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Summary

In this thesis, we have explored the landscape of Large Language Model (LLM) plugins, focusing on
their integration into JetBrains IDEs. We began by examining the current state of these plugins, from
an early code completion tool Code4Me to the more sophisticated, interactive assistants of today. We
then delved into the creation of a reusable LLM plugin and backend, detailing the design choices,
architecture, and deployment strategies employed. The backend, built with Python and Django, serves
as the backbone for the plugin, handling API requests, user management, and data storage. The plugin
itself, developed using Kotlin and the JetBrains Plugin SDK, offers features such as an LLM chat, code
completion, and customizable templates.

A key aspect of this thesis was a user study conducted at JetBrains, investigating a novel gray-text code
completion style that leverages the IDE’s static analysis. The study aimed to assess the usefulness and
usability of this new approach, comparing it to the traditional gray-text completion. Results indicated
that while the novel method showed promise in terms of accuracy and edit similarity, it scored lower on
the System Usability Scale, suggesting a need for further refinement and user familiarization.

The challenges encountered during the development and deployment process, such as transitioning
between LLM clusters and refining the code completion API, were also discussed. These challenges
highlight the complexities involved in integrating LLMs into real-world development environments and
underscore the importance of ongoing research and development in this field.

In conclusion, this thesis contributes to the growing body of knowledge on LLM plugins for IDEs. It
provides a detailed account of building and deploying such a plugin, offers insights into a novel code
completion approach, and presents the results using an A/B user study. The work presented here
serves as a foundation for future research and development, creating a way for more interactive, adap-
tive, and user-friendly LLM tools for developers and researchers in the future.
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Nomenclature

Abbreviations
Abbreviation Definition

ASGI Asynchronous Server Gateway Interface
CD Continuous Deployment
CI Continuous Integrations
CLI Command-Line Interface
CRUD Create, Read, Update and Delete
DOM Document Object Model
DRF Django REST Framework
DSL Domain-Specific Language
EM Exact Match
ES Edit Similarity
FLCC Full-Line Code Completion
FP Functional Programming
IDE Integrated Development Environment
JSON JavaScript Object Notation
JVM Java Virtual Machine
LLM Large Language Model
NDA Non-Disclosure Agreement
NLP Natural Language Processing
OOP Object-Oriented Programming
OSS Open Source Software
QA Question and Answer
RAG Retrieval-Augmented Generation
REST REpresentational State Transfer
SAU Specific Aspects of Usefulness
SDK Software Development Kit
SES Simple Email Service
SSE Server-Sent Events
SUS System Usability Scale
TCP Transmission Control Protocol
TTFB Time To First Byte
UML Unified Modeling Language
VCS Version Control System
WSGI Web Server Gateway Interface
XML Extensible Markup Language
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1
Introduction

Large Language Models (LLMs) have revolutionized the field of Natural Language Processing (NLP)
with their ability to understand and generate human-like text. Recent advancements have led to the de-
velopment of LLMs specifically designed for code generation and developer assistance. These models,
such as CodeLLama, StarCoder, and InCoder, have shown promise in automating code completion,
documentation generation, and error detection, thereby streamlining the coding process and improving
code quality.

However, the practical application of these LLMs in real-world development environments, particularly
within Integrated Development Environments (IDEs), presents unique challenges and opportunities.
This thesis explores these challenges by developing a reusable LLM plugin and backend for JetBrains
IDEs. The plugin integrates both code completion and chat functionalities, leveraging the capabilities
of LLMs to enhance developer productivity.

Another key contribution of this thesis is the evaluation of a novel gray-text code completion style that
aims to improve the alignment between LLM suggestions and developer intentions. This is achieved
by incorporating the IDE’s static analysis suggestions as prefixes to the LLM’s code completions. The
effectiveness and usability of this approach are assessed through a user study conducted at JetBrains,
providing valuable insights into the practical implications of integrating LLMs into real-world develop-
ment workflows.

The thesis is structured as follows: chapter 2 provides background information on LLM plugins, pre-
vious user studies, and a related experiment called Code4Me. Chapter 3 details the creation of a
reusable LLM plugin and backend, discussing the architecture, design choices, and deployment strate-
gies. Chapter 4 presents a user study conducted to evaluate the novel gray-text code completion style,
outlining the research questions, methodology, and results. Chapter 5 discusses the challenges en-
countered during the development and deployment of the plugin. Finally, Chapter 6 concludes the
thesis, summarizing the findings and contributions, and Chapter 7 proposes potential future work to
further enhance the plugin and its capabilities.
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2
Background

During my bachelor project, I contributed to Code4Me1, which was a plugin meant to test out pre-
trained models in the wild. The models that were run in the backend were CodeGPT, UniXcoder, and
InCoder. These were locally hosted at TU Delft, and run in parallel to generate multiple completions per
triggerpoint. A triggerpoint could either be one of the pre-defined set of characters the model should
be invoked upon (such as a period or opening parenthesis, which are common points in code where a
code completion would be useful), or a manual invocation using a keybind. Finally, the plugin was set
to collect data automatically, and it achieved this by tracking the line the code completion was inserted
in. After 30 seconds, the same line was sent to the backend (starting from the offset the completion
was performed), which would then be stored as a ground truth for the completion.

The plugin was built in the spring/summer of 2022, a time at which not many APIs were available for
code completion plugins. It was built on top of the existing editor suggestions, which mixed the output of
the models with the suggestions of the IDE from a static analysis of the project. Furthermore, the plugin
did not offer any LLM chat functionalities, a feature which has been added to many code completion
IDE plugins.

2.1. Large Language Model Plugins
Large Language Model (LLM) plugins are an emerging technology designed to integrate advanced
language models into various software applications. These plugins leverage the capabilities of LLMs,
either locally hosted or externally hosted, to provide enhanced functionalities, particularly in the realm
of code completion and development assistance.

LLM plugins operate by embedding pre-trained language models into integrated development environ-
ments (IDEs) or other software tools. These models are capable of understanding and generating
human-like output, which makes them particularly useful for tasks such as code completion, documen-
tation generation, and error detection. The primary aim of these plugins is to streamline the coding
process, reduce the time developers spend on routine tasks, and improve code quality.

2.1.1. Code Completion Plugins
Code completion plugins typically function by monitoring the developer’s input in real-time. When a
developer reaches a trigger point—such as typing a period, an opening parenthesis, or invoking a
specific keybind—the plugin activates the LLM to generate code completions or suggestions. These
trigger points can either be strategically chosen to coincide with moments when developers are most
likely to need assistance, or invoked by the IDE automatically. With the new APIs JetBrains offers, the
IDE is now in charge of these trigger points. Triggers for code generation are now invoked at the points
the IDE deems it best to support the developer. IDEs are able to use language-specific information to
determine the best trigger points, or because it noticed the developer stopped typing for a second and

1https://code4me.me
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2.2. User Studies on LLM Plugins 3

might need some asssistance.

The plugin sends the current context of the code to the model (either externally or locally), where the
LLM processes it and returns a possible completion. The context it uses for this could range from the
current method the user is working in, to the currently working file, or even an collection of open files
that could be helpful for generating a code completion. Some models are only able to work with the left
context (i.e. start generating from the input text), and some models are able to infill between two parts
of the code, the part before the generation, and the code that might already exist after the completion
(left and right context). These completions are then presented to the developer, who can choose to
insert it, or ignore it and move on with their original idea. Having IDE completions could speed up
developers in writing code.

Recently, JetBrains also introduced a local model which is now included in the IDEs by default, called
“Full Line Code Completion” (FLCC). This model is smaller than the models that are hosted externally,
but has been shown to be quite effective and internal metrics show it has a high acceptance rate,
despite it being much smaller than externally hosted models. Unfortunately the exact numbers for the
metrics concerning FLCC are under a JetBrains Non-Disclosure Agreement (NDA).

2.1.2. Chat Plugins
After the success of code completion plugins, a lot of plugins have been integrating a chat functionality
in their feature suite as well. These plugins leverage LLMs trained for chat and QA, to provide a
conversational interfaces directly within the development environment. This enables developers to
interact with the model in a more intuitive and natural manner, similar to conversing with a coworker or
student.

The primary function of chat plugins is to facilitate various coding tasks through natural language inter-
action. Developers can ask questions about code syntax, request explanations for specific pieces of
code, ask suggestions for refactoring, or even discuss about best practices.

The chat functionality can be integrated with the IDE as well, depending on the context window or
capabilities of the LLM. Context to a prompt could fully be provided by the initatior of the chat (developer
or action that triggered a new chat), but could also be aided by an external database. One could index
the currently worked on project in the IDE, and use Retrieval Augmented Generation (RAG) within the
LLM models to query useful external information to best assist to a user’s prompt.

