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Abstract

The recent advancement of the autonomous vehicle has raised the need for reliable environ-
mental perception. This is evident, as an autonomous vehicle has to perceive and interpret its
local environment in order to execute reactive and predictive control action. Object Tracking is
an integral part of vehicle perception, as it enables the vehicle to estimate surrounding objects
trajectories to achieve dynamic motion planning. The 3D LIDAR has been widely used in
object tracking research since the mechanically compact sensor provides rich, far-reaching
and real-time data of spatial information around the vehicle. On the other hand, the deve-
lopment of autonomous driving is heading toward its use in the urban-driving situation. In
an urban situation, a robust detection and tracking algorithm is required due to increasing
number of Vulnerable Road User (e.g. pedestrian and cyclist), heterogeneous terrain, inherent
measurement uncertainties and limited sensor reach.
This thesis presents an integrated framework of multi-target object detection and tracking
using 3D LIDAR geared toward urban use. The framework combines occlusion-aware detection
methods, probabilistic adaptive filtering and computationally efficient heuristics logic-based
filtering to handle uncertainties arising from sensing limitation of 3D LIDAR and complexity
of the target object movement. The implemented framework takes a raw 3D LIDAR data as
input to perform multi-target object detection while simultaneously maintaining track of the
detected objects’ kinematic states and dimension in robust, causal, and real-time manner.
Robust detection is enabled by slope-based ground removal and L-shape fitting to reliably
enclose object of interest into bounding box in the presence of sensor occlusion. The tracker
utilises three combined Bayesian filters (IMM-UK-JPDAF) which simultaneously tackle asso-
ciation uncertainties, motion uncertainties and estimate non-linear stochastic motion model
in real-time. Logic-based rule filters are also designed to augment the rest of detection and
tracking based on the understanding of LIDAR sensor limitation and occlusion characteristic.
The evaluation results using real-world pre-recorded 3D LIDAR data show the proposed
framework can achieve promising real-time tracking performance in urban situations. Diverse
datasets are deliberately chosen to evaluate if the MOT system is capable of working in a
varying driving scenario. The benchmark results highlight that the designed and implemented
MOT system is performing on par with the state-of-art works and yield satisfying accuracy
and precision in most given urban settings.
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“You must let go of the illusion of control.”
— Master Oogway





Chapter 1

Introduction

1-1 Defining Vehicle Autonomy

Autonomous driving can cover a wide gamut of definition based on its use case and degree of
autonomy, Society of Automotive Engineer (SAE) Internationals provides a useful classification
for the autonomous vehicle on its International Standard no. J3016[1], this classification notably
has the equivalent comparison with other pre-existing local standards such as the one made
by national transport regulatory bodies such as Germanys BASt and US NHTSA. Table 1-1
summarizes the classification and the equivalent level according to BaSt and NHTSA.

Le
ve

l 

Name Narrative definition 

Execution of 
steering and 
acceleration/ 
deceleration

Monitoring of 
driving 

environment

Fallback 
performance 
of dynamic 
driving task

System 
capability 
(driving 
modes) BA

St
 

le
ve

l 

N
H

TS
A 

le
ve

l  

    Human driver monitors the driving environment 

0 No
Automation 

the full-time performance by the human driver of all aspects of the dynamic driving task,
even when enhanced by warning or intervention systems Human driver Human driver Human driver n/a 

D
riv

er
 

on
ly

 

0

1 Driver 
Assistance 

the driving mode-specific execution by a driver assistance system of either  
steering or acceleration/deceleration using information about the driving environment 
and with the expectation that the human driver perform all remaining aspects of the 

dynamic driving task

Human driver 
and system Human driver Human driver

Some
driving
modes As

si
st

ed
 

1

2 Partial
Automation 

the driving mode-specific execution by one or more driver assistance systems of both 
steering and acceleration/deceleration using information about the driving environment 

and with the expectation that the human driver perform all remaining aspects of the
dynamic driving task

System Human driver Human driver
Some
driving
modes Pa

rti
al

ly
 

au
to

m
at

ed
 

2

    Automated driving system (“system”) monitors the driving environment 

3 Conditional
Automation 

the driving mode-specific performance by an automated driving system of all aspects of 
the dynamic driving task with the expectation that the human driver will respond 

appropriately to a request to intervene
System System Human driver

Some
driving
modes H

ig
hl

y 
au

to
m

at
ed

 

3

4 High
Automation 

the driving mode-specific performance by an automated driving system of all aspects of 
the dynamic driving task, even if a human driver does not respond appropriately to a 

request to intervene
System System System 

Some
driving
modes

Fu
lly

 
au

to
m

at
ed

 

3/4 

5 Full
Automation 

the full-time performance by an automated driving system of all aspects of the dynamic 
driving task under all roadway and environmental conditions that can be managed by a 

human driver
System System System All driving 

modes 

-

Table 1-1: summary of levels of driving automation for on-road vehicles. Source:[2, 1]

According to SAE classifications, existing commercially available Advanced Driving Assists
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2 Introduction

(ADAs) such as Adaptive Cruise Control and Parking Assists fall on Level 3, in which human
intervention is still needed as a fallback during the dynamic driving task. Moreover, these
ADAs are designed for relatively low traffic and well-structured environment such as a highway.
Limited autonomous driving in the more complex environment (mainly urban situation) is also
commercially available, such as intersection assist, construction site guidance, and pedestrian
collision prevention. The limited degree of autonomy of contemporary car demonstrates that
up to this point urban autonomous driving is research in motion. Note that in this report
we define an autonomous vehicle as the equivalent of SAE Level 5, which is in line with the
common goal of the autonomous driving technology: fully remove human involvement in the
traditional sense of driving task.

Due to the inherent high complexity of autonomous driving tasks, it is useful to compart-
mentalize the technologies into modular building blocks separated by function. Matthaei and
Maurer[3] provide a comprehensive functional architecture based on the top-down approach.
Notably, to model to the driving task in relation to human driving behaviour, the architectural
design is divided into 3 abstraction levels[4, 5, 6]: navigation (strategical), guidance (tactical),
and stabilization (operational). The three levels also correspond to different system scale,
in term of resolution, horizon and accuracy. The architecture boils down to the utilization
of surrounding and self-information from sensors coupled with external data to achieve the
desired driving task. These tasks are defined granularly based on function and scale. The
schematic of the top-down architecture can be seen in Figure 1-1.

Macro-Scale

Pose Estimation

Meso-Scale

Pose Estimation

Micro-Scale

Pose Estimation

Actuators
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Feature-based and 

Model-based Filtering

Context-/Scene Modeling

Road-Level 
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Figure 1-1: Functional system architecture for an autonomous vehicle (adapted from[3]). Low-level
perception module is marked in red.

In the architectural point of view, the lowest level of the perception module (see Figure 1-
2) is directly fed with environmental sensor measurement and is responsible for conveying
environmental states to the upper-level perception module and orthogonally to the stabilization
module. Therefore, it is clear that perception in the lowest level is crucial in the sense that
its output becomes the reference of two higher perception modules as well as low-level vehicle
stabilization. Referring to the convention used in functional system architecture, the following
section thus will concentrate the discussion in the scope of low-level vehicle perception; in
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particular, the object tracking of dynamic road participant.

ActuatorssrosneSelciheVsrosneS latnemnorivnE

Engine Gearbox

SteeringBrakes

Trajectory

Vehicle

Vehicle in Rela-

tion to the

Environ-

ment
Environment

in Relation

to the Vehicle

Camera Lidar

Radar
Ultra-

sonic

Filling Level 

Sensor
Gyroscope

Odometer
sensors

Thermo-

meter

Rain 

Sensor

Grid

Object
Tracking

Lane 

Tracking Data Filtering

Traffic Sign & Traffic 

Quasi-

World 

Modeling

Communication

(HMI/V2X)

Higher Level Modules

Figure 1-2: A low-Level overview of the functional autonomous Driving architecture. (adapted
from[3]) The focus of this thesis in the overall architecture is marked in red.

1-2 Urban Vehicle Perception: Related Works and Challenges

The role of perception ability in autonomous driving technology has been briefly mentioned
in the previous section. Here, we define it further and also discuss the state-of-art of urban
autonomous driving along with its main challenges involved in employing vehicle perception.

The commercial implementation of lateral and longitudinal Advanced Driving Assists such as
"Autopilot" in Tesla car[7] demonstrates that modern vehicle is able to utilise environmental
understanding to gain partial automation in the highway-like situation. It is evident that
the case of Tesla Autopilot may not be trivially applicable in an urban situation. In the
inner-city driving scenario, a substansial variation of traffic and structures on the vehicle own
and adjacent lanes essentially make the perception of relevant road users, static obstacles and
the road course even more challenging task.

Urban-oriented autonomous vehicles themselves have been extensively researched in body
of literature and even tested in (controlled) urban scenario, the latter part is particularly
true for the vehicles which have competed in and cleared the DARPA Urban Challenges[8],
such as Boss[9], Stanford’s Junior[10] and MIT’s Talos[11]. A public demonstration of Project
Stadtpilot[12] and Project BRAiVE[13] further reinforces the feasibility of autonomous cars
being ubiquitous in the future road.

There are important challenges which need to be addressed in urban autonomous driving:
first. the significant variation of traffic and structures on the vehicle own and adjacent lanes
essentially makes the separation between of relevant road object from the terrain even more
challenging task[11]. Second, advancing from typical highway scenario into urban domain also
require additional focus on the detection of a different class of traffic object, and especially
the addition of Vulnerable Road User (VRU)[14]. Third, the need to classify the traffic object
and predict its future trajectory (i.e. intent) also arises. Traffic objects also sport differing
movement pattern which may change within a short timeframe. Since the vehicle is expected
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to recognize the intention of surrounding objects, the task of vehicle perception is expected
to become substantially more complex.

Vehicle perception is modelled in term of position and motion of dynamic objects relative
to the vehicle position; it is the process of extraction of geometrical values (e.g. dimension,
position, velocity, colour, etc.) from surrounding situation[3] to model their semantic context
up to a sufficient extent[15]. While a human driver can assign a semantic meaning to the visual
perceptions quickly and nearly without error, this is still a comparatively challenging task for
a machine with the current state of the technology[16]. For instance, a machine can give out
precise measurement and location of arbitrary traffic sign from a camera image. However, it
cannot readily tell what that sign reads and what to do with it without a priori knowledge.
Thus modelling the semantic context (i.e. object classification) is one of the primary tasks
in machine perception. Recent works such as semantic labelling using stixel[17] demonstrate
that such contextual information can be integrated during detection and tracking process to
derive object class from geometrical and dynamics behaviour clue, for instance separating
static object to dynamic object by looking at object shape and past motions.

Rieken et al.[15] consider there are two possible approach of vehicle perception: using a priori
knowledge (i.e. localization) and perception-driven approach that relies onboard sensors to
model all perceptive aspects of autonomous driving, furthermore the author also asserted
that perception driven approach is more suitable for urban autonomous driving due to the
risk associated with the changing nature of urban structures (i.e. a priori information cannot
accommodate real-time change). Perception-driven approach generally relies on vision-based
environmental sensors to obtain measurement data. The recently introduced compact 3D
rotating LIDAR scanner[18] is especially suitable for this purpose, since it enables far-reaching
high fidelity 3D acquisition of surrounding spatial information which is difficult to achieve
with conventional sensing technologies, such as camera and RADAR.

It is also beneficial to describe the challenges in perception task in a quantitative manner.
In essence, the difficulties faced in perception problem can be attributed to the incomplete
quantities from the sensor to derive precise measurement and/or the lack of knowledge to assign
a semantic context to the measured object, therefore using term uncertainty is appropriate.
According to Dietmayer[16], the following three uncertainty domains exist for the machine
perception:

1. State uncertainty: uncertainty in the measured physical variables, such as size, posi-
tion and speed. This directly related to measurement errors in the sensors and signal
processing module that cannot always be avoided

2. Existence uncertainty: the uncertainty as to whether an object detected by the sensors
and transferred to the representation of the surroundings actually correspond to real
object of interest.

3. Class uncertainty: uncertainty with regard to the correct semantic assignment, which
can be caused by insufficiently accurate measured data or shortcoming in the classification
procedure

These uncertainties need to be addressed for a reliable vehicle perception. For this purpose, the
Bayesian probabilistic[19] filtering is widely used due to its heuristic-free approach noted as
an advantage[16, 19], making it applicable generically. On the other hand, the computational
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constraint has to be taken into account during application of optimal filtering in automotive
purpose[20], and in state-of-practice, sensor-specific heuristic criterion is still effectively put
to use to handle these three uncertainties.

Last but not least, in perception task not only the vehicle has to detect and derive a physical
measurement of surrounding objects, but it also has to keep track of dynamic objects in a
continuous manner for the reference point of vehicle closed-loop control. Going by this notion,
the concept of object tracking becomes a core essence in urban vehicle perception.

1-3 Multi-Object-Tracking: Overview and State-of-Art

It is useful to understand the high abstraction of object tracking, especially the intended
objective, how the uncertainties are being handled, followed by the state-of-art procedure.
Additionally, since it is given that in urban scenario there are almost always multiple objects
of interest surrounding the ego-vehicle, we generalize the tracking scheme in the urban situation
as Multi Object Tracking (MOT). The schematic of MOT can be seen in Figure 1-3.
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Figure 1-3: Schematic of object tracking

To model the perceived environment, a vehicle needs to be continuously aware of the kinematic
states (e.g. position and velocity) of surrounding objects. The knowledge of the objects states
is required to execute appropriate control action within reasonable time-frame, this is crucial
as the vehicles control strategy relies heavily on the known environmental states to determine
time-constrained control actions, for instance the ability to track the movement of pedestrians
which is about to cross a road is used by the vehicle to apply braking in timely fashion, this
reasoning is made possible by object tracking done in a causal manner (i.e. online) with some
degree of guarantee of the execution time (i.e. real-time).

The object tracking procedure given in Figure 1-3 follows widely used[21, 22, 23, 24, 25, 26, 27]
tracking-by-detection (i.e. object detection and tracking are done in successive fashion). On
the detection stage, segmentation of the raw data is done to build basic feature of the scanned
objects and to distinguish between dynamic and static objects. Subsequently, the segmented
objects pose is then estimated based on either its outlier feature or fitting the measurement
into known model[28]. Segmentation also introduces reduction of dimensionality, since tracking
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each individual sensor’s scan hits is often computationally infeasible depending the type of the
sensor, and redundant as the sensor does not distinguish between object, terrain and noise.

At this stage, the raw measurement has already been translated into refined measurement
with meaningful attributes (e.g. the static/dynamic classification and the objects pose). In
another word, the object is successfully detected. Note that the detected object may not be
static, in that case the attributes (i.e. the dynamic model states) will evolve over time.

Subsequently, the detected object is given to state estimation filter so that object kinematic
states can be predicted according to a dynamic motion model. The purpose of the tracker is
to effectively estimate the possible evolution of the detected object states even in the presence
of measurement uncertainties, an optimal Bayesian filter such as Kalman Filter and Particle
Filter are extensively used to address state uncertainties due to unmodelled dynamics of target
evolution or noise acting on measurement.

Next, a data association (DA) procedure is done by assigning detected object into a track with
established filter state or newly started trajectory. In multi-target object tracking scenario,
there exist multiple objects with multiple different trajectories. The purpose of DA is to ensure
the detected objects are localized while simultaneously maintaining their unique identity. At
this stage uncertainties of the measurement due to finite sensor resolution (e.g. sensor may not
be able to resolve multiple cluttered objects and return a single measurement instead) and/or
detection step imperfection may arise In order to address this issue, Bayesian probabilistic
approaches are commonly used to handle DA process, such as are Joint Probabilistic Data
Association Filter (JPDAF)[29] or Multiple Hypothesis Tracking (MHT)[30].

Finally, in practice a track management is required to cancel out spurious track based on specific
criteria. Track management is responsible for handling existence and classification uncertainties
based on a sensor-specific heuristic threshold. For example, track existence is defined to
be true if 90% of its trajectory of track hypothesis is associated with a highly correlated
measurement. The same also applies with class uncertainties; object class can be determined
based thresholding of dimension, past motion, or visual cue (i.e. colour). Alternatively, these
two uncertainties can also be assumed to be a random variable evolving according to Markovian
process. The Integrated Probabilistic Data Association[31] specifically model the existence of
track as binary Markov process.

Note that in tracking-by-detection paradigm, the detection result is a pre-requisite of object
tracking process and thus it must be seen as integrated part of object tracking process. on
the other hand, the imperfection of detections steps will negatively impact the final tracking
result. This imperfection can be caused by general uncertainty from raw sensor data and/or
occlusion which can be caused either by vision blockage of other objects (e.g. a road sign
blocking pedestrian) or orientation of object that simply does not allow LIDAR sensor to
obtain complete geometric measurement

In a typical urban scenario, sensor occlusions are unavoidable occurrences, to address this
several works try to explicitly model occlusion[32, 33, 34] during detection and incorporated
occlusion handling in their object tracking method. In the inter-process level, one notable
approach as proposed by Himmelsbach[25] is the bottom-up/top-down approach which lets
the tracker and detector exchange stored geometrical information to refine the detection
parameter. Alternatively, some other works have proposed a track-before-detect method that
avoids explicit detection that takes sensor raw data as an input for tracking process[35].
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1-4 Objectives 7

1-4 Objectives

In the preceding section, the general requirement and uncertainties of vehicle perception in
the urban situation have been established. Furthermore, as a state-of-art sensor, 3D LIDAR is
widely discussed in research of perception tasks geared toward the autonomous vehicle. Among
others, Chen, et. al[28] introduce model-based detection for surrounding vehicles, Schreier
et. al[36] suggest a compact grid-based representation to reliably track uncertain objects,
and Himmelsbach[25] proposed a top-down bottom-up approach to enhance detection and
tracking result with simultaneous classification. Notwithstanding, there are comparably
less literature which addresses the integration of each stand-alone approach for
vehicle perception MOT Task.
Integration-wise, works of Zhang[37], Wojke[27], and Choi[38] notably propose the complete
scheme of MOT using 3D LIDAR. However, the use-case of urban driving is not a
focus, and limitation of vehicle embedded computer is not necessarily taken into
account.
Finally, a vast amount of MOT evaluations are concerned only with camera-based
tracking[39], and there are comparatively fewer works that explicitly evaluate
the 3D LIDAR-based MOT, especially so for MOT in a wide variation of urban
situation.
In this thesis, the above gaps are treated as research questions. Accordingly, this thesis seeks
to address the questions by achieving the following global objective:

Research Objectives

Design, implement and evaluate an integrated framework of 3D LIDAR-based
multi-target object detection and tracking tailored for autonomous urban
driving; the framework takes a raw, 3D LIDAR data as raw input and provide objects
kinematic pose as end output in robust, causal, and real-time manner.

Followed with more granular sub-objectives in which their fulfilment reflects the research con-
tributions:

1. Identify the requirements of object tracking and detection in term of robustness against
tracking target uncertainties and 3D LIDAR sensor limitation in urban situation.

2. Design algorithms which fulfil the defined requirements to achieve the precise and accu-
rate task of both detection and tracking by a combination of probabilistic adaptive
filtering and logic-based rule.

3. Perform real-time implementation and tuning of object detector and tracker in C++
with an interface to real-world, publicly available LIDAR datasets.

4. Design and perform evaluation based on established metrics against publicly accessible
real-world LIDAR data for validation purpose

5. Perform comparison with state-of-art works which also use comparable MOT metrics.

At the last chapter (Section 6-2), the report shall recapitulate how the proposed approach
fulfils each and every sub-objective.
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1-5 Document Structures

The thesis report will be structured as follows: in this chapter, a brief overview of perception as
part of autonomous driving functional architecture has been given, along with the state-of-art
on-road perception technologies. Next, we have put our focus on the urban autonomous driving
current research and its challenges. Finally, the general framework of MOT task has also been
explained to bridge the pursuing chapter.

The thesis shall cover underlying theories and assumption to be used in the design and
implementation of MOT. Accordingly, in Chapter 2 the report introduces the reader to
the rationale of choosing LIDAR sensor, along with the explanation of its data acquisition
procedure. Fundamentals of LIDAR object detection along with the state-of-the-art works are
to be presented. The applicability of these approaches for urban scenario object tracking will
be explored. Subsequently, Chapter 3 shall cover the formulation of object tracking as state
estimation (filtering) problem. Several classes of tracking filter also will be introduced along
with the use case geared toward addressing challenges in MOT problems.

The last 3 chapters deal with the realization of the MOT framework: Chapter 4 will discuss
the design and implementation of MOT as a hierarchical system: detector, tracker and all of its
accompanying subsystem. Practical assumptions and approaches will be discussed to bridge
the theoretical proposal discussed in preceding chapter to real implementation. Evaluation in
Chapter 5 will provide the results of quantitative and qualitative performance evaluation
of the tracker, formulate comparison to state-of-art works and suggest possible improvement.
Finally, Chapter 6 will summarize the system design and results of the evaluation, identify
the limitation and draw up conclusion based on discussion brought in the preceding chapters.
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Chapter 2

Detection Fundamentals

2-1 Overview

This chapter aims to give an overview of object detection process. The detection problem can
be defined as a process of recognizing the presence of target object with unambiguous identity
and state information. This thesis utilises the tracking-by-detection scheme. Therefore the
tracking process relies on detection results[32, 39] in order to be able to maintain the knowledge
of the current and evolution of the objects state. Object detection using 3D LIDAR can be
sequentially divided into two major steps: pre-processing of raw sensor data (segmentation),
and estimating the pose of the target object. Thus, in this thesis, the object detection is seen
as an integral part of the MOT system. The generalized flows of object detection found in the
literature[37, 40, 28, 41, 42, 43, 44] can be seen in Figure 2-1.
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Figure 2-1: Schematics of object detection
The main challenge in object detection includes the uncertainty of sensor measurements and
inevitable occlusion of scanned objects. This chapter will be structured as follows: first, the
rationale of sensor choice is to be elaborated along with its technical detail and limitation, as
it is useful to understand the characteristic of its raw measurement and the entailing obstacle.
Second, we briefly discuss the advantages and limitation of state-of-the-art segmentation and
pose estimation methods. Finally, we identify the most appropriate methods for urban-oriented
MOT, which then will serve as the basis for the design and implementation chapter.
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10 Detection Fundamentals

2-2 Spatial Data Acquisition using 3D LIDAR

2-2-1 Rationale of 3D LIDAR as Modal Sensor

Acquisition of surrounding objects states is enabled by various type of vision sensor, such as
the conventional camera, stereo-camera and more recently, the LIDAR (Light Detection And
Ranging). Compared to LIDAR, camera offers a relatively cheaper, widely available sensors
which provide high-resolution and field-of-view (particularly the surround camera). Moreover,
object tracking using camera as a modal sensor is a well-researched topic in computer vision
field, Luo et. al[45] provides an extensive review of available MOT literature. Notwithstanding,
object tracking for autonomous vehicle introduces an additional challenge: unstructured on-
road environment featuring variations in illumination, background, and scene complexity[46].
It is also important to note that majority, if not all camera-based vehicle object tracking does
not utilise surround camera, and deals only with frontal or rear objects (see[47, 48, 49, 50, 51]).

