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Redatuming of 2-D Wavefields Measured on an
Arbitrary-Shaped Closed Aperture

Ulas Taskin, Joost van der Neut, Hartmut Gemmeke, and Koen W. A. van Dongen

Abstract—Whole breast ultrasound scanning systems are used
to screen a women’s breast for suspicious lesions. Typically,
the transducers are located at fixed positions at relatively large
distances from the breast to avoid any contact with the breast.
Unfortunately, these large distances give rise to large spatial
domains to be imaged. These large domains hamper the appli-
cability of imaging by inversion. To reduce the size of the spatial
computational domain, we present a two-dimensional redatuming
method based on Hankel decomposition of the measured field.
With this method, the field measured over an arbitrary-shaped
closed curve can be redatumed to a new curve enclosing a smaller
spatial domain. Additional advantages of the proposed method
are that it allows to account for the finite size and orientation of
a transducer and that it is robust to noise. The proposed method
is successfully validated using synthetic and measured data and
the results show that the recorded field can be redatumed to any
position in the embedding.

Index Terms—redatuming, full-wave inversion, 2-D breast
ultrasound.

I. INTRODUCTION

ULTRASOUND is gaining interest as a modality for breast
cancer detection. It has the advantage over conventional

x-ray mammography that it has the capability to detect tu-
mours in dense breasts and that it is a patient-friendly and
safe imaging modality [1], [2]. Recent work on whole breast
ultrasound focuses on water bath scanning systems [3], [4],
[5]. As compared to hand-held systems, water bath scanning
systems have the advantage that they are operator independent
and need less scanning time. In addition, they provide trans-
mission measurements together with reflection measurements
by scanning the breast from all sides.

Recently, full-wave inversion methods are gaining attention
as they have the potential to characterize the different tissues
accurately using the reconstructed medium parameters [6], [7],
[8]. These methods work especially well in case both reflection
and through transmission measurements are available. How-
ever, full-wave inversion poses some challenges when applied
in practice. First, full-wave inversion is computationally ex-
pensive. Several attempts have been made to overcome this
problem, varying from source encoding [9] to the application
of special accelerating and memory techniques [10].

To address the computational costs of full-wave inversion in
geophysics, a method referred to as redatuming is commonly
used [11], [12], [13], [14]. With this method the wave field
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is back-propagated from the plane where the measurements
are made to a plane near the region of interest. In this way,
a reduction of the computational domain and hence costs is
achieved. The main approach in seismic is to redatum the
measurement from one planar domain to another by using the
Rayleigh II integral [15]. Since the measurement geometry is
typically not planar for whole breast ultrasound, an alternative
approach is needed. A continuation method is used for a simi-
lar problem faced with electromagnetic inversion for arbitrary
surfaces [16].

In general, to extrapolate fields from a closed surface
to another surface Green’s second identity can be used.
However, that requires the normal derivative of the pressure
field along a closed surface. To overcome this problem the
main approach is to find a Green’s function that vanishes on
the measurement surface [17], [18]. Since it is not easy to
compute the required Green’s function with Dirichlet boundary
conditions, extrapolation from an arbitrary-shaped surface is
not straightforward. Therefore, we use a different approach in
this work. To account for an arbitrary shaped scanning setup,
we propose Hankel function decomposition of the measured
field to redatum the measurements to any location in the
homogeneous background. The Hankel function is among the
possible solutions of the two-dimensional (2-D) wave equation
in cylindrical coordinates [19].

The organization of the paper is as follows. In section II,
we start with a derivation of the theory behind the proposed
redatuming method. Although the theory is derived for lossless
media, it can be derived for a lossy media using the same
approach. Next, we provide a method to account for the finite
size of the receivers. In section III, we validate our method
by showing results obtained with simulated data. In addition,
we present reconstructions from real data before and after
redatuming. In section IV, we discuss some details of the
proposed method. Section V includes our concluding remarks.

II. THEORY

Consider the 2-D scanning geometry depicted in Fig. 1.
Here, the closed curves S and S′ enclose the spatial domain D.
The curves S and S′ are located in the homogeneous lossless
embedding with constant speed of sound c. Contrasts in the
acoustic medium parameters are only present in the spatial
domain D. A position in the spatial domain R2 is denoted in
Cartesian coordinates by the vector (x, y) and in polar coordi-
nates by the vector (r, φ), with (x, y) = (r cos(φ), r sin(φ)).
Note that the origin lies inside S and S′. All formulations are
done in the temporal Fourier domain with angular frequency
ω.
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Fig. 1. Schematic representation of the setup. The source is located outside
the receiver ring S enclosing our domain of interest D. The measured wave
field is redatumed from S to S′.