Chat plugins can be designed to integrate seamlessly with other tools and features within the IDE. The
chat could be started from a number of starting points within the IDE, such as for example by selecting
a piece of code providing the baseline for the chat, or for example in a Version Control System (VCS)
by asking for a fitting git commit message.

2.2. User Studies on LLM Plugins
The evaluation of LLM plugins is crucial to understanding their usefulness and usability in real-world
programming environments. They typically aim to measure how effectively these plugins improve cod-
ing efficiency, reduce error rates, and enhance the overall user experience. This can for example be
achieved using automated metrics collected in the background, and a user survey at the end after using
the plugin.

Automated metrics typically include some form of an accuracy of the completions provided, and an edit
similarity to the actual desired completion. Combining these two metrics typically give a good insight
into how well the code LLM understands the context, and how well it has provided the developer with
an accurate completion.

The survey is used for collecting nuanced information about the plugin, such as the usability. This
type of information is a lot harder to collect through automated metrics – developers might accept code
completions, but don’t particularly like the plugin in itself and might have improvements for it, which can
all be included in such a survey.

Findings from these studies generally highlight a positive impact on coding efficiency and a reduction
in simple coding errors. From previous works, developers often report that LLM plugins help them write
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Figure 2.1: Code4Me’s code completion style using the native JetBrains popover code recommendation system.2

Figure 2.2: Gray text code completion style.3

code faster and with fewer interruptions, although some also report a learning curve for all these new
tools. Insights often include suggestions for improving the context-awareness of the models and en-
hancing the integration of these tools into existing IDEs to make them more intuitive and less intrusive.

Despite the benefits, user studies also often reveal areas for improvement. Common challenges include
the handling of complex coding tasks that require deeper contextual understanding (e.g. context in
different files, or business logic), and the integration of LLMs into diverse coding environments.

2.3. A Previous Experiment: Code4Me
Two years ago, a code completion plugin for code was developed by Marc Otten, Jorit de Weerdt
and me, as part of our bachelor thesises. The plugin featured code completion using the IDEs native
code recommendation system at the time, whereas the common way of displaying code completions
nowadays is using a so-called “gray-text code completion style”. Figure 2.1 and Figure 2.2 display the
style of Code4Me and the gray-text code completion, respectively.

The user study focused around evaluating the theoretical performance of code LLMs in a real world
scenario, since most trained models are only evaluated using automated benchmarks and a test set
very similar in tasks to the train set. Exposing these models to the real world would gain insights in how
the code completions are used and perceived by developers.

The models that were used were CodeGPT, UniXcoder, and InCoder; all relatively “small” models in
a sense that each could be run on a single GPU. The deployment of this backend was fairly simple,

2Image from “Language Models for Code Completion: A Practical Evaluation” by Izadi et al.
3Image from the blog post “Full Line Code Completion in JetBrains IDEs: All You Need to Know” by E. Ryabukha

https://doi.org/10.1145/3597503.3639138
https://blog.jetbrains.com/blog/2024/04/04/full-line-code-completion-in-jetbrains-ides-all-you-need-to-know/
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a REST API was made around the HuggingFace inference library such that completions could be
generated from the IDE plugin, and only a single deployment was used for all the API calls.

Code4Me supported multiple IDEs, VSCode and all of the JetBrains IDEs up until a few versions ago,
which allowed for an extensive research across a large userbase with a lot of completion inferences in
its dataset.



3
Creating a Reusable LLM Plugin and

Backend

Continueing on Code4Me with the goal in mind to create a better and reusable codebase for an LLM
experiment in the IDE, a new plugin was written from the ground up using Kotlin and the latest APIs
available from the JetBrains Plugin SDK. JetBrains has introduced new APIs in the past year for code
completion plugins, including a full-fledged gray text code completion API. This code completion style
seems to be the main style of code completion that combines well with the existing dropdown comple-
tions from the IDE, as this style is used by many commercial entities such as GitHub CoPilot, Super-
maven, and JetBrains’ own Full Line Code Completion (FLCC). The new plugin also features a chat
functionality, which has been built natively into the plugin using the JetBrains UI APIs. The codebase
has been split up into two main parts: the plugin that is actually embedded within the JetBrains IDE, and
the plugin backend. The following sections will dive deeper into the backend and plugin’s architecture,
design choices and deployments.

3.1. Plugin Backend
The plugin backend’s main purpose is to serve the APIs to be used by the embedded plugin and to
host the signup website, where potential users for the user study can join the study. The design of this
backend is made to be extended upon and focused on future iterations of the codebase, on both the
maintainability and extensibility side. The code is split among logical components, using a standardised
directory structure to find and work on components easily. Best practises are also applied for streaming
LLM responses by implementing Server Sent Events (SSE).1 The following sections will dive deeper
into each component.

3.1.1. Language and Framework
Choosing the main language is directly tied with the extensibility and maintainability for future iterations
of the project and codebase. If a language is chosen that’s not widely adopted, this could pose a
challenge in the future to find developers that are capable of working with such a codebase. On the
other side, the language should also support all the intentions for future iterations of the project, and
should not impose a limitation later down the road. Similarly for the framework that guides the main
structure of the codebase, a well-documented, battle-tested, and popular framework should be chosen
that can assist in all the needs for creating a reusable and purpose-built backend. In the following
sections we will explain why the language Python, in combination with the framework Django and the
frontend framework React were chosen. This frontend framework is not to be confused with the LLM
Plugin: this type of frontend serves the signup website.

1https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
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The Python Programming Language
The chosen main language for the backend is Python. Python has great community support, an ex-
tensive standard library, and an extremely large amount of packages that can be imported. The latest
iteration of the TIOBE Programming Community Index lists Python as the most popular programming
language, and it has only been growing in popularity over the past years [2].2

Choosing Python for NLP and interacting with LLMs is also a very common choice, as a significant
platform of pre-trained LLMs, HuggingFace,3 creates libraries for Python. For future iterations of the
backend, the transformers library can be easily imported and used in the codebase in order to use
pre-trained models and datasets from HuggingFace.

To support best practises with the Python language and benefit from the IDEs smartness while devel-
oping, proper typings have been added where possible in the codebase to minimize errors that could
easily be avoided by having an extra warning when using the wrong types. This is especially helpful
when a newcomer deals with an unknown codebase: having no types leaves the developer guessing
to what a method actually does, which types of input it has, and what it outputs.

The Django Framework and Django Rest Framework
In the Python ecosystem a lot of libraries exist for creating APIs. For this project, Django was chosen
as the main framework. Django is a very popular framework as well, and ranks highly in many charts
on the web.45 The Django framework comes with a vast amount of features baked into it, such as data
models, database migrations, an admin section, authentication and authorization for users, and views
and serializers for mapping data models to those views.

Data models are useful for creating Python-managed database objects, which can be queried, created
and interacted upon from the source language (Python). It is built from a declarative model standpoint,
which means that very little interaction is needed to the underlying database from the actual developers
perspective. The Python model files are written, and Django automatically generates the underlying
queries for creating the database tables (or documents in the case of a NoSQL database), creating the
actual objects, quering, updating and deleting. Relations among objects are also directly communicated
in this declarative style: Django offers relational constraints such as one-to-one, one-to-many, and
many-to-many to efficiently communicate these.

A database naturally changes over time, this could for example be because of new requirements, en-
hancements, or bugfixes. Hence, it is necessary to have good support for schema changes in the
chosen framework. Django offers database migrations right out of the box, which can almost always
be automatically generated by the Command Line Interface (CLI), by looking at the previous state of
the database, and comparing that to the newly written models in Python. A diff-check will result in
the changes required to convert the old state, into the new state. Some changes may be hard to au-
tomatically detect, such as column value changes or the renaming from one column to another one
with a similar datatype. Therefore, manual written migrations are always a possibility within the Django
framework, as well as modifying an automatically generated migration.

Since the Django framework doesn’t automatically include a REST framework to create an API for
interacting with the LLMs, the Django Rest Framework (DRF) was chosen.6 This framework neatly
integrated with the Django framework, allowing for the creation of views and serializers. Views are
essentially the classes that expose certain actions on objects, i.e., Create, Read, Update, and Delete
(CRUD) operations. These operations can be defined as Mixins on the class. Each mixin is a parent
class that defines a certain operation (i.e. one from CRUD, or a custom one). It also allows custom
operations, with a custom REST url endpoint, which is used for generating custom actions. In this
project’s case, custom actions are used for the endpoints that expose an SSE-resource. Serializers
are the classes that map a database object to a JSON response, it exposes the ability to only return
the fields that are necessary for the endpoint. In other cases, some fields should never be returned,

2The TIOBE Programming Community Index is an automated popularity index, massively collected from search queries of
the major search providers. The definition is published on the TIOBE website.

