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Modelling and Optimal Control of MIMO System - France
Macroeconomic Model Case*

Zilong Zhao1,3, Bogdan Robu1∗, Ioan Landau1, Luc Dugard1, Nicolas Marchand1 and Louis Job2

Abstract— In this paper, we focus on the French Macroe-
conomic model. We use real economic data, available as time
series, starting from 1980s and openly provided by the INSEE.
Variables such as Gross Domestic Production, Exportation,
Importation, Household Consumption, Gross Fixed Capital
Formation and Public expenditure are included in the analysis.
Our objective is to maintain a constant economic growth rate
according to the available resources. We implement an optimal
control policy via LQR to achieve that. Since we aim to maintain
a constant growth rate, the control system is modified for this
purpose. We prove the efficiency with three experiments based
on real data, and we test the method robustness with respect
to: (1) variation of LQR parameters, (2) realistic constraints
on inputs, and (3) perturbations on outputs. Results show that
our designed control system can guide the output to the desired
growth rate.

MIMO model, LQR, Optimal control, Macroeconomic
data.

I. INTRODUCTION

Control theory is commonly applied to mechanical and
physical systems. But it is also a strong tool to solve
optimization problem for various other systems [6], [21]
with noisy data [20]. Applying control theory for economic
problems has been studied since 1970s [19]. [8] summarizes
the development of stochastic control theory in macroeco-
nomic policy analysis in three periods: pre-1970 when the
major ideas of policy analysis and of optimization were
formed [10], early and middle 1970s when formal stochastic
control theory was rapidly developed for and applied to the
study of macroeconomic policy [12] and late 1970s with the
introduction of the idea of rational expectations in economic
analysis [4].

Recent works focus more on applications. [15] proposes
a general class of PID-based monetary policy rules, the
feedback rules let the model use a control signal (e.g. central
bank’s policy interest rate) responds to movements in a
small number of macroeconomic factors, such as the current
amount of labor market slack and the deviation of the rate
of inflation from its target. Under an optimal control of
monetary policy [5], the current and expected future path of
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the policy is instead typically calculated with a procedure that
minimizes a cost function subject to certain constraints. For
fiscal policy [18] and resource allocation [9], [16] problems,
they follow the same ideas of optimal control, differences
are the cost function and the constraints. To estimate the
asset holdings of a portfolio, [13] uses algorithms applied
to nonlinear dynamic systems to estimate the state with a
discrete-time observer.

In this paper, we will apply control techniques to a French
macroeconomic model using real economic data (available
as time series) starting from 1980s. Our objective would
be to design a meaningful control policy that would allow
a constant growth rate of the Gross Domestic Product.
After choosing the appropriate variables, the orders and
parameters of MIMO model are estimated and validated. To
satisfy our objective, an optimal LQR solutionis designed and
implemented. Simulations are developed with and without
constraints on input signals. Results show that our system
can quickly recover from the disturbance, and constraints on
input signals delay the recovery.

II. SYSTEM IDENTIFICATION

In this section, the process of estimating the economic
model is given. After the data preparation, a MIMO model
is computed. The parameters of the model are then estimated.

A. Data Preparation

All the data used throughout this paper are obtained from
the INSEE (Institut National de la Statistique et des Études
Économiques) which regroups all the official economic
French Data1. A plethora of data is available, which for
a non-expert makes it impossible to decide which makes
sense in our particular case. After an in depth analysis on the
economical meaning of each variable and long discussions
with experts, we decide to study 6 time series namely: Gross
Domestic Production (GDP), Exportation (EXP), Importation
(IMP), Household Consumption (HC), Gross Fixed Capital
Formation (GFCF) and Public Expenditure (PE). Moreover,
these variables have a causal relationship between each other
and a meaningful influence on the GDP. In the INSEE
database, all the data are quarterly ranged from the first
quarter of 1980 to the fourth quarter of 2018, 1980T1 to
2018T42, to have a meaningful analysis we decide to take all
the data. Following a similar analysis as the one performed
in [22] we decide the inputs and outputs of the system.

1https://www.insee.fr/fr/accueil
2The reader must note that especially due to the arrival of Covid-19

pandemics, data from 2019 were not taken into account in this study.

