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Abstract: Glaciers in the Tibetan Plateau are an important indicator of climate change. Automatic
glacier facies mapping utilizing remote sensing data is challenging due to the spectral similarity
of supraglacial debris and the adjacent bedrock. Most of the available glacier datasets do not
provide the boundary of clean ice and debris-covered glacier facies, while debris-covered glacier
facies play a key role in mass balance research. The aim of this study was to develop an automatic
algorithm to distinguish ice cover types based on multi-temporal satellite data, and the algorithm
was implemented in a subregion of the Parlung Zangbo basin in the southeastern Tibetan Plateau.
The classification method was built upon an automated machine learning approach: Random Forest
in combination with the analysis of topographic and textural features based on Landsat-8 imagery
and multiple digital elevation model (DEM) data. Very high spatial resolution Gao Fen-1 (GF-1)
Panchromatic and Multi-Spectral (PMS) imagery was used to select training samples and validate
the classification results. In this study, all of the land cover types were classified with overall good
performance using the proposed method. The results indicated that fully debris-covered glaciers
accounted for approximately 20.7% of the total glacier area in this region and were mainly distributed
at elevations between 4600 m and 4800 m above sea level (a.s.l.). Additionally, an analysis of the
results clearly revealed that the proportion of small size glaciers (<1 km2) were 88.3% distributed at
lower elevations compared to larger size glaciers (≥1 km2). In addition, the majority of glaciers (both
in terms of glacier number and area) were characterized by a mean slope ranging between 20◦ and
30◦, and 42.1% of glaciers had a northeast and north orientation in the Parlung Zangbo basin.

Keywords: automatic glacier facies mapping; Random Forest; Landsat; Parlung Zangbo basin

1. Introduction

Glaciers in the Tibetan Plateau are sensitive and exhibit an immediate response to climate forcing;
hence, they are important climate change indicators [1–3]. It is, therefore, meaningful to observe
and understand the dynamics and response of glaciers to changes in climatic conditions. Traditional
methods of mapping glacier surface types are based on field surveys and analyzing topographic maps,
which are very time-consuming and not feasible in inaccessible regions [4]. Nowadays, a vast amount
of satellite data allows us to monitor the glaciers over large areas and in high altitude mountainous
regions in a cheaper and efficient way. Remote sensing data usually can provide measurements of
glacier coverage, glacier number, time span, and other glacier properties [5].
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In the past few decades, much work has been accomplished to map the extent of clean glacial
ice and to quantify changes over time using satellite image data [6]. Methods applied range from
visual interpretation [7] to segmentation of band ratio or spectral indices (e.g., the Normalized
Difference Snow Index) images [8] and different unsupervised (e.g., the Iterative Self Organizing
Data Analysis Techniques Algorithm, ISODATA) [9] and supervised (e.g., the Maximum Likelihood
algorithm) classification [10] and decision tree methods [5,11]. For extracting debris-covered glaciers
using multispectral imagery, fully manual onscreen digitizing is widely considered to be a common
classification approach [12]. However, the accuracy of results using manual approaches depends
greatly on the researcher’s experience. Due to the laborious work of manual delineation, many
researchers have further proposed semi-automated methods to extract the debris-covered glacial
surface [13,14]. The use of Unmanned Aerial Vehicles (UAVs) and terrestrial remote sensing techniques
offers new ways to monitor the debris-covered glaciers on a detailed spatial scale [15,16].

Nevertheless, the spatial heterogeneity of the glacier surface still hampers the identification of
glaciers and increases the difficulty of observing and understanding glacier changes. Automated
mapping of glaciers based on remotely sensed multispectral data is often hindered by orographic
clouds, highly variable snow conditions, and the spectral similarity of supraglacial debris with
the adjacent bedrock [6]. However, supraglacial debris can remain stable on gentle slopes [13].
Field measurements and energy balance modeling results indicate that the surface temperatures of
supraglacial debris, some tens of centimeters deep, were colder (at an average temperature of 4.5 ◦C)
than that of surrounding debris [17]. Therefore, combining multispectral images with ancillary datasets,
such as terrain data and thermal infrared (TIR) data, is commonly used to improve classification results
in specific geographic regions [13,14,17–21]. Furthermore, texture information is also utilized to
distinguish the coarseness, roughness, and symmetry of land surface within an image towards better
delineation of debris-covered glaciers in the eastern Himalaya [11].

In the last decade, researchers have developed improved methods to classify satellite imagery,
where machine learning techniques are applied to train a classifier [22]. Random Forest (RF) has
been successfully applied as a new approach in the classification of multispectral satellite images for
different applications over the past few years [22,23]. The RF classifier performs well based on a small
training dataset and frequently outperforms other classification approaches with high classification
accuracy and less computation time [24].

Most of the existing glacier inventories of many regions in the world were established based
on remote sensing data, such as GLIMS (Global Land Ice Measurements from Space) [25], HKH
(Hindu Kush Himalayan) [26,27], GAMDAM (Glacier Area Mapping for Discharge from the Asian
Mountains) [28], MODICE (MODIS Persistent Ice) [29], CGI1 (first Chinese Glacier Inventory), CGI2
(second Chinese Glacier Inventory) [30], and the SEQTP (Southeastern Qinghai–Tibet Plateau) glacier
inventory [31]. The majority of the available glacier inventories merely provide the total outline of
glaciers. In other words, the boundary between debris-free and debris-covered glacier is not precisely
distinguished. Different glacier facies have different melt rates and densities. Debris-covered glaciers
play a significant role in the glacier mass balance because debris cover has a great influence on the
melting rates of the ice underneath [11]. Specifically, thick debris cover can slow the ice melting rates
owing to the low thermal conductivity of debris, while thin debris cover can enhance the ablation rates
of underlying ice as a result of the low albedo of debris [32–34]. Moreover, the occurrence of debris at
the glacier surface is one of the most important factors driving albedo changes because it influences
the features and evolution of glaciers [35]. It is necessary to estimate, therefore, the distribution
of debris-covered glaciers to assess the effect of debris cover on ice ablation and to investigate the
response of glaciers to climate forcing in terms of mass balance [32].

Parlung Zangbo basin in the southeastern Tibetan Plateau is one of the critical regions in the world
where a small amplitude of climate change may result in dramatic glacier variations [36]. It is a typical
region of temperate glaciers in China. These temperate glaciers are characterized by high accumulation,
strong ablation, a relatively high ice temperature, and rapid movement of ice mass [36,37]. This region
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is influenced by the Indian monsoon, which can transport abundant precipitation to these regions.
The equilibrium line altitude (ELA) of most glaciers in the region (about 4700 m) was lower than the
ELA (6000 m) on the north slope of the central Himalaya [37]. The summer mean air temperature is
high (about 1–5 ◦C). Consequently, the ice temperature within the whole ice layer of most glaciers is
between −1 ◦C and 0 ◦C in some sections. These glaciers in the Parlung Zangbo basin are so sensitive
to climate variations that a small rise in air temperature may lead to a large uplift in ELA and large
shrinkage in glacier area [38].