3https://huggingface.co
4https://lp.jetbrains.com/django-developer-survey-2023/
5https://6sense.com/tech/web-framework
6https://www.django-rest-framework.org

https://www.tiobe.com/tiobe-index/programminglanguages_definition/
https://huggingface.co
https://lp.jetbrains.com/django-developer-survey-2023/
https://6sense.com/tech/web-framework
https://www.django-rest-framework.org
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such as the user’s hashed password or token. Furthermore, using the DRF library, we can generate
an OpenAPI schema of all the API endpoints, which can then be used on the Plugin’s side to generate
endpoints.7 This schema provides a standardised way of publishing the available endpoints for an API,
as well as any inputs and outputs.

The React, TypeScript and Mantine frontend
It should be easy for users to join the user study, any additional step for joining the study at the start
may result in a deduction of users willing to join the study. Hence, it is important to have an easy-to-use
and quick sign-up process for the user study.

The framework to create this frontend in is React,8 a very popular and known framework for writing
websites. Creating the frontend in React has the benefit of being able to use JavaScript on the frontend,
a language made for interacting with the Document Object Model (DOM). React creates a layer on
top of the DOM, called the “Virtual DOM”, which will be re-rendered into the actual DOM whenever a
property has changed in the code. This allows for very minimal, but reactive code, which can help build
pretty sites with minimal effort. React files are written in JSX, a language that allows combining HTML
elements inside the JavaScript file.9. These JSX files (commonly ending with the .jsx extension), are
then compiled by the React compiler into bundles of JavaScript chunks. These chunks, in combination
with an empty HTML file where these chunks are loaded in using <script> tags, make sure the website
is populated with components and styling.

In addition to React, the TypeScript language was chosen for the same reasons as using typings in
Python.10 TypeScript is a superset of the JavaScript language (in other words, all JavaScript is valid
TypeScript, but not the other way around), and is a transpiled language that at runtime is transformed
into JavaScript. TypeScript has a very expressive typing system, they can consist for example of
expressions, conditionals, recursive definitions, and constants. The compiler can be made very strict,
which disallows the any type (similar to defining a variable as java.lang.Object in Java). TypeScript
works well with React too, and the syntax language is called TSX. It works the same way as JSX files,
and it will also be transpiled into JSX before handing it over to the React compiler.

Finally, to make React development a little bit easier, the Mantine framework was chosen for common
components.11 HTML exposes a few standard components, but these are extremely basic and can lack
a ton of features. They can also be extremely offsetting because each browser may implement their
own version of the specification. This can result in some browsers having a very good implementation,
which exceeds expectations according to the spec, while others are lacking [9]. In addition to fixing
smelly HTML components, Mantine offers a bunch of common components that developers have found
useful and implementing over and over for different projects. This ranges from many input components,
to overlays, common ways of presenting content, or even a rich text editor. By using a framework for
common components, it can greatly speed up development, and has the benefit that most of these
components expose neat APIs for interacting with the inputs/outputs and customizations.

3.1.2. Database Models
The database that is used in the backend is the relational database PostgreSQL (Postgres).12 Among
professional developers, according to a survey taken by StackOverflow among 76634 developers,
Postgres is the most popular database used for development and production environments [1]. The
database contains a total of 17 tables, of which 10 are automatically created by the Django framework.
These tables contain information about the basic functionality the framework provides, such as its ad-
min features, users, user roles, and user permissions. The other 7 tables, are created by the 7 data
models we use for the user study. These are:

• Chat: This model contains the basic fields required for a chat: The name, the user that created
the chat, the system_message (or in other words: system prompt), and a created_at timestamp.

7https://www.openapis.org
8https://react.dev
9https://react.dev/learn/writing-markup-with-jsx

10https://www.typescriptlang.org
11https://mantine.dev
12https://www.postgresql.org

https://www.openapis.org
https://react.dev
https://react.dev/learn/writing-markup-with-jsx
https://www.typescriptlang.org
https://mantine.dev
https://www.postgresql.org
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• ChatMessage: Each chat message contains a chat object reference, a role (System, Assistant,
Function, or User), the message, a temperature, and a created_at timestamp.

• ChatMessageRating: A rating is for each chat_message, with a rating (Good, Neutral, or Bad),
and a created_at timestamp.

• Completion: Consists of a prefix, suffix, the actual completion from the LLM, a reference to
the user, an optional external_id, and both a created_at and updated_at timestamp.

• CompletionAcceptance: When a completion is accepted, the completion reference is stored, as
well as the shown_period_millis for how long it was shown, and the created_at timestamp.

• CompletionChange: For each time_period (Ten Seconds, Thirty Seconds, and One Minute), the
edited_completion is stored, the completion reference, and the created_at timestamp.

• Signup: Each signup stores the user reference, job_roles, job_role_other in case other was
specified, employment_status, employment_status_other in case their employment status was
not present in the dropdown, coding_experience, whether they accept the terms_of_service,
and a created_at timestamp.

Models are written using abstractions over the database. It combines the way of writing Python code
effortlessly without conforming to a specific database implementation. One of the great features is that
enums can bemade easily as well, imposing constraints on character text fields. The ChatMessageRating
Python class can be found in Listing 3.1, which showcases a Python enum for the possible ratings, and
a relational constraint to the ChatMessage object. Furthermore, an overview of how these models re-
late to each other can be see in Figure 3.1. This graph was generated using the django-extensions
package, in combination with Graphviz.1314 Most of the automatically generated tables by Django are
omitted in this overview, but the User model is included as that’s being referenced by multiple of our
own tables.

Listing 3.1: The Django model for ChatMessageRating
1 from django.db import models
2

3

4 class ChatMessageRating(models.Model):
5 class Rating(models.TextChoices):
6 """
7 Rating enum
8 """
9 GOOD = "GOOD"

10 NEUTRAL = "NEUTRAL"
11 BAD = "BAD"
12

13 chat_message = models.OneToOneField(
14 "ChatMessage",
15 on_delete=models.CASCADE ,
16 primary_key=True,
17 )
18 rating = models.CharField(choices=Rating)
19 created_at = models.DateTimeField(auto_now_add=True)
20

21 def __str__(self):
22 return self.rating

Each model is then mapped at runtime by Django onto the Postgres database, and whenever a change
is made to these models the following command can be ran in order to automatically generate a new
set of migrations:

Listing 3.2: Command to generate Django migrations
1 $ python manage.py makemigrations api

And another command to apply the current set of migrations (one can modify the migrations after
running the above command if changes are required):

13https://django-extensions.readthedocs.io/en/latest/graph_models.html
14https://graphviz.org

https://django-extensions.readthedocs.io/en/latest/graph_models.html
https://graphviz.org
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Figure 3.1: A graphical overview of the models used in Django.
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Figure 3.2: The file structure of the IALLMs backend

Listing 3.3: Command to apply Django migrations
1 $ python manage.py migrate

The last command executes each migration which hasn’t been ran before, and inserts a row into the
django_migrations table when it has been successfully executed.

3.1.3. Architecture Design
The backend has been split into logical components to ensure maintainability, readability and navigata-
bility throughout the codebase. These components can be identified by the directory structure of the
backend, which has been displayed in Figure 3.2.

The frontend folder contains the React project. This can be seen as a standalone project – it can be
compiled and worked on independently. Later, the frontend is combined with the actual backend code,
and served through the static files with the DRF. The k8s folder contains the files concerned with the
Kubernetes deployment: it contains files for deploying the application on a Kubernetes cluster, and
a “kube job” that will run the database migrations before the actual new version of the app boots. In
subsection 3.1.4 the full CI/CD and combination of these projects will be explained.

Inside the src directory is where the Django codebase for the backend is present. The subdirectory
iallms contains the Django root project, it is the coordinator for Django submodules. Django promotes
to work with submodules: a feature that allows you to create any logical split among the components.
For example, if you had a service specifically dealing with authentication, one could split that up in it’s
own submodule. Since this project is still relatively small compared to large enterprise code, it was
chosen to use a single submodule api, to serve the backend APIs for the LLMs.

Inside this api folder, the DRF plugin is concerned with the middleware, mixins, renderers, schemas,
serializers, and views. Middleware is being used for creating functions that should be executed on
multiple endpoints. This could for example be code that should authenticate users for a set number of
endpoints, the middleware could verify whether the user has permission for a resource, and if they do,
allow the request to propagate to the next middleware (or router), or deny the request and break out of
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the chain. The flow of a REST request through the code is essentially using the Chain of Responsibility
design pattern. Mixins are classes that define logical operations (such as the ones from the CRUD
abbreviation) / subroutes. A mixin could for example implement the POST /<resource> handler, which
could define the “Create Resource” action. Another mixin could implement DELETE /<resource>/<id>,
which could delete a particular resource.