Likewise, in order to be capable of accurate tracking in full 3D space, the stereo-camera is
needed. Note that we seek to implement the tracking in real-time and vehicle is often embedded
with an embedded computer which prioritises robustness and cost-effectiveness over speed.
The use of surround camera implies the processing of at least 4 combined images, on the other
hand if stereo-camera setup is considered, disparity maps need to be generated from each
camera, and thus, at minimum effectively doubles the image processing demand. Additionally,
the camera has to provide high-resolution to be able to track objects located far away and
cluttered with other objects. Moreover, to the best of author knowledge, no of-the-shelves
solution offers stereo-camera in a surround setup, yet. It is also interesting to note that large
number of literature focuses on the tracking of frontal, rear view or side view, not both. These
combined prerequisites may not be particularly suitable for the goal of urban object tracking,

On the other hand, the recently introduced 3D LIDAR offers the ability to acquire massive-
scale 3D geometrical information of the surrounding scene using single mounted sensor system.
In addition to real-time friendly acquisition speed (10Hz), 3D LIDAR also provides additional
information such as reflectance and compactness of the surfaces. Compared to conventional
camera systems, 3D LIDAR provides lower resolution but is highly robust against unstable
illumination and generally provides a larger horizontal field of view[52, 53]. More importantly,
the dense point information that covers long distances makes 3D LIDAR especially suitable
for the perception of arbitrary dynamic object[25].

However, 3D LIDAR is also known to have some limitations in regard to adverse weather
condition, and limited angular resolution[53, 54]. Colour information and fine texture also
cannot be derived from LIDAR data. Note that these attributes can be used to classify objects
more accurately compared to the singular use of dimension and geometric shape, especially
for incomplete measurement due to occlusion.

At this point, a distinct conclusion can be drawn based on the initial problem definition: object
tracking for an autonomous vehicle in the urban situation. To achieve this, we mainly concern
ourselves with accurate, long-range and surround 3D spatial data. Camera technology, as have
been discussed above is capable of producing such result, but requires relatively more complex
setup, compared to off-the-shelves 3D LIDAR scanner. Computation power also limits our use
of camera for this purpose, as image processing for high-resolution stereoscopic data simply

A.S. Abdul Rachman Master of Science Thesis



2-2 Spatial Data Acquisition using 3D LIDAR 11

results in unavoidable high demand of computing power, which may violate the real-time 
constraint.

3D LIDAR is not without shortcoming, particularly regarding low angular resolution and 
reconstruction of occluded data is comparatively harder due to no other attributes other than 
shape and reflectance can be derived f rom raw measurement. However, 3D LIDAR demands 
lower computational power relative to camera with comparable results. Generally, the choice 
of LIDAR as modal sensor is derived from the need to find the most suitable technology for 
its intended purpose: surround 3D spatial scanning

Camera on the other hand, would be more beneficial in the other tasks of model-based filtering, 
particularly lane tracking and traffic sign detection (refer to the Functional Architecture in 
Figure 1-2). Finally, one increasingly used approach to address limitation brought by single 
sensor modality is simply to use sensor fusion. Sensor fusion of Camera and LIDAR can be 
found in quite a number of recent literature[54, 55, 56, 57, 58, 59] with beneficial results.

However still, we need to take into account the capability of underlying computing platform 
to incorporate sensor fusion while still obeying the real-time constraint. The summary of 
comparison between two sensors can be seen in Table 2-1.

Table 2-1: Comparison of vision sensor technologies

Modal
Sensors

Principle
of Operation

Computational
Complexity

Characteristics

Camera Measure ambient visible
light intensity

Moderate High resolution, high vertical FOV,
surround view needs multiple ca-
mera in a different location, suscep-
tible to illumination change.

Stereo-
camera

Uses multiple cameras
to generate binocular vi-
sion

High Same with camera but with added
depth information, practical depth
accuracy up to 50 m.

3D LIDAR Measure distance & re-
flectance from 600-100
nm laser signal

Low
(depends on
number of
points)

Low resolution, very long range (up
to 200 m), not susceptible to illumi-
nation change, surround view using
single mounted sensor system.

2-2-2 3D LIDAR Scanner: Velodyne HDL-64

This section shall briefly introduce the reader to the modal sensor used throughout this thesis,
with its advantage and limitation in the context of urban vehicle perception.

Fundamentally, LIDAR is an optical measurement principle to localize and measure the
distance of objects in space. LIDAR works under the same principle of the well-known RADAR
technology, however instead of using radio wave, LIDAR uses ultraviolet, infrared or beams in
the visible electromagnetic spectrum.[60]. LIDAR is used to measure the distance of between
a host measurement system and the measured object. Automotive LIDAR typically uses time-
of-flight distance measurement[60]. Principally, the time elapsed between transmitting and
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receiving of the light (laser) pulse is directly proportional between these two objects, such
that:

d = c0 · t
2 (2-1)

where d is the distance in m, co is the speed of light and t is time of travel. In addition,
LIDAR is also capable of returning light intensity to represent the reflectance and contour of
the object of interest. LIDAR works by powering a diode that emits laser pulse collimated by
a transmitter lens. The emitted laser beam hits a target, reflected and a part of the reflected
light hits a photodiode after passing through a receiver lens. A Digital Signal Processor with
a precise clock is used to measure the time between transmitted and received signal which
in turn is used to compute the target distance from the device. The intensity of the received
signal is also used to measure target characteristics such as reflectivity. These sequence of
operations is summarized in Figure 2-2(a). Naturally, a unidirectional sensor can only provide
limited field of view, to compensate, modern 3D LIDAR scanner uses rotation mechanisms
(see Figure 2-2 (b)) and includes more than one pair of emitter-receiver.
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Figure 2-2: LIDAR Schematics (a) General Principle of Measurement (b) Rotating 3D LASER
scanner

3D LIDAR is fairly recently introduced sensor, and compared to conventional camera, there is
not yet equivalent cost-effective mass-produced solution tailored for automotive deployment.
Velodyne series[61] is effectively the only available product in the market that can be readily
integrated into a lab-grade land autonomous vehicle. Accordingly, most works (among others:
[38, 62, 55, 27, 54, 63, 10, 64]) in the autonomous driving field that uses 3D LIDAR, also use
Velodyne HDL-64 (see Figure 2-3) as a reference sensor. Consequently, the assessment of this
technology will be based mostly on Velodyne HDL-64 implementation.

Figure 2-3: Velodyne HDL 64-E (source: Velodyne[61])

Velodyne HDL 64E scanner is a 3D LIDAR scanner consisted of 64 arrays of laser scanner with
rotating head (i.e. as opposed to stand-alone LIDAR sensors commonly used solely for distance
measurement). Unlike conventional 2D LIDAR scanner such as Riegl VQ-250 and Optech Lyn
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which only provide single layer of scan, the HDL-64 the is capable of providing 64 layers of
LIDAR measurement which conjointly construct a 3D spatial representation of surrounding
environment. Each emitter-detector pairs single rotation scan generates the "layer" of points.
The summation of these 2-D point creates the 3-D image. For instance, the collection of points
from a single emitter/detector pair over flat ground appears as a continuous circle (see Figure
2-4 (c))

(a)

(b) (c)

Figure 2-4: 3D LIDAR measurement and instance of occlusion (a) LIDAR frontal view (b) camera
frontal view (c) LIDAR Top-view. Car 1 LIDAR reading (cyan box) is occluded by street sign and
Car 2 (red box) is self-occluded due to its orientation against ego car (i.e. the rear part geometry
cannot be completely measured)

Velodyne rotates at 10 Hz by default, a sensor update frequency which is well within real-time
constraint for automotive use[65]. 3D LIDAR measurement has comparatively lower resolution
than camera and being a collection of points and reflectance information, it leaves plenty of
CPU time for higher level logic (e.g. object classification and tracking). Compared with camera
however, 3D LIDAR lacks colour and texture information and thus will alter the approach
used for classical machine vision classification.
Note that large number of points transfer per seconds may potentially bottleneck the bandwidth
of embedded systems. In reality, reduction in dimensionality such as the use of occupancy grid
and clustering[66] is still necessary. It is important to note, that the 3D Laser scanner has the
limited angular resolution[27] (0.05 deg[61]) and low vertical field of view (27 deg[61]). This
makes only a few usable reading in very long distances[27], and emphasizes the occlusion on
a certain blind-spot angle.
Another important limitation that should be taken into account is that in case of occlusion, no
data can be derived from the target object (refer to Figure 2-4 (a)-(c)). The areas of blanking,
where a shadowing occurs are the blind spots of the sensor. Here, the occlusion phenomena
highlight the limitation of LIDAR measurement which directly impacts the detection and
tracking performance.
Regardless, we see that although not without several shortcomings, 3D LIDAR is shown to be
more aligned with the use case of urban vehicle object tracking. Namely, due to mechanical
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compactness of the sensors, directly available spatial data and immunity against common
environmental attenuation in the urban situation.

2-2-3 Data Structure: 3D Point Cloud

Velodyne HDL 64E provides 360-degree spatial information which results in up to 1 mil-
lions 3D points per measurement. These points can be encapsulated using Point Cloud
Representation[67] as the raw input of object detection process. Point Cloud data Represen-
tation is a convenient container to store, process and visualize 3D scanner raw measurement.
Formally, it can be defined as a collection of multidimensional points representing the mea-
sured or generated counterpart of physical surfaces. Point Cloud is naturally characterized
by spatial XYZ-coordinates and may optionally be assigned additional attributes (in case of
LIDAR, the reflectivity information).

A point is simply a tupple incorporated with a number of various attribute:

pi = {xi, xy, xz, Ii, ...} (2-2)

and a Point Cloud is represented as a collection of points:

P = {p1, p2, p3, pi, ...pi} (2-3)

The measurement of LIDAR scanner in point cloud representation can trivially be derived
directly from the raw data and redistributed for multiple uses. Numerous object tracking
literature body[62, 68, 69, 55, 52, 70, 20, 71, 33, 72] make use of publicly available LIDAR
dataset. Not only this approach enable research to be done without sensor physical presence,
but it also provides the opportunity of validating different algorithm with identical data sets.

KITTI datasets[73] is one notable example, it provides the recording of LIDAR sensors, among
other sensors in a diverse urban driving scenario. The recording capture real-world traffic
situations and range from highways over rural areas to inner-cityscenes with hand-labelled
static and dynamic object. The sensor used by KITTI team is also Velodyne HDL-64E, and
the authors also provide a synchronized camera raw image sequences in addition LIDAR
recording. Furthermore, for validation purpose, object labels in the form of 3D tracklets can
be used as ground truth. KITTI datasets point cloud data is used throughout this thesis as
raw input, exemplary material source and evaluation dataset of the MOT framework.

2-3 Segmentation

A large amount of point clouds data demand a high computational power to process, in addition,
due to discontinuous nature of point cloud, it is useful to combine the geometric points into a
semantically meaningful group. Therefore, the raw measurement needs to be pre-processed to
eliminate unnecessary element and reduce the dimensionality of possible target object before
it passed to the detection process. The segmentation process mainly deals with differentiating
non-trackable objects such as terrain and kerb from unique objects of interest such as cars,
cyclists and pedestrians.
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Segmentation method can be divided into two groups based on the underlying tracking
scheme[28]: the grid-based and the object-based. The grid-based segmentation is mainly
used for track-before-detect scheme, and the object-based is used mostly for the track-by
detect scheme. Although it is important to note the relation is not exclusive. For example,
Himmelsbach et al.[25] used grid-based approach in the pre-processing stage (specifically
clustering) but later used object-based approach to perform tracking.

2-3-1 Grid-based

The grid cell-based methods chiefly rely on the global occupancy grid maps to indicate the
probability of an object existing in a specific grid (i.e. occupied). One common approach to
update the probabilities is to compare the occupancy in current time frame k with occupancy
in time frame k− 1 with the Bayesian Occupancy Filter[74]. In some implementation, Particle
Filter is also used in used derive velocity in each grid[75, 76]. The particles with positions
and velocities in a particular cell represent its velocity distribution and occupancy likelihood.
When the neighbouring cells with similar speeds are clustered, then each cluster can be
represented in the form of an oriented cuboid. Grid-based tracking results in simpler detection
process and less complicated data association process, however, the disadvantage of grid-based
representations is if a moving object cannot be detected (e.g. due to occlusion), the area
will be mapped as a static grid by default if no occlusion handling is applied. Additionally,
grid-based representations contain a lot of irrelevant details such as unreachable free space
areas and only have limited ability to represent dynamic objects[36]. The latter part suggests
grid-based detection is insufficient for the purpose of urban autonomous vehicle perception
which require detailed representation of dynamic objects to model the complex environment.
Therefore, we shall focus on the track-by-detect scheme, and the object-based detection will
be explored more in-depth.

2-3-2 Object-based

Object based segmentation on the other hand, uses the point model (or rather collections of
bounded points) to describe objects. Unlike grid-based method, a separate pose estimation
and tracking filter are required to derive dynamic attributes of the segmented object. The
segmentation is chiefly done with ground extraction to separate non-trackable object with
objects of interest, followed by clustering to reduce the dimensionality of tracked objects. The
two steps will be discussed in the following subsections. Note that the step-wise results of
object-based segmentation processes can be seen in Figure. 2-5.

Ground Extraction

Due to non-planar nature of roads, a point cloud coming from 3D Laser scanner also includes
terrain information which is considered as non-obstacle (i.e. navigable) by the vehicle. It is
useful to semantically label the navigable terrain (hereby called ground) from the elevated
point that might pose as an obstacle. Ground extraction is an important preliminary process
in object detection process. As we are going to deal with a large number of raw LIDAR
measurement, computation load must be factored during implementation. Chen et al.[77]
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Figure 2-5: Segmentation process results (a) raw measurement (b) post-ground extraction (c)
post 2D Clustering (different color per cluster)

divide ground extraction process into three subgroups: grid/cell-based methods, line-based
methods and surface-based methods. Meanwhile, Rieken et al.[15] consider line-based and
surface-based method as one big group called scan-based method. Grid-cell based method
divides the LIDAR data into polar coordinate cells and channel. The method uses information
of height and the radial distance between adjacent grid to deduct existence of obstacle when
slope between cell cross certain threshold, i.e. slope-based method (see[12, 10]).

On the other hand, scan-based method extracts a planar ground (i.e. flat world assumption)
derived from specific criteria, one of the approaches is to take the lowest z value and applying
Random sample consensus (RANSAC) fitting to determine possible ground[78]. The advantage
of grid cell-based method is that the ground contour is preserved and flat terrain is represented
better. However, compared to the scan-based method it does not consider the value of neig-
hbourhood channels, and thus may lead to inconsistency of elevation due to over-sensitivity to
slope change. Ground measurement may also be incomplete due to occlusion by a large object.
One notable approach which factored the occlusion is by Rieken et all.[14], they combine of
channel-wise ground classification with a grid-based representation of the ground height to
cope with false spatial measurements and also use inter-channel dependency to compensate
for missing data.
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2-4 Pose Estimation 17

Clustering

A large number of point clouds are computationally prohibitive if the detection and tracking
are to be done over individual hits. Therefore, these massive point cloud is to be reduced
into smaller clusters in which each of them is simply a combination of multiple, spatially
close-range samples; the process is called clustering. Clustering can be either done in 3D, 2D
(taking the top-view or XY plane) or 2.5D[79] which retain some z-axis information such as
elevation in occupancy grids.

2D clustering offers computationally simpler operation. Rubio et al.[80] presented a 2D clus-
tering based on Connected Component Clustering which has shown to be implementable in
real-time due to its low complexity, this method is also used in 3D object tracking method by
Rieken et al.[14].

Some literature in 2D object tracking[25, 45, 81] have shown that this approach is often
sufficient in the application of object tracking. However, care should be taken as vertically
stacked objects (e.g. pedestrian under a tree) will be merged into one single cluster, which
might be undesirable depending on the vehicle navigation strategy.

3D clustering offers high fidelity object cluster that incorporates the vertical (z-axis) features.
Still, the resulting data and the computational effort required is some magnitude larger than
its 2D counterpart. Compared to 2D clustering, there are fewer works which explicitly deal
with 3D clustering for object tracking with LIDAR data. Klasing et. al.[63] proposed a 3D
clustering method based on Radially Bounded Nearest Neighbor (RNN), and more recently
Hwang, et. al[82] using DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) to employ full 3D clustering. Considering real-time requirement and significant number
of points involved, 2 or 2.5D clustering is more preferred[83] owing to the fact vehicle onboard
computer likely to have limited computational power.

2-4 Pose Estimation

Recognizing the existence of objects of interest has been done in the segmentation. Subse-
quently, in order to extract usable information in term of the object trajectory and orientation,
the pose estimation needs to be done. Object pose is a broad term that may include the
dimension, orientation (heading), velocity and acceleration of such objects. Pose estimation
generally can be grouped into model-based or feature-based method. Model-based pose esti-
mation aims to match raw measurement into a known geometric model, while feature-based
pose estimation deduces object shape from a sets of feature.

2-4-1 Model-based

Model-based pose estimation uses optimization-based iteration to fit vehicle into cuboid or
rectangle representation. The cuboid object is parametrized and the most probable vehicle
pose from the segment points are iterated. In order to fit clusters of points into a model,
edge-like features are to be extracted and "best-fit" method is utilised to fit it into a known
model. A notable example is in Barrois[84] where the optimization problem is formulated as
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the minimization of the polar distance between the scene points obtained and the visible sides
to compute the best vehicle pose.

Petrovskaya and Thurn[21] use importance sampling scoring based on the fitting of measu-
rement to a predetermined geometric model. Another interesting approach is by Morris et.
al.[85] whose matched filter takes view-dependent self-occlusion effects into account, and utilise
4 rectangles to represent the inner and outer sides of the vehicle.

Another the major challenge in bounding box generation is the orientation estimation, common
approaches are by calculating the minimum area of clustered points[86], however in the presence
of partial occlusion the results can be spurious in term of dimension and orientation accuracy,
to tackle this problem Rieken, et al.[43] uses an L-, U- or I-like simple set of geometric classifier
to derive most appropriate orientation. An alternative approach is to use convex-hull method
to generate bounding box[87, 52]; the idea is to minimize the average distance between the
convex-hull points and fit a rectangle. (see Figure 2-6).

Figure 2-6: Example of model-based filtering: Bounding box fitting for a partially occluded object
(a) with minimum area rectangle (b) with model-based convex-hull fitting. Adapted from[52]

Model-based pose estimation can also be combined with Bayesian probabilistic likelihood such
as in the works of Vu and Aycard[88], Liu[64], and Nashashibi[89]. They explicitly modelled
the possible occlusion area to estimate the vehicle dimension based on scan-line distance.
Liu[64] in particular uses "transitional region" between the inner-outer bounding box model
object aiming to accommodate more measurement errors.

Although model-based method offers optimal pose estimation, the major disadvantage of
this method is the high computational time required, and this may not be suitable for real-
time application. Moreover, the optimisation problem may reach a solution at local minima
depending on the initialization and results in a sub-optimal pose. As a consequence, the
feature-based pose estimation shall be preferred.

2-4-2 Feature-based

Feature-based pose estimation, on the other hand, deduces the object dimension based on the
edge features. For instance, Darms et al.[90] extracted edge targets from raw measurement as
a part of the box model to represent the vehicle’s pose. Himmelsbach et. al.[25] used Random
sample consensus (RANSAC) algorithm to fit the dominant line of the segment points with
the orientations of the objects. Luo et al.[45] uses a graph-based method to fit clustered scans
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into an arbitrary shape, although this approach does not provide orientation information as
is.

Another approach, as done by Ye et. al.[91] is to extract a sequence of points facing the sensor
with the smallest radius among the others in similar observation azimuth. then these points
were fitted into L-shaped polyline using iteration endpoint algorithm. Mertz et al.[92] use
corner-fitting method to iterate through set of edge points to deduce the possible corner points.
Similarly, Tay et al.[93] use edge filtering to deduce a bounding box vertex by iterating the
edge lines to the nearest end point. (Refer to Figure 2-7)

Machine-learning AdaBoost based detection methods can be found in the work of Zhang[94] et
al., they use positive training samples obtained from multiple viewpoints of the object to train
the detector to find 3D Harr-like features from clustered points. The trained detector is then
used to generate a voxelized box for detection result. More recently, Braun, et. al.[95] utilises
sensor-fusion approach using Regional Convolutional Neural Network (R-CNN) to estimate
object orientation based on the joint proposal of stereo camera as well as LIDAR data

Figure 2-7: Example of feature-based detection (a) corner fitting (adapted from Mertz et al.[92])
(b) edge filtering (Adapted from[93])

Feature-based detection offers good trade-off between accurate pose estimation and computational-
time. However, Liu[28] also asserted that these approaches are notably sensitive to unstable
measurement.

To summarise this chapter, the 3D LIDAR sensor is selected due to its ability to acquire
surround spatial information with feasible computational cost. However, occlusion-aware de-
tection method has to be used to utilise the full potential of LIDAR. In addition, a real-time
requirement calls for efficient methods. Therefore, based on these two criteria, the Slope-based
channel classification and 2D Connected Component Clustering are to be used for segmen-
tation process with embedded height. Meanwhile, the pose estimation shall utilise minimum
area rectangle augmented with L-shape fitting and cluster height information to form a 3D
Box. Both methods have been shown to yield fast but reasonably accurate detection result
under urban environment[96, 15], which in turn is essential for mission-critical urban MOT
task.
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Chapter 3

Tracking Fundamentals

3-1 Overview

Object tracking can be defined as the process of using sensor measurements to determine
the location, path and characteristics of arbitrary objects[97]. Typically, object tracking seeks
to enumerate the location, (unique) identities, and various types of states such as velocity,
orientation and in the context of autonomous driving, the classification of such object. In the
framework of vehicle perception, the task of object tracking is essential, as the environmental
measurement is only useful if the vehicle is capable of making use of the said measurement
into actionable information.

The necessary component of object tracking has been introduced in Section 1-3 (Multi-Object-
Tracking: Overview and State-of-Art). To further elucidate the object tracking task, it is
useful to see the interprocess flow between component as depicted in Figure 3-1. The result of
detection is used to start a new track, or if existing track exists, the measurement is checked
if it statistically likely to be correct measurement through gating. Passing the gating is the
prerequisite of association between measurement and tracks before being sent forward to state
estimator. This chapter shall cover the assumed modelling of sensor and target dynamics, used
not only in state estimatio and prediction, but also Data Association. Accordingly, several
classes of Bayesian filter will be introduced.

Spurious track

Initialization of 
New track/

Prediction of 
Existing Tracks

Uncertain 
Measurement

(from Detector)
Gating

Data 
Association

Filtering 
(State 

Estimation)

Track 
Management

AssociatedPass

Not-pass
Immature track

Mature tracks with 
trajectories 

information

Bayesian Framework

Figure 3-1: Object Tracking flow. Bayesian filtering is to be used to handle the uncertainties.
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22 Tracking Fundamentals

3-2 Sensor and Target Modelling

The LIDAR sensor is placed on moving ego-car, which is considered as the origin. Due to
the measuring principle of rotating LIDAR sensor the measurement originally comes in polar
coordinates (in the form of distance and bearing). However, Velodyne digital processing unit
(and by extension the KITTI dataset) readily provides the sensor measurement on the Cartesian
coordinate system, In this thesis, the latter coordinate system will be used to conform better
with ego-vehicle navigation frame. The relation between the ego-car navigation frame and
sensor measurement frame can be seen in Figure 3-2.