Mapping glaciers in the Parlung Zangbo basin is challenging because the observations from
optical sensors are limited by frequent clouds due to the influence of the summer monsoon [31]. Some
emerging data from high-revisit time platforms, e.g., the Planet constellation, provide new techniques
for monitoring glaciers. The Kangri Karpo Mountain in this study region is one of the five centers
where debris-covered glaciers are mostly concentrated in China [30]. Most of the previous studies in
this region have mainly focused on debris-free glaciers or mapping debris-covered glaciers by manual
delineation. Therefore, the question of how to make full use of the available data to automatically
classify the debris-free and debris-covered glaciers still requires further exploration.

In this study, we propose an automatic classification method for non-or-partially debris-covered
and fully debris-covered glaciers using a machine-learning algorithm along with the analysis of
topographic and textural features. The algorithm was implemented using multi-temporal images to
minimize the effect of seasonal snow and cloud cover. The specific goal of this research is to distinguish
various ice cover types of glaciers and present an overview of the characteristics and distribution of
glaciers by taking the Parlung Zangbo basin as the application case.

This paper is organized as follows. First, we present a concise description of the study region and
the datasets that have been used. We also provide a brief introduction to the classification methods.
After that, we apply our method in the research area of the Parlung Zangbo basin. Finally, an evaluation
of the results is followed by discussion and our conclusions.

2. Research Area

The study area is a subregion of the Parlung Zangbo basin, which is located in the south of the
Nyenchen Tanglha Mountains (Figure 1). The area extends between 95.5◦ E–97.5◦ E longitude and
28.5◦ N–29.8◦ N latitude. The elevation ranges from approximately 1000 m to over 7000 m above
sea level (a.s.l.). However, most of the glaciers lie at higher elevations above 3000 m. The published
glacier inventory of the southeastern Tibetan Plateau lists 1337 glaciers (area >0.02 km2), covering
an area of 1739.5 km2, based on 2013–2014 Landsat-8 Operational Land Imager (OLI) images to the
South of the Parlung Zangbo, where debris-covered glaciers take up about 6.7% of the glacierized
area [31]. The climatic pattern of the Parlung Zangbo basin is highly influenced by the Indian summer
monsoon [36]. Therefore, monsoonal maritime glaciers are widely distributed in this region and the
annual precipitation is approximately 2500–3000 mm near the ELA [37,39]. The sub glacial erosion is
strong and the ablation and deposition rates are high, so that these maritime glaciers created abundant
glacial landforms with a mixture of debris-free and debris-covered ice in this region [36,39].
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Figure 1. The study area located in the Parlung Zangbo basin and the Landsat-8 Operational Land
Imager (OLI) image acquired on 6 October 2015 (a false color composite with a band combination,
R = shortwave infrared band (band 7), G = near-infrared band (band 5), and B = green band (band 3)).

3. Datasets and Preprocessing

3.1. Landsat Data

The Landsat-8 scenes of World Reference System 2 (WRS2) path 134 and row 40 were acquired
from the Global Visualization Viewer (GloVis) website of the United States Geological Survey
(USGS) [40]. Table 1 shows the spectral characteristics of OLI and Thermal Infrared Sensor (TIRS)
bands of Landsat-8. In order to avoid the impact of glacier changes on the classification results, we
chose the images with cloud coverage under 70% in the same year (2015). The details of images are
given in Table 2. These images were chosen at the end of the ablation period to minimize the influence
of transient snow cover for mapping glacierized areas. The whole image, acquired on 6 October 2015,
was nearly cloud free over the glaciers except for some clouds in the western and southeastern part of
the region. Therefore, the image acquired on 6 October 2015 was chosen as the main image for this
study and other images were used to compensate for the effect of seasonal snow and cloud cover.

Table 1. A list of OLI and Thermal Infrared Sensor (TIRS) spectral bands of Landsat-8.

Band Number Band Number Bandpass (µm) Spatial Resolution (m)

1 Coastal/Aerosol 0.435–0.451 30
2 Blue 0.452–0.512 30
3 Green 0.533–0.590 30
4 Red 0.636–0.673 30
5 NIR 0.851–0.879 30
6 SWIR 1 1.566–1.651 30
7 SWIR 2 2.107–2.294 30
8 PAN 0.503–0.676 15
9 Cirrus 1.363–1.384 30
10 TIR 1 10.60–11.19 100
11 TIR 2 11.50–12.51 100

NIR, near-infrared; SWIR, shortwave infrared; PAN, panchromatic; TIR, thermal infrared.

Table 2. A list of the Landsat-8 images used in this study.

Image Number Date of Acquisition Cloud Coverage (%)

1 18 July 2015 46
2 6 October 2015 6
3 22 October 2015 26



Remote Sens. 2019, 11, 452 5 of 38

These images were first converted from raw digital numbers (DNs) to the top of atmosphere
(TOA) radiance using radiometric parameters from the metadata file. Then, surface reflectance values
were retrieved by applying atmospheric correction using the Second Simulation of the Satellite Signal
in the Solar Spectrum (6S) model [41,42].

Additionally, the Normalized Difference Vegetation Index (NDVI) [43], Normalized Difference
Water Index (NDWI) [44], and Normalized Difference Snow Index (NDSI) [45] were computed and
included in the analysis. Moreover, for each Landsat-8 OLI image, the Grey Level Co-occurrence
Matrix (GLCM) was utilized to analyze image textural features to be included in the classification. The
GLCM textural measurements were: mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment, and correlation for each OLI spectral band (Blue, Green, Red, NIR, SWIR1, and
SWIR2 band). The GLCM was generated by applying a 3 × 3 moving window, and the GLCM textural
features were calculated based on the Co-occurrence Texture parameters tool in the Environment for
Visualization of Imagery (ENVI) software package.

Independently, each TIRS thermal band (band 10 of Landsat-8) was converted to TOA radiance
values utilizing the sensor calibration parameters provided in the header file, which were then
converted to a TOA brightness temperature according to [46]:

Tλ =
K2

ln
(

K1
Lλ

+ 1
) (1)

where Tλ (K) is the TOA brightness temperature, Lλ (W·m−2·sr−1·µm−1) is the TOA radiance, and K1

and K2 are the band specific thermal conversion constants from the metadata file.
Subsequently, the land surface temperature (LST) for each Landsat-8 TIRS image was retrieved

based on the Radiative Transfer Equation method [47] as follows:

Lλ(Tλ) = τλ[ελLλ(TS) + (1− ελ)I↓λ] + I↑λ (2)

where Lλ(Tλ) (W·m−2·sr−1·µm−1) is the TOA radiance, Tλ (K) is the TOA brightness temperature,
Lλ(TS) (W·m−2·sr−1·µm−1) is the blackbody radiance, which is given by the Planck’s law, TS (K) is the
land surface temperature, τλ is the atmospheric transmittance, ελ is the land surface emissivity, Iλ↓

(W·m−2·sr−1·µm−1) is the down-welling atmospheric radiance, and Iλ↑ (W·m−2·sr−1·µm−1) is the
upwelling atmospheric radiance.