These mixins together can be extended in a view located in the views directory, in which mixins are
the parent classes of the view class. Custom actions can also be defined in views, similar to mixins. In
our case, the endpoints for generating a LLM chat completion or code completion are custom actions,
where we use SSE to efficiently transmit these long-taking requests in small chunks. The benefit of
SSE is that the Time-To-First-Byte (TTFB) is low, and the user can immediately see that their request
has succeeded. Instead of waiting for the entire response to be generated for a chat (this could take
several seconds), the response is split into chunks which can contain a few tokens the LLM model
generated, and are sent individually (but using the same TCP connection) to the client. This allows for
an efficient and user-friendly way of generating lengthly sequential data.

The way SSE works is by opening a long standing TCP connection. This connection is kept open until
a close request is initiated by the server. Data is sent through a standard text-based syntax, using
data tags. These data tag typically contain a minified one-line JSON object, which can be parsed on
the client. Data tags can be tagged with an event tag, which can indicate what kind of data is being
transmitted. If only one datatype is used, typically the event tags are omitted. An example of a SSE
request to the append chat message api endpoint can be seen in Listing 3.4. Each data tag is suffixed
with two newline characters, this indicates a chunk has ended and the handler can begin processing
this chunk while awaiting a new chunk. Furthermore, we explicitly indicate the end of the event stream
by sending a finish event, which contains data of the chat message after it has been stored into the
database, such as the message id. This id is only known after the message has been inserted into the
database due to the autoincrement feature, so we can send this as a final message.

Listing 3.4: An SSE request made to the append chat message endpoint.
1 data: {"chunk": "", "function_call": null, "updated": null, "spent": null}
2

3 data: {"chunk": "1", "function_call": null, "updated": null, "spent": null}
4

5 data: {"chunk": "+", "function_call": null, "updated": null, "spent": null}
6

7 data: {"chunk": "1", "function_call": null, "updated": null, "spent": null}
8

9 data: {"chunk": "␣equals", "function_call": null, "updated": null, "spent": null}
10

11 data: {"chunk": "␣", "function_call": null, "updated": null, "spent": null}
12

13 data: {"chunk": "2", "function_call": null, "updated": null, "spent": null}
14

15 data: {"chunk": ".", "function_call": null, "updated": null, "spent": null}
16

17 data: {"chunk": "", "function_call": null, "updated": null, "spent": null}
18

19 event: finish
20 data: {"message_id": 53}

The folder renderers and schemas, contain a class that specifically deals with event streams, and is
able to communicate that to the DRF plugin to generate the correct OpenAPI schema. Since SSE
endpoints aren’t typically typed (arbitrary JSON data packets, and events), a good schema should
clearly indicate the types of packets that are sent through SSE. As mentioned in a previous section,
the serializers map the database objects to a JSON object which can be returned in the API. This
serializer can also introduce relations that should be included in the JSON response, such as the full
User object from a ChatMessage model. It is also possible to just hyperlink to the resource, or simply
provide a numerical id for this relation to avoid overfetching and returning data that isn’t immediately
necessary for the client. For example, on each ChatMessageRating, we do not need to include the full
Chat or ChatMessage model, since in the case of giving a rating, the client should already know about
which chat message they’re giving a rating for.
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Another directory is the migrations directory. This directory contains a sequential order of files, each
prefixed with an automatically generated sequential number with zero padding. These files should
transition an empty, just initialized database, into the schema state the project expects.

The final directory contain the services. These final set of classes are interacting with (external) ser-
vices, or provide a logical service component to the rest of the codebase. The first service is handling
the LLM requests, called the GrazieService. This service has ownership of any interaction with the
Grazie LLM Cluster, on which the models are hosted. The inputs from our application are transformed
into the appropiate JetBrains cluster request, using the correct authentication without exposing this to
the outside. Requests are essentially proxied by the backend, but with an added layer such that we
can track the responses back to the requesting user, track ratings, and provide the edits that the user
performed after generating a completion.

Another external service is the Simple Emailing Service (SES), which is being used to send out
emails to the users who signed up for the user study. This email contains a warm welcome, as well as
their API credentials which they will need to use in the JetBrains’ IDE Plugin’s settings. The emailing
service handles authentication to the AWS SES service, and deals with the API requests such that it is
easy for other methods in the codebase to send out such emails.15

The final service is a utility service that can deal with SSE endpoints. It contains a class for creating
SSE packets, serializing them, creating streaming responses and deserializing an SSE response into
SSE packets.

3.1.4. Development & Deployment Environment and CI/CD
In this section the development environment is explained, and how to boot the development server.
This section will also explain the combination of how the React frontend is bundled with the Django
framework, into a single Docker image.16 This docker image can then be used to deploy the full back-
end. The IALLMs application is deployed using Skaffold, a CLI component that can easily deploy
applications onto a Kubernetes cluster.17 The following sections will explore these components into
more detail.

Development Environment
The first step to get the application running locally is to setup a database. Since one might work with a
lot of databases at the same time, it is better to create a sort of virtual environment for each database
instance, similarly to how Python projects are recommended to be setup. This can be achieved using
Docker: for each application that requires a particular development environment, a docker compose
file could indicate each dependency and allow for an easy to start with development environment.18 In
this case, the docker compose file contains the Postgres database dependency, which when started in
the terminal, will contain an empty Postgres database mapped to a local folder on the host system (in
the IALLMs backend root project), for persistence across restarts.

Developing with the application can then be done in realtime, as Django features it’s own development
server which supports live reloading. After a change has been made to the codebase, Django detects
this change (through a simple directory watch), and will attempt to restart the server.

There are two techniques to have the signup site appear in the Django application. The first one is less
interesting, but can be used to test the final docker image. It requires the build command to be ran in
the frontend directory, which will then be served by the same application as the iallms app. The other
approach is to use the React live-reload development server in addition to the Django development
server, where both are ran simultaneously. This has the benefit of working with the frontend in real-
time as well, such that stylings, new components are immediately visible, which can greatly speed up
development without the need for constant restarts to check out how it visually looks (a practise that is
quite common when dealing with visual applications).

The command to start the docker compose services (executed in the root), as well as the command to
15https://aws.amazon.com/ses/
16https://www.docker.com
17https://skaffold.dev
18https://docs.docker.com/compose/

https://aws.amazon.com/ses/
https://www.docker.com
https://skaffold.dev
https://docs.docker.com/compose/
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start the Django development server (executed in the src directory), and the React development server
(executed in the frontend directory), are displayed in Listing 3.5. After running these commands, each
development server will print their localhost url which can be visited to inspect the current version of
the application.

Listing 3.5: Commands to start the development services
1 ./$ docker compose up
2 ./src$ python manage.py runserver
3 ./frontend$ npm run start

Building the Docker Image
The application uses Docker to build a stable deployment environment. By using Docker, issues such
as “works on my machine”, and other nasty environment issues can be mitigated. Docker is similar to
running software on a virtual machine, but Docker instead runs directly on the host OS by translating
CPU instructions, and having a small mini-OS on the host’s machine. Such an OS can be Ubuntu,
Debian, or based on an Alpine distro. This is essentially the first layer in the Docker Image: its base.
Any additional layers, are steps to convert this base layer into the desired deployment environment.
This can be done through bash commands, installing additional packaged into this OS (it behaves
almost exactly like a similar OS installed on the host machine), or executing docker specific commands
to move files during the image building step from the host onto the image. After the image is built, this
image can be published to a specific kind of blob storage, called a docker registry. This registry takes
in built docker images, and allows other users to download these pre-built applications. They usually
have some form of authentication such that it is limited who has access to these files.