Y'

X'Z'

X

Y

Z

Figure 3-2: Sensor measurement frame relative to ego-car

As mentioned in Section 2-2, Velodyne HDL-64 raw measurement consists of point cloud in
3D Cartesian coordinates combined with intensity, or reflectance. Although intensity can be
used to enhance the detection process (for example using threshold-based noise removal[98])
its value highly varies with the material, colour and geometric shape of the detected object[99].
In the urban scenario where the object appearance is highly non-homogeneous, the intensity
information is thus not used due to the requirement of variable calibration and overly complex
modelling.

At this point, the detector already bounded all likely clusters belonging to objects into boxes.
Note that in this thesis a point tracking is used as opposed to extended object tracking[100]
(i.e. tracking with geometrical states embedded). One chief reason is that LIDAR sensor
reflects highly inconsistent size of measurement generating points depending on distance,
reflectance and ego vehicle point of view angle, incorporating geometric shapes is guaranteed
to undesirably enlarge measurement uncertainties. In addition, a minimum number of filtered
state is preferred to limit the requirement of computational power. Since it is given multiple
filter instances are needed to perform MOT, a scalable design choice is preferred. It is important
to note that the box representation is still embedded in each track to represent each tracked
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3-2 Sensor and Target Modelling 23

object spatial extent (will be discussed in details in the next chapter).
Furthermore, it is reasonable to assume that road objects does not have vertical motion (in
Z-axis) and thus we are left with measurement in the position vector of z in x and y-axes:

z =
[
xpos zpos

]′
(3-1)

Note that the measurement is obtained at discrete time instance.
The tracking target dynamic motion model can be described mathematically by a discrete
time, stochastic state-space model in the form of:

xk+1 = fk(xk,uk) + wk

zk = H(xk,uk) + vk
(3-2)

with state vector xk ∈ Rp, measurement vector zk ∈ Rn system function F , and measurement
function H at each time step k. The system is disturbed with zero-mean, white, Gaussian noise
sequences wk ∈ Rn and vk ∈ Rn which are mutually independent with covariance matrices
Qk (motion noise) and Rk (measurement noise).
In most traditional models, the state vector includes the position, the velocity, and the accele-
ration in both dimensions, here we also incorporate the velocity magnitude and heading angle
since these states are usually a pre-requisite for autonomous vehicle trajectory planning[101],
the state vectors xk thus becomes:

xk =


xposk

zposk

k

vk
ψ̇k

 (3-3)

with xposk is the position in the x-axis, zposk is the position in the y-axis,ψk is the yaw (heading),
vk is the magnitude of velocity and ψ̇k is the yaw rate, all computed at time instance k. The
evolution of tracking target’s system states over time is depicted in Figure 3-3.
The measured output at time step k (i.e. observation) zk thus can be obtained by multiplying
the corresponding (linear) measurement function hk with the states vector:

zk =
[

1 0 0 0 0
0 1 0 0 0

]
︸ ︷︷ ︸

hk

xk + vk (3-4)

Finally, we need to consider that road objects are often manoeuvring objects: they do not follow
a single motion model consistently over all time steps. For instance, the dynamics of a straight
cruising vehicle would differ significantly when compared that of a turning vehicle. To address
this issue, multiple motion models are used to capture the dynamics of the manouevring object
as much as possible without the need of expanding the motion and measurement noise to
address the uncertainties. The motion models system function and its general description can
be found in Appendix D.

Master of Science Thesis A.S. Abdul Rachman



24 Tracking Fundamentals
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Figure 3-3: Evolution of Tracking Target

3-3 Object Tracking as A Filtering Problem

In this thesis, object tracking problem is modelled as a filtering problem in which the object
states are to be estimated from noisy, corrupted or otherwise false measurements. The estimated
states and assumed system dynamics are given in the previous section. The basic concept of
Bayes filtering is introduced along with the filters which will be used during implementation.

3-3-1 Bayes Theorem in Object Tracking

In object tracking problem, quantities such as sensor measurements, and the states of the
tracked objects along with its surrounding environment are modelled as random variables.
Since random variables can take on multiple values, the probabilistic inference is needed to
compute the law governing the evolution of said variables. Bayes filtering is one of the most
used and well developed probabilistic and statistical theories which can be applied directly
to model and solve issues in object tracking[19]. This approach is the fundamental of more
complex algorithms used in solving object tracking problem.

Let xk be the random variables corresponding to the tracker object, Zk = (z1, z2, zi..., zk) be
a measurement at time i related with xk. Furthermore, given an assumption that random
variable take continuum of values, the knowledge of object x is represented by a probability
density function (pdf) p(xk). Bayesian theorem (in which the filter is based on) allows updating
existing knowledge about xk given knowledge of Zk, we can infer[97]

p(xk|Zk) = p(Zk|xk)p(xk)
p(Zk)

(3-5)

However, since the measurements are received in a sequence over discrete time step, a recursive
form needs to be used. Assuming the system has Markov property (a process in the future is
stochastically independent of its behaviour in the past).
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p(xk|Zk) = p(Zk|xk)p(xk)
p(Zk|zk−1) p(xk|xk−1)p(Sk−1|zk−1) (3-6)

Furthermore, it is also essential to know the sequence of objects and their states and also the
number of objects and their states at a particular time k. This knowledge can be derived from
p(xk|Zk) by integrating out objects and their states as follows:

p(xk|Zk) = 1
p(zk|zk−1)

∫
Sk−1

p(xk|xk−1)p(xk−1|zk−1)dxk−1 (3-7)

The integral in above equation is called Chapman-Kolmogorov equation. The solution of the
equation gives the predicted state of the elements of xk, given all the measurements up to
time k − 1 and the state at time k − 1, the p(zk|xk) term will update the predicted state on
the update of measurement at time k before being re-normalized.

Solving the recursive relation in (3-7) is the main idea object tracking as filtering problems.
Object tracking filter generally differs only in problem requirements and the use of different
forms of the likelihood function p(zk|xk, zk−1) and the transition density p(xk|xk−1). In the
context of object tracking the prior density is derived by the object dynamic equation and the
likelihood is derived from the measurement (sensor observation) equation. Therefore for the
MOT problem, Bayesian estimation can be applied as follow[102]:

1. State prediction: the current state of tracked object the last time step is synchronized
to the measurement time of the most recent sensor observations. A motion model is
used to describes the expected evolution of the system over time, however note that
synchronization based on a model typically adds uncertainty to the estimate, since no
model is perfect (in fact, all models are wrong, but some are useful[103]). If the state of
the object and the provided sensor measurement are not defined in the same coordinate
system, the prediction step also includes a coordinate transformation process object state
to the measurement domain. In order to achieve this transformation, a sensor-specific
measurement model which account sensor noise is utilised.

2. State update State prediction results in a probabilistic representation of the synchroni-
zed system state (referred as state hypothesis) in the measurement domain. In addition,
the corresponding sensor observation sample in the same time step is available for compa-
rison. Next, the likelihood of the sensor model is evaluated at the position of the observed
measurement, given the assumption of the state hypothesis. Based on the likelihood, the
predicted state estimate is adjusted to represent the best knowledge of the system at
the current time step. The final result of update step is a probabilistic combination of
the information from the latest sensor measurement with the previously accumulated
system state.

The following subsections shall go through relevant Bayesian filters relevant to MOT framework
proposed in this thesis.

Remark: unless otherwise stated, the following subsections are to use state variables, system
function, measurement equation and noise characteristics introduced in Subsection 3-2 (Sensor
and Target Modelling).
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3-3-2 Unscented Kalman Filter

Kalman Filter (KF)[104] is the analytical implementation of the Bayesian method that seeks to
recursively compute the optimal parameter estimates (i.e. the object states) from its posterior
density[19]. Specifically, KF assumes the object dynamic equation and posterior density at
previous time step follow Gaussian distribution and the system and measurement function
are linear. This assumption may not work well with object tracking problem as the tracked
object dynamics cannot be perfectly captured by linear motion model. To realize tracking by
means of a nonlinear model, the Extended Kalman filter (EKF)[105] as well as the Unscented
Kalman filter (UKF)[106] are used. The EKF linearizes the system function or measurement
function using a Taylor series approximation. Interested reader may refer to[97] for algorithmic
and mathematical derivation of classical KF and EKF for object tracking,

The UKF on the other hand, avoids computationally expensive linearization altogether and
opt to use an approximation based on so-called sigma points from a Gaussian distribution.
Instead of linearizing around the mean and using the Jacobian as the system function, the UKF
propagate the chosen sigma points through the original non-linear function. The Gaussian
then can be recovered from the newly transformed points. Note that the resulting probability
density function (pdf.) is only an approximation of Gaussian distribution, so it is not an optimal
filter like classic KF per se. Nevertheless, UKF is shown to have more accurate estimate than
EKF in the presence of strong non-linearity[106]. The comparison between classic KF, EKF
and UKF can be observed in Figure 3-4.
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non-linear system. Note that the UKF probability density function (pdf) is only an approximation
of Gaussian. Inspired by[19, 107]

.

A.S. Abdul Rachman Master of Science Thesis



3-3 Object Tracking as A Filtering Problem 27

UKF is in widely used in LIDAR Multi-object tracking as presented in[72, 69, 81, 25] due to
its comparable computational complexity to standard KF and noted to be less demanding
than EKF.[97]. The characteristic is the rationale of UKF use in this work.

The iteration steps of UKF is summarized as follows:

Sigma Point Sampling

Form set of sigma point χ:

χ0
k−1|k−1 = x∗k−1|k−1

χik−1|k−1 = x∗k−1|k−1 +
(√

(L+ λ)P∗k−1|k−1

)
i
, i = 1, . . . , L

χik−1|k−1 = x∗k−1|k−1 −
(√

(L+ λ)P∗k−1|k−1

)
i−L

, i = L+ 1, . . . , 2L

(3-8)

where
(√

(L+ λ)P∗k−1|k−1

)
i
is the "i"th column of the matrix square root of (L+λ)P∗k−1|k−1.

Prediction

The sigma points are then propagated through the transition function f .

χ∗,ik|k−1 = f(χik−1|k−1) i = 0, . . . , 2L where f RL → R|x|.
(3-9)

The weighted sigma points are recombined to produce the predicted state and covariance.

x̂−k|k−1 =
2L∑
i=0

W i
sχ
∗,i
k|k−1

P−k|k−1 =
2L∑
i=0

W i
c [χ∗,ik|k−1 − x̂−k|k−1][χ∗,ik|k−1 − x̂−k|k−1]T + Qk−1|k−1

(3-10)

where the weights for the state and covariance are given by

W 0
s = λ

L+ λ

W 0
c = λ

L+ λ
+ (1− α2 + β)

W i
s = W i

c = 1
2(L+ λ)

λ = α2(L+ κ)− L

(3-11)

where α and κ control the spread of the sigma points. β is related to the distribution of x.
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Update

Again, form a set of 2L+ 1 sigma points

χ0
k|k−1 = x−k|k−1

χik|k−1 = x−k|k−1 +
(√

(L+ λ)P−k|k−1

)
i
, i = 1, . . . , L

χik|k−1 = x−k|k−1 −
(√

(L+ λ)P−k|k−1

)
i−L

, i = L+ 1, . . . , 2L

(3-12)

Propagate sigma points through the observation function h

Zik = h(χik|k−1) i = 0, . . . , 2L (3-13)

Produce the predicted measurement and predicted measurement covariance.

ẑ−k =
2L∑
i=0

W i
sZ

i
k (3-14)

xk =
2L∑
i=0

W i
c [Zik − ẑ−k ][Zik − ẑ−k ]T +Rk|k−1 (3-15)

The state-measurement cross-covariance matrix becomes

Cxkzk
=

2L∑
i=0

W i
c [χik|k−1 − x̂−k|k−1][Zik − ẑ−k ]T (3-16)

and the UKF gain is given by
Kk = Pxkzk

P−1
zkzk

(3-17)

The updated state and covariance then can be computed as

x̂k = x̂k−1 +Kk(zk − ẑ−k|k−1)

Pk = Pk = Pk|k−1 −KkxkKT
k

(3-18)

An alternative to KF is Particle Filter[108] (PF), also called Sequential Monte Carlo filter.
PF is another implementation of the Bayesian recursive filter which aims to deal with a more
general case where the Gaussian-linear assumption does not necessarily hold. The idea behind
PF is to approximate the posterior of a set of weighted hypothesis states (called "particle"). PF
actually uses the same principle with UKF as both use Monte Carlo sampling; the differences
is UKF use deterministically few sampling points while PF uses a much larger sample points in
an attempt to propagate an accurate (but computationally expensive) probability distribution
of the state.

PF notably does not require linearization and thus algorithmically simpler to implement.
However, the performance of filter is dependent on the number of samples and the required
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number of generated particle is exponentially related to the model dimensionality. Thus PF 
is often limited low dimensional spaces[108].

A notable use of PF for LIDAR tracking can be found in the work of Petrovskaya and Thrun[21] 
for their autonomous driving car "Junior" where Rao-Blackwellized Particle Filter is used as 
an alternative to EKF. Special care was taken to limit the complexity of the PF formulation 
such as limiting the estimated parameters and storing only vehicle pose and velocity. Fortin, 
et. al[109] propose a method for joint detection and tracking of vehicles in scanning laser 
range data. Danescu et. al.[76] applied occupancy-grid to reduce the dimensionality of the 
particles and aim to achieve real-time performance, similar compact representation approach 
using stixel and PF can also be found at[110].

PF is an attractive solution or tracking problem, nevertheless its use is relatively less common 
than KF particularly in real-time MOT problems for efficiency reason. As discussed above 
extra steps need to be taken adapt PF for real-time object tracking. Ultimately, we have to 
account the sharing of the computational load with the processing of LIDAR raw data (i.e. 
detection) and simultaneous multi-target tracking.

3-3-3 Interacting Multiple Model

The state estimation problem relies on the object motion model to predict and update the 
object states. However, in an urban situation tracked objects do not necessarily move in 
well-defined p attern. Even i f a  p erfect motion model r epresenting t he object t rajectories is 
available, there is no guarantee that the object will follow a specific motion model a ll the 
time. For instance, this scenario can be commonly found in road junction with a traffic light. 
Assuming at least moderate traffic, road users may follow different motion model depending 
on its position and navigation intent (refer to Figure 3-5). This phenomenon means that 
manoeuvring targets filtering need to be used.

Constant 
Turn Rate

Constant 
Velocity Random

Motion

Figure 3-5: Manoeuvring targets in typical road junction. Here we consider 3 different motion
models as defined in[111, 112], Constant Velocity, Constant Turn Rate and Random Motion. All
models are listed in Appendix D.

The use of object-manoeuvring tracker also implicitly enables tracker to distinguish between
statics and dynamic objects. Typically, dynamic objects move in predictable pattern while
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noises can be seen to move in a more random pattern. Finally, the use of non-linear motion
model requires the uses of non-linear KF as state estimator such as UKF. IMM implementation
itself is commonly used for tracking of vehicle-like objects as can be found in[113, 66, 114, 88,
115].
IMM filter aims to generate better estimates for anobject with ambiguous dynamic behaviour.
This approach used by IMM is as follows: by using multiple models representing different
potential target manoeuvres to run state estimation filters and subsequently rank the most
probable estimation results. Typically, the output of IMM is either a probability-weighted
combination of the individual filters or the output of the filter with the highest probability.
IMM consists of j filters running in parallel and each filter use different motion model to
represent state evolution and measurement. It means for a single track, j state filter(s) is to
be maintained.
First, the predicted state vectors and covariance matrices are generated by each individual
filter estimates with respect to the predicted model probabilities. Next, each of the estimates is
compared to current measurement to update the model-match probability. During the update
step, the computed probabilities of the dynamical target model are added to the updated
state vector and error covariance matrix information produced by the corresponding filter.
The mode probabilities are then used in the so-called merge (or combination) and mixing step.
During the merge stage, the state vectors and covariance matrices of each motion model are
merged into a single state vector and covariance matrix. Finally, in the mixing process, new
filtered state estimates, error covariance matrices and corresponding model probabilities are
computed for each model using weighted state estimates.
The derivation is as follows, we assume that the system with motion model uncertainty
is evolving as Jumping Markov Linear Systems (JLMS), the stochastic state space system
dynamics and measurement equation representing each model j are then defined as

xk+1 = fj(xk,uk) + wj,k

zk = hj(xk,uk) + vj,k
(3-19)

where j = 1, 2...r is part of model set M = {Mj}rj=1 and state variables and noise assumption
is identical with that of (3-2). The IMM is one variant of JMLS which employ r amount of
motion models run in parallel for state estimation. Since IMM is in practice typically uses
implementation of Kalman Filter[97], it can be seen as adaptive switching implementation of
Kalman filter.
In the Bayesian framework, we can infer the posterior pdf. of IMM as

p(xk,Mk|zk) (3-20)

that is given all measurements z up until time k, with discrete state variable xk, and Mk for
the motion mode we can infer the estimate of joint pdf. We can further decompose (3-20)
using conditional probability lemma and further rewrite it to becomes

p(xk,Mk|zk) = p(xk,Mk|zk)p(Mk|zk)

p(xk,Mk|zk) =
r∑
j=1

p(xk,Mj,k|zk) p(Mj,k|zk)︸ ︷︷ ︸
µj,k

(3-21)
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where µj,k is the posterior mode probability that the object motion matches the dynamics of
motion model ran by filter j at time k. In recursive form, the pdf. becomes[97, 116]:

p(xk−1,Mk|zk−1) =
r∑
j=1

p(xk−1,Mj,k|zk−1)µi|j,k−1 (3-22)

where
µi|j,k−1 = pijµi,k−1

r∑
i=1

pijµi,k−1︸ ︷︷ ︸
µ−

j,k

(3-23)

pij is predefined transition probability from model index i to index j (a filter design parameter
set in Matrix Π) and µ−j,k is the mode match probability of filter j at current time step k.

Π =

 p1,1 · · · pr,1
... . . . ...
p1,r · · · pr,r

 (3-24)

The IMM complete cycle is given as follows

Mixing

IMM incorporates weighted average of each j-th model filter state x̂i,k−1 to determine a
single combined estimates state x̂∗i,k−1 and its corresponding variance P ∗j,k−1. This is done by
summing up each model’s joint posterior density, and the process is called mixing. Therefore,
x∗j,k−1 and P ∗j,k−1 are given as

x̂∗j,k−1 =
r∑
i=1

µ(i|j),k−1x̂i,k−1

P ∗j,k−1 =
r∑
i=1

µ(i|j),k−1x̂i,k−1[Pi,k−1 + (x̂j,k−1 − x̂∗j,k−1)(x̂j,k−1 − x̂∗j,k−1)T ]
(3-25)

Prediction

The prediction is made based on the mixed initial states x∗j,k−1 and P∗j,k−1 by the individual
j-th Kalman filter employing its own motion model. The procedure follows ordinary Kalman
Filter prediction (refer to Subsection 3-3-2).

The resulting model-specific predicted states are to be denoted as x−j,k and P−j,k. In addition,
we also have model-specific predicted measurement ẑ−j,k and innovation covariance Sj,k.
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Updates

Likewise, the filter update procedure is to be done by model specific Kalman filter (see
Subsection 3-3-2). The resulting posterior states and innovation covariances are denoted by
x̂j,k and Pj,k

The mode probability reflects the degree of fitness of current measurement to active model j,
it is updated by

µj,k =
λijµ

−
j,k∑r

i=1 λijµ
−
i,k

(3-26)

where λj,k is the Gaussian likelihood of the measurement given by

λj,k = 1√
|2πSj,k|

e0.5(zk−ẑ−1j,k)T S−1
j,k

(zk−ẑ−
j,k

) (3-27)

Combination

The filter output of each j filter is then (re-)combined as a single states x̂k and Pk by

x̂k =
r∑
i=1

µj,kx̂j,k

Pk =
r∑
j=1

(Pj,k + (x̂j,k − x̂)(x̂j,k − x̂k)T )
(3-28)

Schematically, the IMM cycle can be observed in Figure 3-6.
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Figure 3-6: Schematics of IMM Filter. The IMM can be extended to j − th filter with r amount
of different motion model.
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3-3-4 Data Association Filter

KF (or its variant) offers the ability to provide optimal estimates of an object track. Notwit-
hstanding, due to measurement (i.e. detections result) uncertainty there is no guarantee that
the tracked object is actually a relevant object, or even if it is an existing object in the first
place. Therefore, a subsequent classification and validation of the estimated track are simply
necessary.

Data Association (DA) is a process of associating the detection result into a tracking filter.
There are two classes of DA filter: the deterministic filter and the probabilistic filter. Repre-
sentative of deterministic DA filter is Nearest Neighborhood Filter (NNF) algorithm which
updates each object with the closest measurement relative to the state. NNF associates object
with known track based on the shortest Euclidean or the Mahalanobis distance between the
measurement and track.

The probabilistic DA filter that is very well-known in object tracking literature body is the
eponymous Probabilistic Data Association Filter (PDAF)[29]. The PDAF perform a weighted
update of the object state using all association hypotheses in order to avoid hard, possibly
erroneous association decisions commonly encountered in the use of NNF algorithm. The
erroneous association is often found during the scenario in which multiple measurements is
located close to each other (i.e. clutter) and results in single measurement being used to
incorrectly update all other nearby objects.

The summarized differences between NN and PDA can be seen in Table 3-1. PDA is also one
of the most computationally efficient tracking algorithms among clutter-aware tracker[97], for
instance when compared to MHT[117]. Due to its attribute, the PDA filter will be especially
relevant in the urban MOT, and it will be discussed with details in the next section.

Table 3-1: Summary of DA filter classification

Data
Assocation

Single Target Multi-Target

Association
schema

n-1-association (local):
Detections are associated to
single track

n-m-association (global):
Detections are associable to any
track

Deterministic
vs
Probabilistic

Nearest
Neighbor

Probabilistic
Data Association
Filter (PDA)

Global Nearest
Neighbour

Joint Proba-
bilistic Data
Association Filter
(JPDA)

Assignment
decision
schema
(hard vs.
soft)

pick closest
detection
for each
track

use probabilistic
weighting based
on distance

enumerates over-
all association
hypotheses and
chooses the one
with the smallest
sum of distances

use marginalized
joint probabilistic
weighting based
on distance
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3-4 Probabilistic Data Association Filter

It is useful to start with PDAF formulation to understand how the joint probability is incor-
porated to PDAF. For simplicity, we assume a conventional KF with a linear system function
and measurement for the following derivation.

PDAF and its derivative all use the incoming measurement inside a validation gate to approx-
imate the probability distribution function of the tracked object after each update. This is
done by assuming the measurement follows a Gaussian probability distribution. Following[29],
the PDAF itself is working based on the following assumptions:

1. Only one target of interest is present, whose state x ∈ Rnx is assumed to evolve in time
according to the equation

xk−1 = fk−1(xk−1) + vk−1 (3-29)

with the true measurement zk ∈ Rnz given by:

zk = hkxk + wk (3-30)

where vk−1 and wk are zero-mean white Gaussian noise sequences with covariances
matrices of Qk−1 and Rk.

2. The tracks are initialized.

3. The past information through time k−1 about the target is summarized approximately
by a sufficient statistic in the form of the Gaussian posterior

p[xk−1|zk−1] = N[xk−1; x̂k−1|k−1,Pk−1|k−1] (3-31)

4. If the target was detected and the corresponding measurement fell into the validation
region, then, according to (3− 30), only maximum of one of the validated measurements
can be target originated.

5. All non-object originated measurements are assumed to be originated from a clutter
that is uniformly distributed in space and Poisson distributed in time.

The PDAF algorithm is divided into 4 main stages, Prediction, Measurement Validation,
Data Association and State Estimation. The prediction and state update states are similar to
conventional KF. However, the measurement validation and data association is a specific part
of JPDAF. One cycle execution of PDAF algorithm can be observed in Figure 3-7.