The atmospheric parameters (atmospheric transmittance and upwelling and downwelling
atmospheric radiance) at the time of Landsat-8 overpass were estimated by utilizing the NASA
atmospheric parameters calculator [48–50]. This tool makes use of the atmospheric global profiles
from the National Center for Environmental Prediction (NCEP) [51]. The land surface emissivity (LSE)
for each Landsat-8 image was estimated through the use of a NDSI and NDVI thresholds method [52].
In detail, the threshold algorithm of emissivity estimation utilized specific NDSI and NDVI values to
classify the image into four land cover classes (ice, soil, vegetation, mixed vegetation, and soil). Then,
the emissivity of a pixel was estimated according to the class that the pixel fell into as shown in Table 3.
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Table 3. The land surface emissivity estimation algorithm based on the Normalized Difference Snow
Index (NDSI) and Normalized Difference Vegetation Index (NDVI) image.

Threshold Land Cover LSE

NDSI > 0.4 Ice A constant value of ice emissivity

(NDSI ≤ 0.4) and (NDVI < NDVIs) Bare soil An empirical relationship with the
red band reflectance [47,53]

(NDSI ≤ 0.4) and (NDVI > NDVIv) Fully vegetated A constant value of
vegetation emissivity

(NDSI ≤ 0.4) and
(NDVIs ≤ NDVI ≤ NDVIv 1)

A mixture of bare soil
and vegetation ε = εvPv + εs(1− Pv) + dε 2

1 NDVIs and NDVIv are the threshold values distinguishing soil and vegetation cover, respectively, which can
be extracted from the NDVI histogram. 2 where εv is the vegetation emissivity, εs is the soil emissivity, Pv is the
vegetation fraction derived from the NDVI, and dε reveals the influence of the geometrical distribution of the natural
surfaces [47]. LSE, land surface emissivity.

3.2. GF-1 Data

The GF-1 Panchromatic and Multi-Spectral (PMS) imagery acquired on 2 August 2015 was
provided by the Institute of Remote Sensing and Digital Earth (RADI) in Beijing, China. It has
four visible and Near Infrared Bands with 8 m spatial resolution and one panchromatic band with
2 m spatial resolution. The GF-1 PMS imagery was used to select training samples and validate
classification results. Both the multispectral bands and the panchromatic band of the GF-1 satellite
were radiometrically calibrated using corresponding radiometric parameters from the metadata file.
Surface reflectance values were obtained after atmospheric correction using standard atmospheric
parameters based on the Modtran4-based Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) model in the ENVI v5.3 software package.

Furthermore, the multispectral and panchromatic GF-1 images were fused together after
orthorectification based on the nearest-neighbor diffusion (NNDiffuse) Pan Sharpening tool in ENVI.
The latter is to sharpen multispectral data by applying the NNDiffuse pan sharpening algorithm [54].
The 8-meter GF-1 PMS multispectral bands were pan-sharpened using the 2-meter GF-1 PMS
panchromatic band, resulting in a four-band, 2×2 m spatial resolution multispectral image.

3.3. Other Datasets

Simultaneously, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model Version 2 (GDEM V2) data were used to provide topographic
information. The GDEM V2 data were downloaded in GeoTIFF format from the Geospatial Data
Cloud site, Computer Network Information Center, Chinese Academy of Sciences [55]. ASTER GDEM
V2 data were derived from multiple ASTER images between 2000 and 2010. The data had a vertical
accuracy of ±15 m and a horizontal resolution of 30 m [56]. Thirty meters (30 m) was consistent with
the spatial resolution of the Landsat-8 OLI imagery utilized in this study. In addition, ASTER GDEM
V2 data have been widely applied in previous research for mapping glaciers and in other cryospheric
studies [14,57].

Moreover, two kinds of Digital Elevation Model (DEM) data were used to provide elevation
change information. One is the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements)
90 m DEM. The data were downloaded from the Earth Observation Center (EOC) Geoservice website
of the German Aerospace Center (DLR) [58]. The TanDEM-X 90 m (3 arc seconds) DEM was a product
derived from the 12 m (0.4 arc seconds) DEM product. The global TanDEM-X 12 m DEM product was
generated from TanDEM-X data acquired between 2010 and 2015 and has an absolute vertical accuracy
of less than 10 m [59]. The other one is the Shuttle Radar Topography Mission (SRTM) DEM. The SRTM
was launched in February 2000 and generated continuous elevation data utilizing interferometric
synthetic aperture radar (SAR) (InSAR) techniques [60]. The data have a spatial resolution of 30 m
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(1 arc seconds) and were downloaded from the NASA Earth Observing System Data and Information
System (EOSDIS) Land Processes Distributed Active Archive Center (LP DAAC) [61]. Many studies
have used SRTM DEM data as a base dataset to monitor glacier elevation change [62,63].

Additionally, the Second Chinese Glacier Inventory dataset was obtained from the Cold and Arid
Regions Sciences Data Center in Lanzhou [64], and the southeastern Qinghai–Tibet Plateau Glacier
Inventory was acquired from the Science Data Bank [65].

The drainage basin data from Hydrological data and maps based on Shuttle Elevation Derivatives
at multiple Scales (HydroSHEDS) were utilized to determine the dividing line of the glacier complexes.
The HydroSHEDS data offers hydrographic information for regional and global-scale applications [66].
It provides a series of geo-referenced data at different scales, involving river networks, watershed
boundaries, flow accumulations, and river topology information [67]. The HydroSHEDS drainage
basin data (HydroBASINS) depict the catchment areas or the watershed boundaries at various scales
(from tens to millions of square kilometers).

All datasets were projected to the same coordinate system of the 1984 World Geodetic System
(WGS 84) with Universal Transverse Mercator (UTM) Zone 47 North. Furthermore, 11 topographic
parameters (including elevation, slope, aspect, shaded relief, profile convexity, plan convexity,
longitudinal convexity, cross sectional convexity, minimum curvature, maximum curvature, and
root-mean-square error) were generated from the ASTER GDEM V2 data using the Topographic
Modeling tool in the ENVI v5.3 software package. The vertical datum of the TanDEM-X 90 m DEM is
the WGS 84 ellipsoid, while SRTM DEM data are referenced to the EGM96 geoid [68]. The ellipsoidal
height should be converted to the orthometric height through adding the geoid undulation [68].
TanDEM-X data were then resampled to the spatial resolution of SRTM DEM data using a bilinear
interpolation method. The relative horizontal and vertical bias of the TanDEM-X and SRTM DEMs were
corrected using the co-registration algorithm based on the relationship between elevation difference
and the elevation derivatives of slope and aspect [63]. Elevation differences were calculated after
co-registration. Elevation differences with values exceeding ±100 m were assumed to be outliers and
omitted [69].