For the IALLMs application, a multi-stage dockerfile is used. This means that we start from multiple
base images, but later apply a set of merge rules to end up with a single docker image (and inheriting
only from one base image). The first base image that’s used is node:20. This image comes with the
latest LTS node version 20 preinstalled. Similar to how we extend upon a base image, the node:20
image builts on top of the Debian OS. This node image is used for building the frontend directory, by
letting the React and TypeScript compilers compile the TSX into plain HTML, CSS and JS files. The
other base image, python:3.11 contains a fresh install of Python 3.11, and is built on top of the same
OS, Debian. In this image, we set the correct linux user permissions and transfer the backend’s source
code files onto the image. In addition to the backend’s source code files, the compiled files from the
other base image are copied onto this image, such that the backend is able to serve these static files.
Finally, the final layer in the Dockerfile tells docker how to start the application when ran. This is done
through the CMD dockerfile command. The command specified here runs the Python application in the
Asynchronous Server Gateway Interface (ASGI) mode. The benefit of using ASGI over the Web Server
Gateway Interface (WSGI) is that Python can better handle asynchronous code. Running Python on
WSGI means that every web request is run synchronously using web workers. Whenever an IO request
is done on the backend, such as a database request because we need to store the users, or a reuqets
is made to the Grazie LLM Cluster, the response would be awaited on the same thread executing
requests. This is quite wasteful: when Python is waiting, we’d rather spend that CPU time on handling
another request. Fortunately ASGI shines on this aspect: all requests are handled asynchronously and
multiple requests can be handled at the same time by a single web worker. The ASGI implementation
that is used for serving the Django application is Daphne, an ASGI web server made by the Django
team themselves.19

Deploying on Kubernetes with Skaffold
The deployment of the application is done using Kubernetes (k8s). The first part in making the app
ready for a Kubernetes environment is containerizing the application, which was done using Docker.
For deploying the actual application on a Kubernetes cluster, Skaffold is used. This CLI tool applies
kubernetes files onto a cluster, and takes away some of the boilerplate when dealing with building,
pushing and deploying the docker image onto the cluster. In the Continuous Integration (CD) environ-
ment, skaffold takes care of building the docker image and publishing it to an internal docker registry.
The is configured in the skaffold.yaml file located in the root of the IALLMs backend. This file specifies

19https://github.com/django/daphne

https://github.com/django/daphne
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Figure 3.3: Overview of the backend’s deployment on the JetBrains Kubernetes cluster.

the deployment artifact (the built docker image in the registry), build arguments for building the docker
image, and hooks that can be executed on the host machine that’s building the docker image before or
after the image has been built. This is handy to communicate variables to the next step after building
and publishing: running the fresh set of database migrations. For that, a simple bash script has been
created, migration.sh, which applies the k8s/migration.yaml file onto the cluster, and waits for it to com-
plete successfully. In case it errors, the deployment fails, and this is immediately recognized by the
CI environment, and thus the pipeline will fail. The developer can then fix the Continuous Deployment
(CD) by pushing a fixing commit, such that the CI/CD environment can pick this up and restart with a
new deployment. Fortunately, this failing deployment doesn’t affect the currently running application,
as applications are only rotated when a new deployment is successful.

The skaffold.yaml file also references the Kubernetes files for the app image: k8s/app.yaml. This file
contains the Kubernetes Service, Deployment, and Ingress objects for the application. Environment
variables are referenced in the Deployment object from k8s Secret objects, such that they can be used
in the application. The Service object exposes the ports from the Deployment, such that they become
available for an Ingress. The Ingress object then exposes this port to the public network, using a regular
hostname, and can take care of TLS and SSL certificates. The application is currently deployed on the
JetBrains Kubernetes cluster, under the hostname https://iallms.labs.jb.gg.

An overview of the deployment can be seen in Figure 3.3. The app has been configured with 3 pod
replicas, such that requests can be balanced over these three instances. Each pod is assigned a single
CPU, with 2 GBs of RAM. Bursts may allow these resource requests to exceed with a limit of 1.5 CPU
units, and 3 GBs of RAM.

3.2. JetBrains Plugin
Now that the backend is set into place, the actual plugin can communicate with it to retrieve data. The
plugin is made in Kotlin, using the latest available JetBrains IDE Plugin SDK. The latest features have
been used to create a gray text code completion, as well as a novel way of presenting gray text code
completions. Furthermore, the plugin is set up for A/B user testing, by limiting certain features only to a
particular group. The plugin implements a number of features: LLM Chat, LLM Code completions, chat
templates, a quick extract code into a new chat action. In the following sections, the architecture design
of the plugin will be explained, as well as the other implemented features. The code completion feature,
as well as the novel gray-text code completion feature, will be explained in more detail in chapter 4.

https://iallms.labs.jb.gg
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Figure 3.4: The file structure of the IALLMs plugin

3.2.1. Architecture Design
The main plugin tries to closely follow the standards defined from the starting template20 JetBrains
provides for plugins which target the JetBrains IDEs. The template is written in Kotlin, a JVM lan-
guage similar to Java and Scala, but with a combined Functional Programming (FP) syntax and Object
Oriented Programming (OOP) concepts.21 Kotlin is a great language to build fast and readable appli-
cations in, as compared to Java it has less boilerplate in its syntax. The plugin has also been split into
logical components, such that it becomes clear where to locate each specific feature, and to extend
the plugin in case other features are needed. This structure has been displayed in Figure 3.4.

The initial starting point of the application is in theMETA-INF/plugin.xml file. This file defines the libraries
from the JetBrains Plugin SDK that are required in the plugin, as well as the extension points, event
listeners, and actions. This metadata file is used by the JetBrains IDE when loading the plugin to
register these actions, event listeners and detect compatibility. The libraries that IALLMs depend on
are the common Plugin SDK platform, and the markdown plugin for rendering the LLM chat messages.

20https://github.com/JetBrains/intellij-platform-plugin-template
21https://kotlinlang.org

https://github.com/JetBrains/intellij-platform-plugin-template
https://kotlinlang.org
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(a)

(b)

Figure 3.5: (a) The balloon error style, displayed on the bottom right of the IDE. (b) The toolwindow style error, displayed as a
popover balloon on the IALLMs toolwindow.

Since the backend employs the OpenAPI specification, a generator can be used for generating a full
blown Kotlin API client for this particular API. Data classes for each REST resource are generated,
as well as methods to make a request to these endpoints using Kotlin methods. Data has the correct
Kotlin types, and are automatically serialized to the format the API expects. The generated files are then
committed into the same repository, and are located under the generated-api folder. The generator
is called OpenAPI Generator, and is a CLI utility that will create these Kotlin classes.22 The command
that’s used to generate these is displayed in Listing 3.6. This command can be executed from the root
project, while the backend development server is running.

Listing 3.6: Command to generate the Kotlin API Client from the OpenAPI specification
1 $ openapi -generator generate \
2 -i http://localhost:8000/openapi \
3 -g kotlin \
4 -o generated -api \
5 --package -name com.github.aisetudelft.iallms.grazie

In addition to the automatically generated API interfaces, a nice and easy abstraction on top of SSE
has been built to support custom deserializers per event/data type. Error logging has been added
everywhere, this is especially important in visual applications as it might not always be clear to the user
what’s currently happening. Errors can be communicated through the notification balloons, or through
a tool window notification. These types can be seen in Figure 3.5.

When working with the IDE Plugin SDK (or any software which uses the Swing or JavaFX libraries), it
is important to know the difference between the main thread and the asynchronous IO threads. The
purpose of the main thread is to be the only thread handling visual changes, such as displaying new
windows, elements, tabs, lists, texts, etc. This thread should be kept from performing operations which
are IO-bound, such as network requests, or interacting with the filesystem. Performing complex oper-
ations on this thread will cause the UI to freeze, and not respond to user input anymore, resulting in a
laggy application. Therefore, any complex operation should be performed on an asynchronous thread,
which when completed, will schedule the UI-change onto the synchronous UI thread. In the plugin’s
code, all network requests are done asynchronously, to not block the main thread. JetBrains even has
a helpful warning when it detects particular plugins take a long time on the main thread, and will print
the stacktrace of the currently being execute code to easily fix this.

3.2.2. Plugin Features
The main plugin features are the chat functionality and the code completions. The code completions
are presented in the same fashion as in Figure 2.2. For the chat functionality, a custom toolwindow is
made to facilitate this. There are two main views in the chat feature: the chats overview page, and the
chat detail page. These two views can be seen in Figure 3.6.

There are two ways currently to initiate a chat, either by pressing the (+) button on top of the chats
overview tab to create a fresh, blank chat, or by selecting a piece of code in the editor and using the

22https://openapi-generator.tech

https://openapi-generator.tech
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(a) (b)

Figure 3.6: (a) The chats overview tool window tab. (b) The chat detail page tab.

Figure 3.7: The floating context bar that appears when selecting code in the IDE.

quick action on the floating bar that appears to extract that code piece into a new chat. The floating
context bar that appears is shown in Figure 3.7.

Chats are initiated using templates, configured in the settings of the plugin. This is also the place to add
the credentials received by email from the website after signing up. Templates contain variables, which
are replaced at the time of the creation of the chat, using the context. For example, the extract code
action has access to the {language} and {selectedCode}, which is not a variable that can be used in
the default template. All available variables to a template can easily be retrieved by hovering over the
(i) icon in the settings. The settings page is displayed in Figure 3.8, and the popover that displays the
list of available variables is displayed in Figure 3.9.

The codebase has been made in a very extendable way for templates, by having a sealed class of the
possible templates. Each template extends interfaces that define their context, and whenever a chat is
created using a specific context, a new anonymous class is instantiated of the abstract template class.
The interfaces are then implemented using this code context. An example implementation of such a
template is shown in Listing 3.7, and the definition of the template is shown in Listing 3.8.