2023 European Control Conference (ECC)
June 13-16, 2023. Bucharest, Romania

978-3-907144-08-4 ©2023 EUCA 1

Authorized licensed use limited to: TU Delft Library. Downloaded on August 16,2023 at 05:53:51 UTC from IEEE Xplore.  Restrictions apply. 



The inputs of the model would be variables on which the
appropriate governmental structures can act and incite their
modification, namely HC, GFCF and PE. On the other side,
the outputs of the model are variables, which on a regular
basis, are only measured, but the government can not directly
act on: GDP, EXP, IMP.

The reader should note that the original data from INSEE
are presented on the values of current price and make no
adjustment for inflation. This is problematic as the current
price measure measures for example GDP, inflation or asset
prices using the actual prices we notice in the economy not
the real, deflated, one. Before anything else, we therefore
need to deflate it by using France GDP deflator (base year:
2014) obtained from the World Bank. Deflated time series
are showed in Fig. 1.

Fig. 1: Original data (Unit: Billion Euro)

As we deal with time series having an economic meaning,
we prefer to use natural logarithm to better linearize them.
Moreover, as we will use these time series to do linear
regression, we must ensure that all these series are stationary.
Augmented Dickey–Fuller (ADF) test [7] is a commonly
used statistical unit root test to examine whether a given
time series is stationary or not. In our case, we would test
the stationary for the natural logarithm of our original time
series as well as the first difference of natural logarithm.
Results are shown in Tab. I where LGDP, LEXP, LIMP,
LHC, LGFCF and LPE denote the natural logarithm of our 6
time series introduced before. From Tab. I we can therefore
observe that the test, in the case of the natural logarithm
of the original data, cannot reject the null hypothesis that
the variable contains a unit root, which implies that the
original time series are therefore not stationary. Nevertheless,
we can notice that the results for the first difference of
natural logarithm of all the series rejects the null hypothesis
at 99% (i.e., note the ∗∗∗ following the values as indicator).
We can therefore infer that these time series using the first
difference of natural logarithm are stationary. Moreover, in
later analysis we decide to use the first difference of natural
logarithm of DLGDP (- for 1st difference logarithm of GDP),
DLEXP, DLIMP, DLHC, DLGFCF and DLPE.

B. Selection of MIMO model order

In order to introduce our economic model, we first define
the input and output vectors as follows:

y =

y1y2
y3

 =

DLGDP
DLEXP
DLIMP

 u =

u1

u2

u3

 =

 DLHC
DLGFCF

DLPE

 (1)

TABLE I: Augmented Dickey–Fuller test for unit root. Null
hypotheses: Variable contains an unit root

Variables ADF Level ADF First Difference

LGDP -1.10548(1) -7.66072(0)***
LEXP -3.28665(2) -6.29252(3)***
LIMP -2.87331(4) -6.20372(3)***
LHC -1.45805(3) -5.59492(2)***
LGFCF -3.60257(2) -4.01801(1)***
LPE -1.92627(1) -5.69958(1)***

Notes: (1) ***, ** and * denote significance at 1%, 5%, and 10% levels.
(2) Figures in parentheses are the number of lags (delays) used.

(a) y1 - DLGDP (b) y2 - DLEXP (c) y3 - DLIMP

Fig. 2: Order Selection

where y is the output (endogenous variables) of our model,
u is the input (exogenous variables) of our model. Note
that the selections of y and u are done according to their
economic interpretation and attributes. Input (exogenous)
variables are therefore the factors we could manipulate in
an economic system (e.g., increasing public expenditure
for example) while output (endogenous) variables are the
consequences that we could only observe in our case but not
directly interfere with (e.g., the variation of importations for
example).

Consider an ”m-input-p-output” system represented by a
canonical input-output representation [14], for i = 1, 2, ...p:

yi(k) =

p∑
j=1

nij∑
q=1

aijqyj(k + q − ni − 1)

+

m∑
j=1

ni∑
q=1

bijquj(k + q − nj − 1) + ei(k) (2)

where p and m is the numbers of outputs and inputs, yi(k)
denotes the value of output yi at time k, aijq and bijq are the
coefficients of yi and ui, ei(k) is the white noise. Moreover,
the observability indices ni are given by:

nij = min{ni, nj}, if i ≤ j (3)

and

nij = min{ni + 1, nj}, if i > j (4)