4. Methods

The flowchart of this study is illustrated in Figure 2, which includes three major steps. Specifically,
the data preprocessing includes radiometric calibration, atmospheric correction, and extraction of
textural and topographic parameters. The second step includes the analysis of spectral, topographic,
and textural features and applies classification using the RF algorithm. The last step is overlaying
all the classification results of multi-temporal images to acquire the minimum glacier extent and
validating the classification results using the collected testing samples. In this study, the classification
scheme considered 10 major land cover types: snow-ice (SI), mixed ice and debris (MID), supraglacial
debris (SGD), bare land, water bodies, vegetation, shadowed ice, terrain shadows, cloud, and other
land cover. The land cover type SI includes snow and clean ice that is free of debris cover. The land
cover class of MID stands for parts of the glacier barely covered by debris in the ablation zone, whereas
the SGD represents the glacier parts with such an extensive amount of debris cover that clean ice is not
visible. The land cover type of shadowed ice represents the glaciers in the shadow cast by terrain.
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Figure 2. The flowchart of the automatic glacier facies mapping methodology. DEM, digital
elevation model; NDWI, Normalized Difference Water Index; MID, mixed ice and debris; SGD,
supraglacial debris.

4.1. Selection of Classification Samples

In the extent of the GF-1 PMS image, most of the Landsat-8 images had extensive cloud cover
over glaciers. Therefore, only the image acquired on 6 October 2015 was used in the selection of
classification samples to train the RF classifier. Classification samples for 10 land cover types were
collected based on visual observation of the Landsat-8 image and the fused GF-1 PMS image with the
aid of information from high-spatial-resolution images from Google Earth (Figure 3). For instance,
GF-1 data were useful to identify some lakes (red circles in Figure 3c,d), which were often confused
with adjacent terrain shadow from the Landsat-8 image. The ice moraines (red rectangles in Figure 3e,f)
were easy to identify in the GF-1 image, while they represented just a few pixels in the Landsat-8 image
with a less clear boundary. It should be noted that the Landsat image was acquired 2 months later
than the GF-1 imagery. In this area, there may be some changes in snow cover extent and lake area. To
avoid this problem, we chose classification samples in the center of larger patches that were likely not
mixed classes. The total number of classification samples was 2755, and the total area of these samples
was 2.48 km2. Subsequently, the selected classification samples were split into two sets using the
proportional stratified random sampling method. More specifically, 70% of the random samples were
used for training and the remaining 30% were used for testing; i.e., to evaluate the classification results.
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Figure 3. An example of different land cover classes where training samples were selected based on
visual interpretation of the Landsat image and the GF-1 image. (a) A false color composite image with
a band combination of 5/4/3 (R/G/B) of Landsat-8 OLI data on 6 October 2015; (b) A false color
composite image with a band combination of 4/3/2 (R/G/B) of the fused GF-1 Panchromatic and
Multi-Spectral (PMS) data on 2 August 2015; (c–f) Close-up details about the pink rectangles in (a) and
(b). The letters in yellow indicate SI = snow-ice, MID = mixed ice and debris, SGD = supraglacial debris,
BL = bare land, W = water bodies, V = vegetation, S = shadowed regions, and OL = other land cover.
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4.2. Spectral, Topographic, and Textural Features

4.2.1. Input Features for Classification

The input features for classification captured three aspects: spectral features, topographic features,
and textural features. Spectral features were the surface reflectance, LST, and spectral indices. The
surface reflectance and LST were obtained based on Landsat-8 OLI and TIRS data. The spectral indices
included NDVI, NDWI, and NDSI, which were calculated according to the following formulae:

NDVI =
ρNIR − ρred
ρNIR + ρred

(3)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(4)

NDSI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(5)

where ρgreen, ρred, ρNIR, and ρSWIR1 are the surface reflectance in the green, red, near-infrared, and
short-wave infrared band 1, respectively.

The topographic features from multiple DEM data were elevation, slope, aspect, shaded
relief, profile convexity, plane convexity, longitudinal convexity, cross-sectional convexity, minimum
curvature, maximum curvature, root-mean-square error, and absolute elevation change (Table 4).

Table 4. The topographic features extracted from multiple DEM data.

Topographic Feature Description

Elevation The height above a given level, especially sea level.

Slope Calculated with the convention of 0 degrees for a horizontal plane.

Aspect Aspect angle is the convention of 0 degrees to the north (up) and
angles increasing clockwise.

Shaded relief Shaded relief shows an apparent three-dimensional configuration of
the shape of terrain.

Profile convexity The change rate of the slope along the profile.

Plane convexity The change rate of the aspect along the plane.

Longitudinal convexity The surface curvature orthogonally in the down slope direction.

Cross-sectional convexity The surface curvature orthogonally in the across slope direction.

Minimum curvature The minimum surface curvatures.

Maximum curvature The maximum surface curvatures.

Root-mean-square error
Generated to indicate how well the quadratic surface fits the actual
DEM data and calculated in a neighborhood (3 × 3 pixels) around

each pixel [70].

Absolute elevation change The magnitude of the absolute change of surface elevation

The textural features were mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment, and correlation for each OLI spectral band (Blue, Green, Red, NIR, SWIR1, and SWIR2 band).
They were computed using the values in the GLCM. The computational formulas of these features
were defined by Haralick et al. [71] (Table 5).
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Table 5. Textural features extracted from the Grey Level Co-occurrence Matrix (GLCM).

Textural Feature Description Formula 1

Mean
Gray level average in the GLCM, not the mean
of the original pixel values (band reflectance)

within the given window size (3 × 3 grid cell).

fMEA = ∑
i

∑
j

i ∗ p(i, j)

Variance Gray level variance in the GLCM. fVAR = ∑
i

∑
j

p(i, j) ∗ (i− µ)2

Homogeneity
Homogeneity is a measure of the homogenous
gray level across an image. It is high when local

pixel values are uniform.
fHOM = ∑

i
∑
j

p(i,j)
1+(i−j)2

Contrast

Contrast measures the amount of local
variation in pixel values among neighboring
pixels. Contrast is zero when the neighboring

pixels have constant values [72].

fCON = ∑
i

∑
j
(i− j)2 p(i, j)

Dissimilarity Similar to contrast and inversely related to
homogeneity [73].

fDIS = ∑
i

∑
j
|i− j|p(i, j)

Entropy

Entropy measures the disorder or complexity of
an image. It is high when the pixel values of the
GLCM are varying and it is the opposite of the

angular second moment.

fENT = −∑
i

∑
j

p(i, j) log(p(i, j))

Angular second moment
Angular second moment measures the image
uniformity. It is high when the pixel values of

the GLCM are very similar.

fASM = ∑
i

∑
j
{p(i, j)}2

Correlation

Correlation is the gray-scale measure of the
linear relationship, and it measures the linear

dependency of pixel values on those of
neighboring pixels in the GLCM [74].

fCOR = ∑
i

∑
j

(ij)p(i,j)−µxµy
σxσy

1 where i and j are coordinates of the GLCM, p(i,j) refers to the value at the (i,j)th position in the GLCM, and µ and σ
represent the means and standard deviations of px and py [71].