Listing 3.7: Instantiating an extract code action template.
1 val template = object : ExtractCodeActionTemplate() {
2 override fun getProjectName(): String = project.name
3 override fun getSelectedCode(): String = selectedCode
4 override fun getPsiFileName(): String = psiFile.name
5 override fun getPsiFileType(): String = psiFile.fileType.name
6 }

Listing 3.8: Instantiating an extract code action template.
1 sealed interface Context
2 interface DefaultContext : Context {
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Figure 3.8: The settings page of the IALLMs plugin.

Figure 3.9: The available context variables for the extract code action.
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3 fun getProjectName(): String
4 }
5 interface PsiFileContext : Context {
6 fun getPsiFileName(): String
7 fun getPsiFileType(): String
8 }
9 interface SelectedCode : Context {

10 fun getSelectedCode(): String
11 }
12

13 sealed class Template : DefaultContext {
14 fun getRawTemplateText(): String = ...
15 fun getPlaceholders(): List<Pair<PlaceholderKey , String>> = ...
16 }
17 ...
18 abstract class ExtractCodeActionTemplate : Template(), SelectedCode , PsiFileContext

Many reusable components have also been created for modifying the chat panel, as well as the settings
page. An abstraction has been made over the settings page, such that state management should be
a breeze. JetBrains settings have a “reset” button, to revert to the previously configured state, and a
“confirm” button to save the current settings in the view to a persistent storage. Both of these features
have been implemented by wrapping fields into a FieldState object. Since all the settings can be
configured with two types of components, implementations have been made for PasswordFieldState
and TextComponentState. Adding in any additional fields should be very similar to these two field
states.

Each chat message that’s generated from the LLM API is presented in realtime. Each time a new
SSE chunk is received, the chat message is rerendered using a markdown parser. This is very user-
friendly, as the user immediately receives an acknowledgement their action has done something, and
they’re not waiting for the backend to do all of the work, and return the response at once. After a chat
message is generated from the LLM API, the user can be asked to rate the chat message. This is done
by showing three emojis in the chat window, immediately under the assistant’s response. This data
collection metric should be very minimally invasive, since it can be completed by simply clicking on an
emoji without any further interaction.

Code completions are displayed using the novel gray-text code completion API introduced in the 2024
update of the JetBrains IDEs. The gray-text elements are neatly integrated with the IDE, and multiple
providers may suggest completions at the same time. When a provider chooses to provide a code
completion for a certain code point, the gray text element is rendered into view. Since these requests
for a code completion is triggered quite often by the IDE (almost on every keystroke), developers should
filter out requests that are deemed unlikely to be accepted by the developer. This can be done by using
a local model that can be inferenced using contextual data whether or not a code completion would be
useful at this point, or by using simple heuristics. In the current state of the plugin, a simple heuristic
was chosen. If a subsequent code completion request is triggered in a time window of 250 milliseconds,
the previous request would be skipped.

Code completions allow for the collection of data about each completion, in order to calculate metrics
after the fact. When a completion is generated, the left and right context are both sent to the backend.
The left context is essentially everything before the to be infilled code completion, and the right context
is everything that comes after. Both of these contexts are stored, as well as the generated completion.
Furthermore, when a completion was accepted by the developer, the line where the completion was
inserted is tracked for three intervals. After 10 seconds. 30 seconds, and 1 minute, the same line
offsetted from where the completion was requested from is sent to the backend. This allows for calcu-
lating metrics that show the change of the completion over time, and whether the accepted completion
actually ended up in the codebase, and wasn’t immediately deleted after a wrongful insertion.

3.2.3. Plugin build tools and CI/CD
For local development, an IDE run configuration is present in the codebase, .run/Run Plugin.run.xml.
This spawns a local instance of a JetBrains IDE which is preinstalled with the IALLMs Plugin. In the
XML configuration, the backend can be configured using env variables. By default, the local instance
is set to the default port of a locally ran IALLMs backend, on port 8000. This can be changed to for
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example the production instance, for debugging against the production backend.

The project is built using the Gradle Build Tool.23 A possible alternative build tool is Maven, but Gradle
is beneficial over Maven since it can use Kotlin as the Data Syntax Language (DSL) to define the build
steps in. The gradle build file (gradle.build.kts) defines all the build tasks, the JVM version to compile to,
and information for the Gradle IntelliJ Plugin to build, package and sign the codebase for publishing on
the JetBrains marketplace. The plugin is currently shown as unlisted on the JetBrains marketplace, as
we really want to let users signup through our website, before installing the plugin and being confused
what to do. The plugin can be found at https://plugins.jetbrains.com/plugin/24439-iallms.

For each commit, a github actions task is summoned to check whether the current plugin can be pub-
lished or not. It checks against all JetBrains targets the plugin is configured to be compatible with, and
checks whether all the APIs exists it uses in the codebase. If all checks succeed, a draft release is cre-
ated on GitHub that shows the changes compared to the latest released version. When a new version
should be published, this draft release can simply be promoted to a published status, and a new github
actions job is spawned. This task then builds, signs, and publishes the plugin using Gradle onto the
JetBrains marketplace. For this, environment variables are replaced in the source code with produc-
tion values configurd in GitHub Actions variables, such as the production IALLMs backend url.24 This
ensures no variables are hardcoded in the codebase, and can easily be swapped in the repositories
settings if it needs to change.

23https://gradle.org
24https://docs.github.com/en/actions/learn-github-actions/variables

https://plugins.jetbrains.com/plugin/24439-iallms
https://gradle.org
https://docs.github.com/en/actions/learn-github-actions/variables


4
A User Study on a Novel Gray-Text

Code Completion Style

Two types of gray-text code completion have been implemented. One is the “regular” code completion
style as displayed in Figure 2.2. The other is a novel gray-text approach, where the suggestions by
the statical analysis from the IDE are used as prefixes to the LLM. For example, if the line contained
val cat = C, the IDE would suggest some possible objects / classes to use starting with the letter C.
The original gray text completion would not take into account these options selected by the Developer,
and thus the LLM might be missing out on better completions.

The novel gray-text code completion will detect which item the user is currently selecting (the developer
can navigate between the options presented by the IDE using their arrow keys). This currently selected
piece is then suffixes to the left context of the code completion context, which the model can then use
as additional context to provide a better completion. This feature is shown in Figure 4.1. On the top
of the dropdown, a row with “AI Original completion” can be seen. This row is initially selected from
the dropdown, when it appears, and contains the original suggested gray text completion from the LLM
API. The developer is then always able to navigate back to the original completion given by the model,
whenever they want to insert this completion instead of the novel gray text completion.

The following sections will explain the chosen research questions, and the setup of the user study at
the JetBrains Open Source Software (OSS) department. The models used, experimental setup and
survey questions will be discussed as well as the results of this small-scale user study.

Figure 4.1: The novel gray text completion, using the dropdown completions from the IDE.
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4.1. Research Questions
The research questions are focused on the interactivity and alignability of the code completion system
with the IDE. Having an interactive and aligned system means its well usable, and having correct and
better completions means the system is useful as well. Therefore, the following research questions
were chosen: RQ1: How useful is the code completion function?, and RQ2: How usable is the code
completion function?. These questions will be answered through a combination of automated metrics
as well as a survey.

4.1.1. RQ1: How useful is the novel code completion function?
This research question focuses on the data that’s automatically collected by the plugin. The data that is
collected can be used to collect metrics how useful the code completions actually are. The metrics that
will be used are Exact Match (EM) and the Levenshtein Edit Similarity (ES). There are three timestamps
where metrics can be calculated. These are the datapoints of the tracked line after 10 seconds, 30
seconds, and 1 minute.

In addition to the automatedmetrics, seven questions are present in the questionnaire to also gauge the
usefulness of the completions, as perceived by the developers themselves. There are seven questions:

1. I am satisfied with the speed of code completions provided by the system.
2. The system’s overall performance met my expectations.
3. The code completion suggestions helped me write code more quickly than I would have otherwise.
4. The suggestions provided by the code completion system were relevant to my coding tasks.
5. The code suggestions were accurate enough that I could use them without significant modifica-

tions.
6. I would recommend this code completion system to other developers.
7. I would prefer to continue using this system for future coding projects.

These questions are based on the specific code completion plugin that is created, and ask about the
performance, accuracy, and whether this system is useful for future projects.

4.1.2. RQ2: How usable is the novel code completion function?
This question aims to answer the nuanced aspects of the plugin which might be hard to answer through
automated metrics. For example, how easy was the system to use? A system could be hard to use but
still give good metric results, therefore it is of essence to gauge these observations through a survey.
To answer this research question, the System Usability Scale was chosen as the choice of questions
for the survey [4].