We apply this method for each output using the technique
of instrumental variables, and implementing a criterion which
penalizes the model complexity as we want to estimate
models of reduced order (see for example [11], [17] among
others). Fig. 2 shows the order selection process while
Criteria variable calculates the average of estimation errors.
The Criteria, (namely J(n̂)) is defined as:

J(n̂) = min
θ̂

1

N
∥Y (t)−R(n̂)θ̂∥2 (5)

where n̂ is the estimated system order, N is the number of
data, θ̂ is the estimation of parameters. Y (t) is the real value
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of the data and R(n̂)θ̂ is the estimated one. S(n̂, N) is the
part served as penalty on the order of the model and defined
as follows:

S(n̂, N) =
2n̂log(N)

N
(6)

We see that J(n̂) goes towards 0 as the estimated order
approaches the true one. Therefore, as order increases, we
can see from Fig. 2 that criteria decreases to 0. But S(n̂, N)
increases with the increase of the chosen order.

From Fig. 2, the estimated order of the model between the
inputs and each of the three outputs is: 5 for y1, 4 for y2 and
5 for y3. One should notice that these estimated orders are
not definitive, as we still need to pass the validation process.

C. Estimation and Validation of parameters
After finding the model order, Least Squares method is

used to estimate the parameters of the 3 equations for y1,
y2 and y3. After each estimation, a whiteness test (auto-
correlation test) will be applied to make sure the residuals
from the estimated equation are white noise, which means the
estimated model extracted all the knowledge from training
data [2]. The algorithms of calculation differ, but the goal
remains the same: testing if values are mutually uncorrelated.
In this paper, we choose to use the implementation of
autocorrelation test function from [3].

Consider T as the total number of data points in the
dataset, we can therefore conclude that all the autocorrelation
values should be in the range (0± 1.96

T 0.5 ). In our case, from
1980T1 to 2018T4 we have 156 data points, so the limit
is ±0.157 here. Fig. 3 shows the final autocorrelation test
for estimation residuals of y1, y2 and y3 where the limit of
±0.157 is manifested by the horizontal blue lines.

Please recall that our objective is to find a model with
the lowest order (minimum number of variables), but still
valid. Therefore, once we find a valid candidate model,
we would still try to reduce the order by eliminating the
variables whose coefficient is much smaller than the others
by comparing their absolute value. Nevertheless, this can
pose problems concerning the validity of the mode (for
example the residual not being a white noise anymore).
Therefore, every time we delete one variable we need to
re-estimate all the parameters, re-do the whiteness test on
residuals to check the validity of the new model. We continue
to remove variables until none can be removed without
compromising the validity of the model. The final orders
of the reduced model that we found are: 5 for y1, 4 for y2
and 4 for y3. If we define our state vector X as:

X(k) = [y1(k − 1) y1(k − 2) y1(k − 3) y1(k − 4) y1(k − 5)

y2(k − 1) y2(k − 2) y2(k − 3) y2(k − 4)

y3(k − 1) y3(k − 2) y3(k − 3) y3(k − 4)]T

(7)

Our system can be written in discrete-time as:

X(k+1) = A · X(k) +B · u(k)
Y(k) = C · X(k) +D · u(k) (8)

where k ∈ Z+, output y and control u vectors are given by
Eq. (1), A ∈ R13×13; B ∈ R13×3; C ∈ R1×13; D ∈ R1×3.
The values of A,B,C,D are showed in Eq. (9) below, where
Oi×j is the zero matrix of size i× j.

Eigenvalues of the state matrix A are checked and all are
within the unit circle which means the open-loop model is
stable as we expected. Controllability and observability of
the system are also tested, the rank of the observability
and controllability matrices are equal to the number of
states, which suggests that our system is controllable and
observable.

III. OPTIMAL CONTROL POLICY

The theory of optimal control is concerned with operating
a dynamic system at minimum cost. As the system dynamics
are described by a set of linear differential equations and the
cost by a quadratic function, we have an LQ problem [1].

In this section, we introduce Linear–Quadratic Regulator
(LQR) and then, according to the physical nature of our input
and output, we develop several modifications of the method.
for a discrete-time linear system given by:

X(k+1) = A · X(k) +B · u(k)

the cost function of discrete time LQR in finite horizon is
presented as follows:

J = X(N)TQX(N) +

N−1∑
k=0

(X(k)TQX(k)

+ u(k)TRu(k) + 2x(k)TNu(k)) (10)

where Q, R are the weighting matrices for state and input
while the cross term matrix N is set to 0 in our case as
the states and input vectors do not have the same economic
meaning in order to be multiplied together. The control law
that minimizes the cost function J is the usual:

u(k) = −K ·X(k) (11)

More details about the practical implementation of LQR in
our case are given in Sec. IV-A below.

