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Learning from Demonstration in the Wild

Feryal Behbahani1, Kyriacos Shiarlis1, Xi Chen1, Vitaly Kurin1,2, Sudhanshu Kasewa1,2, Ciprian Stirbu1,2,
João Gomes1, Supratik Paul1,2, Frans A. Oliehoek1,3, João Messias1, Shimon Whiteson1,2

Abstract— Learning from demonstration (LfD) is useful in
settings where hand-coding behaviour or a reward function
is impractical. It has succeeded in a wide range of problems
but typically relies on manually generated demonstrations or
specially deployed sensors and has not generally been able
to leverage the copious demonstrations available in the wild:
those that capture behaviours that were occurring anyway
using sensors that were already deployed for another purpose,
e.g., traffic camera footage capturing demonstrations of natural
behaviour of vehicles, cyclists, and pedestrians. We propose
video to behaviour (ViBe), a new approach to learn models
of behaviour from unlabelled raw video data of a traffic scene
collected from a single, monocular, initially uncalibrated camera
with ordinary resolution. Our approach calibrates the camera,
detects relevant objects, tracks them through time, and uses
the resulting trajectories to perform LfD, yielding models of
naturalistic behaviour. We apply ViBe to raw videos of a traffic
intersection and show that it can learn purely from videos,
without additional expert knowledge.

I. INTRODUCTION

Learning from demonstration (LfD) is a machine learning
technique that can learn complex behaviours from a dataset
of expert trajectories, called demonstrations. LfD is partic-
ularly useful in settings where hand-coding behaviour, or
engineering a suitable reward function, is too difficult or
labour intensive. While LfD has succeeded in a wide range
of problems [1], [2], [3], nearly all methods rely on ei-
ther artificially generated demonstrations (e.g., in laboratory
settings) or those collected by specially deployed sensors
(e.g., MOCAP). These restrictions greatly limit the practical
applicability of LfD, which to date has largely not been able
to leverage the copious demonstrations available in the wild:
those that capture behaviour that was occurring anyway using
sensors that were already deployed for other purposes.

For example, consider the problem of training autonomous
vehicles to navigate in the presence of human road users.
Since physical road tests are expensive and dangerous, sim-
ulation is an essential part of the training process. However,
such training requires a realistic simulator which, in turn, re-
quires realistic models of other agents, e.g., vehicles, cyclists,
and pedestrians, that the autonomous vehicle interacts with.
Hand-coded models of road users are labour intensive to
create, do not generalise to new settings, and do not capture
the diversity of behaviours produced by humans.

LfD is an attractive alternative. In principle, subjects
could be recruited to demonstrate such behaviour or existing
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Fig. 1. Schematic of the ViBe approach

road users could be augmented with sensors to record their
trajectories. However, doing so would be expensive and yield
only limited datasets. A more effective way would be to use
the abundance of relevant demonstrations available in the
wild, such as traffic camera footage. Unfortunately, there are
currently no LfD methods that can learn from such sources
of traffic demonstrations.

In this paper, we propose video to behaviour (ViBe),
a new approach to learn models of road user behaviour
from unlabelled raw video data of a traffic scene collected
from a single, monocular, initially uncalibrated camera with
ordinary resolution. Our approach, illustrated in Figure 1,
works by calibrating the camera (using available satellite
images), detecting the relevant objects, and tracking them
through time. Each trajectory, together with the static and
dynamic context of that road user at each moment in time,
is then fed as a demonstration to our LfD system, which can
learn robust behaviour models for road users. The resulting
models are then used to populate a simulation of the scene
built using the Unity game engine.

The contributions of this paper are two-fold: First, we
present a vision pipeline that can track different road users
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and map their tracked trajectories to 3D space and is
competitive with the state-of-the art approaches for image
space tracking. Second, we extend generative adversarial
imitation learning (GAIL) [4], a state-of-the-art LfD method,
with a novel curriculum-based training regime that enables
our agents to gradually learn to mimic temporally extended
expert demonstrations and successfully generalise to unseen
situations. We evaluate our method against several baselines,
including behavioural cloning (BC) and state-of-the-art vari-
ants of GAIL. Using a number of metrics, we show that our
method can better imitate the observed demonstrations and
results in more stable learning.