4.2.2. Analysis of Spectral, Topographic, and Textural Features

Based on the collected training samples, basic statistical parameters, such as mean, maximum,
minimum, and standard deviation, were calculated for each input feature. The mean surface reflectance
of various land cover samples (Figure 4) was analyzed to investigate the spectral characteristics of
different land cover types. Such information will be used to separate different land cover types based
on the differences in spectral reflectance. Snow-ice had high spectral reflectance in the visible spectrum
(VIS) and very low reflectance in the shortwave infrared (SWIR) bands. Based on the strong differences
in glacier spectral reflectance in the VIS and SWIR bands, snow-ice was identified by thresholding the
NDSI feature. Figure S1 in the supporting materials for this article provides the examples of input
data for the RF classification method for a subset of the study region. When analyzing the textural
feature in more detail, it was noted that the mean feature (Figure S1i) was appropriate to describe the
characteristics of the glacier surface. The general outline of glaciers can be recognized from the image
of mean feature (Figure S1 i). However, the glacier areas were not obviously recognized in the other
textural features (Figure S1j–p).

Vegetation is characterized by high reflectance in the Near Infrared Band and low reflectance
in the red band. NDVI can distinguish vegetation cover with high NDVI values from other land
cover types with low or negative NDVI values. Similarly, useful information can be derived from the
NDWI feature for mapping water bodies. NDWI may highlight the contrast between water bodies
(higher and positive NDWI values) and other land cover types (lower and negative NDWI values).
The slope of open water bodies was assumed to be zero, which was beneficial for the discrimination
between terrain shadows and water bodies. Moreover, clouds had a high spectral reflectance, similar
to snow-ice in the visible wavelengths, but the reflectivity of snow-ice is lower in the SWIR bands.
However, this can be region-dependent, as old snow might be present on the glacier, while new snow
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has high reflectance [75]. So, clouds should be delineated by thresholding SWIR bands combined with
other features. Shaded relief derived from ASTER GDEM V2 data was a useful feature for mapping
terrain shadows.
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Figure 4. The surface reflectance from the Landsat-8 OLI bands for all of the selected land cover
samples of the 10 major land cover types.

Due to the similarity in spectral properties of debris-covered glaciers with the surrounding bare
land areas, it is challenging to identify debris-covered glaciers from VNIR (Visible/ Near-Infrared) and
SWIR bands only. The temperature differences between supraglacial debris and their surroundings,
however, were helpful for delineation. For example, the Yanong glacier is one of the largest glaciers
(larger than 50 km2) in the Parlung Zangbo basin. Elevation contour lines were extracted from ASTER
GDEM V2 data. We chose one contour line to draw a transect across different surface types in the
lower part of the Yanong glacier (Figure 5a). Land surface temperature values were sampled along this
transect drawn on the LST map in the subset area (Figure 5b). Differences in land surface temperature
between the supraglacial debris and their surrounding terrain were clearly observable (Figure 5c).
It was obvious that the LST of debris-covered glaciers was lower than that of their surrounding bare
land due to the cooling effect of the underlying ice on the supraglacial debris. Furthermore, most
of the glaciers, particularly debris-covered parts, have experienced a significant change in surface
elevation in recent decades in the eastern Nyenchen Tanglha Mountains [76,77]. We assume that no
large elevation differences occurred in the non-glacierized regions during the study period. So, the
information on elevation change could help to recognize the glaciers, especially for fully debris-covered
glaciers. Besides, it was assumed that supraglacial debris would remain stable on low elevation and
gentle slopes [13]. Therefore, the supraglacial debris could be discriminated by combining the land
surface temperature and topographic information, such as the elevation, the slope, and the absolute
elevation change.

As a summary, the surface reflectance, LST, spectral indices, topographic information, and textural
information were combined in a final stack of 70 layers and used as the classification input features for
the RF classifier.
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Figure 5. An example of the land surface temperature (LST) of different land cover types at the
Yanong glacier of the Parlung Zangbo basin with one transect (from point a to point b) across the
Yanong glacier and its surroundings (A transect in red): (a) A false color composite image with a band
combination of 7/5/3 (R/G/B) of Landsat-8 OLI data on 6 October 2015; (b) a Landsat-8 LST image;
and (c) statistics of land surface temperature across the transect (direction from NW to SE). The letters
indicate MID = mixed ice and debris, SGD = supraglacial debris, and Land = bare land. The dashed
line in green highlights LST = 273.15 K.

4.3. RF Classification

In this paper, the land cover types were classified using the feature stack and applying the RF
classifier. RF is a form of ensemble learning algorithm for classification, which generates a multitude
of binary decision trees to train the classifier and aggregates the results to vote for the most popular
class [78]. This method contains random input training samples and random input features for the RF
classifier. Each decision tree is individually constructed and trained by employing a bootstrap sample
(sampling with replacement) from the user-input training set [78]. Random selection of input training
samples overcomes the over-fitting problem of the training dataset [79]. In addition, for the selection
of input features in classification, each node is generally split using the best split among all the features
in classical decision trees [80]. In contrast, each node is split utilizing the best split among a random
subset of input features at that node in an RF [81]. In other words, only a portion of the input features
are utilized when splitting each node of decision trees in the RF.

In the RF framework, the number of features applied in a classification is a user-defined parameter,
but the RF algorithm is not sensitive to it [82]. The value is generally set to the square root of the
number of all the input features [78]. Each decision tree in the forest is fully grown without pruning
in order to insure low bias [83]. Finally, the forest chooses the most popular class as the final result
(Figure 6).