A. Redatuming towards object of interest

The pressure field p (r, φ, ω) measured in S satisfies the 2-D
Helmholtz equation, which reads in polar coordinates

r2
∂2p (r, φ, ω)

∂r2
+ r

∂p (r, φ, ω)

∂r
+
∂2p (r, φ, ω)

∂φ2

+r2
ω2

c2
p (r, φ, ω) = 0.

(1)

This equation can be solved using the separation of variables
method by separating the pressure field p (r, φ, ω) in a radial
and an angular part, hence

p (r, φ, ω) = Γ (r, ω) Φ (φ) . (2)

Substituting equation (2) into (1) yields separate equations for
Γ (r, ω) and Φ (φ), namely

1

Γ (r, ω)

[
r2
∂2Γ (r, ω)

∂r2
+ r

∂Γ (r, ω)

∂r
+ r2

ω2

c2
Γ (r, ω)

]
= µ2,

(3)

and
1

Φ (φ)

∂2Φ (φ)

∂φ2
= −µ2, (4)

with µ a constant. Equation (4) is a standard second-order
differential equation whose solution equals

Φ (φ) = aeiµφ, (5)

with arbitrary constant a and −π < φ ≤ π. To satisfy the
boundary condition Φ (π) = Φ (−π), µ needs to be an integer.
This requirement limits the possible solutions for Φ(φ) to

Φn (φ) = ane
inφ, (6)

with n ∈ Z. Under this condition equation (3) becomes

r2
∂2Γ (r, ω)

∂r2
+r

∂Γ (r, ω)

∂r
+

(
r2
ω2

c2
− n2

)
Γ (r, ω) = 0. (7)

Equation (7) is known as Bessel’s differential equation and
has as solution

Γn (r, ω) = bn,1(ω)H(1)
n

(ω
c
r
)

+ bn,2(ω)H(2)
n

(ω
c
r
)
, (8)

where the Hankel functions H(1)
n

(
ω
c r
)

and H
(2)
n

(
ω
c r
)

rep-
resent outward and inward propagating cylindrical waves,
respectively. By placing the origin of our coordinate system in-
side S and S′ we know that the scattered field is only described
by outward propagating waves. Consequently, all coefficients
bn,2(ω) are equal to zero. By combining equations (2), (6), (8)
and the condition bn,2(ω) = 0, the solutions of equation (1)
for each n are, up to a constant, equal to

pn (r, φ, ω) = Γn (r, ω) Φn (φ) = H(1)
n

(ω
c
r
)
einφ. (9)

The final solution is obtained by taking a linear combination
of the solutions given in (9), hence

p (r, φ, ω) =

N∑
n=−N

cn(ω)H(1)
n

(ω
c
r
)
einφ. (10)

To find the complex valued coefficients cn(ω) of equa-
tion (10), the pressure field p(r, φ, ω) is matched to the M
measurements dm(ω), where dm(ω) is the field measured by
the mth receiver located on S. Consequently, the unknown co-
efficients cn(ω) are obtained by solving the following system
of equations

N∑
n=−N

cn(ω)H(1)
n

(ω
c
rm

)
einφm = dm (ω) , (11)

for all m. Rewriting equation (11) in matrix-vector notation
gives

H
(1)
−N
(
ω
c r1
)
e−iNφ1 · · · H

(1)
N

(
ω
c r1
)
eiNφ1

...
. . .

...
H

(1)
−N
(
ω
c rM

)
e−iNφM · · · H

(1)
N

(
ω
c rM

)
eiNφM


×

 c−N (ω)
...

cN (ω)

 =

 d1(ω)
...

dM (ω)


(12)

or, in shorthand notation,

Qc = d, (13)

with Q a (M) × (2N + 1) matrix with elements Qm,n =

H
(1)
n

(
ω
c rm

)
einφm , c a vector of length (2N+1) with elements

cn(ω), and d a vector of length M with elements dm(ω). For
the convergence, sufficient number of data points (M ) need
to be provided for the (2N + 1) coefficients for the Hankel
functions. In this work, we use Tikhonov regularization to find
the coefficients cn(ω), consequently

c = (Q† Q+ αI)−1Q†d, (14)

where I is a unit matrix, α is a regularization parameter, and
Q† denotes the adjoint of Q.