II. RELATED WORK

A. Computer Vision
In recent years, neural network approaches have signifi-

cantly advanced the state of the art in computer vision tasks
such as classification [5] and object detection [6]. Object
detection is usually performed using region-based object
detectors such as Fast R-CNN [7], Faster R-CNN [8], or
Mask R-CNN [9]. Such methods are usually slower but
more accurate than single-object detectors such as SSD [10],
YOLO [11], RetinaNet [12], and hence more appropriate for
the application considered here.

When tracking multiple objects, tracking by detection, in
which objects are first detected, then associated into tracks, is
usually preferred. State-of-the art tracking methods employ
deep features [13], [14] often generated by Siamese networks
[15], [16] alongside image space motion models [17] and
intersection over union (IOU) trackers [18].

Our work employs a number of techniques for robust de-
tection and tracking. However, unlike most vision pipelines,
ours maps detections to 3D space, and makes extensive use
of 3D information while tracking. Recent work [19] explores
a similar application and uses the resulting 3D trajectories
to estimate car velocities and detect traffic anomalies. By
contrast, we use the trajectories as input to LfD.

B. Learning from Demonstration

ViBe’s LfD component extends GAIL [4] which is in-
spired by inverse reinforcement learning [20], [21], [22] and
is discussed further in Section III. A wide range of LfD
techniques have been developed using supervised, unsuper-
vised, or reinforcement learning [2]. However, most methods
[3], [23], [24], even when using raw video as sensory input
[25], rely on either artificially generated demonstrations or
those collected by specially deployed sensors, limiting their
application in realistic domains.

By contrast, ViBe leverages demonstrations of behaviour
that was occurring naturally. The same idea has been used to
imitate basketball teams [26], predict taxi driver behaviour
[27], and control complex animations [28]. However, all
these methods still rely on sensors (or manual labelling)
that provide ground truth information about the observed
demonstrations, whereas ViBe extracts trajectories directly
from raw, unlabelled videos; the satellite images used for
calibration are the only external input required.

Related to ViBe are several existing LfD methods that
learn road and pedestrian behaviour [29], [30], [31], [32].
Most relevant is learning highway merging behaviour [33],
[34] from NGSIM [35], a publicly available dataset of
vehicle trajectories. However, these methods again rely on
manual labelling, synthetic data or specialised equipment
to obtain the trajectories, while ViBe learns from raw,
unlabelled videos of behaviour.

Recent work proposed a method that can learn to play
ATARI games by observing YouTube videos [36]. Like ViBe,
this method leverages raw videos, and existing publicly avail-
able data. However, it trains only a single agent operating in
2D space, whereas ViBe learns to control multiple interacting
agents in 3D space.

Concurrently to our work, Peng et al. [37] proposed a
similar approach in the context of character animation. An
off-the-shelf vision module extracts 3D poses from unstruc-
tured YouTube videos of single agents performing acrobatic
motions. A simple LfD approach then rewards behaviour
that matches waypoints in individual demonstrations. By
contrast, we consider a more challenging setting with mul-
tiple agents, occlusions, and complex interactions between
agents. Consequently, behaviour detection, reconstruction,
and imitation are more difficult. In particular, interactions
between agents preclude a waypoint-matching approach, as
there is no unique set of waypoints for an agent to match
that would be robust to changes in other agents’ behaviour.

III. BACKGROUND

To realistically model the traffic environment of an au-
tonomous vehicle, we need to simulate multiple agents
interacting in the same environment. Unfortunately, due to
the large number of road users that may populate a traffic
scenario, learning a centralised policy to control all agents
simultaneously is impractical. The size of the joint action
space of such a policy grows exponentially in the number of
agents, leading to poor scalability in learning. Furthermore,
it is crucial to model variable numbers of agents (e.g., cars
routinely enter and leave an intersection), to which such joint
policies are poorly suited (each agent typically has a fixed
agent index).