3-4-1 Prediction

The PDAF predict the state and covariance matrices one step ahead of time just like KF,
given by

x̂k|k−1 = fk−1(x̂k−1|k−1)
ẑk|k−1 = hk(x̂k|k−1)
Pk|k−1 = fk−1Pk−1|k−1f

′
k−1 + Qk−1

(3-32)
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Figure 3-7: One cycle of the probabilistic data association filter. The part specific to JPDAF
is highlighted in red box. The state-estimation and covariance calculations are coupled due to
covariances dependences on the innovations. (adapted from Bar-Shalom[29])

where Pk|k−1 is obtained from (3-31) and the innovation covariance matrix corresponding to
correct measurement given as

xk = hkPk|k−1h
′
k + Rk (3-33)

3-4-2 Measurement Validation (Gating)

Prior to the measurement being passed to a DA filter, a "weeding" process of bad measurement
called validation gating or windowing is to be done. In essence, detections that exceed a
predefined distance threshold to the closest track are excluded. Those detections are considered
as non-associable, (i.e. it is very unlikely that those detections represent objects which are
already being tracked). Instead, those detections are considered to be potential objects that
are not yet tracked and thus are used to create new object hypotheses. In addition to using
those non-associable detections as a source for new tracks. The illustration of gating can be
seen in Figure 3-8.
The gating is typically implemented as measurement selection problem[97]. Gating selects a
subset of measurements which, given a priori knowledge that the object exists and is detected
contains the object detection with high probability. This probability is termed the "gating
probability". A common approach of measurement gating is to assume the measurements
are distributed according to a Gaussian, so the hyper-ellipsoid gate is used as gating region
and the Mahalanobis distance of the obtained measurement state vector is computed and
compared against that of predicted state vector[115]. A threshold based on inverse value χ2

square distribution is often used[97], this threshold is called gate level.
The measurement validation is done by the gating area given by elliptical region[29]

(V )(k, γ) = {z : [z− ẑk|k−1]′x−1
k [z − ẑk|k−1] ≤ γ} (3-34)
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Measurement  1

Measurement  2

Predicted Track

Measurement  3

Y
-A

xi
s

X-Axis

Figure 3-8: Gating process. Measurement 1 and Measurement 3 are considered to be unlikely to
be sourced from predicted track, and thus will be discarded

where γ is the value of gate threshold equal to inv-χ2(PG), PG is the probability that the
gate contains the true measurement if detected, and Sk is the covariance of the innovation
corresponding to the true measurement. The volume of the validation region for q-dimensional
measurement is expressed as[118]

Vk = π

q

2
Γ(
q

2+1)

√
|γSk| (3-35)

Finally, the set of validated measurements given as:

zk = {zi,k}mk
i=1 (3-36)

3-4-3 Data Association

The non-parametric PDAF is used, we assume a diffuse prior clutter model[29] clutter density,
which is suitable for heterogeneous clutter environment[119]. The association probabilities β
of measurement i at time k is given as[118]

βi,k(x) =



e
1
2 (zm,k−ẑm,k|k−1)T S−1(zm,k−ẑm,k|k−1)

( 2π
γ )

q
2 mk(1−PDPG)

VkPD
+
mk∑
j=1

e
1
2 (zj,k−ẑj,k|k−1)T S−1(zj,k−ẑj,k|k−1)

, i = 1, . . . , mk

( 2π
γ )

q
2 mk(1−PDPG)

VkPD

( 2π
γ )

q
2 mk(1−PDPG)

VkPD
+
mk∑
j=1

e
1
2 (zj,k−ẑj,k|k−1)T S−1(zj,k−ẑj,k|k−1)

, i = 0

(3-37)

PD is the detection probability, PG is the validation gate probability.
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3-4-4 State Estimation

The state update equation is given by

x̂k|k = x̂k|k−1 + Kkvk (3-38)

with combined innovation v̂k and filter gain Kk given as

v̂k = Σmk
j=1βj,k(zk − ẑk|k−1) (3-39)

Kk = Pk|k−1h
′
kx−k 1 (3-40)

and associated covariance of updated state given by

Pk|k = β0,kPk|k−1 + [1− β0k
](Pk|k−1 −KkSkKT

k ) + Kk(Σmk
j=1βj,kvj,kv

T
j,k − vkvTk )KT

k (3-41)

It can be seen that PDAF algorithm resembles conventional KF updates in term of state
prediction and innovation. In addition, the probability weighting β0,k of correct measurement
is accounted in (3-41) during update process. Note that Pk will get updated by probabilities
weighting 1− β0k

which correspond to the probabilities that correct measurement is received.

3-5 JPDA: Tracking Multiple Target in Clutter

The MOT problem can be treated as a single object tracking problem with multiple trackers
run in parallel. However, this only work if the objects are moving independently. In urban
areas, road users typically move in formation-like motion due to traffic conditions. Although
the locations of tracked objects are different; velocity and acceleration may be nearly identical.
(i.e. their motions are highly correlated). This situation introduces ambiguities in associating
multiple measurements to multiple tracks. The situation is depicted in Figure 3-9.

Measurement  1 Measurement  3

Measurement  
4

Y
-A

xi
s

X-Axis

Predicted 
Track 1 Predicted Track 

2

Measurement  
2

Figure 3-9: Clutter situation with gating. Measurement 2 could belong to Predicted Track 1
or 2, and a one-to-one association is expected. Wrong association will affect the tracker state
estimation performance and might even induce track lost.
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Figure 3-10: Data association possibilities tree for MOT. Note that different combination results
in several different track evolution.

To address this issue, the clutter-aware version of PDAF, the Joint Probabilistic Data Associ-
ation Filter (JPDAF) is the extension of PDAF that operates under assumption that object is
tracked under clutter, the situation comes up when different tracks share similar measurements
(c.f. Section 4-6-1). The ’joint’ term refers to the inclusion global association hypotheses to
calculate the weighting.
Probabilistically speaking, since the event that a measurement corresponds to track detection
is mutually exclusive across tracks, but not necessarily mutually independent, the optimal filter
update operations have to consider all possible tracks. Ditto, the allocation of measurements
to possible tracks must be considered jointly or globally. Therefore the following assumptions
are made, following[29]:

1. The number of established targets (i.e. tracks) N in the clutter is known a priori.

2. Measurement from one target can fall in the validation region of a neighbouring target
and acts as a persistent interference.

3. The past of the system is summarized by an approximate of sufficient statistic consis-
ting of state estimates, which are given by approximate conditional means, along with
covariances for each target.

4. The states are assumed to be Gaussian distributed with means and covariances according
to the above approximate sufficient statistic

5. Each target has a dynamic model (3-32) and measurement model (3-33).

Consider that we have some measurements j and also some predicted targets t. The Gaussian
likelihood At,j of associating j with t in a joint event θ is given by [118]

Aj,t =
e− 1

2(zt,j|k − ẑt,j|k−1)TSt,j
−1(zt,j|k − ẑt,j|k−1)√

det(2πSt,j)
(3-42)

Here we consider all numbers of clutter measurements are equally likely and the joint association
γ(θ) probabilities become
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γ(θ) = Φ!
V Φ

∏
j

(At,j)τj
∏
t

(P tD)δt(1− PD)1−δt (3-43)

where V is the volume of the surveillance region in which the measurements not associated
with a target are to be assumed uniformly distributed, Φ is the number of false measurements
in event A, τ is binary measurement indicator, δ is binary target detection indicator, and c is
the normalization constant.

Consider Figure 3-9, if for example we have feasible joint association Measurement 1 to Track
1 (θ11), Measurement 2 to clutter (θ02) and Measurement 3 to Track 2 (θ23), then δ1 = 1, δ2
= 1, τ1 = 0, τ2 = 0, τ3 = 1, and Φ = 1, then γ(θ) becomes

γ(θ) = 1
V
P 2
DA11A23

and this also applies to other feasible joint events (θtj , θtj , θtj), where j = (1, . . . ,mk) and
j = (1, . . . , N).

Assuming that states conditioned on the past observations are mutually independent, the
JPDA association probabilities β is simply the marginalization of all feasible association
probability P{θk|Zk},respectively given by

βjt(l) ≡=
∑

θ:θjt∈θ
P{θk|Zk} (3-44)

P{θk|Zk} = γ(θ)∑
θ
γ(θ) (3-45)

Using (3-44) then the state estimation equations are to be decoupled for each target and
executed the same way as in (3-38). Finally, the state estimation is done exactly the same
with the PDA process.
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Chapter 4

MOT System Design and
Implementation

4-1 Overview

This chapter elaborates the design process and application practicality of the MOT frame-
work based on the theoretical foundation and state-of-art given in preceding chapters. First,
the system architecture will be given to give the reader a bird-view of the implementation.
Subsequently, the development platform is presented to inform readers how the proposed
framework is designed and implemented. Finally, each of the building blocks in the system will
be visited to investigate the individual underlying reasons and how the theory is implemented
in practice.

4-2 System Architecture

The MOT framework is divided into two major components based on the functional objective:
(1) Detector which aims to produce meaningful, unambiguous segmented objects derived from
raw LIDAR data and (2) Tracker, whose task is to assign and maintain dynamic attributes of
detected objects across all time frame.

The component hierarchy and input-output flows can be seen in Figure 4-1. The input of the
system is the raw data from 3D LIDAR scan in point cloud representation of environmental
spatial data in Cartesian coordinate, while the output is a list of objects embedded with context
aware attributes, namely the bounding boxes, trajectories and static/dynamic classification.
Detector consists of 3 sub-components which similarly, represent the subtask of detection
process: the ground removal, to eliminate object of non-interest and reduce dimensionality
of raw data, clustering, which segment the point clouds into collection of coherently grouped
points (i.e. the object), and bounding box fitting, which embed a uniform object dimension
and general direction heading information to each cluster.
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Tracker retrieves the list of bounding boxes and is responsible for keeping itself updated for
the bounding box spatial and dimensional evolution on each time step change, handled by
Position Tracker and Box Tracker sub-component, respectively. Note that the spatial evolution
is expected to change according to motion model, while the box dimension should stays constant
with changing heading. Both evolutions are perturbed by noise and uncertainties, therefore
position tracker requires Bayesian filtering to reject the disturbance. Tracker also stores the
output state of every track iteration in box history, in turn, the Box Tracker relies on past
information from Box History to filter out noise before updating the bounding box.

The MOT tasks are largely sequential and inter-related, as each component relies on the
output of preceding components to perform its task. To exploit this behaviour, the so-called
bottom-up top-down approach[25] is used. The Detector ("top" component) is to exchange
information in a feedback-loop fashion with Tracker ("bottom" component) to reduce false
detection. Since track-by-detection paradigm is used, this approach also augments Tracker
component task.
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Figure 4-1: Multi Object Tracking system architecture
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4-3 Development Framework and Methodology

The implementation is written chiefly in C++ programming language using QT toolkit[120] 
binding. The rationale of cross-platform QT use is to allow the implementation to be natively 
executed on other platforms in the future. In this case, the embedded platform typically 
used in car onboard computer such as Nvidia Drive PX[121]. The reference development and 
benchmark device is a standard desktop-grade developer PC (Intel Core i7-7700K with 8GB of 
RAM, running Ubuntu GNU/Linux 16.0.4.3 LTS). Again, we try to emulate car environment 
where in the industry most high performance vehicle embedded computer are running on 
Operating System based on Linux kernel (see [12, 8, 102]).

The use of C++ on the other hand, is to enable the MOT to be run as pre-compiled na-
tive binary program (as opposed to interpreted script) to avoid overhead in runtime. Third 
party library used namely are Point Cloud Library (PCL)[122] for Point Cloud manipulation, 
OpenCV[123] for shape and bounding box generation, Eigen[124] for Matrix operation, and 
KITTI Development kit[73] to programmatically access the raw dataset and ground truth.

While the majority of the implementation is written in C++, some matrix operation-intensive 
logic and filter d esign a re w ritten i n MATLAB[125] e nvironment. MATLAB’s Embedded 
Coder is used to convert logic written in MATLAB script into a native, linkable C++ static 
library. This approach allows rapid algorithm change, debugging and more importantly tuning 
and evaluation of the designed filter using MATLAB built-in toolbox and plotting tool. The 
development workflow i s summarized in Figure 4-2.

Referring to Figure 4-1 in the previous section, the whole part of Position Tracker sub-
component (that is IMM-UK-PDAF and Track Management) is written entirely in MATLAB, 
while the others are written in C++. Therefore, the implementation has a mixed source 
codebase with approximately 15% of it is written in MATLAB and 75% in C++.

To inspect the raw LIDAR data and tracking result visually, the "Visualiserung" (internal 
program from PEM Chair RWTH Aachen) is used. Visualiserung is a 3D LIDAR data visualizer 
program which is capable of simultaneously replaying LIDAR 3D points, bounding boxes, ego-
vehicle movement and camera image in frame-per-frame basis (see Figure 4-3). The MOT is 
written to output tracking hypotheses to the Visualiserung data format.

The multi-object tracking system (inclusive of the detection process) is intended to be run on a 
car embedded computer, which translates into the requirement of low power and constraint of 
computational performance limited by cooling system[126]. Within these common constraints, 
it is imperative to ensure that the system can be run in a real-time manner given the available 
computing power. The term real-time itself here refers to the correctness of the system 
behaviour depends not only on the logical results of the computations, but also on the physical 
time when these results are produced[65]. Therefore, to some degree, the accuracy the execution 
time has to be deterministic, or at least predictable.

In this thesis, the author aims that the designed tracking system is able to finish complete a 
cycle of detection and tracking faster than the LIDAR sensor sampling rate (10 Hz)[18]. The 
evaluation of computation time can be found in Appendix A-2.

Finally, for metrics-based evaluation purpose, the MOT binary is instructed to export all 
tracking hypotheses, trajectories, and its attributes to plain CSV files. The benchmark script 
is written in MATLAB with integrated use of KITTI MATLAB Development kit.
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Figure 4-2: MOT Development Framework. Note that the green boxes correspond to the vast
majority of Chapter 4 content. Additionally, dashed elements indicate they are not developed as
part of the framework and only used as visual aid

Figure 4-3: 3D world representation of LIDAR data and tracking hypotheses (coloured boxes).
The camera image is used as a visual aid
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4-4 Detector

The detector component is responsible for initial pre-processing and fitting of bounding boxes
which later are to be passed to the tracker. Each step on detection process is going to be
presented in the following subsections. Note that the parameters of the detector used in
implementations can be found in Appendix C.

4-4-1 Ground Removal

The raw LIDAR data consists of approximately 3.0 × 105 points and a large majority of
the points belongs to the ground plane which does not carry meaningful information for
tracking purpose, the first step in measurement pre-processing is thus the ground removal.
In this process, the removal is done using slope-based channel classification augmented with
consistency check and median filtering. The LIDAR measurement with the ground removed
is called elevated points.

To achieve this purpose slope-based channel classification is utilised following[14] which is
shown to handle partial occlusion on LIDAR data efficiently. The slope based channel classi-
fication determines the ground height by compartmentalizing the LIDAR point clouds and
comparing the difference of height (i.e. slope) of the successive compartment.

The procedure is as follows: first, the raw LIDAR scans is divided into a polar grid with
mbins × nchannels-cells with minimum radius rmin being the radius closest to ego vehicle and
rmax being the farthest radius also from ego-vehicle (see Figure 4-4). The minimum radius
is the radius in which the reflection of the ego vehicle is no longer can be seen while the
maximum radius is determined by the effective range of the sensor. Mapping of each point
cloud data pi = {xi, yi, zi, Ii} (see Subsection 2-2-3) to each channel and bin is thus given as:

channel(pi) = atan2(yi, xi)
2π

bin(pi) =

√
x2
i + y2

i − rmin)
2π

(4-1)

Note the height information of the point coming from zi is stored as the mapped cell’s attribute.
The lowest zi point, hereby called prototype point is to be used as ’local’ ground to determine
the lowest possible point for all cells. Additionally, the absolute (local) height in the cell can
be enumerated by computing the difference between lowest zi and the highest zi within the
same cell.

Next, we define the interval [ThminThmax] of possible ground height hi for threshold-based
classification. Since the sensor’s mounting height above ground level hsensor is known a priori,
we can extrapolate that the closest point to the sensor must be situated above ground point.
Thus hsensor is then used as the Thmax for a point to be considered as ground.

The cell information is filled from the bins which are closest to ego-vehicle to the farthest, if
the prototype point of a cell lies inside the interval [ThminThmax] then it is set as the hi of
that cell. If the prototype point is higher than Thmax, then the ground level is set to be equal
to that of hsensor.
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Figure 4-4: Slope-based channel classification. Polar grid mapping (left) and adjacent cells slopes
(right). Adapted from[96]

.

After all cells have been enumerated, a slope (simple Euclidean gradient) m between cells
thus can be calculated to inspect if there is sudden height increase between cells. In addition,
absolute height difference is also computed as a secondary check to identify possible non-
ground object residing in the neighbouring cell. The slopes are illustrated as an orange line in
Figure 4-4, normal ground is represented by a green circle, and the elevated point is coloured as
yellow due to slope change and height difference with the previous cell exceeding a predefined
threshold Tslope and Thdiff .

Although this approach is good for smooth terrain, a small, protruding terrain features, such
as road bump and grass can still be classified as elevated points. To tackle this Consistency
Check and Median Filtering[14] are employed to further flatten the ground plane and yield
better ground estimate. Consistency Check is done by iterating non-ground cells which are
flanked by non-ambiguous ground cells and then comparing the cells’ height consistency with
the neighbouring cells. The cell height is compared against a predefined absolute height Tflat
and its height difference with adjacent cells is compared to threshold Tconsistency. A value
below thresholds indicates the cells should belong to the ground and thus they are to be
re-classified accordingly.

Median filtering on the other hand deals with missing ground plane information (common due
to occlusion), as the name implies, the height value of the missing cell is to be replaced with
the median value of neighbouring cells. The polar grid is again iterated to identify ground
cells which have missing information but is surrounded by ground cells, the tunable parameter
of the filter is kernel (window) size skernel which indicates the number of neighbouring cells
involved.

At the last step, a tolerance value htol is used during final classification to further smooth the
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transition between ground and elevated points in noisy measurement. The whole procedure is
summarized in Algorithm 1 (Appendix B).

4-4-2 Object Clustering

Connected Component Clustering is utilised in order to distinguish each possible object in
the elevated points. The connected component clustering is originally designed to find the
connected region of 2D binary images. However, it is also applicable to LIDAR point cloud[80]
since in urban situation traffic object does not stack vertically, and thus the top view of the
LIDAR measurement can be treated as a 2D binary image. However, the height information
is retained by deriving the difference between the highest and the lowest point in each cluster.
The choice of using this approach allows the MOT system to perform in real-time while still
preserving the height information of detected objects.

Following two-pass row-by-row labelling[127] written in Algorithm 2 (Appendix B). The
approach uses one pass to assign the temporary label of ’connectedness’ and the second pass
is to replace each label with the unique cluster ID.

  

x

y

-1 -1

-1

-1 -1

Cell-1,1

Cell-n,m

Kernel Size

Cell-n,1

Cell-1,m

1 2

1

1 1

Clustered Grid
Occupancy Grid

Figure 4-5: Occupancy Grid and Clustering result. Left is the discretized grid and right is clustered
grid, there are 2 clusters in section of the grid, with cluster ID 1 and 2

The XY plane of the elevated points is discretized into grids with m × n cells. The grid is
assigned with 2 initial states, empty (0), occupied (-1) and assigned. Subsequently, a single
cell in x, y location is picked as a central cell, and the clusterID counter is incremented by one.
Then all adjacent neighbouring cells (i.e. x− 1, y + 1, x, y + 1, x+ 1, y + 1 x− 1, y, x+ 1, y,
x− 1, y − 1, x, y − 1, x+ 1, y + 1) are checked for occupancy status and labelled with current
cluster ID. This procedure is repeated for every and each x, y in the m × n grid, until all
non-empty cluster has been assigned an ID.

The LIDAR point cloud ground removal and clustering process results can be observed in
Figure 4-6.
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Clustered
Ground 
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Raw Data

Figure 4-6: Measurement Pre-Processing: Ground Removal and Clustering

4-4-3 Bounding Box Fitting

The clustering process produced candidate object to be tracked. In order to make intuitive
semantic information about the object, bounding box is fitted to have uniform dimensional
information and yaw direction. A Minimum Area Rectangle (MAR)[128] is applied to each
clustered object which results in a 2D box, and when combined with height information
retained in the clustering process, becomes a 3D bounding box (see Figure 4-7).

1 2 3

Figure 4-7: MAR box fitting with embedded height

The MAR approach is sufficient for most well-defined measurement of a target object, however
it is not guaranteed to correctly enclose partially-occluded object (c.f. Figure 4-8). To tackle
this issue, a feature-based L-shape fitting as proposed by Ye[91] is used to deduce correct yaw
orientation.
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Figure 4-8: Comparison of MAR vs L-shape fiting of occluded object. Notice that some sparse
points (red circled) are considered as outlier and the MAR procedure results in an incorrect box,
the use of L-shape fitting addressed this issue.

The L-shape fitting procedure is done as follows: first, we select two farthest outlier point x1
and x2 which lies on the opposite sides of the object facing the LIDAR sensor. A line Ld is
then drawn between the two points, then an orthogonal line Lo is projected from Ld toward
the available points. The projected Lo with maximum distance dmax and angle close to 90
degrees is then obtained using iteration end-point fit algorithm[129]. The points connected to
the orthogonal line then becomes the corner point x3. Closing a line between x1, x2 and x3
would form an L-shaped polyline. The orientation of the bounding box is then determined by
the longest line, as most traffic object (e.g. car, cyclist) is heading in parallel with its longest
dimensional side. This procedure is illustrated in Figure 4-9.
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Figure 4-9: L-shape fitting procedure

Note that this approach needs a sufficient amount of measurement points to be able to fit
reliable line and is designed for a cuboid-like object. Therefore, the L-shape fitting is only
applied on a car-like object, which correspondingly also suffer from occlusion more than smaller
objects such as cyclist and pedestrian.
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4-4-4 Rule-based Filter

The last step of the detection process is to eliminate majority object of non-interest, such as
a wall, bushes, building, and tree. A dimensional thresholding is implemented to achieve this.
In addition to 3 standard dimensional sizes (length, width, height), the ratio between length
and width is considered to remove disproportionately thin objects such as wall and side rails.
Furthermore, amount of LIDAR points and its volumetric density (i.e. point per m3) are also
taken into account.

However, conservative thresholds are used in order to prevent missed detection; it is expected
that objects which share a similar dimensional profile, such as pole and pedestrian, or car
and large bush are not to be filtered. In addition, recall that occluded object will not have
a full dimensional bounding box. Thus, the ratio check is not applicable for over-segmented
box-(es) which may belong to object of interest. Therefore, the ratio check is only applied for
larger object to distinguish between thin wall-like object and fragment of a real object due
to over-segmentation. The rule-based filter is not intended as a catch all measure for false
positive, but it is intended to reduce significant number of non-object of interest passed to
tracker components.

The list of thresholds and the accompanying descriptions can be seen in Table 4-1. Generated
boxes whose attributes are beyond the threshold is to be discarded and will not be passed to
tracker component. The results can be observed in Figure 4-10.