A. Reference Input
As we will focus on controlling GDP, then we need

to implement our designed reference to let output reach
the desirable value. Recall that y1 from Eq. 1 is the first
difference of natural logarithm of GDP, illustrated below:

y1(k + 1) = ln(GDP(k))− ln(GDP(k-1)) = ln(
GDP(k)

GDP(k-1)
)

(12)

If we want our GDP to have constant p percent (%)
increasing, we have:

GDP(k)
GDP(k-1)

= 1 +
p

100

and then the quarterly GDP increasing ratio p is:

p = (ey1(k) − 1)× 100 (13)

where e is the base of the natural logarithm. One can remark
that as we want a constant increasing ratio, i.e. p constant,
the y1 needs also to be constant.

3
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(a) y1 Residuals (b) y2 Residuals (c) y3 Residuals

Fig. 3: Autocorrelation test for the estimation of residuals

A =


0.397 0.06 −0.126 0.193 0.066 0.037 0.05 0 0 0 0 −0.29 −0.038
... I4 ... O4×9 ...

0.264 0.072 −1.055 0.958 0 0.225 0.331 0.008 −0.223 0.208 −0.185 0 0
... O3×6 ... I3 ... O3×4 ...

−1.0538 0.97 −0.6 0 0 0.356 0.399 0 0 0.05 −0.315 0.035 −0.218
... O3×9 ... I3 ... O3×1 ...



B =


0.177 0 0.118
... O4×3 ...

0.342 0 0.364
... O3×3 ...
0 0.869 0.765
... O3×3 ...

;C = [1 0 0 0 0 1 0 0 0 1 0 0 0] ;D = [0 0 0] (9)

B. Overall control system

At equilibrium, the corresponding input vector ur and
the desired output Yr, are satisfying the following equations
according to Eq. (8):

Xr(k) = A ·Xr(k) +B · ur(k)

Yr(k) = C ·Xr(k) +D · ur(k) (14)

As our state vector contains only the previous values of
the output we do not need an observer before implementing
our control law. To drive the error between X(k) and Xr(k)
to 0, we make a change on Eq. (8), namely:

X(k)−Xr(k) = A ·X(k) +B · u(k)−Xr(k)

= A ·X(k) +B · u(k)−A ·Xr(k)−B · ur(k)

= A · (X(k)−Xr(k)) +B · (u(k)− ur(k))
(15)

if we define ∆X(k) = X(k)−Xr(k) and ∆u(k) = u(k)−
ur(k), then we have a new linear system:

∆X(k) = A · (∆X(k)) +B · (∆u(k)) (16)

and re-write the cost function of LQR (10) as:

Jr =

N−1∑
k=0

((∆X(k))TQ(∆X(k)) + (∆u(k))TR(∆u(k))

+2(∆X(k))TN(∆u(k))) + (∆X(N))TQ(∆X(N))
(17)

the feedback control law that minimizes Jr can be written
as:

∆u(k) = −K ·∆X(k) (18)

where K = (R + BPTB)T (BTPA + NT ) is independent
of state and input vectors. We can notice therefore that the
K in (11) and (18) does not change.

Fig. 4: Modified LQR Control problem

By grouping terms, the control law (18) can also be
written:

u(k) = −K · (X(k)−Xr(k)) + ur(k) (19)

The new control problem is graphically depicted in Fig. 4.
According to Eq. (19) we can not directly apply designed
output into the feedback, we will need a pre-processing
function to transfer the desired output Yr to the desired state
vector Xr and input vector ur when the system reaches the
state-space. One thing to notice is that there will not be only
one pair of Xr and ur to satisfy the pre-processing function
condition, it will be a range for both value, we will let experts
to choose the values which make more sense in real world.