To this end, we take an approach similar to that of
independent Q-learning (IQL) [38], where each agent learns
its own policy, conditioned only on its own observations. The
other actors are effectively treated as part of the environment.
We can then treat the problem as one of single-agent learning
and share the parameters of the policy across multiple
agents. Parameter sharing [39] avoids the exponential growth
of the joint action space and elegantly handles variable
numbers of agents. It also avoids instabilities associated with
decentralised learning by essentially performing centralised
learning with only one policy.

We model the problem as a Markov decision process
(MDP). The MDP is defined by the tuple (S,A, P,R).
S represents the set of environment states, A the set of
actions, P (st+1|st, at) the transition function, and R(st , at)
the reward function. We use ⇡ for the stochastic policy
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learnt by our agent and ⇡E for the expert policy which
we can access only through a dataset DE . The agent does
not have access to R(st , at) and instead must mimic the
expert’s demonstrated behaviour. Given a dataset DE , we
denote sample trajectories as ⌧E . They consist of sequences
of observation-action pairs generated by the expert ⌧E =

{(sE
1
, aE

1
), . . . , (sE

T
, aE

T
)}. Similarly, we denote trajectories

generated by our agent as ⌧ = {(s1 , a1), . . . , (sT , aT )}. In
our case, DE is obtained from raw videos, via the process
described in Section IV.

The simplest form of LfD is behavioural cloning (BC)
[40], [41], which trains a regressor (i.e., a policy) to replicate
the expert’s behaviour given an expert state. BC works well
for states covered by the training distribution but generalises
poorly due to compounding errors in the actions, a problem
also referred to as covariate shift [42]. By contrast, GAIL [4]
avoids this by learning via interaction with the environment,
similar to inverse reinforcement learning [20] methods.

GAIL aims to learn a deep neural network policy ⇡✓ that
cannot be distinguished from the expert policy ⇡E . To this
end, it trains a discriminator D�, also a deep neural network,
to distinguish between state-action pairs coming from expert
and agent (a process similar to GANs [43]). GAIL optimises
⇡✓ to make it difficult for the discriminator to make this
distinction. Formally, the GAIL objective is:

min

✓
max

�
E
⇡✓

[log(D�(s, a))] + E
⇡E

⇥
log(1�D�(s

E , aE))
⇤
.

Here, D� outputs the probability that (s, a) originated from
⇡✓. As the agent interacts with the environment using ⇡✓,
(s, a) pairs are collected and used to train D�. Then, GAIL
alternates between a gradient step on � to increase the
objective function with respect to D, and an RL step on
✓ to decrease it with respect to ⇡. Optimisation of ⇡ can
be done with any RL algorithm using a reward function of
the form R(s, a) = � log(D�(s, a)). Typically, GAIL uses
policy gradient methods that approximate the gradient with
Monte Carlo rollouts [44] or a critic [45]. Optimisation of
D� minimises a cross entropy loss function.

Early in training, the state-action pairs visited by the policy
are quite different from those in the demonstrations, which
can yield unreliable and sparse rewards from D�, making it
difficult to learn ⇡E . We show how we address this problem
by introducing a novel curriculum in Section IV-C.

In multi-agent situations, GAIL agents trained in a single-
agent setting can fail to generalise to multi-agent settings
[34]. PS-GAIL [34] is an extension to GAIL that addresses
this issue by gradually increasing the number of agents
controlled by the policy during training. We compare to
PS-GAIL experimentally in Section V. However, it is com-
plementary to the Horizon GAIL method we propose in
Section IV-C and future work can focus on using them in
conjunction.