The questions are as follows:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

These questions aim to answer the effectiveness of the solution, the efficiency of the user when using
the plugin, and the satisfactory level of the user when using it. They are answered based on a Likert
scale, to be rated from “Strongly Disagree” (1 points) to “Strongly Agree” (5 points). In the end, the
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SUS = 2.5×

20 +
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Xj


Figure 4.2: The formula for calculating the System Usability Scale Score.

X =
4

5
× Si + 1

Figure 4.3: A linear equation to map scores 0-5 evenly onto scores of 1-5.

SUS-score can be calculated for a given set of answers to all these questions. This score is in the
range of 0-100, and can be calculated using formula shown in Figure 4.2.

The variables Xi and Xj are the scores for the odd and even question numbers respectively. In our
case, we formulated the questions on a scale of 0-5, resulting in a 6-point scaling system. However,
the SUS score requires values to be in a range from 1-5, so to transform 0-5 into 1-5 the linear equation
in Figure 4.3 is used to map the values.

In addition to the SUS score, three open ended questions have been included in the questionnaire that
ask the developer about even more nuanced details of their experience. They are able to share their
experiences, and suggest some feedback if they have any. The following three questions are present:

1. What did you like about the system, what potential value does it bring for you as a user?
2. What challenges, if any, did you encounter while using the code completion system? How did

you address these challenges?
3. What improvements or additional features would you suggest for this code completion system?

Together with the SUS questions, this should provide an accurate insight into whether the code com-
pletion system was experienced usable or not.

4.2. User Study at JetBrains OSS
The research questions are tested in an A/B user study, where one group (A) will get the “normal”
gray-text code completion without alignment with the statical analysis of the IDE (as control), and the
other group (B) will have the novel code completion style. The user study was internally performed
at JetBrains, via a select amount of users working on opensource projects within the company to not
expose and collect company code under a Non-Disclosure Agreement (NDA).

The code completion model used in the backend is a model trained by JetBrains, called
code-one-line-complete:jet-all-default. This is a code completion model capable of using both
the left and right context of the user’s opened document. Furthermore, it is capable of generating code
completions for a wide variety of languages, such as Python, Kotlin, Java, and JavaScript. For the chat
feature, OpenAI’s GPT-4 was used.

The users were recruited through Slack, the company’s communication tool for coworkers. They were
asked to go to the IALLMs website, signup, and install the plugin through the unlisted JetBrains market-
place link. After installing, the credentials should be entered into the plugin’s settings, and we instructed
the employees to code “as usual”, while exploring the plugin’s code completions. They could also make
use of the chat functionality, and see if it helps them with programming as well. The main focus was
on the code completion feature: in total there were 20 users who signed up for the study, but only 10
actually installed the plugin and were participating in the user study.

Assigning a user to a group was done using a simple modulo operation on the automatically generated
autoincrement id from the database. Of the 10 users that were left over, 3 were in the control (A) group,
and 7 were in the feature group (B). Both groups participated in a similar amount of completions in the
end. After filtering, the groups had 5 647 and 6203 triggers, respectfully.

Filtering on the completions was done since it was noted that completions take longer than usual to
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Table 4.1: Results over time for the EM and ES metrics, after 10 seconds (10S), 30 seconds (30S), and 1 minute (1M).

User Group Metric 10S 30S 1M

A (control) EM 41.67 39.76 32.10
ES 78.24 75.32 70.77

B EM 72.24 63.19 58.03
ES 90.23 86.59 84.38

Table 4.2: Results of all the completions for each group.

User Group Accepted Total Ratio
A (control) 86 5 647 1.52%
B 614 6203 9.90%

appear on the client. Completions are triggered too often, and often result in the completion being
skipped before it was even presented to the user. Therefore, a filtering technique based on code
completion sessions was implemented. A single code completion session should either result in a
completion being shown, but implicitly rejected by continueing typing, or accepted by tab-completing
it. The following definition defines code completion sessions for the set C of all code completions, for
each consecutive pair cx and cy:

1. cx and cy are no further apart than t ms, or
2. cx is within the accepted timestamp of a previous completion (c1...cx−1)

The value chosen for t is 2 000ms, as from empirical testing, it took around 2 seconds before a com-
pletion actually appeared in the IDE when a code completion was triggered. It is important to note that
this technique does not filter away accepted code completions, and only filters away completions which
were implicitly rejected too fast before it could be shown. This reduced the total number of code com-
pletions of both groups combined from 35140 code completions to 11 850 code completion sessions.

4.2.1. RQ1 Results
The results to the first research question are displayed in Table 4.1. In table Table 4.2 the results for
both groups’ total amount of accepted completions can be seen. In Figure A.3 and Figure A.4, graphs
for the SAU questions for both user groups combined can be seen.

The data displays a strong increase in accuracy as well as edit similarity over time for the novel code
completions. This can further be explained by the fact that part of the context is better: by using the
statical analysis of the IDE, the model can better predict what the user actually wants. Since the user
already showed intent of using a particular IDE dropdown completion, they are more likely to accept a
code completion which uses this extra context.

The results of the total number of accepted completions for user group A are quite low. This could be
explained by the fact that completions take quite a while to appear, and the user might not like that when
they’re in the acceleration phase of programming, contrary to group B who are more in the exploration
phase, as they are exploring the options presented by the IDE at the same time. The overhead of
having a completion take a little bit longer might then be accepted. This can also be seen by the results
of the first and third SAU question, there are two peaks, one user group found it too slow and slowed
them down, and the other found it okay, and wrote code quicker for them. The interesting result here is
that the users in group B actually found the code completions too slow, while the users in group A were
quite happy with the code completion speed. This is contrary to what is expected, but is consistent for
group B. They actually found that it slowed them down, while it sped things up for group A. Both groups
did however think the results were accurate, when accepted.
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Table 4.3: Results per SUS question for each group.

Question User Group Score

SUS1 A 4.5
B 2.25

SUS2 A 0
B 1

SUS3 A 5
B 2

SUS4 A 0
B 0

SUS5 A 3.5
B 2

SUS6 A 1
B 1.5

SUS7 A 5
B 4.25

SUS8 A 0
B 1.75

SUS9 A 3.5
B 3

SUS10 A 0
B 0.25

Table 4.4: The SUS Scores for each user group

User Group Score
A 93.5
B 70.5

4.2.2. RQ2 Results
The results for the SUS scores per user group are displayed in Table 4.3. It can be seen that the
positive questions (higher score is better), which are represented by odd numbers, are consistently
higher in user group A. Similarly, for the negative questions (lower score is better), represented by
even numbers, are slightly lower in user group A. In Figure A.1 and Figure A.2, graphs for the SUS
questions for both user groups combined can be seen. In the end, of the 10 users that ended up using
the plugin, 6 participated in the survey.

The results for the SUS-score, calculated using the formula in Figure 4.2, in combination with the linear
transformation in Figure 4.3, are displayed in Table 4.4. This can be explained by the fact that this
system is quite new, and the usability of this system needs to become more battle tested.

In the open questions it was noted that the completions did take a while, longer than expected, to appear.
But, especially for group B, the accuracy was noted. Furthermore, a common requested feature is the
deduplication of parenthesis and closing brackets when an inline completion is accepted.



5
Challenges

There were quite some challenges when making the plugin and backend. Making a reusable plugin
for testing interactivity and alignability was a good project on itself, but in the thesis we also wanted to
perform an experiment with the plugin. This took a bit longer to figure out, since we needed a good
small scale user study where we could use the plugin in the deployment. Fortunately, in the final 2.5
months of the thesis, S. Titov came with the excellent idea to perform an experiment on a novel way of
generating code completions.

Another challenge was moving from the staging Grazie LLM cluster to the production version. The
documentation unfortunately isn’t particularly present for this internal service, which caused an issue
as a staging model wasn’t available on the production cluster. The staging cluster was using an older
version of the code completion inference API as well, so that had to be switched to the novel “Task
API”, when moving to the production cluster. Luckily, the JetBrains team was very helpful in provid-
ing alternative models, and we even ended up using a model which was trained from scratch by the
JetBrains team. This also provided a new benefit: whereas the model we intended to use, CodeLLama-
7B, only supported the left context, the JetBrains model code-one-line-complete:jet-all-default
supports both the left and right context. This results in a better accuracy, as the model has more quality
surrounding context.

In the early phases of the plugin, figuring out which code completion API to use was quite cumbersome.
Documentation was lacking a bit on this side as well, and since this API was very experimental in
previous IDE versions (all 2023 versions), we had to limit compatibility to the recent JetBrains IDE to
use the latest available version of the gray-text code completion. The earlier versions of the API should
be supported by later versions of the IDEs, but when testing the plugin manually a few issues were
present that led us to bumping the minimum supported version to the latest IDE release.