As previously stated, the RF algorithm draws about two-thirds of the original training dataset as
a random sample, which is used to generate a decision tree without pruning. The remaining one-third
of training samples are called out-of-bag (OOB) samples of each tree, which are later used to estimate
the misclassification error (the OOB error) by cross-validating classification results [78]. As the forest
is built, each tree can thus be tested on the OOB samples. This is the out-of-bag error estimate. It is
an internal error estimate of a random forest while it is being constructed. The RF method estimates
the importance of each feature in determining the classification results. This feature importance is
estimated by permuting all of the observed values of a given feature in the OOB samples while all
other features are left unchanged [82]. A greater increase in OOB error indicates greater importance of
that feature.
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In this study, the RF classification was applied by using imageRF in the EnMAP-Box package and
IDL (Interactive Data Language) programming environment [24,84]. The number of decision trees was
limited to the default value of 100, which was proved to be sufficient to provide enough iterations to
minimize classification errors [22]. The amount of input features selected for an individual tree in the
classification was set to the square root of the total number of available features. The training samples
combining the 70 selected features described above were used to construct and train the RF classifier.
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4.4. Estimation of Feature Importance

The RF classifier in image RF estimates the importance of a feature by computing the normalized
and raw feature importance using OOB data. Specifically, the OOB samples for each tree are randomly
permuted in the respective feature and used to run the tree to compute the accuracy [85]. The difference
in values between the accuracy using two different samples is obtained by subtracting the accuracy of
the permuted OOB samples from the accuracy of the non-permuted OOB samples. These difference
values vary between each tree, and the average of the differences over all trees in the forest results in
the raw feature importance of the respective feature. Normalized feature importance is calculated as
the ratio of the raw feature importance over the respective standard deviation. Generally, the most
important features for the entire RF are those with higher values of normalized feature importance.
The normalized feature importance of all the 70 input features for the whole 10 land cover classes
and for 4 individual classes (snow-ice, mixed ice and debris, supraglacial debris, and shadowed ice)
was calculated for the image acquired on 6 October 2015. Among these 70 input features, the first
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10 features are Landsat-8 OLI surface reflectance, TIRS land surface temperature, and three spectral
indices (NDSI, NDVI, and NDWI). The middle 12 features are elevation, slope, aspect, and other
DEM-derived features, whereas the last 48 are textural features (8 features for each OLI band).

4.5. Overlay Classification Results of Multi-Temporal Images

Although the Landsat images were obtained at the end of the ablation season, it was possible that
it snowed before the time the satellite passed over the region. Moreover, the acquisition of cloud-free
images over glaciers was a serious issue in the study area. Seasonal snow and cloud cover could
hamper the correct identification of glaciers. Therefore, using a single image might not be the best
choice to depict the glacier outlines. Instead of this, the use of multi-temporal images was a better way
to minimize the effect of seasonal snow and cloud cover on the extracted glacial outlines.

In this study, the image acquired on 6 October 2015 was used for training the RF classifier and
other images were automatically classified using the same RF classifier. Then, relevant land cover
classes were merged into a new class for each individual image. Specifically, snow-ice, ice mixed with
debris, and shadowed ice were merged as a new class named non-or-partially debris-covered glacier.
In this study, we assumed that the debris-covered glacier was fully covered by debris. So, supraglacial
debris was recognized as one class. Cloud was also regarded as one class. The remaining non-glacial
classes (including bare land, vegetation, water, terrain shadows, and other land cover types) were
merged into one class. So, the resulting glacier map included four major classes: non-or-partially
debris-covered glacier, fully debris-covered glacier, cloud, and unglaciated areas.

All of the RF classification results were combined into a single raster map and overlaid together
based on specific principles. For the cloud-free areas, only the areas of non-or-partially debris-covered
glacier were overlaid using the classification results of multi-temporal images to minimize the effect
of seasonal snow. The final results of fully debris-covered glacier and unglaciated areas were based
on the results of the image acquired on 6 October 2015. Seasonal snow was hard to distinguish
from non-or-partially debris-covered glaciers (especially snow-ice) due to their similar spectral
characteristics. It may be misclassified as non-or-partially debris-covered glacier using one image.
However, seasonal snow could be removed by combining multi-temporal images because of their
short duration. By overlaying two images each time, the result was the intersection of two objects of
non-or-partially debris-covered glacier to obtain the minimal extent of non-or-partially debris-covered
glacier. The intersection of A and B is denoted as C = A ∩ B. Specifically, for each pixel of the image,
the result was non-or-partially debris-covered glacier if the pixel was classified as non-or-partially
debris-covered glacier in both images. If either pixel was named fully debris-covered glacier in the
RF classification results, it meant that the fully debris-covered glacier was covered by seasonal snow
and the overlaying result was fully debris-covered glacier. If either pixel was named unglaciated areas
in the RF classification results, the final result of the pixel was unglaciated areas. By considering this
action, the misclassified frozen lakes could be automatically removed.

For the cloud-covered areas, the result was gap-filled to interpolate the glaciers and unglaciated
areas under cloud. Specifically, for each pixel of the image, the result was assigned as cloud if the pixel
was classified as cloud in both of the images. If either pixel was cloud-free (glacier and unglaciated
areas) in the RF classification results, the final result of the pixel was cloud-free area.

In summary, the aims of this step were to (1) minimize the effect of seasonal snow, especially for
those often adjacent to the glacial edge; (2) remove misclassified frozen lakes, which were a problem of
classification using only one image that was acquired in early October; and (3) remove and substitute
the cloud-covered area by the pixels under clear sky conditions in the RF classifications of other scenes.
Hence, the minimum glacier extent from multiple scenes was acquired after overlaying.

4.6. Post-Classification Processing

In the post-processing step, the overlaid classification result was processed by utilizing a 3 × 3
median filter to remove some isolated pixels and converted into vector data. These were composed of
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large glacier complexes, which meant that many glaciers shared a common accumulation area. These
glacier complexes needed to be divided into individual glaciers using drainage divides [86–88]. This
was accomplished by intersecting the glacier results with a vector layer of the HydroSHEDS drainage
basin data in ArcGIS 10.2. In this study, the minimum size of glaciers was set as 0.01 km2 (about
11 pixels in Landsat images) and then isolated patches smaller than 0.01 km2 were removed. Moreover,
supraglacial debris areas, which were not linked with non-or-partially debris-covered glaciers, were
considered as classification errors and eliminated. Therefore, the total glacier outline was delineated
by merging the fully debris-covered glaciers to adjacent non-or-partially debris-covered glaciers.

Finally, topographic parameters (mean elevation, mean slope, and mean aspect in degree) were
calculated for each glacier using the zonal statistics tool and the raster calculator tool in ArcGIS 10.2. It
should be noted that the mean aspect was not calculated by the average of all of the aspects of each
glacier. Instead, the mean aspect was averaged by decomposing and averaging orthogonal components
before transforming them back to the mean aspect, following a method presented in detail by Davis
(2002) [89].

4.7. Accuracy Assessment

The quality of the results of glaciers and other land cover types classified from the Landsat-8 image
was evaluated by calculating the overall accuracy and Kappa coefficient [90] using the selected testing
samples. In order to validate the classification accuracy of different land cover types, a confusion matrix
as well as the producer’s and user’s accuracy were computed. The producer’s accuracy corresponds
to the error of omission and the user’s accuracy corresponds to the error of commission [91].