IV. VIBE: VIDEO TO BEHAVIOUR

In this section, we describe ViBe, which learns road
behaviour policies from raw traffic camera videos (see
Figure 1). We first describe how trajectories are extracted

Fig. 2. Example of how ViBe’s vision module tracks cars (blue) and
pedestrians (red). The tracks are projected to 3D space using a reference
satellite image from Google Maps. The tracks are played back in a
simulation of the scene developed in Unity.

from these videos. We then describe how they are used to
create a simulation of the scene. Finally, we detail how the
trajectories and the simulator are used to learn realistic road
behaviour policies via our novel LfD approach.

A. Extracting Demonstrations
This section describes our vision pipeline, whose main

steps are detection, calibration, and tracking. Our detector
uses the bounding box output of a pre-trained model of Mask
R-CNN [9] [6] based on the ResNet-101 [5] architecture,
pre-trained on the COCO dataset [46]. Since we are only
interested in the traffic information, we remove all classes
except car, bus, truck, pedestrian, and bicycle.

The next step is calibration. As traffic cameras tend to
have a large field of view, the camera images tend to be
highly distorted. As we do not have access to the cameras, we
are unable to calibrate the camera using traditional methods
(e.g., using a checkboard) [47]. Instead, we obtain a top-
down satellite image of the scene from Google Maps and
add landmark points to both camera and satellite images. We
then undistort the camera image and use the landmark points
to calculate the camera matrix. Given the camera calibration
we map the detected bounding boxes into 3D by assuming
that the detected object is a fixed height above the ground,
with the height depending on its class.

The final step is tracking multiple objects in unstructured
environments. Our multiple object tracking (MOT) module
is similar to that of Deep SORT [14], which makes use of
an appearance model to make associations. For each scene,
we train an appearance model using a Siamese network (SN)
[15]. We first run our object detector over the whole video,
followed by an IOU tracker. This yields short tracks that
we call tracklets. Objects in the same tracklets form positive
pairs, and objects from different tracklets form negative pairs
used to train the SN. To avoid the possibility of similar
objects appearing in negative pairs, we form these pairs using
tracklets with a large temporal difference. The SN is trained
using a cosine distance metric and a contrastive loss.

Our MOT pipeline then processes the detected objects
through several steps. Track initialisation occurs when a
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simple IOU tracker associates more than five consecutive
detections. The initialised track is mapped to 3D space,
where a Kalman filter predicts the next position of the object.
Next, objects in the next frame within the vicinity of this
prediction are compared with the current track using the
features generated by the SN. An association is made if
this comparison yields a cosine distance in the feature space
below a certain threshold. If no such association is made,
the tracker attempts to associate detections using IOU. If
association still fails, a final attempt is made using nearest
neighbour association in 3D. Figure 2 shows an example
output of our tracking pipeline in both 2D and 3D space.
B. Simulation

Our vision pipeline outputs timestamped trajectories of
different road users. However, a simulator also requires a
reliable representation of the static elements of the scene
such as pavements and zebra crossings. To this end, we use
Google Maps as a reference to build a simulation of the
scene in Unity. Building the static elements of the simulation
is straightforward and significantly easier than realistically
modeling the dynamic elements of the scene. In this paper,
we simulate a roundabout intersection in Purmerend, a city
in the Netherlands that provided the traffic video data used
in our experiments. Figure 2 shows how the scene with some
tracks from our vision pipeline is recreated in our simulator.

Section IV-C describes our LfD approach, which requires
a state representation for the agent. Our simulator generates
such a representation based on both the static and dynamic
context. Pseudo-LiDAR readings, similar to those in [34],
are used to represent different aspects of the static (e.g.,
zebra crossings and roads) and dynamic (e.g., distance and
velocity of other agents) context of the agent. In addition,
we provide information such as the agent’s heading, distance
from goal, and velocity. Our simulator uses a simple linear
motion model, which we found sufficient for learning, though
in the future individual motion models for each road entity
could be considered.

Given a start frame in the dataset, our simulator plays
back tracked trajectories from that frame onwards, produces
observations, and accepts actions from agents controlled by
neural network policies. In other words, it provides exactly
the environment needed to both perform LfD on the extracted
trajectories and evaluate the resulting learnt policies.

