, we receive a word x
with s+1 zeros and 2s+1−(s+1) = s ones. Since d(c1, x) = s+1 > s = d(c2, x),
we decode to c2 and we are not able to decode correctly.

The quality of error-correcting codes depends also on its code rate R. The
code rate depends on the number of codewords and their length. The formal
definition is as follows

7

Definition 1. The code rate R of an error-correcting code C with q-ary code-
words of length n, is defined as

R =
logq |C|

n
(1.4)

A high code rate implies that a larger portion of all possible words of length
n are being used to convey information. Therefore, we are looking to maximize
|C| without increasing n, the length of the codewords.

1.2 Indel errors
Before we can define the set in which we are interested, we need to explain
indel errors. Indel is short for insertions and deletions and indel errors are
combinations of indel- and deletion errors. Suppose we send the word 11 once
more and a deletion error occurs at the second position:

North −−−−−−→
encodes to

11 −−−−−−−→
error occurs

1 −−−−−−→
decodes to

East/North/West

While an insertion can happen at three positions, namely before the first symbol,
between the two symbols or after the second symbol. This might look as follows:

North −−−−−−→
encodes to

11 −−−−−−−→
error occurs

101 −−−−−−→
decodes to

East/North/West

Now it is time to give the definition of the set V (x, t′, t′′, s).

1.3 Definition of the set Vt′,t′′,s(x)
The two types of error-correcting codes, substitution and indel, have been widely
studied. However, codes that can correct combinations of substitution and indel
errors have not yet been studied as extensively. Bounds on the size of these codes
have been studied by Ward Spee in his thesis project [3]. The bounds he has
found depend on the size of the set Vt′,t′′,s(x). This set consists of all q-ary
words that can be obtained from a word x of length n by applying t′ deletions,
t′′ insertions and at most s substitutions. If we take q = 2, n = 3, x = 011,
t′ = 1, t′′ = 0 and s = 1 for example, then the vectors in the set V are of length
2 since we apply 1 deletion and 0 insertions. We can show by hand that the set
V1,0,1(011) spans B2(2) = {00, 01, 10, 11} using Table 1.2. Here B2(2) denotes
all binary words of length 2. The set Bq(n) denotes the set of all q-ary words of
length n. For example, the set B3(2) denotes all ternary words of length 2 thus

B3(2) = {00, 01, 02, 10, 11, 12, 20, 21, 22}

8

first position sub second position sub third position sub
first position del 11 01 10

second position del 11 01 00
third position del 11 00 01

Table 1.2: Possible binary words from 011 by applying one deletion and substi-
tution

1.4 Results found by Ward Spee
Ward Spee has found some bounds on codes that correct combinations of indel
and substitution errors. The following is a lower bound on the number of code-
words of a code with q-ary codewords of length n that can correct up to t indel
errors and at most s substitution errors, where t′ + t′′ ≤ t. Here Mq(n, t, s)
denotes the maximum number of q-ary codewords of length n of a code that
can correct t′ deletions, t′′ insertions and at most s substitutions with t′ +t′′ ≤ t.

Lemma 1. [3] (Lemma 4.3) Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥ qn

V avr
t,t,2s

(1.5)

where V avr
t,t,2s = q−n

∑
x∈Bq(n) |Vt,t,2s(x)|

The following lemma gives another lower bound on Mq(n, t, s)

Lemma 2. [3] (Lemma 4.7) Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
∑

x∈Bq(n)

1
|Vt,t,2s(x)| (1.6)

Spee has also derived an upper bound on Mq(n, t, s) in the following theorem

Theorem 1. [3] (Theorem 6.2) Let n ≥ 2, q ≥ 2, 0 ≤ t < n and 0 ≤ s ≤ n
be integers. The following gives an upper bound on Mq(n, t, s) for all integers
0 ≤ r ≤ n and 0 ≤ t′, t′′ < n such that t′ + t′′ = t,

Mq(n, t, s) ≤ qn−t′+t′′

minx∈Bq(n);r(x)>r|Vt′,t′′,s(x)| + q

r∑
i=1

(
n − 1
i − 1

)
(q − 1)i−1 (1.7)

9

Our goal is to find upper and lower bounds on the size of this set Vt′,t′′,s(x)
which depend on the word x, the number of deletions and insertions t′ and t′′

and the number of substitutions s, in order to give an insight in the upper and
lower bounds on Mq(n, t, s) found by Ward Spee.

1.5 Organisation of this thesis
In order to find bounds for the size of the set Vt′,t′′,s(x), we first give exact
expressions in the case in which either s = 0 or t′ = t′′ = 0 in Chapter 2.
Then we will try to find exact expressions or bounds for the size of V1,0,1(x)
and V0,1,1(x) and look at the behaviour of these bounds for large values of q
and n in Chapter 3. Finally we consider the case in which t′ = t′′ = s = 1 and
we will use the results to say something useful about the bounds provided by
Ward Spee in Chapter 4. Finally in Chapter 5 we will state the conclusions and
give some recommendations regarding further research into the size of Vt′,t′′,s(x).

10

Chapter 2

Exclusively indel or
substitution errors

Before we consider the case in which there occur both substitution errors and
indel errors, we look at the case in which we either have exclusively substitution
errors or exclusively indel errors.

2.1 Exclusively substitution errors
If we look at the case t′ = t′′ = 0 then the size of our set V (x, 0, 0, s) is simply
equal to the number of vectors we can obtain by changing a number of symbols
between 0 to s. We define the set of words we can obtain as

V (x, 0, 0, s) = Ss(x)

The size of this set is known and straightforward to prove. When we change
0 ≤ j ≤ s symbols in a word, there are

(
n
j

)
choices for the set of symbols we

change and every symbol we change can become any of q−1 symbols. Therefore,
if there occur exactly j substitutions, we can obtain exactly

(
n
j

)
(q − 1)j words.

Hence the total number of words we can obtain by changing at most s symbols
is equal to

|Ss(x)| =
(

n

0

)
(q − 1)0 +

(
n

1

)
(q − 1)1 + ... +

(
n

s

)
(q − 1)s =

s∑
j=0

(
n

j

)
(q − 1)j

We conclude that the exact size of V (x, 0, 0, s) is always known whenever there
are no indel errors made.

11

2.2 Exclusively indel errors
The case in which we only encounter indel errors is more complicated than the
case in which we only encounter substitutions for several reasons. First of all,
the length of the word will increase or decrease by |t′′ − t′| symbols. Secondly,
the size of V (x, t′, t′′, s) does not only depend on the length of the word x but
also on other properties of x. When we look at binary words of length 2 for
example, with 1 deletion and 1 insertion, the sets V (x, 1, 1, 0) are the following:

V (00, 1, 1, 0) = {00, 01, 10}

V (01, 1, 1, 0) = {00, 01, 10, 11} = V (10, 1, 1, 0)

V (11, 1, 1, 0) = {01, 10, 11}

Hence the type of word x does influence the size of the set V (x, t′, t′′, s).

2.2.1 Insertion only
We first give the following definition:

Definition 2. The set It′′(x) = V0,t′′,0(x) is the set of words that can be reached
by exactly t′′ insertions on x.

The words in this set are of length n + t′′ of which t′′ have been inserted.
The size of this set has been stated and proven by Ward Spee [3]. The original
result has been stated by Levenshtein. [4] We will state the expression for this
size and give an alternative proof. Since the proof is quite long and the result
is known, the proof can be found in the appendix.

Theorem 2. [4] Let x be an arbitrary word in Bq(n). Then the cardinality of
the set It′′(x) is given by the following expression:

|It′′(x)| =
t′′∑

i=0

(
n + t′′

i

)
(q − 1)i

We conclude that the size of the sets Ss(x) and It′′(x) do only depend on
the number of substitutions or insertions and the length of the word and do not
depend on the structure of the word x.

2.2.2 Deletion only
We need the following definition when we examine the case of only deletions:

Definition 3. The set Dt′(x) = Vt′,0,0(x) is the set of words that can be reached
by exactly t′ deletions on x.