Table 4-1: Detector rule-based filter thresholds

No. Threshold variable Description

1 Theight_(min|max) min. and max. height of object
2 Twidth_(min|max) min. and max. width of object
3 Tlength_(min|max) min. and max. length of object
4 Tarea_(min|max) min. and max. top-view area of object
5 Tratio_(min|max) min. and max. ratio between length and width
6 Tratiocheck_l_(min) min. length of object for ratio check
7 Tpt_per_m3_(min) min. point count per bounding box volume.

4-5 Tracker

Ultimately, the output detector component is a bounding box with dimension, yaw and centre
position. The next logical step is to maintain an unique and recallable identity of each detected
box across all time frame, which is the raison d’être of the Tracker component. The said
component consists of two separate sub-component that works in tandem: Position Tracker
and Bounding Box Tracker. The later is necessary to preserve dimension since we are
implementing point based tracking instead of extended object tracking (recall Section 3-2 for
the rationale).

Position tracker uses probabilistic, adaptive Bayesian filtering to deal with uncertainty in
movement and association of detected box centre point. While the bounding box tracker
utilises logic-based filter based on a heuristic, that is sets of rule obtained by investigating
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Raw detection
After rule-based 

filter

Figure 4-10: Before rule-based filtering: the objects of no-interest are circled in red (left) and
after rule-based filtering (right).

the sensor measurement and occlusion characteristics. The details shall be elaborated in the
following sections. Note that the Tracker component parameters are listed in Appendix C.

4-6 Position Tracker

There are several challenges that need to be tackled on performing object tracking in urban
situation using LIDAR. First, a LIDAR scanner mounted in vehicle navigating in the urban
environment would be expected to return incomplete spatial data due to occlusion from other
static object or ill-posed perspective of the ego-car (cf. Section 3.2).

Furthermore, a pedestrian, cyclist and vehicle in a crowded situation (e.g. 4-way junctions) are
expected to follow multiple motion models, instead of linear constant velocity, as they would
be in case of a less-crowded situation. Second, simultaneous tracking of multiple objects in a
cluttered environment is as matter-of-fact the basic premise of MOT in the urban situation.
To address these two uncertainties, a two different class of tracking filter are combined: the
manoeuvring-object tracker and clutter-aware tracker.

The object-manoeuvring filter seeks to address filtering problem in a system characterized by
multiple modes of behaviour (i.e. more than one motion models). The clutter-aware filter on
the other hand incorporates probabilistic approach in the data association process. Note that
both classes of tracker is applied on a different part of MOT steps. This approach can also be
found in numbers of tracking literature[113, 81, 112, 130].
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4-6-1 IMM-UK-JPDAF

At this point, the requirement of multi-object tracking problem in the urban scenario has been
qualitatively defined; the tracker is demanded to be capable of tracking multiple manoeuvring
objects coming from uncertain sensor measurement with possible occlusion. These requirements
can be translated into different types of uncertainties problems that call for the combined use
of different classes of object tracking filter.
First, to handle the behaviour of non-homogenous object, the Interacting-Multiple-Model
(IMM) is to be used, also since the kinematic model used is non-linear, the state estimation is
to be done using Unscented Kalman Filter (UKF) due to computational power consideration.
Finally, to handle tracking of objects in clutter with the possibility of detection noise the Joint
Probability Data Association Filter is to be used during data association stage. Together they
form a "coupled" filter called IMM-UK-JPDAF. Note that several closely-related implementa-
tions such as IMM-UK-PDA[81], IMM-UK-MHT[30], and IMM-PF[131] can also be found for
object tracking with 3D LIDAR.
The IMM-UKF-JPDA consists of four steps: Interaction, Prediction-and-Measurement Valida-
tion Step, Data Association-and-Model-Specific Filtering Step, and Mode Probability Update-
and-Combination Step. This approach is mainly inspired by work of Schreier, et. al[81] but
during the Data Association step JPDAF is used instead of the conventional PDAF since we
are considering multi-target.
Remark: some part of the derivation is a rehash of Section 3-3 (Object Tracking as A Filtering
Problem), but since the filters introduced are to be coupled, they are to be presented again
for coherency reasons.
Throughout the derivation we use, j filter each with different motion model, given by a state-
space model representing the state vector xk with input vector uk at time step k:

xk+1 = fj(xk,uk) + wj,k

zk = hj(xk,uk) + vj,k
(4-2)

The process noise wj,k and measurement noise vj,k are assumed to be zero-mean, white,
Gaussian noise sequences and are mutually independent with covariance matricesQj,k andRj,k.
The mode switching between modes is assumed to be a Markov process[132] and transition
from IMM model index i to index j is given denoted by pij . and the transition is governed by
transition probability matrix Π:

Π =

 p1,1 · · · pr,1
... . . . ...
p1,r · · · pr,r

 (4-3)

In the MOT implementation, we used the motion model discussed in Appendix D and the
choice of filter parameter (e.g. Qj,k and Rj,k) is to be discussed in a dedicated subsection.

Interaction Step

This step utilises the IMM probability mixing, The conditional mode probabilities µ(i|j),k−1
correspond to probabilities that mode i has been established in the previous cycle given that
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mode j is active in current time step is given by:

µ(i|j),k−1 = pijµi,k

µ−j,k
(4-4)

where µ−j,k = (µ−1,k, . . . , µ
−
r,k)T is the a priori mode probabilities at the current time step, which

in turn is given by prediction of the mode probabilities of the last time step pij , which denotes
the probability that a mode transition occurs from model i to model j:

µ−j,k = Σr
i = pi,jµi,k (4-5)

Then, assuming we have j individual filters, combined initial state(s) x̂j,k−1 and covariance
Pj,k−1 are mixed from each filter j to form single initial state x̂∗j,k−1 and covariance P∗j,k−1.
They are given by calculating

x̂∗j,k−1 =
r∑
i=1

µ(i|j),k−1x̂i,k−1

P∗j,k−1 =
r∑
i=1

µ(i|j),k−1x̂i,k−1[Pi,k−1 + (x̂j,k−1 − x̂∗j,k−1)(x̂j,k−1 − x̂∗j,k−1)T ]
(4-6)

This results in the initial states of each filter of index j computed in previous time step.

Prediction and Measurement Validation Step

The prediction part is being done by UKF, the sigma points are propagated through system
function f and the weighted sigma points are to be recombined to the predicted state and its
corresponding covariance. The P−k|k−1 value is subsequently used to choose new sigma points
to be propagated into measurement function h. Finally, the weighted recombination of the
sigma points is used to produce the covariance matrix zk and the predicted measurement ẑ−k .
and ẑ−k can be directly used to formulate the validation gate. The steps are given as follows:
First, choose a sigma points such that:

χ0
k−1|k−1 = x∗k−1|k−1

χik−1|k−1 = x∗k−1|k−1 +
(√

(L+ λ)P∗k−1|k−1

)
i
, i = 1, . . . , L

χik−1|k−1 = x∗k−1|k−1 −
(√

(L+ λ)P∗k−1|k−1

)
i−L

, i = L+ 1, . . . , 2L

(4-7)

where
(√

(L+ λ)P∗k−1|k−1

)
i
is the "i"th column of the matrix square root of (L+λ)P∗k−1|k−1.

The sigma points are then propagated through the transition function f .

χ∗,ik|k−1 = f(χik−1|k−1) i = 0, . . . , 2L where f RL → R|x|.
(4-8)

The weighted sigma points are recombined to produce the predicted state and covariance.

x̂−k|k−1 =
2L∑
i=0

W i
sχ
∗,i
k|k−1

P−k|k−1 =
2L∑
i=0

W i
c [χ∗,ik|k−1 − x̂−k|k−1][χ∗,ik|k−1 − x̂−k|k−1]T +Qk−1|k−1

(4-9)
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where the weights for the state and covariance are given by

W 0
s = λ

L+ λ

W 0
c = λ

L+ λ
+ (1− α2 + β)

W i
s = W i

c = 1
2(L+ λ)

λ = α2(L+ κ)− L

(4-10)

where α and κ control the spread of the sigma points. β is related to the distribution of x.
Normal values are α = 10−3, κ = 0 and β = 2. If the true distribution of x is Gaussian, β = 2
is optimal

Next, in the update step. Similar to the prediction step, a set of 2L+ 1 sigma points is to be
derived where L is the dimension of the augmented state.

χ0
k|k−1 = x−k|k−1

χik|k−1 = x−k|k−1 +
(√

(L+ λ)P−k|k−1

)
i
, i = 1, . . . , L

χik|k−1 = x−k|k−1 −
(√

(L+ λ)P−k|k−1

)
i−L

, i = L+ 1, . . . , 2L

(4-11)

The sigma points are then projected through the observation function h

Zik = h(χik|k−1) i = 0, . . . , 2L (4-12)

The weighted sigma points are recombined to produce the predicted measurement and predicted
measurement covariance.

ẑ−k =
2L∑
i=0

W i
sZik (4-13)

Sk =
2L∑
i=0

W i
c [Zik − ẑ−k ][Zik − ẑ−k ]T + Rk|k−1 (4-14)

The state-measurement cross-covariance matrix becomes

Cxkzk
=

2L∑
i=0

W i
c [χik|k−1 − x̂−k|k−1][Zik − ẑ−k ]T (4-15)

is used to compute the UKF Kalman gain.

Kk = Pxkzk
P−1
zkzk

(4-16)

A measurement is considered valid if it lies inside a validation gate in (3-34), with the addition
that we have to incorporate predicted measurement states ẑ−j,k and covariance matrix Sj,k for
each filter j.
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Data Association and Model-Specific Filtering Step

The data association step and filtering/state estimation step are done largely the same with
conventional PDA filter (i.e. as explained in subsection 3-4-3 - 3-4-4) but here we need to
incorporate each model in the process, i.e. x̂−j,k and P−j,k.

The updated state is simply the predicted state plus the innovation weighted by the Kalman
gain; however, the associated innovation term is multiplied with association probabilities β.

x̂k|k = x̂k|k−1 + Kk(v(k))

with vk =
Nv∑
m=1

βm,kzk − ẑ−k
(4-17)

and the updated covariance

Pk = β0P−k + (1− β0,k)(P−k −KkSkKT
k ) + Kk(

Nv∑
m=1

βm,kvm,kvTm,k − vkvTk )KT
k (4-18)

Model Probability Update and Combination Step

The mode probabilities are updated based on the likelihood the measurement fit to a model,
given as

µj,k =
µ−i,kλi,k∑

bfuri=1µ
−
i,kλi,k

(4-19)

where the Gaussian mixture likelihood λi,k is given as:

λi,k = 1− (PDPG)
(VK)Nv

+ PDV
1−Nv
k

Nv

√
|2πSj,k|

Nv∑
m=1

e
1
2 (zj,k−ẑj,k|k−1)T S−1(zj,k−ẑj,k|k−1) (4-20)

Finally, each filter updated states are to be combined again into single final state and covariance
estimate:

x̂ =
r∑
j=1

µj,kx̂j,k

Pk =
r∑
j=1

µj,k[Pj,k + (x̂j,k − x̂j,k)(x̂j,k − x̂k)T ]
(4-21)

The IMM-UK-JPDA iteration is summarized in Figure 4-12

The filter parameters are tuned by investigating the system dynamics and the predicted
noise characteristics in the context of target object movement in the urban scenario, Filter
parameters used in this work implementation is explained in-depth and listed in Appendix C.
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Figure 4-11: IMM-UK-JPDA flowcharts. It can be seen that IMM performs the filtering and
JPDA performs the correlation. The JPDA correlation module fits into the IMM model specific
filtering block, and the input/output schematics would be identical with Figure 3-6

4-6-2 Track Management

A large number of tracked objects with the associated uncertainties calls for efficient implemen-
tation of Track Management. The main purpose of track management is to dynamically limit
the number of spurious track list (thus preventing false data association) and maintaining
object tracking in case of missed detection. Optionally, track management can also be used
for semantic classification purpose based on the track attributes (in our case static-dynamics
behaviour and tracks maturity as shown in Figure 4-12). In this thesis implementation, the
track management is aimed to meet the above two objectives.

Track States and Maturity
First, to distinguish the track status, each and every track is assigned a unique finite ’state’
(not to be confused with the Kalman Filter system states) to reflect its validity and maturity
status of the track. The states are summarized in Table 4-2.

The state numbers also act as a scoring threshold. A track that has successful measurement
association will be assigned state = 1 (Initializing) at time frame k, and if at time frame
k + 1 another successful association occurs, the state number is incremented by 1 until the
state number has reached number of 3. After that, in the next time frame the track state will
be upgraded to Tracking (state number 5).
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Dynamic Track
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Drifting Track

Drifting Track
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Dynamic
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Figure 4-12: Track Management: color-coded classification of Track Maturity and Static/Dynamic
behaviour. Dynamic track (green) indicates the object is moving, Static track (blue) indicates the
object is stopping together with ego-vehicle, Initializing track (yellow) indicates the track not yet
matured since the object has just entered the sensor frame, and Drifting track (red) indicates the
track is about to be lost due the track entering blind spot area

Table 4-2: Track states description

State Name Description

0 Invalid Uninitialised track, or track with invalid measurement or out of range
measurement

1-3 Initializing Track with newly associated measurement
5 Tracking Track with associated measurement that passes gating for more than

n time frame (here n = 3)
7-10 Drifting Track with lost measurement may return to Tracking state if mea-

surement is found again in the future

The same logic is applied when a track lost its measurement post Tracking state, when a track
with Tracking status at time frame k lose its measurement at k+ 1, the state number will be
incremented by 1 and the track enters Drifting mode. If at next time frame a measurement
is found, the track state number would be decremented by 1 until eventually it regains the
Tracking status. Alternatively, if no measurements are associated until the track exceeds state
number of 10, the track status will be set to Invalid. A track with the status of Tracking will
retain its state number indefinitely if a valid measurement is always found. The state is still
being filtered as long as the filter state is not invalid, this means lost track can be recovered
because the track is moving "together" with the lost object until it reappears at the predicted
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location.

Track Initialization and Re-distribution

A track will start when a statistically nearby measurements are found. In order to enable
this, the tracker(s) has to be placed in position nearby to measurement in the first place.
For first time step, every track is distributed evenly spaced on the tracking region (defined
as the adjustable detection range in the Detector component). After the measurement has
been received on the next time step, the tracks are relocated to last known measurement
point which has not been associated with the existing track. If all measurements have been
associated with existing track, the rest of uninitialized tracks are to be relocated randomly in
the tracking region.

Track Pruning

One of the undesirable traits of JPDA is its tendency to coalesce[133] when neighbouring
tracks share the same measurement. In order to prevent a duplicate track associated with the
same objects, a track pruning mechanism is implemented based on (1) track history and (2)
Euclidean distance of the neighbouring track.

First, the last n track Kalman Filter states of each track are stored in history. Then the
difference between the states history value of a track toward all other tracks is computed.
If the cumulative sum of the standard deviation is less than a predefined threshold (history
gating level) then a track is considered duplicate. Finally, the track that has the shorter
lifetime is deleted (i.e. to preserve track continuity). The second approach computes the
Euclidean distance of each track toward each other, if the distance is less than physically
possible threshold distance between two moving traffic object, then the newer track will be
deleted.

The pruning procedure is summarized in Algorithm 3 (Appendix B).

Static/Dynamic Classifier

A static object is simply an object that does not move relative to ego-vehicle, that is zero
relative velocity. However, the presence of noise, occlusion and vehicle constant frame change
makes classifying the static object to be non-trivial. on the other hand, the use of IMM filters
allows us to some degree to distinguish between static and dynamic objects: static and noisy
object will generally have higher probability to evolve under random motion model (which
inherently is a stationary model set with large process covariance).

Therefore, this thesis proposes the use combined use of velocity and IMM probabilities in-
formations (similar to[36]) as criteria to classify statics and dynamic objects. Generally, an
object with zero or negligible relative velocity would be categorized as static. Furthermore,
additional checking is done on the IMM probabilities of the three motion models, if the IMM
predicts that the probability that the object is moving under Mode-3 (Random Motion) is
higher than the other 2 models, then it is statistically likely that the object is a static object
(cf. Figure 4-12).
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Naturally, we have to take into account that the estimated velocity is not necessarily smooth, 
and the IMM probability prediction may take some time steps to converge. To tackle these 
shortcomings, an average past velocity is used as criteria for static/dynamic classification, 
additionally a checking if the filter has converged to steady-state value i s done before using 
the IMM probabilities estimation as the basis of classifying an object as static. The procedure 
is highlighted in Algorithm 4 (Appendix B) and quantitative evaluation result can be found 
in Appendix A-2.
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Figure 4-13: Dynamic vs static Object prediction using IMM

4-7 Bounding Box Tracker

The IMM-UKF-JPDA filter provides estimated poses for point-based object, in order to incor-
porate dimensional and heading information (i.e. that of bounding box) a logic-based algorithm
is implemented which essentially has three major functionalities (1) Associate detected box
with a track (2) to retain detector best-known output and if later a better detection output
is found, update the retained bounding box parameter, (3) perform geometrical correction to
compensate occlusion and ego-car perspective change.

It is also useful to revisit the rationale behind non-use of the extended object tracking. Aside
from computational constraints, we have learned that the nature of LIDAR sensor is prone to
self and external occlusion and thus some over-segmentation is likely to be unavoidable. With
the existing implementation of object detection, it is reasonable to anticipate that the increase
in computational complexity may not necessarily translate into a more accurate estimate of
the object shape states.
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The logical rules are derived from the range and view-dependant occlusion characteristic
of the LIDAR sensor measurement. Additionally, the algorithm also utilises track maturity
information from the tracker components to distinguish noise from the real object. The rule
shall be elaborated in the following subsections.

Finally, to handle over-segmentation, we employ a so-called bottom-up, top-down approach is
an object tracking architecture as proposed by Himmelsbach[25] in which tracker component
works together with detector component in a feedback-loop-like fashion. The use of rule-based
box updates logic allows efficient and effective false detection reduction without sacrificing
performance.

4-7-1 Bounding Box Association

The nature of JPDA tracker is that multiple measurements are to be associated with the
tracker in order to augment the update step during filtering. Notwithstanding, the bounding
box has to be mapped exclusively to a track since bounding box dimensions are not among the
filtered states, and the object tracker is expected to give a single best estimate of bounding
box object to the higher level perception module.

The box tracking association is to be run based on pseudo-code in algorithm 6 (Appendix B).
To summarize, here the association only occurs when the IMM-UKF-JPDA track has met the
threshold of maturity and past a predefined threshold of track lifetime. This approach prevents
a box belonging to clutter to be associated with a valid track, as mature track indicates that
the generated box falls within gating area and statistically likely (based on the Mahalanobis
distance) to be the right measurement.

For a track associated with only single measurement, the one-to-one mapping condition is
fulfilled, and thus no further check is required. on the other hand, For a track associated with
multiple measurements, the box with the closest Euclidean distance is preferred over the ones
that are further, and the track’s box association is marked as ambiguous.

Gating process based on adjustable distance threshold is also done to prevent impossible
association. The association criterion is purposely made to be simplistic, since the measurement
has actually passed more rigorous gating by the IMM-UKF-JPDA position tracker. Therefore,
although a false association is possible, the likelihood such association coming from a mature
track that has been cruising over certain time threshold is expected to be low.

4-7-2 Bounding Box Dimension and Heading

The bounding box is defined by 4 basic parameters: width, length, height and yaw heading.
As has been elaborated in the preceding detector section, the box parameters are generated
using minimum area rectangle algorithm based on the clustered points and then corrected
using L-shape detection for the box-like object.

While this approach almost guaranteed to be correctly working for a complete measurement
of an object (i.e. all part of object is observable), such measurements themselves can only be
obtained when an object falls within a certain range of the sensor and is free from another
occlusion. In other words, as the object goes closer to ego vehicle, more part of a detected
object is expected to be seen by LIDAR sensor, and the non-observable part would be reduced.
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More importantly, when an occlusion occurs and no sufficiently distinguishable edge line is 
found in the cluster, the L-shape detection cannot be used and the yaw heading estimates will 
be erroneous.

Remark: It is also important to highlight that although the motion model used by Kalman 
filter in the position tracker incorporate yaw and yaw rate as estimated states, i t assumes an 
infinitely small object ( i.e. point). This means the yaw estimate i s not directly applicable to 
bounding box heading, since road object does not necessarily travel toward its yaw heading. 
For example, a vehicle moving at relatively high speed would introduce side-slip angle[134]. 
However, a significant discrepancy between yaw heading and bounding box heading i s caused 
by the constantly moving sensor reference, when the ego-vehicle rotate, the surrounding targets 
would be seen as manoeuvring by the sensor, and the yaw estimate would follow suit. However, 
the target object itself does not have a change in orientation. An even simpler example can be 
found on a parked object: a car parked diagonally should not have its bounding box heading 
set to its yaw estimate. To summarize; yaw estimate heading is distinct with bounding box 
heading and the bounding box should reflect detection results.

The evolution of the bounding box is illustrated in Figure 4-14: as the time step increases and 
"Detected object 1 and 2" are coming into proximity of ego vehicle, the bounding box grows 
larger. Likewise, as the detector object goes away from the effective range of the LIDAR sensor, 
the bounding box grows smaller. The wrong yaw estimate can be observed on bounding box 
fitting of "Detected Object 2" at time step k, as there is no L-shape to fit the box, the resulting 
bounding box has an incorrect heading. Finally, another scenario in which the bounding box 
would go smaller is when occlusion and/or over-segmentation occurs. "Detected Object 3" is 
split into 2 boxes due to tree-like "Occluding Object".

In order to handle the constantly changing dimension and yaw heading of the detected bounding 
box, several rules are introduced based on heuristics. These rules govern the update routine 
of every bounding box for each and every time step:

1. Bounding box area generally should not shrink - based on shrinkage behaviour
observed in Figure 4-14 we can further surmise that bounding box length is the parameter
that chiefly changes in most case of self-occlusion.

2. Bounding box should never rotate too fast - traffic objects are generally non-
holonomic, it is physically improbable for car-like (without loss of generality) object to
change yaw heading significantly between sensor sampling time (100 ms) on a normal
road.

3. Bounding box should not have sudden movement in the opposite direction
against previous time-steps travel heading - when occlusion and shrinkage occurs,
the centre point of the box will be shifted incorrectly (as seen in Figure 4-14). This
shifting results in an unnatural backward movement of the detected object.

These three rules basically describe the noisy behaviour of detector output, if the rules above
are violated, we can likely consider the bounding box change as noise.

Conveniently, bounding box dimension does not get larger than the real object except on
the rare case of under-segmentation or (later-to-be discussed) possible failure case of over-
segmentation handling. The same can be said for the sudden opposite movement, as traffic
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Figure 4-14: Effect of occlusion on bounding box fitting.

object does not simply jump back within 100 ms time frame. on the other hand, there is no
clear-cut threshold to distinguish real yaw change due to object manoeuvre and yaw change
due to detection noise, so only large erroneous yaw change is guaranteed to be caught by the
rule-based filter.

Generally speaking, the condition is one more rationale that makes a rule-based bounding
box tracker to be more suited rather than extended object tracking; both try to address the
uncertainty of object dimension, but a rule-based filter would be computationally cheaper and
sufficient for such relatively simple uncertainty.

In order to realize the rule-based algorithm, this thesis proposed the use of per-frame history
and information from to IMM-UKF-JPDA tracker to augment the Box Tracker. Per-frame
history enables the Box Tracker to store last-known good bounding box at time step k−1 and
compare it to the newly generated bounding box at time step k. The so-called first last-known
bounding box is obtained during bounding box association process described in preceding
subsection.