5. Results

5.1. RF Importance Measures of Different Features

The normalized feature importance of all of the 70 input features in the RF classifier is shown
in Figure 7. It should be noted that LST was the most important input feature in the classification,
followed by elevation and NDWI. The top 4 most important features of the 12 topographic features
were elevation, slope, shaded relief, and absolute elevation change. Besides this, the mean feature of
each individual band was more important than other textural features (Figure 7b).
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Figure 7. (a) The normalized feature importance for the whole 10 land cover classes in the RF
classification. 1–6: Landsat-8 OLI surface reflectance (Blue, Green, Red, NIR, SWIR1, and SWIR2 band);
7: land surface temperature; 8–10: NDSI, NDWI, and NDVI; 11–22: 12 DEM-derived features (elevation,
slope, aspect, shaded relief, profile convexity, plan convexity, longitudinal convexity, cross-sectional
convexity, minimum curvature, maximum curvature, root-mean-square error, and absolute elevation
change); 23–70: eight textural features of each OLI band (average, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation). (b) Normalized feature importance for the
eight textural features for each OLI band in the RF classification.

The normalized feature importance for four individual classes (snow-ice, mixed ice and debris,
supraglacial debris, and shadowed ice) in the RF classifier is shown in Figure 8. Several conclusions
can be drawn from this figure. Specifically, the classification of snow-ice mostly relied on the NIR
spectral channel and the NDSI. LST and the NIR spectral channel were the top two most important
features for the classification of mixed ice and debris. It was interesting to note that elevation was
the most important feature for the classification of supraglacial debris, followed by LST. Absolute
elevation change was the second most important feature of all of the topographic features. Also, the
LST feature was the most important variable for the classification of shadowed ice.
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distribution of glacierized land surface and other land cover types. A large, contiguous pattern of 
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classification result was 2.3% when employing 100 decision trees in the RF classifier (Figure 10). The 

OOB error rate stabilized after 70 decision trees, which demonstrated that this number (100) of 

Figure 8. The normalized feature importance for four glacier classes, i.e., (a) snow-ice, (b) mixed ice
and debris, (c) supraglacial debris, and (d) shadowed ice in the RF classification. (1–6: Landsat-8 OLI
surface reflectance (Blue, Green, Red, NIR, SWIR1, and SWIR2 band); 7: land surface temperature;
8–10: NDSI, NDWI, and NDVI; 11–22: 12 DEM-derived features (elevation, slope, aspect, shaded relief,
profile convexity, plan convexity, longitudinal convexity, cross-sectional convexity, minimum curvature,
maximum curvature, root-mean-square error, and absolute elevation change); 23–70: eight textural
features of each OLI band (average, variance, homogeneity, contrast, dissimilarity, entropy, second
moment, and correlation).



Remote Sens. 2019, 11, 452 20 of 38

5.2. RF Classification Results

The preliminary classification results based on the Landsat-8 image acquired on 6 October
2015 (Figure 9) indicate that classification using the RF algorithm satisfactorily provides the spatial
distribution of glacierized land surface and other land cover types. A large, contiguous pattern of
snow-ice can be found in the middle of the study area. The OOB error of the preliminary classification
result was 2.3% when employing 100 decision trees in the RF classifier (Figure 10). The OOB error
rate stabilized after 70 decision trees, which demonstrated that this number (100) of decision trees
was sufficient to stabilize the error. Table 6 gives the area of 10 land cover types estimated by the RF
classifier based on the Landsat-8 image acquired on 6 October 2015. This study region was dominated
by vegetation and glacierized area (including snow-ice, mixed ice and debris, supraglacial debris, and
shadowed ice), which covered 14.0% of the total area of this region.
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Table 6. The area for each land cover class obtained by the RF classifier.

Land Cover Class Area (km2) Percent (%)

Snow-ice 821.49 4.4
Mixed ice and debris 677.12 3.6
Supraglacial debris 959.84 5.1

Bare land 1608.53 8.6
Vegetation 9915.22 52.8

Water 134.39 0.7
Terrain shadows 2025.88 10.8

Shadowed ice 161.75 0.9
Others 2116.68 11.3
Cloud 358.02 1.9
Total 18,778.92 100

In the preliminary map based on the Landsat-8 image acquired on 6 October 2015, terminal
moraine lakes at the end of a glacier tongue were correctly classified as non-ice (top solid circles in
Figure 11a,b). On the other hand, the shadows on the glacier surface were accurately distinguished
and considered as part of the glacier (bottom solid circles in Figure 11a,b). There were still some
misclassified areas in this classification result using one image. Specifically, some pixels of the
supraglacial debris class were distributed around terrain-shaded areas (dotted circles in Figure 11a,b)
or clouds (Figure 11c,d). Most of these pixels were not found in close proximity to snow-ice or
ice mixed with debris and still erroneously identified as potential supraglacial debris by the RF
algorithm. These misclassified pixels need to be removed during post-processing. Specifically, 90% of
these misclassified areas were automatically removed using the spatial analyst tool in ArcGIS 10.2,
while the remaining 10% of misclassified supraglacial debris had to be reclassified manually during
post-processing. Furthermore, cloud shadow was misclassified as terrain shadows in the west parts of
the study region (Figure 11c,d). This misclassification is not discussed in detail since it has no effect
on the classification of glaciers. Moreover, some parts of glaciers under clouds were not recognized
because they were obscured by clouds. However, this problem was solved by using multi-temporal
satellite images to extract glaciers. The cloud-covered glaciers were automatically substituted by the
cloud-free areas in other images (black rectangles in Figure 12). Likewise, misclassification occurred
for the frozen parts of some lakes classified as mixed ice and debris using one image (dotted circles in
Figure 12). This was partly due to the similar spectral characteristics and gentle slope of frozen lakes
(lake ice) and melting glaciers. This error was eliminated during the overlaying process. In addition,
the effect of seasonal snow could be minimized through overlaying the classification results of multiple
images (double-circles in Figure 12).

In summary, terminal moraine lakes and shadowed ice were correctly classified. Parts
of supraglacial debris, cloud shadow, and frozen lakes were misclassified using one image.
Misclassified supraglacial debris and cloud shadow were removed in the post-processing procedure.
No identification of cloud-covered glaciers and misclassified frozen lakes were corrected using
multi-temporal images.