12

We will use an example to illustrate that the set Dt′(x) does not only depend
on the parameters t′ and n, but also on the structure of the word x. Consider
the words 000, 010 ∈ B2(3). Then the following holds with regard to the set
Dt′(x);

D1(000) = {00}, D1(010) = {01, 00, 10}
and

D2(000) = {0}, D2(010) = {0, 1}
Thus we can conclude that there cannot exist a simple expression depending on
n and t′ to describe the size of the set Dt′(x). For binary x and t ≤ 5 there
exists a formula for D(x) provided by Mercier, Khabbazian and Bhargava. [5]
In order to get an insight in the problem, we take n to be small and we work in
a binary alphabet. The case n = 1 is trivial since deleting one symbol always
results in the empty word. For n = 2 we have that |D1(00)| = |D1(11)| = 1
and |D1(10)| = |D1(01)| = 2. For n = 3 we have that |D1(000)| = |D1(111)| =
1, |D1(100)| = |D1(110)| = |D1(011)| = |D1(001)| = 2 and |D1(101)| = |D1(010)| =
3.
We can see a pattern emerge. Namely the size of the set D1(x) is equal to the
number of runs in x say r(x). A run is defined as a sequence of identical sym-
bols where the symbols directly before and directly after the run are different
from the symbol in the run. Hence the word 00000 consists of only one run of
length 5 and not multiple runs of different lengths. The following lemma has
been stated first by Levenshtein.

Lemma 3. [4] Let n ≥ 1 be an integer and let x ∈ B2(n) be a word with r(x)
runs. Then the number of words that can be attained by deleting one symbol of
x is given by

|D1(x)| = r(x)

Proof. We begin by showing that we can obtain at least r(x) words by deleting
one symbol. We number the runs 1, 2, 3, ..., r(x). We obtain r(x) different words
by deleting one symbol in any of the r(x) runs since if we look at two arbitrary
words we obtained where we deleted symbols in runs i and j with i < j, then
the words differ in run i. Since the location of the symbol we delete in a run
does not make a difference we conclude that we can obtain exactly r(x) words
by deleting one symbol from x.

We now obtained an expression for the size of D1(x) i.e. for one deletion.
Now we will try to find an expression for 1 ≤ t′ < n. Table 2.1 shows the size
of Dt′(x) for t′ = 2, 3 and different words x of length 3 and 4;

From this table we can already note that the size of D2(x) does not only
depend on the number of runs, but also on the number of ones and zeros. We
can say the following about the size of Dn−1(x) and Dn−2(x).
We define the lowest number of ones or zeros in a word x to be l(x). Then the
word 00011 has an l(x) of 2. We can express the size of Dn−1(x) and Dn−2(x)
as follows:

13

r(x) |D2(x)| |D3(x)|
000 1 1 -
001 2 2 -
010 3 2 -
100 2 2 -
011 2 2 -
101 3 2 -
110 2 2 -
111 1 1 -
0000 1 1 1
0001 2 2 2
0010 3 3 2
0100 3 3 2
1000 2 2 2
0011 2 3 2
0101 4 4 2
0110 3 4 2
1001 3 4 2
1010 4 4 2
1100 2 3 2
0111 2 2 2
1011 3 3 2
1101 3 3 2
1110 2 2 2
1111 1 1 1

Table 2.1: The size of Dt′(x) for different t′ and x

14

Lemma 4. Let x be a word in B2(n). The cardinality of the set Dn−1(x) can
be expressed solely by r(x), the number of runs of x. This can be expressed as
follows:

|Dn−1(x)| =
{

1 if r(x) = 1
2 if r(x) > 1

(2.1)

Proof. First of all we consider the case r(x) = 1. Then x consists of either n
ones or n zeros. When n − 1 deletions occur, there is only one possible word
we can obtain in both cases, namely a one in the first case and a zero in the
second. Thus |Dn−1(x)| = 1 whenever r(x) = 1.
Secondly we need to consider the case r(x) > 1. In this case the word x consists
of both ones and zeros. When we delete n − 1 symbols, we can therefore always
end up with either a one or a zero. Thus |Dn−1(x)| = 2 whenever r(x) > 1.

Lemma 5. Let x ∈ B2(n), then the cardinality of Dn−2(x) can be described by
r(x) and l(x) as follows:

|Dn−2(x)| =

1 if r(x) = 1
2 if r(x) = 2 and l(x) = 1
3 if r(x) = 2 and l(x) ≥ 2
3 if r(x) ≥ 3 and l(x) = 1
4 if r(x) ≥ 3 and l(x) ≥ 2

(2.2)

Proof. i) We start with the case r(x) = 1. In this case x consists of either
n ones or n zeros and the deletion of n − 2 symbols results in the word 11
(when x = 11 . . . 11) or 00 (when x = 00 . . . 00). Thus |Dn−2(x)| = 1 whenever
r(x) = 1.

ii) Now suppose that r(x) = 2 and l(x) = 1. Since l(x) = 1 we know that
x has either exactly one one or one zero. The number of runs is equal to
2 which means that either the first or the last symbol must be equal to the
single one or zero. We have four possible words with these properties namely
x ∈ {011 . . . 11, 100 . . . 00, 00 . . . 001, 11 . . . 110}. In all four cases there are only
two words in the set Dn−2(x) namely {01, 11}, {10, 00}, {00, 01} and {11, 10}
respectively. We conclude that |Dn−1(x)| = 2 whenever r(x) = 2 and l(x) = 1.

iii) A word x with 2 runs and an l(x) greater or equal to 2 is a word of
n − 2 ≥ i ≥ 2 ones followed by n − i zeros or the other way around. Since
l(x) ≥ 2 we can always obtain the words 00 and 11 when deleting n − 2 sym-
bols. We can also obtain the word 01 when x starts with zeros and 10 when
it starts with ones but not the word 10 in the first case and 01 in the second.
Hence |Dn−2(x)| = 3 whenever r(x) = 2 and l(x) ≥ 2.

15

iv) Suppose x has at least 3 runs and an l(x) of 1. Then there is always at least
one one before a zero, and at least one zero before a one, hence 01, 10 ∈ Dn−2(x).
Since l(x) = 1 either 00 ∈ Dn−2(x) or 11 ∈ Dn−2(x) but not both. We conclude
that |Dn−2(x)| = 3 whenever r(x) ≥ 3 and l(x) = 1.

v) Finally suppose that r(x) ≥ 3 and l(x) ≥ 2. Since l(x) ≥ 2 we know
that 00, 11 ∈ Dn−2(x) and since r(x) ≥ 3 we know that 01, 10 ∈ Dn−2(x) thus
|Dn−2(x)| = 4 whenever r(x) ≥ 3 and l(x) ≥ 2.

Mercier et al has determined the exact size of these sets for 2 ≤ t′ ≤ 5 [5],
however the analytical expression becomes too complex to include in this thesis.

16

Chapter 3

Combinations of
substitution and indel
errors

Now we will be looking at combinations of indel and substiution errors and the
size of Vt′,t′′,s(x). There are only three exact results known on explicit values
for t′, t′′ and s, namely the size of V1,1,0(x), which has been derived by Sala
and Dolecek [6] and the size of V1,0,s(x) and V0,1,1(x) which have been derived
by Abu-Sini and Yaakobi [7]. However, these expressions only hold for binary
words. Ward Spee has stated and proven an expression for |V1,0,1(x)| that holds
for arbitrary x ∈ Bq(n). We do not expect to find an exact expression for the
size of Vt′,t′′,s(x) but we are interested in finding bounds on the size of this set.
Ward Spee has examined lower bounds on the size of these sets, however the
goal of this rapport is to look for upper bounds.

3.1 Size of V1,0,1(x)
The size of V1,0,1(x) is known for arbitrary x ∈ Bq(n). Ward Spee has derived
and proven a general expression for |V1,0,1(x)| in his master thesis. We will state
the results here, however for the proof we refer the reader to the thesis of Ward
Spee.[3]

Lemma 6. Let n ≥ 1 and q ≥ 2 be integers and x ∈ Bq(n). Then, the following
holds,

|V1,0,1(x)| =
{

(n − 1)(q − 1) + 1 if r(x) = 1,
r(x)((n − 2)(q − 1) − 1) + q + 2 if r(x) ≥ 2.

(3.1)

17

PPPPPPPPn, r(x)
q 2 3 4 5

2, 1 7 19 37 61
2, 2 8 23 46 77
3, 1 11 33 67 113
3, 2 13 41 85 145
3, 3 14 45 94 161
4, 1 16 51 106 181
4, 2 19, 20 63, 67 133, 142 229, 245
4, 3 21 71 151 261
4, 4 22 75 160 277
5, 1 22 73 154 265
5, 2 26, 28 89, 97 190, 208 329, 361
5, 3 29, 30 101, 105 217, 226 377, 393
5, 4 31 109 235 409
5, 5 32 113 244 425

Table 3.1: Possible values of |V0,1,1(x)| for different q, n and r(x)

3.2 Size of V0,1,1(x)
The size of V0,1,1(x) is known only for binary words and given by Abu-Sini and
Yaakobi [7].

Lemma 7. ([7], Theorem 10) Let n ≥ 1 be an integer and let x ∈ B2(n) be a
binary word with r = r(x) runs of lengths l1, l2, . . . , lr. The number of words
that can be obtained from x by one insertion and at most one substitution is
given by

|V0,1,1(x)| = (n + 2)2 − 2 −
r∑

i=1

li(li + 5)
2 (3.2)

In this section we will try to find an expression for V0,1,1(x) for x ∈ Bq(n)
with q > 2. Since the size of this set is known for binary words and depends only
on the length of the word n and the lengths of the runs of the word l1, l2, . . . , lr
it makes sense to investigate whether words with similar runs and length create
the same size of V0,1,1(x). Therefore we have used a computer to find the size
of this set for different n, q and r(x). The results are shown in Table 3.1.