If the newly generated bounding box at k, when compared with that of k − 1 passed the
rule-based filter, then do necessary change: update the dimension, or update the yaw, or do
both. Otherwise, retain the last known box if no sane dimension and yaw update is detected.
This rule can be seen in Algorithm 6 (Appendix B).
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This algorithm works for the common scenario where occlusion does not persist, in the case
when the occlusion persists (e.g. when an object is moving further away from ego car and
maintain a similar relative velocity afterwards) the yaw change will not be updated correctly.
in order to address this, box information from few steps back k− n (n is adjustable look-back
steps parameter) is inspected to discern if box has not been updated for n steps back, which
indicates that dimension and/or yaw of the box would need to be updated despite the changes
is out of threshold. Finally, a velocity information from the position tracker is used to rule out
change of yaw and reduction of dimension for the static object (i.e. zero relative velocity). The
main advantage of the introduced logic-based box update is the computation load would be
negligible. However, since the threshold is based on heuristics knowledge, the optimal threshold
value can only be obtained through tuning and in this case, sensor specific.

4-7-3 Perspective Correction for Self-occlusion

Detected object self-occlusion depends on the perspective of ego-vehicle (see Figure 4-15). This
phenomenon results in inconsistencies in the placement of box centre point. Since the position
tracker is only aware of box centre point, when self-occlusion occurs centre point correction
need to be applied to the tracker box using information of last-best known box dimension.

Naturally, since the tracking is done on ego-vehicle navigation frame (centre point x, y), a
trigonometric transformation is done to translate the shift in occluded bounding box from the
local frame (centre point x′, y′) to global frame.

The centre point shifting is illustrated in Figure 4-16, and the mathematical relationship
between the newly shifted box centre point (xshift, yshift) and the original occluded box centre
point xorig, yorig) is given as:[

xshift
yshift

]
=
[
xorig
yorig

]
+
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
∆x
′

∆y
′

]
(4-22)

where the centre point shift ∆x’ and ∆y’ is determined by the geometrical difference (length
s, width w and centre points (x, y)) between that of the tracker box and that of original
(occluded) box, given as:

∆x
′ = (TrackBoxx ±

1
2TrackBoxl)− (OrigBoxx ±

1
2OrigBoxl)

∆y
′ = TrackBoxy ±

1
2TrackBoxw − (OrigBoxy ±

1
2OrigBoxw)

∓ 1
2(TrackBoxw −OrigBoxw)

(4-23)

and the ± operator depends on the shifting direction of the box, an addition operator is used
to shift the box to top edge (for back occlusion), and subtraction operator is used to shift the
box to lower edge (for frontal occlusion). The shifting direction itself is determined by the
object location in Cartesian coordinate relative to ego vehicle (refer to Figure 4-15).

However, a further check has to be put to prevent box shifting of an imperfect box caused
not by self-occlusion. This check is made possible by checking the relative velocity in the
longitudinal direction, if the object is moving in the same direction as ego-vehicle, it would be
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Figure 4-15: Occlusion of detected object on different viewpoint locations. The bounding box
centre points become incorrect

incorrect to shift the box downward and vice versa. Naturally, as even static object would have
a small non-zero velocity due to noise, an adjustable threshold is utilised in the procedure.
The shifting procedure is summarized in Algorithm 8 (Appendix B) and the results can be
observed in Figure 4-17.

4-7-4 Over-segmentation Handling

The segmentation process based Connected Component Clustering relies on a well-defined
space between cluster. This space can also inadvertently be created in the case of occlusion
caused by another object blocking LIDAR sensor direct line-sight (refer to Figure 4-14). The
occluded area becomes a blind spot and results in over-segmentation. The tracker component
can assist the detector to predict beforehand for such over-segmentation based on the ob-
ject travel direction and last known good bounding box dimension. Himmelbach[25] notably
proposed a similar approach, but instead of dynamically changing the Connected Compo-
nent Clustering parameter, this work proposes the use of area percentage threshold to avoid
repeating the steps of clustering.

The over-segmentation handling is made possible by the following procedure: in time step k−n
the full dimensioned box already is stored, in addition to that, the tracker has relative velocity
information for all tracked object in each time step. At time step k the detector component
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Figure 4-17: Instance of perspective correction. Notice the self-occlusion of a van located in
front of ego-vehicle at frame 29, the detected box becomes smaller (occluded length denoted by
dashed red-line). The tracker retains full dimension are retained and the bounding box is shifted
downward so that centre point remains accurate (KITTI Dataset 0005)
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then uses the tracker predicted position prior to bounding box fitting, if the predicted box
encloses or overlaps significantly with newly generated clusters, then such clusters are to be
merged. This procedure, however may induce under-segmentation: two correctly clustered
objects located in proximity may be incorrectly merged to become a larger cluster. To address
this, the dimension of potential merged cluster is made sure to not exceed that of predicted
box before the merging is finalized. The procedure is depicted in Figure 4-18 and formalized
in Algorithm 8 (Appendix B). One instance where the procedure is applied in KITTI Dataset
(Dataset 0009) can be seen in Figure 4-19.
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Chapter 5

Evaluation

5-1 Overview

In this chapter, the evaluation of the designed MOT system will be presented. A benchmark
using established metrics and real data representing complex urban situation is to be carried
out. The following discussion shall elaborate the underlying reason behind the evaluation
results in term of tracker implementation, environment and tracking targets dynamics.

Remark: a complementary evaluation can be found in Appendix A, which covers individual
analysis of sampled track, real-time capability assessment and investigate the performance of
static and dynamic classification.

5-2 Evaluation Metrics

The tracker performance is to be evaluated using MOT16 benchmark method proposed by
Milan et. al[70] which combines the CLEAR quantitative metric[135] augmented with sets of
Track Quality Measure[136]. Note that this thesis work does not classify the tracked object
beyond the dynamic and static nature. Therefore, some specific metrics that require target
classification of the tracked object are excluded. The evaluation metrics used will be discussed
briefly to better understand the evaluation results, the interested reader may refer to the
source literature[70] for more comprehensive elaboration and underlying reasoning.

1. Tracker-to-target assignment

This metric describes the reliability of the Multi-Object Tracker by measuring the number
of False Positive (FP) and False Negative (FN) per and across all frames. Tracker
robustness is also tested by measuring the number of fragmentation (i.e. losing the track
and starting a new one) for a tracked object; this is indicated by the number of tracker
ID switch (IDSW) across all frames.
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2. Multiple Object Tracking Accuracy MOTA combines FP, FN and IDSW to indi-
cates overall performance of the tracker, this metrics is given as:

MOTA = 1−
∑
t (FNt + FPt + IDSWt)∑

tGTt
(5-1)

where t is the time step (frame index) and GT is number of Ground Truth. Value of
MOTA can also be negative if the number of errors exceeds the number of actual objects,
it is maximized at 100.

3. Multiple Object Tracking Accuracy MOTP is the averaged differences between
True Positive (TP) and Ground Truth (GT) count; it gives the average overlap between
all correctly assigned track and the detected object. Essentially, it indicates the local
accuracy of the tracker. MOTP is given as:

MOTP =
∑
t,i dt,i∑
i d

(5-2)

where ct denotes the amount of tracker-target match in frame t and dt,i is the bounding
box overlap between tracked target i with the GT. The overlap is measured by inter-
section over union[137]. Top of the bounding box is used for this metrics, since target
object in the urban situation does not move vertically and the horizontally mounted 3D
LIDAR sensor does not suffer from any significant occlusion in measuring the height.

4. Track quality measure .
A classification is made based on how many trajectory of the GT is covered by the
tracker. Mostly Tracked (MT) correspond to at least 80% coverage, and Mostly Lost
(ML) means that track is only covered for only less than 20%. Another indicator is
Fragmentation Number (FM), which is the number of a track interruption before it
resumes the previously lost trajectory.

5-3 RAW Data and Ground Truth: KITTI Dataset

In order to verify our MOT system against the real-world situation, it is imperative to use
non-synthetic data. For this purpose, the KITTI datasets[73] is used throughout the thesis
work. The public dataset provides the recording of LIDAR sensors, among other sensors in a
diverse urban driving scenario recorded on the city of Karlsruhe, Germany.

The recording captured real-world traffic situation and range from highways over rural areas to
inner-city scenes with high-quality hand-labelled annotation. The sensor used by KITTI team
is also Velodyne HDL-64E operating in 10 Hz interval, producing 64 layers of LIDAR data
with 0.09 degree angular resolution, and 2 cm distance accuracy. The data stream consists of
≈ 1.3 million points/second within 120 m radius of 360 deg horizontal and 26.8 deg vertical
field-of-view.

The Velodyne scans are encoded in floating point binaries which are then manipulated in C++
using Point Cloud Library[109] in the tracker implementation (see Section 2-2 and Section
4-3). Each point is stored with its x, y, z coordinate and an additional reflectance value. While

A.S. Abdul Rachman Master of Science Thesis



5-3 RAW Data and Ground Truth: KITTI Dataset 69

the number of points per scan is not constant, on average each file/frame has a size of 1̃.9 MB
which corresponds to approx. 1.20× 105 3D points and reflectance values.
The KITTI authors also provide synchronized camera raw image sequences in addition LIDAR
recording. Furthermore, for validation purpose, object labels in the form of 3D tracklets can be
used as ground truth. The tracklets are encoded in XML format and the following information
are used during evaluation process:

1. Object Class- "Car"/"Van"/"Truck"/"Pedestrian"/"Person"/"Cyclist"/"Tram"/"Misc."

2. 3D Box Size - length, width, height

3. Object Translation and Rotation in 3D ego-vehicle frame: translation of x,y,z
in metre and yaw rotation in degree

The KITTI Data also provides a benchmarking platform which shares some of its methodologies
with MOT16, however much like MOT16, the benchmark is intended primarily for tracking
using camera, with LIDAR data synchronized to the camera image. Therefore, a LIDAR
object is only annotated if and only if the object is within camera frame. There are naturally
numerous frames when the object is visible on camera but completely missed by LIDAR sensor
(i.e. out of range). The inverse is also true: the LIDAR is 360 deg surround sensor while the
camera is a single view frontal view sensor, therefore objects that are located on the sides and
back of the ego vehicle will not have corresponding LIDAR ground truth.
Moreover, the Velodyne range correlates with object reflectivity, with a quoted range of 50
m (10% reflectivity) and 120 m (80% reflectivity) and lower vertical FOV (32 deg)[18]. In
practice, the effective range of the sensor is 20-40 m[138, 11]. This is confirmed by independent
observation in the Visualizer program that an object formed a discernible shape mostly when
it falls within 30 m horizontal range and 20 m vertical range. Beyond this range, the number
of points reflected is very low and even to human eyes the object shape is not easily recognized.
The tracker is still capable of tracking the position and predict the trajectory, but no useful
dimensional information can be derived until such object comes into the sensor effective range.
Since this work deals purely with LIDAR tracking, we have to rely on a comparable ground
truth that either provides an identical frame of reference with the sensor across all compared
time frame or alternatively, provides an annotated state of occlusion to adjust the evaluation
score. In this respect, The KITTI ground truths offer annotated occlusion state in camera
frame, but no equivalent is found for the LIDAR frame. In addition, unlike camera-based
tracker benchmark, in which the tracking is done on a 2D plane (camera frame), we are
tracking in world coordinate, so the dimension of ground truth stays the same across all frame,
regardless of actual dimension seen by the sensor. To address this issue, a subset of KITTI
ground truth is selected based on the following criteria:

1. the ground truth has to be always visible by both camera and LIDAR sensor across the
object lifetime (the real object can still be occluded after the first appearance)

2. the ground truth has to fall within Velodyne effective range (30 m horizontal and 20 m
vertical)

3. the ground truth that meets the criterion 1 and 2 within a subset of its lifetime is also
eligible, and the comparison is made during this subset time frame.
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To evaluate the relevant urban situation, KITTI datasets within category "City" are used. The
selected collection of datasets consist of 10 different driving scenarios with the cumulative
frame number of 2111 frames and 188 unique traffic objects. The composition of each dataset
is represented in Table 5-1 and Figure 5-1.

Table 5-1: Evaluation datasets

Dataset Frame count Unique objects Object instances (#Box)

0001 106 11 142
0002 75 2 45
0005 152 14 473
0009 441 82 1413
0013 142 4 101
0017 112 5 84
0018 268 12 196
0048 20 7 81
0051 436 40 381
0057 359 12 471
Sum 2111 189 3387

Dataset

0001

Dataset

0002

Dataset

0005

Dataset

0009

Dataset

0013

Dataset

0017

Dataset

0018

Dataset

0048

Dataset

0051

Dataset

0057

Cyclist 1 2 1 0 0 0 0 0 2 0

Pedestrian 0 0 2 3 0 0 0 0 3 0

Van 0 0 3 0 1 0 2 1 11 1

Car 10 0 8 77 2 4 9 6 23 10

0%

25%

50%

75%

100%

Object Class Distribution

Car Van Pedestrian Cyclist

Figure 5-1: Distribution of object class across all evaluation datasets
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5-4 Benchmark Results and Discussion

To evaluate the tracking performance quantitatively, the tracking system is run against each
dataset with the same filter parameter and rule-based filter threshold for all datasets. The
tracking results are then benchmarked against the ground truth, and the benchmark metrics
are computed per individual datasets.

It is important to note the datasets are not a uniform: the driving scenario along with the
object composition and movement may vary significantly as the datasets change. This is
intentional as tracking methods can be heavily over-fitted on one particular dataset and
introduced evaluation bias[70]. Therefore, the individual dataset evaluation result is more of
an accurate indicator to reflect the MOT performance. Nevertheless, it is still useful to view
the overall score as shown in Table 5-2 to aid the reader in grasping the tracker performance.

Table 5-2: Overall evaluation result

(a) CLEAR Metrics

Metrics Value

MOTA 86.12% ± 6.00
MOTP 91.01% ± 5.03
FP (%) 1.92
FN (%) 11.89
IDSW (sum) 75
Total Obj. Instances 3387
Total Frame 2111

(b) Tracks quality measures

Metrics Value

Mostly Tracked 70.64% ± 17.47
Mostly Lost 9.33% ± 8.10
Recall rate 88.92% ± 10.18
Precision rate 98.43% ± 2.73
Fragmentation 211

The MOTA scores reflect that the trackers sport a reasonably high degree of accuracy with
86% overall score, the score is lowered chiefly by the number of FN, since the number of FP
and IDSW are comparatively low. The MOTP score is capped at 91% which is expected. Since
despite perfect tracking, only partial dimensional information can be derived when an object
enters the sensor frame from a far distance, and thus, the overlap between tracker generated
box and ground truth is always low in the first few time steps.

Quality measures-wise, although predictably we see a significant deviation across all datasets,
the average results still highlight that the tracker yield higher number of MT than ML. The
recall-rate (i.e. sensitivity) and precision (i.e. positive predictive value) indicate that the
tracker hypotheses possess a high degree of relevance to the actual object, the lower recall rate
is consistent with the number of FN counted in overall. Lastly, the Fragmentation number
(FM) is a subset of the FN; here we see the number signals that more than half of FN is caused
by track lost that later is able to be successfully resumed, rather than a complete failure of
detection across all time frame.

To gain more insight into the tracking performance, we inspect the results which belong to
the individual dataset. The MOTP and MOTA scores can be found in Figure 5-2, the quality
measures can be inspected in Figure 5-3 and the base metrics score can be seen in Table 5-3,.

The trend is pretty apparent: the scores are generally higher for datasets with less number of
object instances; less number of objects in sensor frame would mean there is reduced number
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Figure 5-2: Per dataset MOTA and MOTP scores.
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Figure 5-3: Per-dataset Track Quality Measures. Note that "PT" refers to Partially Tracked, that
is the track which is not classified as either MT or ML.

clutter and occlusion to interfere with tracking (see Dataset 0001, 0002 and 0013). Still, this
kind of scenario is useful for the evaluation of the steady-state performance of tracking (i.e.
when the tracked object stays in the sensor frame for an extended duration). Note that the
percentage of quality measure has to be seen together with the number of ground truth
appearances, in Dataset 0013 for instance, a single loss of target track correspond to 25% of
track lost since there are only 4 unique ground truths in total.

In Dataset 0005, while 78% of tracks are considered to be MT, we see a relatively large number
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Table 5-3: Per-dataset evaluation results

Dataset Frame count Unique objects FP FN IDSW Recall Precision Frag.

0001 106 11 2 8 2 94.41% 98.54% 0
0002 75 2 1 2 0 95.56% 97.73% 0
0005 152 14 7 34 8 92.87% 98.44% 8
0009 441 82 33 172 41 87.83% 97.41% 99
0013 142 4 2 2 0 98.02% 98.02% 0
0017 112 5 0 14 2 83.33% 100.00% 8
0018 268 12 2 37 2 81.12% 98.76% 27
0048 20 7 0 12 1 85.54% 100.00% 3
0051 436 40 5 59 7 84.51% 98.47% 13
0057 359 12 13 66 5 85.99% 96.89% 53

of ML tracks. Here the ego vehicle is moving in a curved urban road and this translates into a
constantly changing sensor frame of reference. Combination of self-occlusion (cf. Figure 4-17
in Chapter 4 for visual depiction) due to sensor angle to the targets and fast (relative) turning
rate of target objects increases the uncertainties of the target spatial position (i.e. target
are moving rapidly). Therefore, we see a reduced tracking accuracies in this situation and
some tracks suffer from fragmentation. A more in-depth analysis of individual tracks found in
Dataset 0005 can be seen in Appendix A.

Dataset 0009 represents the most complex driving scenario: it has the largest number of unique
object compared to other datasets, and also comparatively lengthy frame count. In this dataset,
the ego car made a 90-degree turn (sudden change of sensor frame) and stopped at 4-way
junction with a known occluding object. The situation can be observed in Figure 4-19 back
in Chapter 4.

In addition, there are numerous parked cars which are tightly spaced and the cars on the
junction are moving with constant turn rate, varying the degree of self-occlusion that occurs.
These challenges reduce the bounding box precision which makes it capped at 89%. The
number of FP and FN are also consistent with the bounding box precision loss (not to be
confused with precision-rate) along with the number of ID switches and fragmentation.

Nevertheless, handling urban situation uncertainties is the main contribution of this thesis:
here we see the MOTA score reflects that the use of probabilistic data association and filter
enable the tracker to be able to form hypotheses with sufficient accuracy despite clutter and
manoeuvring targets. Degraded performance are found, but since more than 80% of the tracker
hypotheses are considered as MT, and only 5% are considered as ML, we can see the detector
pose an adequate robustness against persistent and self-occlusion of target object during the
occurrence of sensor frame change, turning cars and other occluding objects. Thus, in Dataset
0009 we see the tracker perform as expected in the presence of environmental uncertainties.

MOTA score of Dataset 0017 and 0018 can be seen to be below average by more than 5%;
this is mainly caused by a spike of false negative found in both scenario. These datasets are
recorded when the ego vehicle is stopped on a 4-way junction (see Figure 5-4) due to traffic
light. Here, a static object (traffic light pole) is making a persistent occlusion across all frame
counts, and combined with the low reflectance of dark-coloured car, the resulting detected
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box is highly fragmented and the tracker cannot reliably associate such detection results to a
new track, resulting in numerous false negatives. The over-segmentation handling in the other
hand, correctly compensates for the tracking of the light-coloured car, where a track has been
successfully started beforehand. Therefore in this particular datasets, the false negative is
caused by unavoidable over-segmentation, and the detected bounding box dimension becomes
highly unstable contributing to lower MOTP scores.

Over-segmentation 
unavoidable  due to low 

reflectance

Over-segmentation 
handled correctly for 

normal object

Presence of multiple 
occluding objects

Figure 5-4: False negative due to over-segmentation for an object with low reflectance. Note that
the green box and red label indicates track has been started.

Dataset 48 and 51 represent typical urban scenario, busy two-way road with mostly smooth
ego vehicle movement, in this case, the tracker works optimally as designed for most of the
target objects (all above 80% score for MOTA and MOTP), However in Dataset 0051 we
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see larger percentage of ML tracks, this is attributed to some target cars moving in opposite
direction with relatively high speed. This speed characteristic is not found in other datasets,
while such movement can be tracked by increasing the IMM-UKF-JPDA filter process noise
covariance, this would negatively affect the gating and prediction performance in more noisy
environment (i.e. risk of more false positive), thus a design choice is made to favour more
general case than specific ad-hoc situation. Note that we use identical filter tuning during the
evaluation process to better show the tracker general fit to variable urban situation.

Finally, the last dataset (Dataset 0057) actually has the least score among all datasets. This
dataset shares a similar situation with that of Dataset 0017 and 0018. The ego vehicle is
stopping at large junction due to red traffic light. In this case, another car is situated in front
of the ego-vehicle, instead of traffic light poles. The occluding car then produces a large blind
spot for the LIDAR sensor (c.f. Figure 5-5). Some target cars can be seen to be completely
missed by the LIDAR sensor. The large blind spot contributes to the increasing number of
false negative and loss of box precision due to the ego vehicle staying in that position for
almost half lifetime of the dataset frame counts.

Object circled in 
red cannot be 
detected by 
LIDAR sensor

Figure 5-5: Large blind spot caused by occluding car in front
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In overall, the benchmarking process yields a better understanding of the tracker performance
in variation of urban situation and different class of traffic object. Car, van and pedestrian
class objects are tracked reliably by an average of above 86% by the MOT system. Quality
measures support the scores of the CLEAR metrics, MT tracks outnumber ML tracks by
significant margin in all datasets, including the complex scenario with constant sensor frame
change, the presence of persistent occluding object and manoeuvring targets. Note that the
designed system provides a robust tracking to the extent of sensor physical limitation: for
majority of traffic object uncertainties in position measurement (i.e. detector box) is handled
to yield tracking with sufficient accuracy and precision, however for some edge case where part
of object is significantly occluded and/or has poor reflectance, we see that the performance
visibly deteriorates.

5-5 Comparison to State-of-the-Art

The use of both established MOT metrics and public dataset are also useful to enable objective
comparison to the performance of state-of-art tracker. The utilised metrics, namely the MOTP,
MOTA, MT, ML, FN and FP are common measures for tracking performance. Publicly ranked
benchmarks (see KITTI Object Tracking Evaluation 2012[139] and 2017 MOT challenge[140])
use this metrics, as well as numbers of MOT-related literature[141, 135, 49, 72, 70, 142, 143,
39, 91].
Compared to camera tracking, there are notably fewer LIDAR literature which put significant
concern on evaluation using established metrics. Some notable publication which uses both
Velodyne and CLEAR as metrics are that of Ye[91] which uses geometric-based tracking circle
method, Xiao[144] which uses point assignment task based on energy function, Spinello[145]
which uses Bottom-Up Top-Down Detector (BUTD), and Kaetsner[146] which use Generative
Object Detection and Tracking. The comparison can be seen in Table 5-4.