C. Learning
Given the trajectories extracted by the vision processing

from Section IV-A, ViBe uses the simulator from Section IV-
B to learn a policy that matches those trajectories. Learning
is based on GAIL, which leverages the simulator to train the
agent’s behaviour for states beyond those in the demonstra-
tions, avoiding the compounding errors of BC. However, in
the original GAIL method, this interaction with the simulator
means that the agent has control over the visited states from
the beginning of learning. Consequently, it is likely to take
bad actions that lead it to undesirable states, far from those
visited by the expert, which in turn yields sparse rewards
from the discriminator and slow agent learning.

!"	

!$%

&$

!'	
&"

!(	

!'%

&'

!)	
&(

H = 2

!"	

!$%

&$

!'	
&"

!(	
&'

&(

H = ∞

…
!"	

!$%

!"%

!'%

&$

&"

&'
!'	

!(	

H = 1

!(%

&(
!)	

!$%

!"%

!'%

&$

&"

&'

BC

!(%

&(

Fig. 3. Schematic of Horizon GAIL for different values of the horizon
H , compared to BC. Green circles indicate bootstrapped expert states, red
circles correspond to states that the agent encounters after acting in the
environment. When H = 1, Horizon GAIL matches original GAIL.

To address this problem, we propose Horizon GAIL,
which, like BC, bootstraps learning from the expert’s states,
in this case to ensure a reliable reward signal from the
discriminator. To prevent compounding errors, we use a
novel horizon curriculum that slowly increases the number
of timesteps for which the agent interacts with the simulator.
Thus, only at the end of the curriculum does the agent
have the full control over visited states that the original
GAIL agent has from the beginning. This curriculum also
encourages the discriminator to learn better representations
early on.

In each episode, the agent is initialised from a random
expert state, sEt and must act for H steps, where H is
the length of the horizon. Once the horizon is reached, the
simulation ends but the episode is not considered terminated.
Instead, Horizon GAIL uses an actor-critic approach, with
the actor following a gradient estimated from an n-step
return, with n = H , bootstrapping from a critic V when
the horizon is reached. This prevents the agent from learning
myopic behaviour when H is small. Hence, while GAIL is
agnostic about the policy gradient method it uses, Horizon
GAIL requires a critic in order to bootstrap beyond the
simulated horizon.

When H = 1, Horizon GAIL is similar to BC. In fact, pre-
training GAIL with BC is known to be beneficial [33], [30],
[48], [49]. However, even with H = 1, a crucial difference
remains (see Figure 3). BC does not interact with a simulator,
as the agent simply learns to predict the expert’s action given
its state. By contrast, when H = 1, the Horizon GAIL agent’s
action is fed back into the simulator, which generates st+1

and the policy gradient estimate bootstraps with V (st+1).
When H = 2, the agent, initialised from sEt , acts for two
steps in the simulator before being terminated. H is increased
during training according to a schedule. When H = 1,
Horizon GAIL is equivalent to GAIL.

Gradually moving from single step state-action pairs to
more difficult multi-step trajectories helps stabilise learning.
It allows the generator and discriminator to jointly learn to
generalise to longer sequences of behaviour and match the
expert data more closely while ensuring the discriminator
does not collapse early in training. We found that Horizon
GAIL was critical to successfully reproduce naturalistic
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behaviour in our complex traffic intersection problem, as we
show in Section V-B.

V. EXPERIMENTAL RESULTS
We evaluate ViBe on a complex multi-agent traffic scene

involving a roundabout in Purmerend (Section IV-B). The
input data consists of 850 minutes of video at 15 Hz from
the traffic camera observing the roundabout. Our vision
pipeline identifies all the agents in the scene (e.g., cars,
pedestrians and cyclists), and tracks their trajectories through
time, resulting in around 10000 car trajectories. Before any
learning, these trajectories are filtered and pruned. Specifi-
cally, any trajectories that result in collisions or very large
velocities are considered artifacts of the tracking process and
are not used during training. We split the resulting dataset
into training, validation, and test sets such that there is no
temporal overlap, i.e., no test trajectories occur at the same
time as training trajectories. The validation set is used to tune
hyperparameters and choose the best performing model (for
all baselines) in evaluation. As discussed in Section IV-B,
we can use our simulator to play back these trajectories at
any point in time (see Figure 1).