First of all we note that for the number of runs equal to 2, 3, . . . , n − 2
there seems to be more than one possible value for the value of |V0,1,1(x)|. The
difference here lies in the length of the runs. A word with length 5 and 3 runs
might have two runs of length 1 and one of length 3 or it might have two runs of
length 2 and one of length 1. These words result in a different size of V0,1,1(x).
In order to get an idea of a general expression for all x we start by showing that
the following holds for x with r(x) = 1.

18

Lemma 8. Let x ∈ Bq(n) be a word with r(x) = 1. Then we have that

|V0,1,1(x)| = 1 + (n + 1)(q − 1) +
(

n + 1
2

)
(q − 1)2

Proof. Without loss of generality we can assume that

x = 00 . . . 00︸ ︷︷ ︸
n zeros

Then we can note that by inserting one symbol and substituting at most one
symbol, we cannot obtain a word with more than 2 non-zero symbols. Further-
more note that we can obtain all words with at most two non-zero symbols of
length n + 1 from x by one insertion and at most one substitution. Therefore
the size of V0,1,1(x) is equal to the number of words of length n+1 with at most
two non-zero symbols, hence

|V0,1,1(x)| = 1 + (n + 1)(q − 1) +
(

n + 1
2

)
(q − 1)2

which is exactly the expression we wanted to prove.

Later in this thesis we will write this expression in polynomial form which
is given by the following expression:

|V0,1,1(x)| = 1 + (n + 1)(q − 1) +
(

n + 1
2

)
(q − 1)2

= (n + 1)(n(q − 1)2 + 2(q − 1))
2 + 1

Now we will try to find an expression for the maximum cardinality of V0,1,1(x).
It appears that the maximum cardinality is attained whenever r(x) = n. We will
later prove this. In order to derive an expression for the maximum cardinality
of V0,1,1(x) we make use of a computer to determine the maximum values of
this set for different q and n. The results are shown in Table 3.2.

From these results, an expression for the maximum cardinality of V0,1,1(x)
can be found namely

max
x∈Bq(n)

|V0,1,1(x)| = n2q2 − (2n2 − n − 1)q + n(n − 1)

If the reader wants to know how we have found this expression, we refer the
reader to the appendix where we show in detail how this is done for the expres-
sion shown in Lemma 9. The expressions stated in Lemma 12 and in Table 3.4
have been derived in a similar fashion.
In order to show that this is true, we will first show that it is the case whenever
r(x) = n and then we will show that for all n,q and y, x ∈ Bq(n) it holds that
|V0,1,1(y)| < |V0,1,1(x)| for r(x) = n and r(y) < n.

19

HHH
HHq

n 2 3 4 5

2 8 14 22 32
3 23 45 75 113
4 46 94 160 244
5 77 161 277 425
6 116 246 426 656
7 163 349 607 937
8 218 470 820 1268
9 281 609 1065 1649
10 352 766 1342

Table 3.2: Maximum values of |V0,1,1(x)| for different n and q

Lemma 9. Let x ∈ Bq(n) and r(x) = n. Then we have that

|V0,1,1(x)| = n2q2 − (2n2 − n − 1)q + n(n − 1)

Proof. First we will show that the expression holds for n = 2, q ≥ 2 and then
we will complete the proof using induction on n to show it holds for all n ≥ 2.
Let x ∈ Bq(2) be arbitrary. Then without loss of generality we can assume that
x = 01 since for a ̸= b and c ̸= d we have that |V0,1,1(ab)| = |V0,1,1(cd)| for
a, b, c, d ∈ {0, 1, . . . , q − 1}. We want to prove that for n = 2:

|V0,1,1(x)| = n2q2 − (2n2 − n − 1)q + n(n − 1) = 4q2 − 5q + 2 (3.3)

First we apply at most one substitution. We can obtain all words of length
2 with either a 0 at the first position, or a 1 at the second position. Now by
applying an insertion to these words, we can obtain all words of length 3, with
either a zero at the first or second position, or a one at the second or third
position. Now we still need to count all words with one of these properties.
There are q2 words where the first symbol is a 0. There are (q − 1)q words
where the second symbol is a 0 and the first symbol is not a 0 (otherwise we
count words double). There are (q − 1)q words where the second symbol is a 1
and the first symbol is not a 0. Finally there are (q − 1)(q − 2) words where the
third symbol is a 1, the first symbol is not a 0 and the second symbol is not a
0 or 1. Thus the total number of words is

|V0,1,1(01)| = q2 + 2q(q − 1) + (q − 1)(q − 2) = 4q2 − 5q + 2 (3.4)

which is exactly what we needed to prove.
Now we complete the proof using induction on n. We already showed that the
expression holds for n = 2, q ≥ 2. Now suppose that the expression is true for
all n ≤ N and q ≥ 2 for some N ≥ 2. Then for n = k ≤ N we have

|V0,1,1(x)| = k2q2 − (2k2 − k − 1)q + k(k − 1)

20

Now we consider an arbitrary word y ∈ Bq(k + 1) with r(x) = k + 1. When we
look at the set |V0,1,1(y)| we can distinguish between two cases, namely either
the insertion and the substitution occur beore the k + 1’th symbol or they do
not. If they do happen before the last symbol, we know from the induction
hypothesis that this results in exactly |V0,1,1(x)| different words. Now we con-
sider the case that either the insertion occurs at the end of the word, or the last
symbol is substituted.

Case 1: last symbol is substituted: If the last symbol is substituted, then there
are q −1 choices for this substitution. There are q choices for an insertion at the
first position and in order to avoid double counting (see Theorem 2) we have
q − 1 possible values for insertions at positions 2 to k + 1. Therefore we count a
total of (q −1)(k(q −1)+ q) different words when we substitute the last symbol.
It is clear that we did not count words double, since the last symbol remained
unchanged in the first set of words, while it is changed (by a substitution) in
the second set.

Case 2: Insertion after last symbol and one substitution first k symbols: Now
we consider the final case, in which there occurs an insertion at the end of the
word and at most one substitution at the first k symbols. For the insertion and
the substitution there are exactly q − 1 choices, therefore the total number of
words where the insertion happens at the end equals k(q−1)2. We again did not
count words double, since the last symbol is different from the k + 2′th symbol
of y we did not count words from the set |V0,1,1(x)| and the k + 1’th symbol is
different when compared to the k + 1’th symbol in the set of word where the
k + 1’th symbol is substituted. We have only missed the case in which there
does not occur any substitution and the insertion occurs at the end of the word.
However, this is equivalent to substituting the k + 1’th symbol and inserting a
symbol before the k + 1’th symbol. Thus we conclude that

|V0,1,1(y)| = |V0,1,1(x)| + (q − 1)(k(q − 1) + q) + k(q − 1)2

= k2q2 − (2k2 − k − 1)q + k(k − 1) + (q − 1)(kq − k + q) + k(q2 − 2q + 1)
= k2q2 − (2k2 − k − 1)q + k(k − 1) + (k + 1)q2 − (2k + 1)q + k + kq2 − 2kq + k

= (k2 + 2k + 1)q2 − (2k2 + 3k)q + k(k − 1) + 2k

= (k + 1)2q2 − (2(k + 1)2 − (k + 1) − 1)q + (k + 1)k

which is exactly the expression for n = k + 1. Hence we have proved the induc-
tion towards n. Therefore the expression holds for all n, q ≥ 2.

We stated that the cardinality of V0,1,1(x) is maximal for r(x) = n without
proof. In order to prove this, we will first need to proof the following lemma:

21

Lemma 10. Let x, y ∈ Bq(n) such that q ≥ 3, d(x, y) = 1 and r(x) = r(y) + 1.
Then |V0,1,1(x)| > |V0,1,1(y)|.