Once the coefficients cn(ω) are found, the field can be
computed at any location outside D using equation (10). In
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Fig. 2. Normalized source excitation profile in time (left) and frequency
(right) domain. The red dots show the frequency range used for inversion.

this way, we can redatum the wave field measured at S to
the domain S′. Although redatuming is explained for the
receiver side using the outward propagating field, it is also
possible to apply the same procedure for the source side by
using the inward propagating field. Finally, for an accurate
reconstruction of the wave field it is important to satisfy the
sampling criterion as this defines the number of coefficients
needed to describe the wave field [20].

B. Application of finite-sized receiver

For the receiver it is important to account for its size and
orientation. The field measured with a finite-sized receiver
of aperture length L, can be written as an integral over its
active curve of length 2rmθ. It is assumed here that, the
receiver ring S is a circle centered at the origin. Consequently,
for transducers oriented towards the origin the measurement
dm(ω) equals

dm(ω) = d(rm, φm, ω) =

∫ +θ

−θ
p(rm, φm + φ

′
)dφ

′
. (15)

When we combine equations (10) and (15) and alter the order
of integration, it follows that

dm(ω) =

N∑
n=−N

cn(ω)TnH
(1)
n

(ω
c
rm

)
einφm , (16)

where the finite size of the transducer is accounted for via the
constant Tn

Tn =

∫ +θ

−θ
einφ

′

dφ′. (17)

III. RESULTS

The proposed method is tested on synthetic and experimen-
tal data. To show its practical applicability, we present an
example where we apply contrast source inversion (CSI) [21]
on measured data before and after redatuming.

A. Synthetic example

1) Configuration: A full-wave method based on a
frequency-domain integral equation formulation is used to
solve the forward problem [22], [23]. A source is located
outside S at (xs, ys) = (0.248 m, 0.035 m) and generates
a Gaussian modulated pressure field with 0.5 MHz central
frequency. The source’s excitation profile is shown in Fig. 2.

In total 450 receivers are used to measure the scattered field.
The time span of the simulation is set to 268 µs with a step
size ∆t = 0.5 µs. The spatial domain equals 0.1 m × 0.1 m
and is discretized with a uniform grid size ∆x = 0.5 mm.
The grid size corresponds to six points per wavelength at
central frequency. A rectangular object (0.02 m × 0.05 m)
is placed at the center. The speed of sound of the background
medium is 1490 m/s and of the object 1547 m/s. The
background medium and the object have the same mass density
ρ = 1000 kg/m3 and are both lossless.

2) Synthetic Results: First, we consider the case where the
field measured with a circular array is redatumed, see Fig. 3.
For this purpose, the simulated pressure field is measured at
r = 0.09 m using 450 point receivers and reconstructed using
Hankel functions, see Fig. 3 first row. Then, the measured field
at r = 0.09 m (blue circle) is redatumed to r = 0.05 m (red
circle). The redatumed and modelled fields at the red circle
are shown in Fig. 3 second row. The amplitudes of both fields
are normalized by the same constant. These single frequency
results clearly show that both the amplitude and the phase of
the fields match each other perfectly. Finally, the performance
of the proposed method is tested using an arbitrary shaped
scanning setup. The third row of Fig. 3 shows the results for
redatuming from one arbitrary surface to another. These results
agree with the observation that the proposed method does not
depend on the applied configuration, as long as the field is
measured along a closed curve. Note that, we used M = 450
number of data points and 2N+1 = 211 coefficients for these
experiments.

To examine the similarities between the measured and
reconstructed wavefield for all frequency components, time
domain results are shown in Fig. 4 and 5. Fig. 4 shows the
measurements at five receiver locations at the transmission
side; Fig. 5 at the reflection side. Note that all fields are
normalized using the same constant.