When training with Horizon GAIL, in each episode the
agent is initialised at a point sampled from an expert tra-
jectory. The sampled point determines the full initial state
of the simulator, including position, velocity, and heading
of all agents in the scene. We use our policy to simulate
the agent for H steps. The agent is also assigned a goal
corresponding to the last state of the expert trajectory. The
episode terminates if the agent collides with an object or
another agent, or reaches its goal.

We compare Horizon GAIL to a number of baselines: BC,
GAIL [4] and PS-GAIL [34], using the same dataset and
observation and action spaces to train all methods. We show
results using the best hyperparameters we found after tuning
them separately for each method.

Policies, ⇡✓, take as input 64 dimensional pseudo-LiDAR
observations with a field of view of 2⇡ radians, generated
by our simulator as described in Section IV-B. These LiDAR
observations are stacked together and processed in two layers
of 1x1 convolutions of 15 and 3 channels respectively. These
convolutions act as channel mixing operations but maintain
the spatial information of the original signal. The output
then passes through a series of fully connected layers and is
concatenated with the agent’s orientation, distance from the
goal, and a one-hot encoding of the target roundabout exit.
The network outputs displacements in Cartesian coordinates,
used by the simulator to update the agent’s location.

We use identical core architectures for the discriminator
D� and value function V . Unlike [34], we do not represent

TABLE I
COMPARISON OF VIBE VISION MODULE TO BASELINE TRACKERS

NT IDF1 IDP IDR
IOU 400 51.1% 50.3% 51.8%
Deep SORT 129 68.1% 66.6% 69.7%
ViBe 97 70.5% 68.1% 73.1%

the policy using a recurrent neural network, as we found that
a feedforward network worked well in practice.

We train ⇡✓ with proximal policy optimisation (PPO) with
a clipping objective [45], an actor-critic method known to
perform well for long-horizon problems [50]. We train each
model for 5000 epochs, each containing 1024 environment
interactions. For Horizon GAIL, the horizon schedule starts
with H = 1 and increments by 1 every 100 epochs. However,
performance is quite robust to this hyperparameter: varying
the schedule from 50 to 200 epochs did not create any
significant performance differences.
A. Performance Metrics

To evaluate the ViBe vision module, we measure the
reliability of the tracks it generates using the metrics intro-
duced by Ristani et al. [51]: number of tracked trajectories
(NT), identity F1 score (IDF1), identity precision (IDP) and
identity recall (IDR). These metrics are suitable because they
reflect the key qualities of reliably tracked trajectories.

To evaluate our policies, we chose a 4000 timestep window
of the test data and simulated all the cars within that interval.
These windows do not overlap for each evaluation run.
Pedestrians and other road users are played back from the
dataset. In contrast to training, during evaluation we do not
terminate the agents upon collision, so as to assess how well
each method models long term behaviour.

Unlike in reinforcement learning, where the true reward
function is known, performance evaluation in LfD is not
straightforward and typically no single metric suffices. Sev-
eral researchers have proposed metrics for LfD, which are
often task specific [33], [52], [48]. We take a similar ap-
proach, using a suite of metrics, each comparing a different
aspect of the generated behaviour to that of human behaviour.

During evaluation we record the positions and velocities
of all simulated agents. Using kernel density estimation, we
estimate probability distributions for speed and 2D space
occupancy (i.e., locations in 2D space) as well as a joint
distribution of velocities and space occupancy. The same
distributions are computed for the ground truth data. We
then measure the Jensen-Shannon divergence (JSD) between
the data and the respective model generated distributions
for these three quantities. We also measure how often the
simulated agents collide with objects or other agents in the
environment, i.e., the collision rate. Finally, we measure how
often the agents fail to reach their goal.