Proof. If d(x, y) = 1 then x and y only differ in one position, say xi ̸= yi. We
can write x and y as the following:

x = x1x2 . . . xi−1xixi+1 . . . xn

and
y = x1x2 . . . xi−1yixi+1 . . . xn

Since r(x) > r(y) this implies that either yi = xi−1 ̸= xi or yi = xi+1 ̸= xi. We
can assume without loss of generality that yi = xi−1. Hence

x = x1x2 . . . xi−2xi−1xixi+1 . . . xn

and
y = x1x2 . . . xi−2xi−1xi−1xi+1 . . . xn

Now suppose there would only occur substitutions and insertions before the
(i − 2)nd symbol or after the (i + 1)st symbol. Then the size of the set V0,1,1(x)
and V0,1,1(y) would be equal since they are identical where the substituion and
insertion take place. Thus there is only a diffence in size of these sets if there
are inserions or substitutions at or between the (i−2)nd and (i+1)th symbol. If
the insertion happens before xi−2 or after xi+1 then for both x and y there are
4(q −1) choices for the substitution between xi−2 and xi+1. The only difference
in size between V0,1,1(x) and V0,1,1(y) occurs therefore when both the insertion
and/or substitution occur between xi−2 and xi+1. If we let

a = xi−2xi−1xixi+1

and
b = xi−2xi−1xi−1xi+1

then we can therefore conclude that

|V0,1,1(x)| − |V0,1,1(y)| = |V0,1,1(a)| − |V0,1,1(b)|

Without loss of generality we can let xi = 0 and xi−1 = 1. Since we need to
ensure that r(x) = r(y) + 1 we have that r(a) ∈ {2, 3, 4} and r(b) ∈ {1, 2, 3}.
If r(a) = 2 we have a = 1100 and b = 1110 thus r(a) = r(b) hence we conclude
that r(a) ̸= 2. Now suppose that r(a) = 3, then a = 110c and b = 111c where
c ∈ {2, 3, . . . , q−1}. Finally suppose that r(a) = 4, then a = c10d and b = c11d
where c, d ∈ {2, 3, . . . , q − 1}.

Thus a = 110c, b = 111c or a = c10d, b = c11d with c, d ∈ {2, 3, . . . , q − 1}.
We can use the same reasoning we used before to conclude that |V0,1,1(a)| −
|V0,1,1(b)| = |V0,1,1(10)| − |V0,1,1(11)|. We will determine all words that can be
reached from both 11 and 10 by applying an insertion and at most one substitu-
tion. When applying an insertion and exactly one substitution to the word 11

22

we can reach all words of length 3 that include at least one 1. The total number
of words of length 3 with at least one 1 is equal to the sum of the number of
words with exactly one 1, the number of words with exactly two ones and the
word with three ones. Thus |V0,1,1(11)| = 3(q −1)2 +3(q −1)+1 = 3q2 −3q +1.
The set V0,1,1(10) contains all words of length 3 that contain at least one 1 or
one 0. Since 000 is in this set and every word in V0,1,1(11) is also in this set
we can conclude that |V0,1,1(10)| > |V0,1,1(11)| and therefore we conclude that
|V0,1,1(x)| > |V0,1,1(y)|.

We can use this result to show that |V0,1,1(x)| is maximal for r(x) = n.

Lemma 11. Let x ∈ Bq(n) with q ≥ 3 such that |V0,1,1(x)| ≥ |V0,1,1(y)| for all
y ∈ Bq(n). Then r(x) = n.

Proof. Suppose there exists a word x ∈ Bq(n) such that |V0,1,1(x)| ≥ |V0,1,1(y)|
for all y ∈ Bq(n) with r(x) < n. Then x contains a run of length 2 or higher.
Suppose this run starts at position i. Then x = x1x2 . . . xi−1xixi+1 . . . xn with
xi−1 ̸= xi = xi+1. Let y ∈ Bq(n) such that yj = xj for all j ̸= i and yi ̸∈
{xi−1, xi}. This is possible since q ≥ 3. Then r(y) = r(x) + 1 hence by Lemma
10 we conclude that |V0,1,1(y)| > |V0,1,1(x)| which is a contradiction. Therefore
we conclude that r(x) must be equal to n.

With the same reasoning we can prove that |V0,1,1(x)| is minimal for r(x) =
1. We therefore have derived a lower and an upper bound for the size of the set
|V0,1,1(x)| namely

Theorem 3. Let x ∈ Bq(n) with q ≥ 3. Then the following holds,

(n + 1)(n(q − 1)2 + 2(q − 1))
2 +1 ≤ |V0,1,1(x)| ≤ n2q2 −(2n2 −n−1)q+n(n−1)

(3.5)
with equality for r(x) = 1 and r(x) = n respectively.

We needed the condition q ≥ 3 to hold since we needed to be able to choose
a third symbol in order to have both d(x, y) = 1 and r(x) = r(y) + 1. We
want to extend the upper and lower bound to the binary case and therefore we
need to show that |V0,1,1(x)| is maximal for r(x) = n and minimal for r(x) = 1.
Fortunately we already established that there exists an expression for |V0,1,1(x)|
for binary words namely

|V0,1,1(x)| = (n + 2)2 − 2 −
r∑

i=1

li(li + 5)
2 (3.6)

Maximizing or minimizing this expression for set n is equivalent to minimizing or
maximizing the sum

∑r
i=1

li(li+5)
2 under the condition that l1 + l2 + . . .+ lr = n.

23

In the case that r(x) = n we have l1 = l2 = . . . = ln = 1, thus
r∑

i=1

li(li + 5)
2 = 3n (3.7)

and in case r(x) = 1 we have l1 = n and
r∑

i=1

li(li + 5)
2 = n(n + 5)

2 (3.8)

For n ≥ 2 we have that 3n < n(n+5)
2 since the equation

n(n + 5)
2 − 3n = 0 =⇒ n2 − n = 0 =⇒ n = 0, 1

has only two roots both less than 2.
Now let x ∈ Bq(n) be arbitrary with 1 < r(x) < n. Suppose x has r runs of
length l1, l2, . . . , lr, where li ≤ li+1. Now let x’ be a word with runs of length
l1, l2, . . . , l′

r, l′
r+1 where l′

r + l′
r+1 = lr. Then r(x’) = r + 1 > r(x) and

r∑
i=1

li(li + 5)
2 >

r−1∑
i=1

li(li + 5)
2 +

l′
r(l′

r + 5) + l′
r+1(l′

r+1 + 5)
2

since

lr(lr + 5) = (l′
r + l′

r+1)(l′
r + l′

r+1 + 5) > l′
r(l′

r + 5) + l′
r+1(l′

r+1 + 5)

Thus for all x with r(x) < n there exists a word x’ with r(x’) > r(x) such that

|V0,1,1(x)| < |V0,1,1(x’)|

hence |V0,1,1(x)| is maximal for r(x) = n.

We again take x with runs l1, l2, . . . , lr. Let y be a word with r − 1 runs of
length l1, l2, . . . , l′

r−1 where l′
r−1 = lr−1 + lr. Then by the same reasoning as

above we find
r−2∑
i=1

li(li + 5)
2 +

l′
r−1(l′

r−1 + 5)
2 >

r∑
i=1

li(li + 5)
2

and
|V0,1,1(x)| > |V0,1,1(y)|

whenever r(y) < r(x) hence |V0,1,1(x)| is minimal for r(x) = 1.

24

3.3 Behaviour of lower and upper bound |V0,1,1(x)|
It might be interesting to investigate the behaviour of the lower and upper
bound of |V0,1,1(x)| for large values of n and q. For large values of q the higher
order terms of q will dominate hence

(n + 1)(n(q − 1)2 + 2(q − 1))
2 + 1 ≈ n(n + 1)q2

2 (3.9)

n2q2 − (2n2 − n − 1)q + n(n − 1) ≈ n2q2 (3.10)

and therefore for large q the inequality becomes approximately

n(n + 1)q2

2 < |V0,1,1(x)| < n2q2 (3.11)

Now suppose n is very large while q is not. Then the following holds,

(n + 1)(n(q − 1)2 + 2(q − 1))
2 + 1 ≈ (q − 1)2n2

2 (3.12)

n2q2 − (2n2 − n − 1)q + n(n − 1) ≈ (q2 − 2q + 1)n2 = (q − 1)2n2 (3.13)

Thus for large n the inequality becomes approximately

n2(q − 1)2

2 < |V0,1,1(x)| < n2(q − 1)2 (3.14)

Finally we consider the case in which both n and q are large. Then n2q2 ≫ n2q
and n2q2 ≫ nq2 hence the inequality becomes

n2q2

2 < |V0,1,1(x)| < n2q2 (3.15)

We conclude that for large values of n and q, the cardinality of the set V0,1,1(x)
lies in the interval [m

2 , m] where m = n2q2.