Second, to examine the robustness of the proposed method,
the results of a noisy experiment is shown in Fig. 6. White
noise with an amplitude equal to 7.5% of the maximum ampli-
tude of the recorded data set is added to the measured signal.
A noise-free measurement is plotted together with a noisy
measurement in the second graph and with reconstructed field
form the noisy measurement in the third graph in Fig. 6. For
the noisy measurement, the signal to noise ratio (SNR) equals
7.1 dB. The reconstructed field from this noisy measurement
has an SNR = 10.3 dB. It is concluded from both these values
and the results shown in Fig. 6 that with the proposed method
the noise in the measurement is slightly suppressed. This is
due to the fact that projecting the measurement on the Hankel
functions filters out some noise. Careful analysis of denoising
by Hankel decomposition is beyond the scope of this work
but initial results show some potential. To exploit this aspect
further, one can apply inversion using an l1-solver [24].

Finally, accounting for a finite-sized receiver is investigated.
In particular, we test for receivers with an active aperture
of length L = λ, 2λ, and 4λ. The pressure fields measured
with these finite-sized receivers at r = 0.09 m are given in
Fig. 7 together with the reconstructed fields. Reconstructed and
measured fields are matching each other perfectly when the
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Fig. 3. Single frequency (0.5 MHz) results using point receivers. The setups are given in the first column. The first row shows the synthetically measured and
reconstructed pressure fields at the blue surface. The second and third rows show the synthetically measured and redatumed pressure field at the red surface.
The redatumed field is computed from the measurements at the blue surface.
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Fig. 4. Time domain results for transmission measurements using point
receivers. The setup is shown in the first row; the source (black dot) is on the
right of the original receiver array (blue dots) and the redatumed locations
(red dots). A-scans of the measured (blue) and reconstructed (red) wave fields
are shown in the second row; (left) with the redatumed locations coinciding
the original receiver locations and (right) positioned inside the receiver ring.

signal is above −40 dB. Differences in phase and amplitude
occur when the amplitude of the signal is below −40 dB. This
is due to the fact that the same fixed number of coefficients
cn(ω) are used to reconstruct the fields. The areas where the
signal amplitude is above −40 dB are highlighted with a red
square.
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Fig. 5. Same as Fig. 4, but now for reflection measurements.

B. Experimental example

1) Configuration: The Delft Breast Ultrasound Scanner
(DBUS) is used to validate our method using measured
data [25]. This system has a configuration similar to the
one used for the synthetic examples. A source located at a
r = 0.25 m operates at 0.5 MHz central frequency. The
circular receiver array has a radius of 0.1 m. A complete
measurement covers 45 source and 450 receiver locations. The
object is a rectangular agar phantom containing two copper
threads and one plastic straw. A sketch of the system together
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Fig. 6. Time domain results showing the robustness of the method to noise.
Setup is given at the first row. The second row shows noisy and noise-
free measurements. The third row shows the noise free measurement and
reconstructed signal from a noisy measurement. The fourth row shows the
noisy measurement and reconstructed signal from a noisy measurement.

with a reconstruction of the phantom using Synthetic Aperture
Focusing Technique (SAFT) [26] is shown in Fig. 8.

2) Experimental results: Contrast source inversion (CSI)
is applied to the data from the DBUS system [6], [21],
[27]. Five frequency components between 0.25 MHz and
0.3 MHz are used for the inversion. Reconstruction result
after 128 iterations without applying redatuming is shown
in the first row of Fig. 9. The second row shows the result
after redatuming the data to the circular receiver array with
radius r = 0.05 m. The results are highly similar. The small
variations visible are mainly caused by the misfit between
the actual locations of the receivers and the grid points in
the computational domain. With the help of redatuming, it is
possible to let the receiver locations coincide exactly with the
grid points of the computational domain. After redatuming,
the resulting spatial domain has become four times smaller;
only 204× 204 pixels out of the original 406× 406 pixels are
preserved.

Reducing the size of the spatial domain allows us to increase
the number of frequency components for the inversion without
affecting the total computational load. The gain in performance
is clearly visible in the third row of Fig. 9, where we increase
the number of frequency components from 5 to 20. The
computation time for this latter case is the same as for the
original case using four components only (neglecting the time
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Fig. 7. Single frequency (0.5 MHz) results using finite-sized receivers. The
measured and reconstructed pressure fields using a receiver of length L =
λ, 2λ, and4λ (top to bottom). The receivers are located at the r = 0.09 m
circle with the normal oriented to the center. Red squares enclose the signal
when the amplitude is above −40 dB.

spent on redatuming).