Recall the cost function of LQR (10) where N is set to
0. In this case, we set the weight matrix Q = CTQ′C, since
Y (k) = C ·X(k), and the auxiliary matrix Q′ weights the
plant output. We find therefore the usual conclusions: when
R >> CTQ′C, the cost function is dominated by the control
effort u, and so the controller minimizes the control action
itself, this control strategy is used when the control signal
is constrained; when R << CTQ′C, the cost function is
dominated by the output Y , and there is less penalty for
using large u.
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IV. SYSTEM EVALUATION

A. Setting-up the evaluation
According to the reality, a yearly GDP growth ratio of

3.2% is interesting to study3. To reach this level, the quarterly
GDP increasing ratio p is around 0.8% (i.e. (1.008)4 ≈
1.032).

Consider Yr = [y1r y2r y3r] as the reference vector
signal.

From (13) we know:

y1r = ln(1 +
p

100
) = ln(1.008) = 0.007968 ≈ 0.008

Following the same computation process as above, we can
find y2r = 0.0175 and y3r = 0.0086.

Recall the relations between Yr, Xr and ur in (14) and
since the output is identical to the first entry of the state
vector, the matrix D is 0. These equations can be re-written
as:

Xr(k) = (I −A)−1 ·B · ur(k)

Yr(k) = C ·Xr(k) (20)

where I is the identity matrix of suitable dimensions. As we
explained in the end of Sec. III-B, there is not a single pair
of Xr and ur that satisfy (20). For example, one reasonable
pair of Xr and ur is:

Xr(k) = [0.008, 0.008, 0.008, 0.008, 0.008, 0.0173, 0.0173,

0.0173, 0.0173, 0.0086, 0.0086, 0.0086, 0.0086]T

ur(k) = [0.024, 0.003, 0.003]T

For testing, purposes, diagonal weights of Q and R are
used.

Q =

q1 . . .
qnq

 ;R = ρ

r1 . . .
rnr

 (21)

where nq = rank(A) = 13, nr = rank(B) = 3. For the
sake of simplicity, we will let qi = 1 for all i ∈ [1, 13],
and rj = 1 for all j ∈ [1, 3], we will use ρ to adjust the
input/state balance. We choose ρ ∈ {1, 10, 100} to conduct
experiments comparing the converging speed and observing
the input signal range.

B. Experimental Evaluation
For the evaluation of the proposed control strategy, we

implement the system detailed in Fig. 4.
The initial state vector X0 of the state-space model is set

by a linear regression over the real data only from 1980T1
to 1981T1. The resulting values are given below:

X0 = [0.001, 0.012,−0.008,−0.004,−0.004, 0.036,

0.032, 0.013,−0.03, 0.007, 0.017, 0.006,−0.002]T

3Actually, the recent 10 years (2010-2019) average GDP growth ratio of
France is 1.38%, but if we look back 25 years ago, the highest GDP growth
ratio are showing during 1998-2001, which the average ratio is around 3.2%.
Therefore, we want to study what measurements should be implemented to
sustain this growth ratio.

Moreover, due to the meaning of our variables we have
the following constraints regarding the three inputs: u1 ∈ [0,
0.3], u2 ≤ [0, 0.008], u3 ≤ [0, 0.008]. Details about these
limits are given below.

For the sake of better presenting our results, throughout
all the evaluation procedure we will consider the same
simulation time, namely 50 time points (i.e. quarters).

TABLE II: Output behavior. Please note that the state-space
error is always 0 due to the type of the controller we consider.
I.C. is for Input Constraint

ρ response time (quarter) output variation range

ρ =1 18 (0.001, 0.008)
ρ= 10 32 (-0.001, 0.008)
ρ= 100 37 (-0.002, 0.008)
ρ= 1 & I.C. 20 (0.001, 0.008)

1) Variation of ρ without Constraints on Input Signals:
Let us first discard the limitations on the control signal in
order to observe the behavior of the control system as well
as it’s limitations for different values of ρ. The output (i.e.
y1) is illustrated in Fig. 5a for ρ ∈ {1, 10, 100}. A more
detailed result is showed in Tab. II where the settling time
as well as the variation range of the output are given. From
these results, we can clearly conclude that increasing the ρ
value will also increase the convergence time to the state-
space. Nevertheless, this comes with a significant impact on
the inputs.

As we expected, the benefits of decreasing ρ come with
cost, translated by the fact that the input exceeds the maxi-
mum allowed limits (see Fig.6). We can see that when ρ is
small, the input signal fluctuates more.