3.4 The size of V1,1,1(x)
In order to get an insight in the size of V1,1,1(x) we again look at different choices
for x, n and q. Table 3.3 shows the size of the set V1,1,1(x) for different r(x), n
and q found by a computer algorithm.

We can see that the number of different possible sizes of V1,1,1(x) increases
very rapidly, when q and n increase. Therefore it might be more useful to look
at the maximum size for different r(x). We will first focus our attention on
the words for which |V1,1,1(x)| is maximal. We expect this to be the case for

25

PPPPPPPPn, r(x)
q 2 3 4 5

2,1 4 9 16 25
2,2 4 9 16 25
3,1 7 19 37 61
3,2 8 25 52 89
3,3 8 26,27 56,60 98,107
4,1 11 33 67 113
4,2 14,15 49, 53 106,115 185,201
4,3 15,16 58,63,66 131,144,152 234,259,274
4,4 16 69,72,75 164,174,183 301,322,339
5,1 16 51 106 181
5,2 22,24 81,89 178,196 313,345
5,3 25,26,28,29 102,106,111,118,119,122 233,242,255,272,273,281 418,434,459,490,491,506
5,4 28,30 129,136,140,143,145,151 308,327,336,342,348,360 565,602,618,627,639,659
5,5 31 156, 164,165,172,179 385,407,409,425,427,441 718,759,766,792,796,819

Table 3.3: Possible values for |V1,1,1(x)| for different x and q

H
HHHHn

r(x) 1 2 3 4 5

2 q2 q2 - - -
3 3q2 − 3q + 1 5q2 − 8q + 4 7q2 − 16q + 12 - -
4 6q2 − 8q + 3 12q2 − 22q + 11 18q2 − 40q + 24 24q2 − 60q + 39 -
5 10q2 − 15q + 6 21q2 − 40q + 20 33q2 − 72q + 41 45q2 − 106q + 64 58q2 − 144q + 89

Table 3.4: Expression for |V1,1,1(x)| for different choices of n and r(x)

x such that r(x) = n. We can again derive expressions for the maximal size
of |V1,1,1(x)| for different values of n, q and r(x) based on numerical results as
shown in the appendix. These expressions are shown in Table 3.4 without proof
for n ≥ 2. The expressions in red only hold for q ≥ 3.

We start again by considering words x with r(x) = 1. We want to prove the
following,

Lemma 12. Let x ∈ Bq(n) be arbitrary such that r(x) = 1, n ≥ 2 and q ≥ 2.
Then the follwing holds,

|V1,1,1(x)| = n(n − 1)
2 q2 − n(n − 2)q + n2 − 3n + 2

2 (3.16)

Proof. We will prove this by remarking that the order of deletions, insertions
and substitution is irrelevant for the cardinality of V1,1,1(x) hence we can apply
a deletion first and conclude that |V1,1,1(x)| = |V0,1,1(y)| where r(y) = 1 and
y ∈ Bq(n − 1). We again take x = 000 . . . 000 (n zeros). Then y = 000 . . . 00

26

(n − 1 zeros) and using Lemma 8 we find

|V1,1,1(x)| = |V0,1,1(y)| = n((n − 1)(q − 1)2 + 2(q − 1))
2 + 1

= n(n − 1)(q2 − 2q + 1) + 2nq − 2n

2 + 1

= n(n − 1)
2 q2 − n(n − 2)q + n2 − 3n + 2

2
which is the expression we wanted to prove.

We expect the size of V1,1,1(x) to attain its minimum whenever r(x) = 1.
The following lemma states this and we will prove this.

Lemma 13. Let x ∈ Bq(n) be arbitrary such that r(x) = 1, n ≥ 2 and q ≥ 2.
Then for all x’ ∈ Bq(n) we have

|V1,1,1(x)| ≤ |V1,1,1(x’)| (3.17)

Proof. Let x’ ∈ Bq(n) be arbitrary. Let y be the word we obtain by deleting the
first symbol of x and let y’ be the word we obtain by deleting the first symbol
of x’ Then we note that

|V1,1,1(x’)| ≥ |V0,1,1(y’)| ≥ |V0,1,1(y)| = |V1,1,1(x)| (3.18)

since r(x) = 1 and since the order of deletion, insertion and substitution is
irrelevant for the size of |V1,1,1(x)|. Hence we conclude that |V1,1,1(x)| does
indeed attain its minimum whenever r(x) = 1.

3.5 Upper bound for |V1,1,1(x)|
Now we look at |V1,1,1(x)|. Suppose x ∈ Bq(n) with r(x) = n and suppose that
every three consecutive symbols are distinct. When applying a deletion to x, we
obtain a word of length n−1 with n−1 runs. Using Lemma 9 we can determine
the following upper bound for |V1,1,1(x)| for these specific x, namely:

|V1,1,1(x)| ≤ n · |V0,1,1(y)| = n((n − 1)2q2 − (2(n − 1)2 − n)q + (n − 1)(n − 2))

3.6 Bounds on |Vt′,t′′,s(x)|
Thus far we have only examined the case in which there occurs at most one
insertion, deletion or substitution. We would like to determine bounds for a
general number of insertions, deletions and substitutions in order to say more
about the bound provided by Ward Spee.

27

3.6.1 An upper bound
In order to find an upper bound on the size of |Vt′,t′′,s(x)| we first examine the
set of words we can obtain by applying t′ deletions and t′′ insertions and then
we apply the substitutions.

Let x ∈ Bq(n) be arbitrary. Then by applying t′ deletions, we obtain the
set Dt′(x), i.e. we obtain all words of length n − t′ that are contained in x. For
example, the word 102 is contained in the word 12202 and can be obtained by
deleting the second and third symbol. Now when we apply t′′ insertions to the
set Dt′(x) to obtain the set Vt′,t′′,0(x). Since we do not remove or substitute
any symbols, we note that for every word y ∈ Vt′,t′′,0(x) there exists a word
y′ ∈ Dt′(x) such that y′ is contained in y.

Furthermore, suppose that y ∈ Bq(n − t′ + t′′) such that there exists a
y′ ∈ Dt′(x) that is contained in y. Then we can apply t′′ insertions to y′ in
order to obtain y. Hence y ∈ Vt′,t′′,0(x). We conclude that for every word y
in Vt′,t′′,0(x) there exists a word y′ ∈ Dt′(x) that is contained in y and that
every word y ∈ Bq(n − t′ + t′′) for which there exists a word y′ ∈ Dt′(x) that
is contained in y is in the set Vt′,t′′,0(x). Thus the set Vt′,t′′,0(x) is exactly the
set of words of length n−t′+t′′ that contain at least one word from the set Dt′(x).

Now we can use this set to determine the size of Vt′,t′′,s(x). We state and
prove the following regarding the set of words in Vt′,t′′,s(x).

Lemma 14. Let x ∈ Bq(n) be arbitrary. Let Dt′,t′′,s(x) be the set of words that
we can obtain by applying t′′ + s insertions to the words in the set Dt′+s(x).
Then the following holds

|Vt′,t′′,s(x)| ≤ |Dt′,t′′,s(x)|

Proof. Let y ∈ Vt′,t′′,s(x). Then we can obtain y by applying t′ deletions,
t′′ insertions and 0 ≤ s′ ≤ s substitutions. Since substituting a symbol xi

into another symbol xj ̸= xi is equivalent to deleting the symbol and inserting
the symbol xj at the same position, we can also obtain y by applying t′ + s′

deletions and t′′ + s′ insertions to x. Evidently, this also means we can obtain y
by applying t′ + s deletions and t′′ + s insertions to x since we can always delete
s − s′ symbols and insert the same s − s′ symbols to obtain the original word.
Therefore we conclude that y ∈ Dt′,t′′,s(x) and since y is arbitrary also

|Vt′,t′′,s(x)| ≤ |Dt′,t′′,s(x)|

Now we need to find the value of |Dt′,t′′,s(x)| for different t′, t′′, s and x. We
start by considering the case n = 2. Since we are only interested in the case
t′, t′′, s ≥ 1, applying t′ + s deletions results in the empty word and therefore

28

we can obtain any word of length t′′ + s.