B. Results
To validate the ViBe vision module, we manually label

43 trajectories from the dataset and then compare its perfor-
mance against two baselines, a simple IOU [18] tracker and
Deep SORT [13], [14], a state-of-the-art MOT pipeline. We
replace Deep SORT’s appearance model with our own, as it
is specifically trained for this scene.

The results in Table I show that the ViBe vision module
outperforms both baselines. In particular, ViBe’s higher IDF1
score gives confidence that the trajectories provided are of
sufficient quality for LfD. The most substantial difference
between Deep SORT and ViBe is that ViBe performs Kalman
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Fig. 4. Results of evaluation across 4 independent 4000 timesteps of multi-agent simulations across different metrics: Jensen-Shannon divergence between
joint velocity-occupancy, speed and occupancy distributions of ground truth and simulated agents. The collision probability, either with other agents or the
environment. Probability of failing to reach the correct exit.

BC GAIL PS-GAIL Horizon GAIL Expert data

Fig. 5. Top views of the trajectories taken by the agents, when trying to replicate the expert trajectories shown on the right-most column. These trajectories
are produced across 4000 timesteps of multi-agent simulation.

filtering in 3D space, which likely explains the performance
difference. Even for ViBe, the number of tracked trajec-
tories (NT) is substantially higher than ground truth (43).
However, this is not caused by false trajectories but merely
by the tracker splitting a single trajectory into separate ones.
This in turn implies that ViBe produces longer tracks than
the baseline methods.

The results of our LfD evaluation can be seen in the
following figures: Figure 4 shows performance with respect
to the evaluation metrics discussed in Section V-A for 4 inde-
pendent 4000 timesteps of multi-agent simulations. Figure 5
shows the trajectories generated by a single such simulation
by each method. Horizon GAIL outperforms all baselines
and produces trajectories that more closely resemble the data.
GAIL and PS-GAIL perform relatively poorly, failing to
capture the data distribution. These results represent the best
training epoch out of the 5000 performed during training, as
we observed that both baseline GAIL methods exhibit quite
unstable training dynamics. Figure 6, which plots the joint
velocity-occupancy JSD metric across the training epochs for
a multi-agent evaluation of 4000 timesteps across 3 random
seeds, shows that Horizon GAIL is noticeably more stable.

Fig. 6. Progression of Joint velocity-occupancy JSD metric through
training, indicating difference in stability between our method (Horizon
GAIL) and other GAIL baselines across 3 random seeds.

With respect to PS-GAIL, we observed that the curriculum
parameter was relatively hard to tune. For example, adding
agents too soon causes the discriminator to learn too quickly
that these agents are not real.

Another notable observation is that BC performs well
when compared to both baseline GAIL methods. This re-
sult can be attributed to the abundance of data available
for training. From Figure 5 however we can see that the
qualitative performance of these policies is relatively poor
when compared to Horizon GAIL. As expected, the BC
baseline quickly diverges from plausible trajectories, as mi-
nor errors compound over time. The long evaluation times
exacerbate this effect. Horizon GAIL avoids compounding
error problems associated with BC through interaction with
the environment. It also avoids unstable training related with
GAIL through the gradually increasing horizon. This yields
stable, plausible trajectories with fewer collisions than any
other method.1

VI. CONCLUSION

This paper presented a novel method for learning from
demonstration in the wild that can leverage abundance of
freely available videos of natural behaviour. In particular,
we proposed ViBe, a new approach to learning models of
road user behaviour from unlabelled raw video data of a
traffic scene collected from a single, monocular, uncalibrated
camera with ordinary resolution. ViBe calibrates the camera,
detects relevant objects, tracks them reliably through time,
and uses the resulting trajectories to learn driver policies via a
novel LfD method. The learned policies are finally deployed
in a simulation of the scene developed using the Unity
game engine. According to several metrics our LfD method
exhibits better and more stable learning than baselines such
as GAIL and BC.

1Accompanying video: https://youtu.be/3VK4tQTHeHc.
Supplementary material: https://arxiv.org/abs/1811.03516
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