(a) Output y1 and constraints on u (b) Output y1 and perturbation

Fig. 5: Output y1 under different ρ values

(a) u1 - DLHC (b) u2 - DLGFCF (c) u3 - DLPE

Fig. 6: Corresponding input u under different ρ values

2) Constraints on Input Signals: In our first experiments,
we do not impose constraints on input signals, but in reality,
there are some levels that input signals cannot reach. There-
fore, in this experiment, we set ρ = 1 as well as a maximum
limit 0.03 on signal u1: u1 ≤ 0.03 (which is strictly lower
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than the maximum value of u1 in the non-constrained case).
Input signals results of ”ρ = 1 with constraint on u1” are
showed in Fig. 6a, 6b and 6c and Tab. III. Comparing to only
ρ = 1 result, we can see for signal u1, that the maximum
value of the range becomes 0.03 (which is the limit). For u2

and u3, the maximum value increases s they are being used
to compensate for the insufficiency of u1. For the sake of
readability, all the input behavior is detailed in Table III.

From Fig. 5a, 6a, 6b and 6c, we can observe that even u2

and u3 react to compensate limitation of u1, at 1st and 4th

quarter, new results are slightly lower than the result without
constraint. As for the converging speed, from Tab. II, we can
also notice that experiment with constraint converges slower
than the experiment without constraint. But still better than
the results of ρ = 10 or 100.

TABLE III: Summary of Input variation range. C. is short
for constraint, P. is short for perturbation.

ρ u1 u2 u3

1 (0.016, 0.038) (-0.010, 0.003) (-0.020, 0.007)
10 (0.022, 0.027) (-0.005, 0.003) (-0.007, 0.005)
100 (0.024, 0.025) (0.002, 0.003) (0.001, 0.003)
1 with C. (0.016, 0.030) (-0.010, 0.003) (-0.020, 0.008)
1 with P. (0.015, 0.038) (-0.010, 0.009) (-0.020, 0.010)
1 with C.&P. (0.015, 0.03) (0.0, 0.009) (0.0, 0.010)

3) Perturbation on Output Signals: In this experiment, we
keep ρ = 1, and we add perturbation on output signals to
simulate economic crisis. From the reference signals setting
in Sec. IV-A, we know that when the system is stable, y1,
y2, y3 should equal to 0.008, 0.0173 and 0.0086. And u1,
u2, u3 should equal 0.024, 0.003 and 0.003.

From Fig. 5b, 6a, 6b and 6c, we can see that at 24th
quarter, the system has converged to a stable state. Then we
add a negative perturbation pulse signal -0.16 on y1, y2
and y3 at 25th quarter. The ”ρ = 1 with perturbation and
constraint on ui” curves are the scenario where we not only
implement the perturbation, but also implement constraints
on all the input signals. Besides enforcing all to be positive
we also have u1 ∈ [0, 0.3], u2 ≤ [0, 0.008], u3 ≤ [0, 0.008].

Fig. 5b shows that after 25th quarter, the two systems
totally recover from the perturbation, apparently the curve
without constraint recovers faster than the other. One inter-
esting point in Fig. 6b and 6c reveal that if we do not impose
constraint on input signals, inputs u2 and u3 can be negative,
recall that u2 represents the first difference of logarithm
of GFCF (also called investment). A negative signal means
instead of investing during the crisis, we should sell our
assets. As u3 represents the first difference of logarithm of
PE, negative means we need to reduce government spending.
Nevertheless, all these conclusions, although correct from
the engineering point of view, need to be coordinated with
expert’s advice.

V. CONCLUSION

Applying control theory to economic problems has been
successfully studied in many cases, resource allocation is one

of the well-established problems in this area. It demands
dynamically choosing available resources with constraints
over time to maximize or minimize an objective function.

In this paper, to apply optimal control, French macroeco-
nomic quarterly data from 1980T1 to 2018T4 are used, more
precisely we use 6 valiables which are representative from an
economic point of view: GDP, EXP, IMP, HC, GFCF and PE.
After estimating the model, an optimal LQR control solution
is designed for our problem, which is to maintain a constant
GDP increase ratio. Simulations using different realistic
constraints and perturbations are performed. The control
structure designed in this paper has good applicability and
extensibility for other economic systems as well. This work
can be further extended by considering more variables or by
imposing certain characteristic constraints on inputs/outputs.
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