IV. DISCUSSION

The method proposed in this work to redatum the measured
fields is computationally efficient and suitable for water bath
scanners that have a closed acquisition surface. Typically, those
systems have a measurement radius greater than 20 cm. Hence,
redatuming the measurements closer to the breast that may
have an effective diameter of 12 cm [28] can reduce the
computation time for inversion. The proposed method may
also be useful for a setup that has a smaller radius. For
the latter case, a non-perfect spherical or circular acquisition
boundary can be easily mapped on a Cartesian grid. This is
beneficial for integral-type inversion methods where FFT’s
may be used to compute the convolutions with the Green’s
function efficiently.

In this work, we use contrast source inversion (CSI) algo-
rithm to solve the scattering integral equation iteratively. To
compute the spatial convolutions with the Green’s function
efficiently we use FFT’s. This requires the receivers and
unknowns to be located inside the same spatial computation
domain. Regarding the presented example in the experimen-
tal results section, the computation time for each iteration
decreased approximately by a factor four. In addition, after
redatuming the wave field to a smaller domain, CSI converges
faster compared to the normal case using the same five
frequency components, see Fig. 10. These results show that
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Fig. 8. Sketch of the DBUS system (top). Reconstruction of the phantom
using SAFT (bottom).

CSI has a supralinear cost functional and that the total compu-
tational gain is higher than a factor four in this case. Similar
observations have been reported for the forward problem in
the past [29]. There it was shown that reducing the domain of
interest hides the influence of the unknowns located at points
of zero contrast from the minimization procedure, thereby
improving the condition number of the system and thus the
convergence rate.

In a real experiment, some problems can occur with the
scanning setup such as undersampled measurements, errors in
receiver locations, etc. Since these problems affect any inver-
sion algorithm, here it is assumed that they are already taken
care of beforehand. In fact, we showed in the experimental
results that the proposed method works for measured data.

The redatuming method presented in this work is compu-
tationally very efficient. For example, generating the single
frequency results shown in Fig. 3. takes less than a second. On
the other hand, each iteration of CSI takes around 5.1 minutes
before redatuming and around 1.3 minutes after redatuming
(using the same five frequency components). For each data
set, redatuming has to be done only once while CSI has
to be iterated many times. Note that, all computations are
done on a Windows server with a Windows Server 2008 R2
Enterprise 64-bit operating system and Intel Xeon E5620 CPU
(2.4 GHz). Redatuming is applied in MATLAB R2016b and
CSI is running in a FORTRAN90 environment accelerated
with OMP routines.

V. CONCLUSION

With redatuming, the measured acoustic wave field is trans-
formed into a data set that is representative for a recording
of the same wave field but now at a different location. A
common way to migrate the wave field from one surface to
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Fig. 9. Results obtained with CSI after 128 iterations with and without
redatuming. The top image shows the reconstruction using five frequency
components without redatuming, the middle the reconstruction after the same
five frequency components with redatuming, and the bottom the reconstruction
using 20 frequency components after redatuming. The gray scale indicates
speed of sound values in m/s.

another is by employing Kirchhoff integrals. Unfortunately,
redatuming methods based on Kirchhoff migration fail for
breast ultrasound where the recording surface is often curved
and only the pressure field is measured.

To overcome these problems, we developed a novel reda-
tuming method where the measured pressure field is described
as a series of Hankel functions to account for the radii of
the receiver locations, complex exponentials to account for
angular variations and corresponding complex coefficients as
weighting factors. The resulting linear system of equations is
solved using Tikhonov regularization. Once the coefficients
are found, the field can be redatumed to any location in the
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Fig. 10. CSI results before and after redatuming for an increasing number of iterations (nit = 8, 16, 32, 64, and 128). Note that these results are obtained
using the same five frequency components. The gray scale indicates speed of sound values in m/s.

homogeneous embedding.
Results based on measured data show that redatuming to

any location in the homogeneous embedding is possible and
that it indeed leads to a reduction in computational costs. In
addition, it is shown using synthetic data that it is possible to
redatum when the actual measurements are done using finite-
sized receivers. Finally, with a synthetic example, it is shown
that the proposed method itself is robust against random noise
and it also has the potential to act as a denoiser.
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