Table 5-4: CLEAR comparison to state-of-art trackers

Method MOTA MOTP FN FP

Proposed Framework 86.12 % n/a. in m 11.89 % 1.92 %

Tracking circle[91] (averaged) 86.5% < 0.2 m 3.5% 8.0%
Energy [144] 84.2 % < 0.12 m 5.8 % 2.77 %
BUTD[144] 89.1 % < 0.16 m 2.6 % 7.6 %
Generative[146] 77.7 % < 0.14 m 8.5 % 10.1 %

These works use different criteria to compute the MOTP. The proposed approach takes into
account the position and dimensional integrity of the tracked objects, thus the bounding box
overlap ratio is used. Meanwhile, these works consider only the precision of centre point of
the detected object, so the MOTP is based on Euclidean distance error instead. In addition,
only work of Ye[91] deals with a sensor mounted in moving car. The other three use the
dataset recorded on ETH Zurich Polyterrasse, which deals with a static frame of reference
in university canteen scenery and populated only with pedestrian. (i.e. not remotely close to
urban scenario). While results of Ye[91] would be the best control comparison to this thesis
work, it only uses 2 datasets with unspecified ground truth details.
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A general overview indicates our proposed approach has a comparable accuracy (± 3% diffe-
rences) to state-of-art, but accompanied with quite larger percentage of FN (11.89 % vs 2.6%
if we compare with BUTD). In the previous section, it has been found that the vast majority
of FN is contributed by a single dataset with complex scenario (out of 10). Nevertheless, if
we inspect other datasets individually, the proposed FN percentage would be on par (2-7%).
Note that conclusive comparison about performance cannot be made unless same dataset and
ground truth are to be used.
In regard to publicly ranked benchmark, to the best of author knowledge, all established MOT
ranked benchmark deals with camera-based tracking, so while our results cannot be directly
compared in 1-to-1 basis to the ranked trackers, a general comparison can be drawn. This is
especially true for trackers ranked in KITTI Object Tracking Evaluation 2012, as they share
overlapping recorded scenery (urban situation) and ground truth with this thesis.
General comparison from Table 5-5 suggests the proposed tracker is performing on-par with
some of the highest ranked trackers (MOTA is 0.5% lower than TuSimple). MOTP score is
notably higher, but we should factor that rank assume 2D bounding box in camera coordinate,
not world-coordinate. Track Quality measures, however suggest our tracker coverage of target
objects would be in third place overall. The higher number of FN and IDSW in a specific
dataset is again the major contributor to the higher percentage of ML (3-6 % higher than
TuSimple and RRC-IIITH). Note that, although the source of the raw data and ground truth
for this thesis implementation is coming from KITTI Dataset, we have to select the subset of
the ground truth based on criteria outlined in Section 5-3. Moreover, the ranked benchmark
uses a different sequence of datasets than the provided raw data. The evaluation sets notably
are not accompanied by necessary tracklet file for LIDAR benchmark, barring its use for
benchmarking our approach.

Table 5-5: Top 10 Camera-based KITTI Object Tracking Evaluation 2012 benchmark[73] results
for car object. Only online methods are included. Retrieved from http://www.cvlibs.net/
datasets/kitti/eval_tracking.php

.

Method MOTA MOTP MT ML Runtime

Proposed Framework. 86.12 % 91.01 % 70.64 % 9.33 % 0.1 s / 1 core

TuSimple 86.62 % 83.97 % 72.46 % 6.77 % 0.6 s / 1 core
RRC-IIITH 84.24 % 85.73 % 73.23 % 2.77 % 0.3 s / 1 core
IMMDP 83.04 % 82.74 % 60.62 % 11.38 % 0.19 s / 4 cores
DuEye 80.64 % 83.52 % 61.85 % 5.85 % 0.15 s / 1 core
JCSTD 80.57 % 81.81 % 56.77 % 7.38 % 0.11 s / 1 core
wan 78.07 % 82.83 % 51.38 % 13.38 % 0.1 s / 1 core
CCF-MOT 77.08 % 78.36 % 52.62 % 13.08 % 1.1 s / 1 core
MDP[147] 76.59 % 82.10 % 52.15 % 13.38 % 0.9 s / 8 cores
SCEA[148] 75.58 % 79.39 % 53.08 % 11.54 % 0.06 s / 1 core
CIWT[149] 75.39 % 79.25 % 49.85 % 10.31 % 0.28 s / 1 core

Summarily, the proposed approach performance results are found to be favourable through
general comparison with the state-of-art. Both Track Quality Measure metrics support the
result of CLEAR metrics that the proposed approach sufficiently perform the MOT task for
its intended domain when compared to state-of-the-art object trackers.
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Chapter 6

Conclusions and Future Work

The chapter highlights important finding found throughout the thesis research and implemen-
tation phase. First, we summarize the proposed solution and contribution of this work. Then
we recall the research objectives and recap how we addressed them in this thesis. Ultimately,
potential improvements of the current research shall be formulated as future works.

6-1 General Conclusions

The increasing adoption of autonomous driving toward SAE level 5 demands a reliable object
tracking on all environment; we have identified that urban introduce large uncertainties due
to clutter and manoeuvring road object which calls for a robust tracker with 3D LIDAR as a
suitable sensor. Currently, there is no complete MOT system specifically tailored for urban
situation. Therefore, an integrated MOT framework has been introduced in this thesis.

The framework encompasses the complete process of multi-object-tracking: it takes raw 3D
LIDAR data, and yield objects kinematic pose embedded with static and dynamic classification
which can serve as the basis for the mission accomplishment of higher perception module. The
detection result is designed to be occlusion-aware by utilizing slope-based ground removal
with consistency check and L-shape fitting. Additionally, over-segmentation is handled by
means of predicted information exchange with the tracker component. The tracker itself
employs probabilistic adaptive filtering based on coupled IMM-UKF- JPDA that allows the
tracking of traffic objects characterized by uncertainties in term of motion type and clutter.
In addition, the tracker also preserves the dimensional integrity of tracked objects by means
of computationally light logic-based filter based on heuristic and the use box frame history.

Finally, evaluation using established MOT16 metric suggests that the tracking performance is
favourable in varying pre-recorded real-world urban scenario. General comparison to state-art
demonstrates that the proposed approach is performing on-par with other implementation.
Additionally, since the framework is designed and found to run in a real-time manner (under
100 ms) it is expected that the framework is applicable for real autonomous vehicle deployment.
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6-2 Fulfillment of Research Objectives

The objectives of this thesis and the aspects addressed within the framework of this research
are summarized as follows:

1. Identify the requirements of object tracking and detection in term of robustness against
tracking target uncertainties and 3D LIDAR sensor limitation in urban situation
Throughout the introduction of fundamentals and implementation phase, the thesis
report has discussed the requirement of MOT followed by proposed solution based on
state-of-the-art. To recapitulate, the requirements are as follows:

(a) The tracker has to be able to track in the presence of clutter.
(b) The tracker has to be able to estimate and track manoeuvring targets.
(c) The detector has to detect arbitrary object in the presence of range and view-point

dependant occlusion of LIDAR sensor
(d) Detection and tracking has to be done together in real-time to sufficiently capture

fast-moving object, in this case, the sensor sampling rate (10 Hz) is defined as the
real-time deadline.

2. Design algorithms which address the defined requirements to achieve the precise and
accurate task of both detection and tracking by a combination logic-based rule to explicitly
handle occlusion and probabilistic adaptive filtering
The detector employs slope-based groudn removal augmented by consistency check and
median filter. This allows occluded ground area to be removed efficiently. In addition,
the use of L-shape fitting prevent mis-orientation of bounding box for partially occluded
object.
The use of optimal Bayesian filters succinctly address the presence of uncertainties in
tracking problem. The algorithm models tracking object states as random variables
which evolve under stochastic process. PDAF filter algorithm is designed to tackle data
association confusion and IMM filter is realized to better handle motion uncertainties
rather than just treating it as unmodelled dynamics (process and measurement noise). In
addition, since the stochastic motion models are of non-linear nature, UKF is implemen-
ted to achieve more accurate and precise state estimation. The filters are deliberately
chosen due to their computational efficiency. In addition, logic-based rule filter is also
designed to augment the rest of detection and tracking, which enhance the accuracy of
detection and tracking with minimum computational cost.

3. Perform real-time implementation and tuning of object detector and tracker in C++
with an interface to real-world, publicly available datasets.
The previously designed algorithm is implemented within integrated MOT framework:
a real-time, causal and robust MOT system against uncertainties found in urban si-
tuation. A coupled filter utilizing three combined Bayesian filters (IMM-UK-JPDAF)
simultaneously tackle association uncertainties, motion uncertainties and estimate non-
linear stochastic motion model in real-time. Tuning is done based on real-world sensor
recording (KITTI Dataset) to achieve practical efficacy and validation.
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The framework is made to be modular and exploits the inter-process information ex-
change to enhance detection process which is otherwise not possible. Note that, reduction
of detection imperfection translates to better tracking accuracy and precision. The MOT
is developed based on mix of C++ and MATLAB codebase so tuning and algorithm
change can be efficiently performed. The end result is a full implementation in C++
which enables real-time execution of the whole system. The implementation is shown to
meet the deadline of 100 ms for various real-world datasets.

4. Design and perform evaluation based on established metrics against publicly accessible
real-world LIDAR data for validation purpose and objective comparison with state-of-art
works.

An evaluation based on established metrics, the MOT16 has been formulated and perfor-
med. MOT16 consists of well-known sub-metrics (CLEAR and Track Quality Measure)
which enable this work to be compared head-to-head to state-of-art MOT in term of raw
number. In addition, the use of KITTI Public Datasets validates the MOT framework
against real-world data; diverse datasets are deliberately chosen to evaluate if the MOT
is able to perform in a variation of urban driving scenario.

The evaluation results highlight that the designed and implemented MOT system yield
satisfying performance in term of accuracy and precision in most given urban situation.
A closer inspection (cf. Appendix A) also shows that the countermeasure of handling
uncertainties (probabilistic adaptive filtering and logic-based filter) are shown to increase
accuracy and precision of the tracker. In some case, it is also found that the MOT system
performance will degrade when the complexity of scenario scales up (namely, more crowd
and moving sensor of reference) and limited efficacy of the sensor under attenuation
(namely in regard to reflection and blocking object).

5. Perform comparison with related state-of-art works which also use comparable MOT
metrics.

General comparison with related MOT implementations which use CLEAR and/or
Track Quality Measure metrics has been made. Four related-works with Velodyne-based
MOT specifically employ CLEAR metrics for evaluation, although only one of them uses
Velodyne mounted in a vehicle. The proposed approach is found to perform on-par but
sports a larger number of FN.

Another comparison with publicly ranked camera-based Object Tracking Evaluation
2012 list has also been made. The proposed MOT has similar accuracy score and a slight
edge on the precision top 10 highest ranked tracker in the list. The number of mostly
lost tracks is noted to be high relative to the highest ranked tracker.

Note that on both instances of comparison, only a general comparison can be made due
to notable key differences in the type of dataset and modal sensor used. The lack of
precisely comparable results in literature re-emphasize one of the thesis contributions
on introducing evaluation for 3D-LIDAR based Urban MOT; the evaluation result of
this work can be potentially used as a comparable baseline for future works.
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6-3 Future Works

Perception for the autonomous vehicle is research in motion; it is expected the limitations
found in the proposed MOT will be supplanted by rapidly evolving state-of-art. Here, some
of future researches are proposed which attempt to address limitation found in this work.
Specific to implementation presented in this thesis, these are several proposed improvements
which can be immediately addressed:
More primitive shape recognition: the detector currently only consider L-shape geometry
for deriving a correct bounding box in case of an occluded object. Other primitive-shape
detection, like U, V, and I shape as introduced in[43] potentially allows better detection
results.
Object Existence Tracker: the JPDA filter is shown to handle tracking in clutter, a further
extension of JPDA, the Joint Integrated PDA[31] can address false detection related to over-
segmentation for low reflectance object.
Use Dual Estimation in the filter: the UKF filter is currently still tuned by hand and
knowledge of the real object motion behaviour, it is possible to employ a dual estimation[150]
where both state-estimation and parameter estimation are coupled.
Use alternative motion model: a more advanced motion model aimed at vehicle tracking
such as Constant Steering Angle and Velocity (CSAV), and Constant Curvature and Accele-
ration (CCA)[151] potentially capture the motion of targets object better. More recently, a
Constant Speed Changing Rate and Constant Turn Rate (CSCRCTR) model seeks to integrate
different motion modes into a uniform model, although notably it is designed for PF[152].
The following are some more general aspects which are proposed as more distant future research
questions.
Narrow down Real-Time Constraint: the proposed framework notably are deliberately
conservative in regard to choosing algorithm based on computational complexity, this also
to some extent limits the use of available sensing data such as camera image that can be a
secondary source for sensor fusion. Future works can overcome this limitation by deploying
the prototyping in real car embedded platform and narrowing the definition of "real-time",
so a precise limitation can be defined more categorically based on current known target
hardware. Furthermore, the recently announced autonomous - vehicle focused platform, both
hardware and software such as Nvidia drive PX2 and Automotive Grade Linux[153] aims to
enable computationally intensive algorithm such Deep Learning[154] and offer dedicated image
processing module. This allows more possibilities of doing MOT Task beyond traditional Bayes
filter. A more complex semantic classification can be achieved more than static and dynamic,
for example using stixel to distinguish car and pedestrian[17].
Reduce heuristic-based, use optimal solver: the rule-based filter is a sensor-dependent
approach and is actually analogous to hard decision filter. As the computational power increase,
a probabilistic approach, or other more optimal solvers such as tracking by neural network[95]
and machine learning[136] should be preferred.
Sensor fusion: reflecting from the framework evaluation, The 3D LIDAR has shown to be a
capable sensor to be used as primary sensing means. However, we see that the use of single
sensor will make the limitation of such sensor into hard limits of object tracking capability.
Use of multi-sensor tracking[50, 155, 55, 156, 57, 157, 158, 159, 58] is a viable alternative.
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Appendix A

Evaluation: Beyond Tracking Metrics

A-1 Individual Tracks

The discussed benchmarks in Chapter 5 (Evaluation) encompasses aggregate performance
of the tracker in the multi-object scenario. To be able to inspect the tracking performance
more closely, two sample of tracked object are selected to evaluate the tracker main functions,
namely (1) predicting the target trajectory despite uncertainties and noise, (2) the correction
of (self) occlusion and over-segmentation and (3) classification of motion model.

The selected two objects can be found inside Dataset 0005 which was recorded in curved, narrow
urban inner-cityroad. Here the sensor frame of reference is constantly moving combined with
the target which also manoeuvring, which suggests these two are among the most complex
tracking scenario found in KITTI Dataset. Both tracks are also recorded for relatively long
compared to the rest of other tracks (averaging on 3-5 second duration for dynamic objects)
so the filtering steady-state performance can be more represented.

The accompanying first plot shows three tracker trajectories in X-Y plane superimposed to
ground truth. The tracker trajectories are explained as follow:

1. Filter state refers to raw IMM-UKF filter state of the predicted position

2. Measurement corresponds to the detector output (bounding box).

3. Perspective corrected trajectory refers to filtered state after perspective correction
has occurred (c.f. Subsection 4-7-3).

The second plot shows the UKF filter states over all time steps, and the third plot shows the
probability estimates of the IMM filter for the object moving under certain motion model
Mode 1 (CV), Mode (CTRV), and Mode 3 (RM) (c.f. Appendix D).
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Van (Dataset 0005)

The tracker is seen to track object van 3 time-steps after the first detection (correspond to
400 ms). Observing spatial evolution in Figure A-1. The measurement followed the ground
truth closely until t = 7, here persistent occlusion starts to appear and the front part of
the van gradually reduces until almost the whole van disappears at t = 7 (refer to Figure
A-2). Subsequently, the back of the van is detected again at t = 8. Here we notice that the
measurement of y position has a constant bias: the y position is incorrect since only small
part of the van is visible, and the centre point is shifted backwards, the Kalman Filter (see
Figure A-3) estimates accordingly also affected by this bias, as seen by the velocity vector.
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Figure A-1: Spatial Evolution of Object "Van"

However, since the full dimension size has been stored in history, the perspective correction
is applied and thus more accurate y position is obtained. At t = 13 there is no correct
measurement provided and a false positive occurs, the track is associated with another detected
object (noise). At the next time step, the tracking resumes with correct measurement until
t = 14, in which the object completely disappear from the LIDAR sensor frame.

The mode probabilities plots (Figure A-4) reflect that the van mostly was moving under CV
model with negligible turn rate (correspond to mode 1), during sharp, sudden turn (t = 3.5
and t = 11) the IMM filter considers the object to be moving under random motion (mode
3), with small probability it is moving under CTRV model (mode 2). At the end of the track
in which the object is leaving the LIDAR sensor frame the measurement deteriorate, and
consequently the IMM predicts that the object is a noise moving under RM model.
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Frame = 66 Frame = 69 

Frame = 111 Frame = 89 

Blue: Ground Truth
Light Green: Tracker Box
Other colour: Detector box

Figure A-2: Tracker box retainment on persistent occlusion

Recall the reasoning that the yaw estimate of Kalman filter is not to be used for bounding
box heading. The movement of the Van demonstrates that the yaw estimate of point-based
tracking change significantly depending on the movement of the centre point (cf. velocity
vector arrow). Especially when an occlusion occurs and the centre point is shifted incorrectly.
The use of logic-based, box update can be seen to accurately shift back the box to correct
position based on previously known dimension and position of the target object relative to
ego-vehicle.

IMM filter switching can be seen to augment the tracker to follow the movement of manoeuvring
object, and in this case combined with the change of sensor frame of reference. Should the
filter only utilise one single motion model, the tracking performance is expected to at least
degrade, or at worst induce track lost.

Master of Science Thesis A.S. Abdul Rachman



86 Evaluation: Beyond Tracking Metrics

0 2 4 6 8 10 12 14 16

20

30

40

X
 P

o
s
it
io

n
 [

m
]

Kalman Filter States

Tracker Perspective corr. Measurement Ground Truth (#1 Van)

0 2 4 6 8 10 12 14 16

-10

0

10

Y
 P

o
s
it
io

n
 [

m
] Tracker Perspective corr. Measurement Ground Truth (#1 Van)

0 2 4 6 8 10 12 14 16
  -2

0

  2

  4

Y
a

w
 [

ra
d

]

0 2 4 6 8 10 12 14 16
-10

0

10

20

A
b

s
. 

V
e

lo
c
it
y
 [

m
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

4

6

8

10

Y
a

w
 r

a
te

 [
ra

d
/s

]

10
-5

Figure A-3: Kalman Filter States of Object "Van"
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Figure A-4: IMM probabilities of Object "Van"

Cyclist (Dataset 0005)

The cyclist trajectory (Figure A-6) is characterized with persistent self-occlusion which is
indicated by a rather constant offset between the ground truth and measurement centre point.
A spike in velocity and yaw estimates are expected when the measurement is unreliable (see
the velocity vector). Position estimate-wise, the perspective correction compensates for the
shrinking size so that the track remains close to the ground truth.

However, there are edge cases where the correction actually exacerbates detection error at
such as at t = 10. At this time step, the back part of cyclist consists of a minuscule number
of point cloud that inadvertently considered as outliers (see Figure A-5). Otherwise, the track
follows the ground truth as expected, until the cyclist enters the edge of LIDAR sensor frame
where detection becomes too unreliable.

The mode probabilities plot at Figure A-8 shows that the object is also moving under CV
model, except when t = 4.5, an almost 360 deg loop (correspond to ego-vehicle sharp turn) the
turn rate spikes, and thus the probability it is moving under RM rose sharply. In overall the
filter is demonstrated to sufficiently estimate the trajectory of the cyclist while simultaneously
maintaining dimensional integrity.
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Orange: Ground Truth
Light Green: Tracker Box
Green: Detector box

Frame = 107 Frame = 108 

Outlier

Figure A-5: Outlier points in detection of a cyclist. The detector is shifted frontward causing
inaccuracy in the y position.
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Figure A-6: Spatial Evolution of Object "Cyclist"
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Figure A-7: Kalman Filter States of Object "Cyclist"
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Figure A-8: IMM probabilities of Object "Cyclist"
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A-2 Computation Time

One of the major requirement outlined in the introduction and throughout design and imple-
mentation phase is that the MOT has to be suitable for real-time, online tracking. To verify
this requirement, the per-cycle execution time in 10 datasets used for benchmark were mea-
sured using C++ std::chrono::high_resolution_clock class, which represents the clock
with the smallest tick period provided by the execution platform. From the measurement of
2111 frames, it is found that 96% of the time, the implemented MOT system managed to
complete the execution at or below 100ms. The frequency distribution can be observed in
Figure A-9.

96.02%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60 70 80 90 100 110 120 More

Fr
eq

u
en

cy

Time [s]

Average Per-frame Computation Time across All Dataset

Frequency Cumulative %

Figure A-9: Histogram of computation time per one cycle of MOT. The significant majority
(96.02%) of cycle times are below sensor sampling time (10Hz) .

It is also useful to inspect which of the MOT components are responsible for the majority
of computational time, so the per-dataset measurements are averaged and broken down into
component specific time as seen in Figure A-10. Notice that the average number of detected
objects are also provided to give reader overview on the relation of each dataset scenario and
computational demands.
First, we, see the ground extraction runtime (averaged at 17 ms) are predictable since the
computational load of slope-based ground extraction relies on the density of polar grid, which
is fixed along with the LIDAR reachable range.
Next, we see the majority of computational cycles were spent for detecting the object post
ground removal (i.e. clustering and bounding box fitting), a correlation can be suggested by
inspecting the average of detected object and the detector component execution time across
all datasets. To put it simply without loss of generality: more objects in LIDAR sensor frame
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Figure A-10: Breakdown of computation time per MOT component and dataset. Note that
increase of detected object in sensor time-frame demands more computational power

translates into a higher computational load. The detector runtime is found to scale roughly
linearly to the number of objects. Naturally, we see a significant standard deviation of the
averaged data, since the number of road objects varies a lot in reality. Dataset 0048 as has
been discussed on the benchmark discussion, comprised of busy two-way roads. Therefore, a
high number of traffic objects stays on sensor frame longer compared to other datasets. Thus
we see a large overall computational time (48 ms), and several frames actually violate the 100
ms limit.

The IMM-UK-PDAF on the other hand, shows that the Bayesian filter scales rather gracefully
with the increasing number of objects, it stays at an average of 17 ms with small deviation
across all datasets. Here we used a fixed number of the active track (i.e. filter instances).
Therefore, the computation for UKF is within bound as expected. Finally, the box tracker
shows the lowest computational time (10 ms) among other components since it is only a
logic-based filter, the large standard deviation is found since the computational time directly
relates to the number of detected objects.

The evaluation of computational time demonstrated that the proposed MOT implementation
capable of consistently meeting the proposed real-time deadline of 100 ms, and scale in (ap-
proximately) linear way with the number of objects in sensor frame. Although the execution
time is notably measured on non-real-time hardware and Operating System stack (Intel Core
i7-7700K with 8GB of RAM, running Ubuntu GNU/Linux 16.0.4.3 LTS), The implementation
is deliberately designed to be cross-platform: it is implemented in ISO/IEC 14882-compliant
C++14 code, and thus testing on car modern embedded computing platform (such as Nvidia
Drive PX) is possible simply with compiler change and minimal code adjustment, paving its
way for the application in real autonomous vehicle embedded platform
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A-3 Static and Dynamic Classification

The classification of the static and dynamic attribute of each tracked object are also evaluated.
The 10 identical datasets are re-used as reference. Since there is no absolute static and dynamic
attributes nor absolute speed given embedded on KITTI ground truth, the relative velocity
per frame is calculated by finite displacement over sampling time, furthermore using built-
in odometry of the ego-vehicle, the absolute velocity is obtained. An object whose absolute
velocity is below 5 m/s is categorized as a static object. The use of a somewhat larger threshold
is necessary to take into account the uncertainties of vehicle odometry data. In addition, only
classification from mature track is taken into account to ensure IMM estimate has converged
into a steady-state.