A good approach in finding an expression for |Dt′,t′′,s(x)| seems to be look-
ing for expressions for different types of x. We could for example look for an
expression for x with r(x) = r and l(x) = l. However this does not seem to lead
to any usable results, since the number of different possible values of |Dt′,t′′,s(x)|
with a fixed number of runs r, is already 8 for n = 4, q ≥ 3 and over 20 for
n = 5, q ≥ 3. If there were to be an expression for |Dt′,t′′,s(x)| depending only
on t′, t′′, s and r, we would expect to find only one possible value for all x with
the same parameters. We encountered this problem when we tried to find an
expression for |Dt′,t′′,s(x)| by first determining what all the possible values were.
One might therefore conclude that it is impossible to find an exact expression
for |Dt′,t′′,s(x)| for arbitrary x, however we can find exact expressions for spe-
cific type of x. This is exactly what we will do in the next section.

3.6.2 Finding an expression for |Dt′,t′′,s(x)| for specific x
First we consider the case in which r(x) = 1. First of all we note that in this
case Vt′,t′′,s(x) = Dt′,t′′,s(x). Suppose x = 000 . . . 000 and x ∈ Bq(n). Then the
set Vt′,t′′,s(x) is the set of words in Bq(n− t′ + t′′) that contain at least n− t′ −s
zeros. We know how many words of length n contain exactly k zeros, namely

|{x ∈ Bq(n) : x contains exactly k zeros}| =
(

n

k

)
(q − 1)n−k

since we have
(

n
k

)
choices for the arrangement of the k zeros and other n − k

symbols can be any apart from 0.
Therefore, the total number of words in Bq(n) which contain at least n − t′ − s
zeros is equal to

|Vt′,t′′,s(000 . . . 000)| =
n∑

k=n−t′−s

(
n

k

)
(q − 1)n−k =

t′+s∑
k=0

(
n

k

)
(q − 1)k (3.19)

3.6.3 Arbitrary x
Now it is time to consider arbitrary x ∈ Bq(n). We look at the set Dt′+s(x).
We count all words in the set Dt′,t′′,s(x) by adding up the number of words
in the sets It′′+s(y) for all y ∈ Dt′+s(x). Determining the size of Dt′,t′′,s(x)
using this method will result in double counting many words, namely all words
that we can obtain by inserting t′′ + s symbols to more than one y ∈ Dt′+s(x).
For every instance of a word that is counted double, we need to subtract our
total by one. Now suppose a word can be obtained by inserting t′′ + s symbols
to three words in Dt′+s(x). In this case we first added this words three times
to our set and then removed it three more times, thus we need to add it one

29

more time. In order to determine the exact size of Dt′,t′′,s(x) we would need to
continue this process until we look at the words that can be obtained from all
words in Dt′+s(x), however this results in too many calculations and is therefore
unfeasible.
For every y ∈ Dt′+s(x) we can determine the value of It′′+s(y) since this ex-
pression is known and does not depend on y. For the number of words we count
double we will state and prove the following lemma:

Lemma 15. Let x, y ∈ Bq(n) such that d(x, y) = d. Then the number of words
that are both in It′′(x) and It′′(y) say A, is greater or equal to |It′′−d(z)| where
z ∈ Bq(n + d).

Proof. Suppose x, y ∈ Bq(n) such that d(x, y) ≤ t′′. Let z be a word of length
n + d that contains both x and y. This is possible since d(x, y) = d. Then any
word in It′′−d(z) is both contained in It′′(x) and It′′(y) hence

A ≥ |It′′−d(z)|

Now all we need to do is determine the distance between any two words
in Dt′(x) and determine the instances where we obtained words by inserting
t′′ + s symbols to three words in Dt′+s(x) and we can state an upper bound for
|Dt′,t′′,s(x)|.
We will illustrate how this process works by showing an example.
Suppose we want to determine the size of D1,1,1(x). Let x = 1022 ∈ B3(4).
Then we have Dt′+s(x) = {10, 12, 02, 22}. Now we know that

|D21022| ≤ I2(10) + I2(12) + I2(02) + I2(22) = 132

by Theorem 2. Now we consider the words we counted multiple times. The
distances between the words in {10, 12, 02, 22} are 1, 2, 2, 1, 1 and 1. Since in
this case t′′ = 1 we subtract by 4 and obtain

|D2(1022)| ≤ 128

while the exact value is equal to 72, hence the bound is not very strong.

30

Chapter 4

Application to bounds on
codes

Now we have found bounds on the size of the set Vt′,t′′,s(x), we can use these
to improve the bounds found by Ward Spee. Spee has given three bounds using
the size of Vt′,t′′,s(x) which we have given in Chapter 1.

4.1 Bounds using |Vt,t,2s(x)|
The first and second bounds given, use the size of Vt,t,2s(x) and since we have
only considered the case regarding V1,1,1(x) and below, we can not say anything
useful regarding these bounds. Therefore, more research should be done into
the size of Vt,t,2s(x) and more general Vt,t,2s(x).

4.2 Upper bound using |V1,1,1(x)|
Spee has given an upper bound on Mq(n, t, s), where t ≥ t′+t′′, using |Vt′,t′′,s(x)|
namely

Mq(n, t, s) ≤ qn−t′+t′′

minx∈Bq(n);r(x)>r|Vt′,t′′,s(x)| + q

r∑
i=1

(
n − 1
i − 1

)
(q − 1)i−1 (4.1)

Now by Lemma 12

minx∈Bq(n);r(x)>r|V1,1,1(x)| ≥ n(n − 1)
2 q2 − n(n − 2)q + n2 − 3n + 2

2 (4.2)

31

we can rewrite Equation 4.1 for t′, t′′ = 1, s = 1 as

Mq(n, 2, 1) ≤ 2qn

n(n − 1)q2 − 2n(n − 2)q + n2 − 3n + 2 + q

r∑
i=1

(
n − 1
i − 1

)
(q − 1)i−1

(4.3)
Since the upper bound holds for all r, it also holds for r = 0 hence the second
addend is 0 and we obtain the following

Mq(n, 2, 1) ≤ 2qn

n(n − 1)q2 − 2n(n − 2)q + n2 − 3n + 2 (4.4)

It might be interesting to study the behaviour of this bound for large values of
n and q.

4.3 Behaviour of an upper bound on Mq(n, 2, 1)
For large values of q ≫ n , the lower powers of q do not contribute and we
obtain the following bound

Mq(n, 2, 1) ≤ 2qn

n(n − 1)q2 − 2n(n − 2)q + n2 − 3n + 2 ≈ 2qn

n(n − 1)q2 = 2qn−2

n(n − 1)
(4.5)

A more realistic scenario is one with large values for n ≫ q. In this case we
obtain the next bound

Mq(n, 2, 1) ≤ 2qn

(q2 − 2q + 1)n2 (4.6)

Finally we consider the scenario in which both n and q are sufficiently large.
Then the lower terms will disappear and we obtain the following bound

Mq(n, 2, 1) ≤ 2qn

q2n2 = 2qn−2

n2 (4.7)

Since the total number of words in Bq(n) is equal to qn, we deduce that for
every codeword, there must be at least q2n2

2 words that are not in the code.
Since the numerical results in the thesis of Ward Spee only consider n = 20 and
t = 3, we cannot directly compare these results with exact results from Spee.

32

Chapter 5

Conclusions &
Recommendations

We can conclude that the size of the set |Vt′,t′′,s(x)| is very useful for determining
upper and lower bounds on the size of codes that can correct combinations of
indel and substitution errors. In Section 4.2 we have used our results from
Section 3.4 to obtain insight into an upper bound on Mq(n, 2, 1) stated by Ward
Spee namely the following:

Mq(n, 2, 1) ≤ 2qn

n(n − 1)q2 − 2n(n − 2)q + n2 − 3n + 2
where Mq(n, 2, 1) denotes the maximal size of a code that can correct exactly
t′ + t′′ ≤ 2 indel errors and at most 1 substitution error.

Some of the expressions found and lemmas stated in this thesis might give
an insight in the set of words that can be reached from any word x depending
on the structure of x and the number of substitutions, insertions and deletions.
We conclude that we can in general, reach more words from words with a higher
amount of runs, than from words with very few runs.

Next we give a couple of suggestions for further research.

• One could further investigate bounds on the size of Dt′,t′′,s(x) by finding
better approximations for the number of words that are counted multiple
times in Section 3.6.3. Using these bounds an expression for a bound on
Vt′,t′′,s(x) can be determined and used in the bounds provided by Ward
Spee.

• Another approach could be the use of graphs to find bounds on |Vt′,t′′,s(x)|
since it might not be reasonable to use the approach used in this thesis
for larger values of t′, t′′ and s. For example, Spee has used the Caro-Wei
theorem to improve lower bounds on Mq(n, t, s).