For the chat feature, it was quite a challenge to get the live-rendering of the assistant’s response
working. The markdown parsers convert markdown into HTML, and displaying this HTML in the IDE
had some issues with setting the proper height for the container that contained the HTML element. This
was eventually fixed by creating a workaround by patching the markdown parser. Another JetBrains
coworker had the exact same issue, and we gave them the same workaround we used, which helped
them as well.
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6
Conclusion

In conclusion, the task of creating a plugin and backend has been successful.

The backend has been written using a logical structure, using common, battle-tested languages and
frameworks. Python was used since its the most popular programming language, and it can easily be
used with LLM providers such as HuggingFace. The signup page was made using React, TypeScript
and Mantine, to create a maintainable and extendable signup website. The database models are not
fixed in Postgres, migrations can easily be made and executed in the codebase. Server Sent Events
has been implemented for the Grazie LLM Service, as well as an easy-to-use emailing service using
Amazon SES. The application has also been deployed using a qualitative enterprise deployment using
Kubernetes. CI/CD has been setup to automatically roll out new deployments with Skaffold, while
handling Django database migrations and containerizing the application properly using Docker.

The plugin is written with a similar logical structure, while integrating neatly with the backend. OpenAPI
generators have been used for automatically generating a Kotlin API client, which simplified using the
backend API. The plugin also features two major features: a chat toolwindow as well as code comple-
tions. Two versions of code completion are present, the “regular” gray-text code completions, and a
novel approach. Templates have been implemented for the chats as well, and can be easily extended
upon. Chat messages can be rated, and this data is collected in the backend. Code completions
are tracked after 10s, 30s, and 1 minute, which allows for a nice way of tracking the ground truth of
code completions over time. The plugin uses Gradle as build tool, which builds, verifies, signs, and
publishes the plugin to the JetBrains marketplace. GitHub Actions was used as CI/CD for creating
automatic deployments.

In the user-study, interesting results were presented. Although the accuracy and edit similarity was
higher from the calculated metrics for group B, and thus had a higher usefulness score than the gray-
text code completions, the users found the system less usable according to the SUS score. This could
be explained by the fact that the system is novel, and/or might need some getting used to.
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7
Future Work

The main contribution of this thesis are the reusable plugin, the backend, and the work done on a novel
gray-text code completion. Future work could reuse the plugin for other user studies that might involve
Chat LLMs and Code completions. The work has been made in an extendable and maintainable style,
so adding in features and modifying the codebase should be attractive for future studies.

Furthermore, future work could work on making adapters into HuggingFace directly, which can be
done because the backend’s code is made in Python. HuggingFace could allow for thousands of other
models to be tested in the plugin, and could allow for a medium to test models trained by researchers
out in the wild using the plugin. Most LLMs, when trained, aren’t directly tested in the real world, and
would only be run against benchmarks and the test dataset. Including a small real-world experiment
as part of a new model’s release could be interesting to include.

Another feature that future work could focus on is the implementation of a local filtering model on the
plugin’s side. In the current iteration, we employed a simple heuristic to ignore keystrokes happen-
ing within 250ms, but this still posed some challenges when we got the actual metrics. Hence, by
implementing a local filtering model, the session filtering would need to filter less obsolete completion
requests. Furthermore, both approaches could be tested against each other, to see the different sets
of filtered out completions by the session filtering versus a local filtering model.

Future work could also improve upon the distribution of the A/B-user study user distribution, as it was
noted during the study a lot of people sign up, but never actually install the plugin. This could mess with
the sizes of the groups, they should preferably roughly equal. Although this might be resolved already
by just having more users join the user study, it could also be prevented by only assigning users to a
group when they actually install the plugin. Logic could be ran in the backend on the first API request
made by a user, and then assign them to a user group immediately.

Finally, future work could investigate the usage of this novel gray text completion evenmore by including
a larger population of test users in the wild, from differing companies and backgrounds. The next
iteration of the plugin should likely also investigate into using a faster code completion model, as it was
noted during this user study this was a let down of the plugin.
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8
Related Works

The integration of Large Language Models (LLMs) into software development workflows, particularly in
the context of code generation and assistance, has seen a significant evolution over recent years. This
evolution is marked by the development of tools that not only generate code but also interact with de-
velopers in an increasingly sophisticated manner. This work aims to further this evolution by exploring
the usability and effectiveness of code completion and chat-based LLMs directly within Integrated De-
velopment Environments (IDEs). To contextualize this study, a review was done on related works that
have laid the groundwork in understanding the interaction between developers and AI programming
assistants, the challenges faced, and the opportunities for improvement.

Liang et al. [7] conducted a large-scale survey on the usability of AI programming assistants, uncov-
ering both successes and challenges. They identified issues such as the generated code not meeting
developers’ intentions (categorized with the code S22), developers giving up on incorporating code (S2),
and the cognitive load imposed by balancing interaction modes with user tasks. Their findings suggest
the need for improved developer-tool alignment and the incorporation of non-functional requirements
like readability and performance into code generation.

Sarsa et al. [13] highlighted the potential of LLMs in generating tailored programming exercises and ex-
planations, suggesting further investigation into their capability to handle more complex and advanced
computing concepts. This aligns with our focus on enhancing the usability of LLMs through features
like customizable prompt templates and automatic code insertion.

The study by Rodriguez-Cardenas et al. [11] emphasizes the importance of benchmarking LLMs for
source code interpretation, suggesting future research to identify unmeasured confounders that could
affect LLM predictions.

Yetiştiren et al. [15] evaluated the code quality generated by various AI-assisted tools, identifying
common errors such as the use of functions from unimported libraries and syntax errors. The former
this project aims to investigate as well by utilizing a novel OpenAI API.

Vaithilingam et al. [14] and MacNeil et al. [8] both stress the need for better ways to understand,
edit, and validate generated code, with MacNeil et al. particularly noting the significance of prompt
engineering and the benefits of line-by-line explanations. They also found that few-shot learning might
not be particularly helpful for generating helpful explanations and that the model tends to overfit on the
structure of the response.

Studies also explored a dual role of GitHub Copilot as both an asset and a potential liability, depend-
ing on the user’s expertise level, suggesting that expert developers tend to get more use out of LLM
developer tools, while novice developers tend to get confused [6, 12]. Barke et al. [3] recommended
giving developers more control over input to code-generating models, which could reduce confusion
for novice developers.

Another study confirmed this finding by evaluating students using Copilot [10], and observed two ad-
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ditional phases in addition to the acceleration and exploration phase: shepherding and drifting. The
former explains students mindlessly trying to get a completion from copilot, and the latter students hes-
itantly accepting the output but later on ended up deleting that part of the code. Aligning the LLM with
a chat functionality in addition to regularly styled code completions can mitigate both of these issues.

Finally, Chaves and Gerosa [5] investigated the social characteristics in human-chatbot interaction,
identifying the management of user expectations as a critical factor. In this work, we aim to address
this issue by having clearly defined features that give the developer control over the input of the prompt.

These studies collectively underscore the complex interplay between developers and AI-assisted tools,
highlighting the need for continued exploration into how these tools can be designed to better meet
developers’ needs, reduce cognitive load, and improve code quality. This study builds on this founda-
tion, aiming to address some of the identified gaps through a user evaluation of customized, interactive
LLMs within easily accessible IDE settings.
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A
Survey Results

In this appendix the raw results from the user study are shown. Figure A.1 displays the questionnaire
responses for the ten System Usability Scale questions, and Figure A.3 show the answers for the
Specific Aspects of Usefulness survey questions.
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Figure A.1: The results of the user study on the System Usability Scale (SUS) questions 1-5. Group A is presented on the left,
and group B on the right.
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Figure A.2: The results of the user study on the System Usability Scale (SUS) questions 6-10. Group A is presented on the
left, and group B on the right.
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Figure A.3: The results of the user study on the Specific Aspects of Usefulness questions 1-5. Group A is presented on the
left, and group B on the right.
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Figure A.4: The results of the user study on the Specific Aspects of Usefulness questions 6 and 7. Group A is presented on
the left, and group B on the right.


	Preface
	Summary
	Nomenclature
	Introduction
	Background
	Large Language Model Plugins
	Code Completion Plugins
	Chat Plugins

	User Studies on LLM Plugins
	A Previous Experiment: Code4Me

	Creating a Reusable LLM Plugin and Backend
	Plugin Backend
	Language and Framework
	Database Models
	Architecture Design
	Development & Deployment Environment and CI/CD

	JetBrains Plugin
	Architecture Design
	Plugin Features
	Plugin build tools and CI/CD


	A User Study on a Novel Gray-Text Code Completion Style
	Research Questions
	RQ1: How useful is the novel code completion function?
	RQ2: How usable is the novel code completion function?

	User Study at JetBrains OSS
	RQ1 Results
	RQ2 Results


	Challenges
	Conclusion
	Future Work
	Related Works
	References
	Survey Results