The Confusion matrix is employed to visualize the tracker performance as can be seen in Table
A-1. The four numbers in the quadrant correspond to True Negative (TN), False Positive (FP),
False Negative (FN) and True Positive (TP) written in the clockwise direction. Precision,
Recall, FN/FP rate, and Accuracy are also added as metrics of evaluation.

Table A-1: Confusion Matrix for static and dynamic classification

Confusion
Matrix

Tracker

Dynamic Static

Ground
Truth

Dynamic 1499 61 Recall
90.41 %

Static 77 726 FP rate
3.91 %

Precision
92.25 %

FN rate
9.59%

Accuracy
94.16 %

First, the large number of TN indicates that large majority if the tracking targets are dynamics
objects, we see a similar number of FN and FP, which are comparatively lower than its true
counterpart. The number of FN indicates that the result of uncertain detection makes the
centre point of the detected object to be constantly changing, if the change is significant and to
some extent resembles the moving object trajectory (for instance when combined with sensor
reference change), the IMM filter will classify the object as dynamic. FP on the other hand
is caused when a dynamic object is moving with close to stopping velocity (e.g. a car about
to stop at the traffic light), the false classification occurred for the few time steps before the
vehicle completely stops.

In overall, with sufficiently high accuracy (94%), precision (92%) and recall (90%), the proposed
approach reliably classify statics and dynamic objects. However, care has to be taken as the
IMM requires converging time to be able to reach a reliable estimate. In our implementation
all track are assumed and reported to higher perception module as dynamics until a reliable
velocity and IMM probability estimates are obtained. This conservative decision is necessary
when static and dynamic classification result is to be used for a critical mission (e.g. vehicle
path planning); for safety reason only information with high degree of confidence should be
propagated.

Master of Science Thesis A.S. Abdul Rachman



94 Evaluation: Beyond Tracking Metrics

A.S. Abdul Rachman Master of Science Thesis



Appendix B

Algorithms

This appendix lists the pseudo-codes of each implementation found in Chapter 4. All adjustable 
parameters value can be found in Appendix C. The C++ and MATLAB source code, including 
the evaluation script may be retrieved from RTWH Aachen git repository at https://git. 
rwth-aachen.de/pem/Object-Tracking
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96 Algorithms

Algorithm 1 Ground Removal and Classification
1: procedure RemoveGroundandClassify(rawPointClouds, groundPoints, eleva-

tedPoints)
2: mpgrid ← <adjustable parameter>
3: npgrid ← <adjustable parameter>
4: rmin ← <adjustable parameter>
5: rmax ← <adjustable parameter>
6: Thmin ← <adjustable parameter>
7: Thmax← <adjustable parameter>
8: hsensors ← <adjustable parameter>
9: Tslope ← <adjustable parameter>

10: Thdiff ← <adjustable parameter>
11: Tflat← <adjustable parameter>
12: Tconsistent← <adjustable parameter>
13: skernel ← <adjustable parameter>
14: htol ← <adjustable parameter>
15: polarGridPCL← createAndMapPolarGrid(rawPointClouds,mpgrid, npgrid, rmin, rmax)
16: for each cell ∈ polarGridPC do
17: zi ← min(cells.Z)
18: if zi > Thmin and zi > Thmax then
19: cell.hi ← zi
20: else if zi > Thmax then
21: cell.hi ← hsensors
22: end if
23: cell.m ← computeGradientoAdjacentCell(cell)
24: cell.hdiff ← computeHdiffoAdjacentCell(cell)
25: if cell.m > Tslope and cell.hdiff < Thdiff then
26: cell.isGround ← true
27: cell.hground ← cell.hi
28: end if
29: if cell.hi > Tflat and cell.hdiff < Tconsistent then . Consistency Check
30: cell.isGround ← true
31: cell.hground ← cell.hi
32: end if
33: end for
34: applyMedianFiltering(polarGridPCL, skernel)
35: for each point ∈ rawPointClouds do
36: currentCell ← getCellfromPoints(point,polarGridPCL )
37: if point.zi > currentCell.hground ± htol then
38: groundPoints.add(point)
39: else if point.zi ≤ currentCell.hground ± htol then
40: elevatedPoints.add(point)
41: end if
42: end for
43: end procedure
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Algorithm 2 Connected Component Clustering
1: mclust ← <adjustable parameter>
2: nclust ← <adjustable parameter>
3: procedure RecursiveConnectedComponent(rawCartesianGrid, clusteredCar-

tesianGrid)
4: rawCartesianGrid ← negate(rawCartesianGrid) . set all cell to -1 to
5: clusterID ← 0
6: FindComponent(clusteredCartesianGrid, clusterID)
7: end procedure
8: procedure FindComponent(clusteredCartesianGrid, clusterID)
9: for cellX=1:mclust do

10: for cellY=1:nclust do
11: clusterID ← clusterID+1
12: search(clusteredCartesianGrid, clusterID, cellX, cellY)
13: end for
14: end for
15: end procedure
16: procedure Search(clusteredCartesianGrid, clusterID, cellX,cellY ) clusteredCartesi-

anGrid(cellX, cellY) ← label
17: Nset ← neighbours(L,P) . 4x4 neighbour, scanned counter clockwise
18: for each cellX’,cellY’ do ∈ Nset
19: if clusteredCartesianGrid(cellX’,cellY)=-1 then
20: search(clusteredCartesianGrid, clusterID, cellX, cellY)
21: end if
22: end for
23: end procedure

Algorithm 3 Duplicate Track Pruning
1: procedure PruneTrack(trackList)
2: historyGateLevel ← <adjustable parameter>
3: distanceThreshold ← <adjustable parameter>
4: for i=1:TrackList.size-1 do
5: for j=1:TrackList.size+1 do
6: histDiff) ← computeStdDiff(TrackList(i),TrackList(j))
7: euclidDist ← computeEuclideanDistance(TrackList(i),TrackList(j))
8: if histDiff < historyGateLevel or euclidDist < historyGateLevel then
9: if TrackList(i).Lifetime < TrackList(j).Lifetime then

10: TrackList(i).State ← Invalid
11: else
12: TrackList(j).State ← Invalid
13: end if
14: end if
15: end for
16: end for
17: end procedure
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Algorithm 4 Static Dynamic Classification
1: procedure classifyStatDyn(trackList,boxFrameHistory)
2: velThreshold ← <adjustable parameter>
3: k ← getCurrentTimeStep() . current frame (time step)
4: nStepBack ← <adjustable parameter>
5: for each Track ∈ trackList do
6: if Track.State = mature and Track.lifeTime > lifeTimeThreshold and

Track.hasConverge = true then
7: relVelocity = ← computePastAverage(Track.relVel, boxFrameHistory, nStep-

Back)
8: if relVelocity < velThreshold and (Track.probabIMM.M3 <

Track.probabIMM.M2 or Track.probabIMM.M3 < Track.probabIMM.M1) then
9: track.isDynamic ← false

10: else
11: track.isDynamic ← true . default value
12: end if
13: end if
14: end for
15: end procedure

Algorithm 5 Bounding Box Association
1: procedure AssociateBB(trackList,detectorBoxList)
2: distanceThreshold ← <adjustable parameter>
3: lifeTimeThreshold ← <adjustable parameter>
4: for each Track ∈ trackList do
5: if Track.State = mature and Track.lifeTime > lifeTimeThreshold then
6: nearestMeasurement ← getNearestEuclidCP(Track.MeasurementCPs,

Track.CP) . CP is centre point
7: if euclidDistance(nearestMeasurement, Track.CP) < distanceThreshold then
8: measurementIndex ← getIndexMeasurement(nearestMeasurement)
9: Track.AssocBB ← detectorBoxList[measurementIndex]

10: else
11: Track.AssocBB ← emptyBox . Track has CP, but not bounding box
12: end if
13: if Track.MeasurementCPs.size > 1 then
14: Track.Ambiguous ← true
15: else
16: Track.Ambiguous ← false
17: end if
18: end if
19: end for
20: end procedure

A.S. Abdul Rachman Master of Science Thesis



99

Algorithm 6 Bounding Box Update/Retain
1: procedure UpdateBB(trackList,detectorBoxList)
2: bbYawChangeThreshold ← <adjustable parameter>
3: bbAreaChangeThreshold ← <adjustable parameter>
4: bbVelThreshold ← <adjustable parameter>
5: k ← getCurrentTimeStep() . current frame (time step)
6: n ← <adjustable parameter> . look-back step
7: bbSmallTol ← <adjustable parameter> . very small number
8: frameBoxHistory . box from previous frames, if member at index k is undefined,

frameBoxHistory[k] = Track.AssocBB
9: for each Track ∈ trackList do

10: deltaYaw ← |Track.AssocBB].yaw - frameBoxHistory[k-1].yaw|
11: deltaArea ← |Track.AssocBB.area - frameBoxHistory[k-1].area|
12: deltaWidth ← |Track.AssocBB.width - frameBoxHistory[k-1].width|bbs
13: deltaVel ← Track.AssocBB.relVel - frameBoxHistory[k-1].relVel
14: deltaYawHist ← |Track.AssocBB.yaw - frameBoxHistory[k-n].yaw|
15: deltaAreaHist ← |Track.AssocBB.area - frameBoxHistory[k-n].area|
16: if |Vel| < bbVelThreshold and deltaVel < bbSmallTol then . Static object
17: Track.AssocBB.area ← frameBoxHistory[k-1].area
18: Track.AssocBB.yaw ← frameBoxHistory[k-1].yaw . Restore previously stored

box yaw and dimension
19: else if deltaYaw < bbYawChangeThreshold and deltaArea >

bbAreaChangeThreshold and deltaLength > 0 then . Sane yaw change detected along
with acceptable area increase

20: continue . allow box update
21: else if deltaYaw < bbYawChangeThreshold and deltaArea >

bbAreaChangeThreshold then . Sane yaw change detected along with unacceptable
area change

22: Track.AssocBB.area ← frameBoxHistory[k-1].area . previously stored area
23: else if deltaYaw > bbYawChangeThreshold and deltaArea <

bbAreaMaxThreshold and deltaLength > 0 then . Impossible yaw change detected but
with acceptable area change

24: Track.AssocBB.yaw ← frameBoxHistory[k-1].yaw . set to previously stored
yaw

25: else if deltaYaw > bbYawChangeThreshold and deltaArea >
bbAreaMaxThreshold then . Both yaw change and area change are too large

26: Track.AssocBB.area ← frameBoxHistory[k-1].area
27: Track.AssocBB.yaw ← frameBoxHistory[k-1].yaw . Restore previously stored

box yaw and dimension
28: else if deltaYawHist < bbSmallThreshold and deltaAreaHist <

bbSmallThreshold and deltaWidth < 0.25 * frameBoxHistory[k-n].width then
. Yaw and Area does not change after n-time steps, but width of the box does not change
much. Possible persistent self-occlusion

29: continue . update immediately
30: end if
31: end for
32: end procedure

Master of Science Thesis A.S. Abdul Rachman



100 Algorithms

Algorithm 7 Bounding Box Perspective Correction
1: procedure ShiftBB(currentTrack, frameBoxHistory)
2: bbVelThreshold ← <adjustable parameter>
3: if currentTrack.AssocBB.posX > 0 and currentTrack.relVel < -bbVelThreshold then
4: shiftBoundingBoxUp(currentTrack.AssocBB) . relVel is relative velocity of object

to ego-vehicle
5: else if currentTrack.AssocBB.posX < 0 and currentTrack.relVelX > bbVelThreshold

then
6: shiftBoundingBoxDown(currentTrack.AssocBB)
7: end if
8: end procedure

Algorithm 8 Merge Over-segmentation
1: procedure MergeOverSegmentedBB(TrackList, clusterList, frameBoxHistory)
2: k ← getCurrentTimeStep() . current frame (time step)
3: sharedPercThreshold ← <adjustable parameter>
4: tolAreaThreshold ← <adjustable parameter>
5: mergeCandidates ← <emptyList>
6: for each cluster ∈ clusterList and box ∈ frameBoxHistory[k-1] do
7: sharedArea ← computeSharedArea(cluster, box)
8: if sharedArea > sharedPercThreshold * cluster.MinimumArea then
9: mergeCandidate.add(cluster)

10: end if
11: end for
12: for each cluster and predictedBox ∈mergeCandidates do
13: mergedCluster ←mergeCluster(mergeCandidates.clusters)
14: if mergedCluster.area > tolAreaThreshold * predictedBox.Area then
15: clusterList.push(mergedCluster)
16: clusterList.erase(mergeCandidates.clusters)
17: end if
18: end for
19: end procedure
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Appendix C

Runtime Parameters

C-1 Detector Parameter

The detector parameters used in the provided algorithm is mainly derived based on the LIDAR
real-world coordinate measurement of the object of interest, some parameter like kernel-size
is obtained by manual tuning. The parameters are provided in Table C-1

Table C-1: Detector parameters

No. Threshold variable Unit Value

1 (m|n)pgrid - 120.00, 80.00
2 r(min|max) m 3.40, 120.00
3 Thmin_(min|max) m −2.15,−1.40
4 hsensors m 1.73
5 Tslope m 0.25
6 Thdiff m 0.30
7 Tflat m 0.20
8 Tconsistent m 0.30
9 skernel m 1.00
10 htol m 0.25
11 (m|n)clust - 100.00, 100.00
12 Theight_(min|max) m 1.20, 2.60
13 Twidth_(min|max) m 0.50, 3.50
14 Tlength_(min|max) m 0.50, 14.00
15 T_{area_(min|max)} m2 20.00
16 Tratio_(min|max) - 1.30, 5.00
17 Tratiocheck_l_(min) m 3.00
18 Tpt_per_m3_(min) point/m3 8

Master of Science Thesis A.S. Abdul Rachman



102 Runtime Parameters

C-2 IMM-UKF-JPDAF Parameter

Table C-2: IMM-UKF-JPDAF

Par. Value

α, β, κ 0.0025, 2, 0
PG, PD 0.8, 0.9
dT 0.103596489
Q1 diag[1× 10−25 m/dT, 1× 10−25 m/dT, 0 ◦/dT, 4× 10−3 m/dT2, 1× 10−15 ◦/dT2]
Q2 diag[1× 10−25 m/dT, 1× 10−25 m/dT, 4× 10−2 ◦/dT, 4× 10−3 m/dT2, 1× 10−15 ◦/dT2]
Q3 diag[1 m/dT, 1 m/dT, 1× 10−2 ◦/dT, 4× 10−1 m/dT2, 1× 10−15 ◦/dT2]
R diag[1× 10−3 m, 1× 10−3 m]

Π

 0.90 0.05 0.05
0.05 0.05 0.9
0.05 0.05 0.09


µip

[
0.33 0.33 0.33

]
x0

[
0.0 0.0 −0.1 −0.83 1× 10−6

]
P0 diag[1× 10−4 m, 3× 10−4 m, 3× 10−4◦, 3× 10−4 m s, 3× 10−4 ◦ s−1]

The reasoning behind the chosen parameters value are as follow:

1. The UKF parameter is initially set to literature[106, 107] default value for state esti-
mation (α = 0.001, β = 2. κ = 0), the default value works reasonably well as the filter
converges to true estimate for most tracks within 2-3 time frame, indicating that the
actual posterior pdf. is likely close to a Gaussian or uncertainties involved are small, we
found by observation that for noisy detection result, increasing the α slightly to 0.0025
improves the filter convergence, this is expected since α influences the spread of sigma
points, and thus more uncertainty can be accommodated.

2. JPDA probability of gating PG is chosen to fit the requirement of having the gate large
enough to actually cover the true measurement, since the random motion model has
already big state covariance, value higher than 0.9 is not desired, otherwise there is higher
chance that for a closely spaced objects, the measurement of multiple objects could fall
into the same gate and corrupted the filter estimates. on the other hand, PD is set to be
0.8 since complete occlusion can occasionally be found, also based on observation the
detector is likely to yield a true positive albeit with a highly uncertain position.

3. The choice of Process Covariance Qj : generally higher process covariance would enable
each motion model to capture noisy movement and minimize the track lost. However,
this would defeat the purpose of IMM to some extent. Therefore, the tuning starts from a
very small value (1× 10−25) and incrementally increased until desired filter performance
is found (this is done by inspecting highly manoeuvring object tracking result, at initial
value lost track is consistent). The first two diagonals correspond to process noise in
x and y position estimation respectively. Since they are observable states, the value
is kept to be small and the uncertainty weighting is shifted to the measurement noise.
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In addition, the Qj for each model j is also based on the physical uncertainty of each
motion model, for instance in Q1 for the third diagonal that correspond to yaw is set
to be relatively high since it is found that smaller value than 4× 10−2 makes the filter
to fail to track reasonably fast turning car. Meanwhile, the fourth diagonal correspond
to velocity, 4× 10−4 found to be a reasonable value for the filter to be still able to
capture fast incoming car, while still provides smooth enough estimates for slow-moving
pedestrian. The value of Q3 is set to very large since noisy static object would change
its dynamic unpredictably and IMM Mode 3 is expected to capture such dynamics.

4. The measurement covariance R diagonal corresponds directly to uncertainty in detector
output of centre points: pretty high due to self-occlusion. This values also influence gating
as it is performed based on the threshold-cutting the Mahalanobis distance between the
predicted states and the measurement, a value too large would make the gating area
to be too large also. Therefore, it is set to be high enough at 3× 10−4 just before the
gating started to be adversely affected (e.g. false positive association)

5. The matrix Π governs the transition probability between IMM motion model. The value
follows[116] where frequent, agile mode changes thatare influenced by large off-diagonal
is balanced by large diagonal values which makes the transition to be less dynamic but
also smoother.

6. The vector µip is simply the initial probability of a track to follow a motion model, it
may help the filter converge faster, but since there is no a priori knowledge what kind
of object (car/pedestrian/noise) is being tracked, the vector element is set to be equal
to each other.

7. The initial value of the state x0 is set to that of a car moving in parallel in the op-
posite direction to ego-vehicle with low-medium speed (40 m s−1). These states value
are observed on a large number of tracked object in the urban scenario and thus is
chosen. However, the tracker will also initialize the x and y position based on last known
measurements, along with velocity from finite distance difference divided by dT after
starting from the second time frame, so this value is applicable for the first time frame.

8. The initial value of error covariance P0 is set to be identical with the R matrix: pretty
large. This is due to the fact that we do not have high confidence estimate of the initial
states of the filter.
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C-3 Box Tracker Parameter

Table C-3 lists all rule-based thresholds for box tracker.

Table C-3: Box Tracker Parameters

No. Threshold variable Unit Value

1 historyGateLevel - 0.01
2 distanceThreshold - 0.25
3 velThreshold m s−1 0.05
4 nStepBack - 3.00
5 lifeTimeThreshold dT 8
6 bbYawChangeThreshold rad/dT 0.3
7 bbAreaChangeThreshold m2/dT 0.2
8 bbSmallTol - 0.01
9 sharedPercThreshold % 85.00
10 tolAreaThreshold % 20.00
11 dT s 0.13
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Appendix D

Motion Models

D-1 Constant Velocity (CV) Model

Constant Velocity (CV) Model represents motion behaviour of an object with nearly constant
velocity and the object is assumed to have zero turning rate and thus is heading to the same
bearing on all time steps. The system function is given as:

FCVk
=


xposk + vkT sin(ψk)
yposk + vkT cos(ψk)

0
vk
ψ̇k

 (D-1)

D-2 Constant Turn-Rate Velocity (CTRV) Model

Turning motion is expected for road object in an urban situation. The assumptions are velocity
is (nearly) constant and the turn rate is also constant. These assumptions are appropriate for
both rectilinear motion with a uniform acceleration and a coordinated turn, which are two
typical manoeuvres of urban vehicles[160]. The CTRV system function is given as:

FCTRVk
=



xposk + vk

ψ̇k
(− sin(ψk) + sin(Tψk + ψk))

yposk + vk

ψ̇k
(cos(ψk)− cos(Tψk + ψk))

Tψk + ψk
vk
ψ̇k


(D-2)
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D-3 Random Motion (RM) Model

It is given that detection can likely be a noise (i.e. false positive). For instance, over-segmented
cluster due to occlusion typically change position and shape on every time steps. Making it
seems to move at random. Additionally, there are classes of static object such as a traffic sign
that does not actually move at all. To capture these classes of object, the stationary model
with relatively larger motion noise Qk is used. The RM system function is thus identical with
the state vectors:

FRMk
=


xposk

yposk

ψk
vk
ψ̇k

 (D-3)

These three motion models are to be used in parallel using Interactive Multiple Model scheme
which is detailed in Chapter 4.
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List of Acronyms

CV Constant Velocity

CTRV Constant Turn Rate and Velocity

DA Data Association

EKF Extended Kalman Filter

GT Ground Truth

IDSW ID Switch

FM Fragmentation Number

FN False Negative

FP False Positive

IMM-UK-JPDAF Interacting Multiple Model Unscented Kalman Joint Probabilistic
Association Filter

JPDAF Joint Probabilistic Data Association Filter

KF Kalman Filter

LIDAR Light Detection And Ranging

MAR Minimum Area Rectangle

MOT Multi Object Tracking

MOTA Multi Object Accuracy

MOTP Multi Object Precision

MHT Multi Hypothesis Tracking
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ML Mostly Lost

MT Mostly Tracked

NN Nearest Neighbour

PF Particle Filter

TP True Positive

RM Random Motion

UKF Unscented Kalman Filter

List of Symbols

α UKF sigma point scaling parameter
β UKF higher order scaling parameter
βi PDA association probabilities
χ Matrix of sigma points in UKF
κ UKF scalar tuning parameter
µ IMM mode probability
ψ Target object yaw
F System function
H Measurement equation
K Kalman Gain
k Time step
P Error covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
S Innovation covariance matrix
u System input vector
v Measurement noise vector
w Process noise vector
x State vector
z Measurement vector
p IMM mode transition probability
v PDA innovation vector or target object velocity
W UKF sigma points weight
x x-position in cartesian coordinate
y y-position in cartesian coordinate
z z-position in cartesian coordinate
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Index

Adjustable parameters, 101
Algorithm, 95

Bounding box, 48
Bounding box tracker, 59
Box merging, 64
Box shifting, 63

CLEAR, 68
Clustering, 47

Data Association, 33
Detector, 45
Development, 43
Development hardware/software, 43

Filter parameters, 102

Gating, 35
Ground removal, 45
Ground truth, 68

Heuristics-based rule, 61

IMM, 29
IMM-UK-PDAF, 52
Interacting Multiple Model, 29

Joint Probabilistic Data Association, 37
JPDA, 37

KITTI Dataset, 68

L-shape fitting, 48
LIDAR occlusion, 13, 62, 64

MAR, 48
Minimum Area Rectangle, 48
MOT16 Metrics, 67
MOTA/MOTP, 68
Motion model, 105
MT/ML, 68

Over-segmentation, 64

PDA, 34
Perspective correction, 63
Point Cloud, 14
Position Tracker, 51
Probabilistic Data Association Filter, 34

Real-time, 43
Real-time requirements, 43
Rule-based filter, 50

Sensor modelling, 22
Source code, 95
Static/dynamic classification, 58
System Architecture, 41

Target modelling, 22
Track management, 56
Track maturity, 56
Track Quality Measure, 68
Tracker, 50

Unscented Kalman Filter, 26

Velodyne HDL-64, 11
Visualization, 43
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