33

• Finally, since Lemma 1 uses the average size of |Vt,t,2s(x)| it is reasonable
to investigate not only the maximum or minimum size of |Vt′,t′′,s(x)|, but
also the average. In case this is too complicated we suggest trying to find
upper and lower bounds on the average. One way this could be achieved
is by determining the median value of |Vt′,t′′,s(x)| and by noting that the
average cannot lie closer to the minimum or the maximum than to the
median.

34

Bibliography

[1] S. Kosuri and G. M. Church, ”Large-scale de novo DNA synthesis: Tech-
nologies and applications,”Nature Methods, vol. 11, no. 5, p. 499, 2014.

[2] T. Xue and F. C. M. Lau, "Notice of Violation of IEEE Publication Prin-
ciples: Construction of GC-Balanced DNA With Deletion/Insertion/Muta-
tion Error Correction for DNA Storage System," in IEEE Access, vol. 8, pp.
140972-140980, 2020, doi: 10.1109/ACCESS.2020.3012688.

[3] W.J.P. Spee, ”Bounds on the maximum size of dele-
tion, insertion and substitution correcting codes”,
https://repository.tudelft.nl/record/uuid:5996e986-167f-4094-9ccd-
a17d5f10a702, pp. 15-33, May. 2023.

[4] V. I. Levenshtein, ”Elements of the coding theory (in Russian),”Discrete
mathematics and mathematics problems of cybernetics Nauka, Moscow, pp.
207-235, 1974.

[5] H. Mercier, M. Khabbazian, and V. K. Bhargava, ”On the number of sub-
sequences when deleting symbols from a string,” IEEE Transactions on In-
formation Theory, vol. 54, no. 7, pp. 3279-3285, Jun. 2008

[6] F. Sala and L. Dolecek, ”Counting sequences obtained from the synchroniza-
tion channel,” 2013 IEEE International Symposium on Information Theory,
pp 2925-2929, Jul. 2013.

[7] M. Abu-Sini and E. Yaakobi, ”On Levenshtein’s reconstruction problem un-
der insertions, deletions, and substitutions,” IEEE Transactions on Informa-
tion Theory, vol. 67, no. 11, pp 7132-7158, Sep. 2021.

35

Appendices

36

Appendix A

Proof of Theorem 2

Proof. In order to determine the size of It′′(x), it might seem reasonable to
count all possible words we can create by inserting t′′ symbols into a q-ary word
x of length n. However, this way we will be double counting words and therefore
overestimating the size of It′′(x). If we take the binary word 01 for example,
and insert one symbol we have that

I1(01) = {001, 101, 011, 010}

while we have 2 · 3 = 6 different ways of inserting one symbol, namely two
choices for the symbol we insert (1 or 0) and three choices for the place of in-
sertion (first, second or third position). We have counted the words 001 and
011 double, since there are two ways of creating the same word. To obtain 001
we can either insert a 0 at the first or second position and to create 011 we
can either insert a 1 at the second or third position. In order to avoid double
counting words, we disregard the possibility of an insertion being equal to the
symbol directly before it. For example, if we consider the binary word x = 01
and we apply one insertion, we only consider 2 − 1 = 1 possible values for the
insertion at the second or third position. If the insertion occurs at the second
position, it cannot be equal to 0, hence it must be 1 and if the insertion happens
at the third position it cannot be 1 and must therefore be 0. This way we can
still obtain all words in I1(01) and we correctly count 2 · (2 − 1) + 2 = 4 ways
of inserting one symbol with the restriction we imposed.

If there occur more insertions, we make a distinction between the symbols of
the original word and the newly inserted symbols. We define x as

x = x1x2 . . . xn

and we denote all insertions by i1, i2, . . . , it′′ ∈ {0, 1, . . . , q − 1}. For every
insertion ij , 1 ≤ j ≤ t′′ there either exists a k ∈ {1, 2, . . . , n − 1} such that
ij happens after xk and before xk+1, or ij happens before x1 or after xn. For
every insertion ij that occurs after x1 we impose the following restriction: if ij

37

occurs after xk and before xk+1 we have that ij ̸= xk and if ij occurs after xn

we have xj ̸= xn. If we take n = 5 and t′′ = 3 for example, then the following
may occur

x = x1x2x3x4x5 −−−−−−−−−−→
insertions occur

i3x1x2x3i1x4x5i2

where i3 ∈ {0, 1, . . . , q−1}, i1 ∈ {0, 1, . . . , q−1}\x3 and i2 ∈ {0, 1, . . . , q−1}\x5.

We want to make sure we do not count words double or miss any possible
words using this restriction.
i) Let x ∈ Bq(n) be arbitrary. Suppose there occur t′′ insertions on x and we
obtain a word y ∈ Bq(n) that cannot be obtained by imposing the restriction on
the insertions i1, . . . , it′′ . We call the insertions y1, . . . , yt′′ . Now we will show
that this word can in fact be obtained by t′′ insertions following the restriction
from x. Suppose xl is the largest l such that there is at least one yj in between
xl and xl+1 (or if l = n after xn) such that yj = xl. Now we let the last of these,
say ym = xl, be redefined to be xl and let xl become an insertion. Now we note
that there are no longer any insertions between xl and xl+1 that are equal to
xl and therefore they satisfy the restriction. We continue to apply this process
to the largest xi for which there is an insertion yj between xi and xi+1 with
yj = xi until there are no such xi left. When this is the case, the restriction
has been met without changing the word. Therefore we conclude that we can
indeed obtain every word by applying the restriction to all insertions.

In the example below we show how this process works in practice with the
insertions in red

x = x1x2x3x4x5 = 01210 −−−−−−−−−−→
insertions occur

01202100 → 01202100 → 01202100

Now all we need to do is counting all words we can obtain using the restriction
on the insertions without counting words double. Let x = x1x2 . . . xn ∈ Bq(n)
be arbitrary. Suppose there are exactly i ≤ t′′ insertions which occur before x1
that are equal to x1. Then there are t′′ − i insertions that have exactly q − 1
possible values that can occur in any of the n + t′′ places of the word we obtain
when applying t′′ insertions. Since the order of insertions do not change the
word, the total number of words we can obtain with exactly i insertions before
and equal to x1 is

(
n+t′′

t′′−i

)
(q − 1)t′′−i. Since the number of insertions that occur

before x1 and are equal to x1 ranges from 0 to t′′ we need to sum all different
cases to obtain the total number of words

|It′′(x)| =
t′′∑

i=0

(
n + t′′

t′′ − i

)
(q − 1)t′′−i =

t′′∑
i=0

(
n + t′′

i

)
(q − 1)i

which finishes the proof.

38

Appendix B

Derivation of expressions
for |Vt′,t′′,s(x)|

The reader may ask themself how we found the expression in Lemma 9 and 12
and the expressions in Table 3.4. This has been done by using the values found
by a computer search (as shown in various tables) to find patterns depending on
n and q. The expression corresponding to Lemma 9 was found using values from
Table 3.2 where r(x) = n. First we find an expression using only the variable q
for constant n. When we do this for various n, we can determine a pattern in
the variable n to find an expression for n and q. This is the same strategy we
have used for the expressions in Lemma 12 and in Table 3.4. We will now show
the process for the expressions used in Lemma 9 and 12 and the expressions in
Table 3.4.

B.1 Derivation of Lemma 9
In order to derive an expression for |V0,1,1(x)| with r(x) = n we look at the
values for different q and n = 2 first. We find the values 8, 23, 46 and 77
for n = 2 and q ∈ {2, 3, 4, 5} using a computer. We note that the differences
between consecutive values are 15, 23 and 31, hence they increase by 8 whenever
q increases by 1. Thus we can express |V0,1,1(x)| as the following sum when
n = 2, r(x) = n:

|V0,1,1(x)| = (1 + 7) + 15 + 23 + . . . + 8(q − 1) − 1

= (q − 1)(7 + 8(q − 1) − 1)
2 + 1

= 4q2 − 5q + 2

39

We do the same for n ∈ {3, 4, 5} in order to find out how the coefficients change
and therefore what the expression dependent on both n and q looks like.
For n = 3 we find the values 14, 45, 94 and 161 for q ∈ {2, 3, 4, 5}. The differences
between consecutive values are 31, 49 and 67 and increase by 18 whenever q
increases by 1. Thus we can derive the following:

|V0,1,1(x)| = (1 + 13) + 31 + 49 + . . . + 18(q − 1) − 5

= (q − 1)(13 + 18(q − 1) − 5)
2 + 1

= 9q2 − 14q + 6

For n = 4 we find the values 22, 75, 160 and 277 for q ∈ {2, 3, 4, 5}. The
differences between consecutive values are 53, 85 and 117 hence they increase by
32 whenever q increases by 1. Thus for n = 4 we derive:

|V0,1,1(x)| = (1 + 21) + 53 + 85 + . . . + 32(q − 1) − 11

= (q − 1)(21 + 32(q − 1) − 11)
2 + 1

= 16q2 − 27q + 12

And finally for n = 5 we found the values 32, 113, 244 and 425. The differ-
ences between consecutive values are 81, 131 and 181 hence they increase by 50
whenever q increases by 1. Thus for n = 5 we derive:

|V0,1,1(x)| = (1 + 31) + 81 + 131 + . . . + 50(q − 1) − 19

= (q − 1)(31 + 50(q − 1) − 19)
2 + 1

= 25q2 − 44q + 20

We assume that the coefficients can be expressed by a polynomial function p(n)
of n. For the first coefficient we have p1(2) = 4, p1(3) = 9, p1(4) = 16 and
p1(5) = 25 hence p1(n) = n2. For the second coefficient we have p2(2) =
−5, p2(3) = −14, p2(4) = −27 and p2(5) = −44. Thus

p2(n) = −(5 + 9 + 13 + 17 + . . . + 4(n − 1) + 1)

= − (n − 1)(5 + 4(n − 1) + 1)
2

= −(2n2 − n − 1)

And for the third coefficient we have p3(2) = 2, p3(3) = 6, p3(4) = 12 and
p3(5) = 20 hence we derive that p3(n) = n2 − n = n(n − 1). Substituting these
polynomials into the expression yields an expression for general q, n ≥ 2:

|V0,1,1(x)| = n2q2 − (2n2 − n − 1)q + n(n − 1)

40

Which is exactly the expression shown in Lemma 9.

Since we have used the same process to derive the expressions in Lemma 12
and Table 3.4 we omit these derivations.

41

Appendix C

Python code

In order to get an insight into the behaviour of the size of Vt′,t′′,s(x), I have
used Python to find these values for small n and q. The Python code I have
used in this thesis is partly copied from the master thesis of Ward Spee. The
rest of the code was created by myself to find more values, or look for all words
that match certain properties. For example, I have created code that returns
all words x for which |V0,1,1(x)| = a for some value a. In the code below
Creating the set V_{t ’,t ’’,s}(x) for x in B_q (n). x is a string

.
import math

def insert (x, k, i):
insert symbol k on position i into x where 0 <= i <= n
return x[0:max(0,i)] + str(k) + x[i:len(x)]

def substitute (x, k, i):
substitute symbol k on position i into x where 1 <= i <= n
return x[0:max(0,i-1)] + str(k) + x[i:len(x)]

def delete (x,i):
delete position i from x
return x[0:max(0,i-1)] + x[i:len(x)]

def insertion_set (x,q):
returns the set of words that can be reached
from x by 1 insertion
n = len(x)
symbols = range (0,q)
x_ins = []
for i in range (0, n+1):

for k in symbols :
y = insert (x,k,i)
x_ins . append (y)

return set(x_ins)

def substitution_set (x,q):
returns the set of words that can be reached
from x by at most 1 substitution
n = len(x)
symbols = range (0,q)

42

x_sub = []
for i in range (1, n+1):

for k in symbols :
y = substitute (x, k, i)
x_sub . append (y)

return set(x_sub)

def deletion_set (x):
returns the set of words that can be reached from x by 1

deletion
n = len(x)
x_del = []
for i in range (1, n+1):

y = delete (x, i)
x_del . append (y)

return set(x_del)

def V(x, q, td , ti , ss):
returns the set of words that can be reached from x by exactly
td deletions , ti insertions and at most ss substitutions .
The ’set ’ function ensures that no words are counted double .
V_list = [x]
while td > 0:

y_list = []
for x in V_list :

y_list += list(deletion_set (x))
V_list = list(set(y_list))
ss -= 1

while ti > 0:
y_list = []
for x in V_list :

y_list += list(insertion_set (x,q))
V_list = list(set(y_list))
ti -= 1

return V_list

This was all the code used from the master thesis of Ward Spee. [3] The
following code is my own and it uses the functions defined by Spee.

def NV(x,q,td ,ti ,ss):
returns the number of words in V(x,td ,ti ,ss)
l = len(V(x,q,td ,ti ,ss))
return l

def Setq(n,q):
returns a list of all q-ary words of length n
a = 1
m = list(range (0,q))
while a < n:

for i in m:
l = insertion_set (str(i),q)
p = list(l)
m = m+p

a = a +1
mylist = list(dict. fromkeys (m))

43

b = (q ** n-q)/(q-1)
b = int(b)
newlist = mylist [b:]
return newlist

def NS(n,q,td ,ti ,ss):
returns a list of all values of |V(x,td ,ti ,ss)|
for all q-ary words x of length n
s = Setq(n,q)
for i in range (0,len(s)):

s[i] = NV(s[i],q,td ,ti ,ss)
return s

def MAX(n,q,td ,ti ,ss):
returns the maximum value of |V(x,td ,ti ,ss)|
for all q-ary words of length n
m = max(NS(n,q,td ,ti ,ss))
return m

def NRUN(y):
returns the number of runs of a word x
r = 1
for i in range (0,len(y)-1):

if y[i] == y[i+1]:
r = r

else r = r+1
return r

def MV(n,q,td ,ti ,ss):
returns the number of runs of the words
for which |V(x,td ,ti ,ss)| is maximal
s = Setq(n,q)
r = Setq(n,q)
for i in range (0,len(s)):

s[i] = NV(s[i],q,td ,ti ,ss)
m = MAX(n,q,td ,ti ,ss)
for j in range (0,len(s)):

if s[j] == m:
print (NRUN(str(r[j])))

def RSET(n,q,r):
returns the set of words for which
the number of runs is equal to r
s = Setq(n,q)
l = []
for i in s:

if NRUN(i) == r:
l. append (i)

return l

def RNS(n,q,r,td ,ti ,ss):
returns all possible values of |V(x,td ,ti ,ss)|
for q-ary words x with r runs
this is the function used to determine
$ the values shown in the tables
s = RSET(n,q,r)
for i in range (0,len(s)):

44

s[i] = NV(s[i],q,td ,ti ,ss)
return list(set(s))

def SFW(n,q,r,w,td ,ti ,ss):
returns the set of q- ary words x for which
|V(x,td ,ti ,ss)| is equal to w
s = RSET(n,q,r)
l = []
for i in range (0,len(s)):

if NV(s[i],q,td ,ti ,ss) == w:
l. append (s[i])

return l

def MRNS(n,q,r,td ,ti ,ss):
returns the maximum value of
|V(x,td ,ti ,ss)| for all q- ary words x with
r runs
m = max(RNS(n,q,r,td ,ti ,ss))
return m

def com(x,y,q,td ,ti ,ss):
returns the difference between |V(x,td ,ti ,ss)|
and |V(y,td ,ti ,ss)| where x and y are q- ary words
x_l = V(x,q,td ,ti ,ss)
y_l = V(y,q,td ,ti ,ss)
main = len(x_l)-len(y_l)
return main

def Sp(x,q,td ,ti ,ss):
returns the set D(t ’,t ’’,s,x)
l = V(x,q,td+ss ,0,0)
s = []
for i in range (0,len(l)):

s = s+(V(l[i],q,0,ti+ss ,0))
s = list(set(s))
return s

def LSP(x,q,td ,ti ,ss):
returns the size of D(t ’,t ’’,s,x)
r = len(Sp(x,q,td ,ti ,ss))
return r

def SD(n,q,td ,ti ,ss):
returns all possible values for D(t ’,t ’’,s,x) for given n and q
l = []
for x in Setq(n,q):

l. append (LSP(x,q,td ,ti ,ss))
return list(set(l))

def FSD(w,n,q,td ,ti ,ss):
returns all words x for which D(t ’,t ’’,s,x) = w
s = Setq(n,q)
l = []
for i in range (0,len(s)):

if LSP(s[i],q,td ,ti ,ss) == w:
l. append (s[i])

return l

45

def NSP(x,q,td ,ti ,ss):
returns all words that are not in D(t ’,t ’’,s,x)
s = Setq(len(x)+ti-td ,q_
m = Sp(x,q,td ,ti ,ss)
main = list(set(s). difference (m))
return main

def DIF(x,y):
returns the difference between x and y
d = 0
for i in range (0,len(x)):

if x[i] == y[i]:
d = d

else :
d = d+1

return d

46