The final result was obtained by overlaying classification results of multi-temporal images
(given as in Section 4.5) to show the spatial distribution of non-or-partially debris-covered and fully
debris-covered glacier (Figure 13). The cloud coverage in Figure 13 is less than 0.4% of the total area of
the study region. Therefore, the cloud obscuration had little influence on the delineated glacier outlines.
The result revealed that 1476 glaciers (>0.01 km2) were identified with a total area of 2011.32 km2

(Figure 13). However, the total glacier number depends on the minimal glacier size and the study
purpose. The recommended threshold of minimal size of glaciers was 0.01 km2, which can be identified
with satellite data at a 15–30 m spatial resolution [92]. If the minimal size is set to 0.05 km2, the total
number will reduce to 926 glaciers. The error in glacier area was estimated by applying the buffer
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method [93,94] with a buffer size of 15 m. The average glacier area was 1.36 km2 (standard deviation
of 0.08 km2) with the smallest 0.01 ± 0.01 km2 and the largest 179.16 ± 3.17 km2. 
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Figure 11. Examples of correctly classified and misclassified areas in the preliminary classification 

result. (a,c) A false color composite image acquired on 6 October 2015 (band7-SWIR, band5-NIR, and 

band3-Green for R/G/B); (b,d) The land cover map. 

Figure 11. Examples of correctly classified and misclassified areas in the preliminary classification
result. (a,c) A false color composite image acquired on 6 October 2015 (band7-SWIR, band5-NIR, and
band3-Green for R/G/B); (b,d) The land cover map.

About 20.7% (416.51 km2) of the glacial area was classified as fully debris-covered glacier by
the RF method. In contrast, the non-or-partially debris-covered glacier area accounted for 79.3%
(1594.81 km2) of the glacierized area. On the other hand, a total of 581 glaciers were partly covered by
debris, which accounted for almost 39.4% of the total glacier number.
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Figure 12. Examples of the classification results before and after overlaying. (a,c) A false color
composite image (band7-SWIR, band5-NIR, and band3-Green for R/G/B); (b,d) The land cover map
using one image. (e) Classification results after overlaying (without post-processing). The date of the
image in (a) is 6 October 2015. The date of the image in (c) is 18 July 2015.
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Figure 13. The final classification result after post-processing based on multi-temporal Landsat images.

5.3. Accuracy Assessment

The classification performance of the RF classifier was evaluated by utilizing the selected testing
samples. The testing samples were chosen based on the image acquired on 6 October 2015. Therefore,
the accuracy assessment was carried out on the classification results from the image acquired on
6 October 2015. The RF classification achieved an overall accuracy of 98.6% based on the chosen
features (n = 20). The error in land cover area was 1.5%. The Kappa coefficient was 0.98, which was
well within the acceptable range (greater than 0.8 is considered suitable) [95].

The class confusion matrix of the RF classifier provided more detail about the classification results
(Table 7). From the user’s accuracies, it was clear that all of the land cover classes yielded an accuracy
higher than 90%. However, the producer’s accuracy of the other terrain class was lower compared to
the high producer’s accuracies of the other land cover classes, which were over 96%. This was mainly
due to the fact that the class of other terrain was a mixture of various land cover types and to some
extent the problem of mixed pixels would affect the classification accuracy.
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Table 7. The confusion matrix and accuracy assessment of the land cover classification results.

Confusion Matrix

Reference

Snow-Ice
Mixed Ice

and
Debris

Supraglacial
Debris

Bare
Land Vegetation Water Terrain

Shadows
Shadowed

Ice Others Cloud User’s
Accuracy (%)

Classified

Snow-ice 99.2 0 0 0 0 0 0 0 0 0 100
Mixed ice and debris 0.8 100 0 0 0 0 0 0 0 0 98.8
Supraglacial debris 0 0 98.7 0 0 0 0 0 10.9 0 93.9

Bare land 0 0 0 100 0 0 0 0 0 2.6 97.6
Vegetation 0 0 0 0 96.5 0 0 0 0 0 100

Water 0 0 0 0 0 100 1 0 0 0 98.8
Terrain shadows 0 0 0 0 3.5 0 99 0 0 0 98.1

Shadowed ice 0 0 0 0 0 0 0 100 0 0 100
Others 0 0 1.3 0 0 0 0 0 89.1 0 97.6
Cloud 0 0 0 0 0 0 0 0 0 97.4 100
Total 100 100 100 100 100 100 100 100 100 100

Total (%): 98.6Producer’s Accuracy (%) 99.3 100 98.7 100 96.5 100 99 100 89.1 97.4
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5.4. Spatial Characteristics of Mountain Glaciers

The percentages of glacier number, glacier area, and mean altitude of the glaciers according to the
glacier size class are displayed in Figure 14a. A strong asymmetry exists in glacier number and the
total area of smaller glaciers (<1 km2) and large glaciers (≥10 km2). In detail, although small glaciers
(<1 km2) took up 88.3% of the total glacier number, they covered merely 9.4% of the total glacier area in
the study region. This is consistent with the glacier features in the mountains of the mid-latitudes [96].
Only 44 glaciers larger than 10 km2 occupied the largest glacier area, which accounted for 69.0%
(1387.24 km2) of the total glacial area. Moreover, the mean elevation of different glaciers revealed
that the elevation of small glaciers (<1 km2) was lower than the one of large glaciers. In addition, the
distribution of glacier number and area according to the glacier mean slope (Figure 14b) suggests that
glaciers with mean slopes ranging from 20◦ to 30◦ made up a large proportion of the total number and
area, while only 3.4% of the total number of glaciers had slopes less than 10◦ or more than 50◦.
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Figure 14. The distribution of (a) glacier number, glacier area, and mean altitude for different size
classes; (b) glacier number and glacier area for different mean slopes; and (c) glacier number and
glacier area for various aspects of the study area.
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On the other hand, the fractional abundances of glacier number and glacier area versus mean
aspect were analyzed at 45◦ intervals (Figure 14c). The radar chart revealed that the predominant
orientations of glaciers were northeast and north, which altogether accounted for 42.1% of the total
glacier number and 40.2% of the total glacier area. If we set the West–East direction as a divide, the
number and area of glaciers with north aspects (NW, N, and NE) remarkably exceeded those facing
south aspects (SW, S, and SE). The characteristics of the aspect distribution revealed that the location
of glaciers was primarily controlled by the local topographic effects [97–99].

Furthermore, the elevation of glaciers mapped in this region varied in the range 2515–6834 m
a.s.l. (Figure 15a). The elevation map of glaciers was reclassified into 22 elevation gradients by 200-m
intervals according to the DEM data, and the hypsometry of non-or-partially debris-covered and
fully debris-covered glaciers in this area is illustrated in Figure 15b. The analysis suggests that the
glaciers distributed between 4600 m and 5600 m had a total area of 1558.79 km2 (77.5% of the total
glacier area) (Figure 15b), which is relatively consistent with the results reported in previous studies
(about 77.0% of the glacier area in the Kangri Karpo Mountain lies in the 4500–5500 m elevation
range based on Landsat-8 OLI images acquired in 2015 [76]). The glacier area in the other gradient
bins is 452.53 km2, which occupies 22.5% of the total glacier area. Besides this, it indicates that
non-or-partially debris-covered ice is primarily distributed at elevations of 5200–5400 m a.s.l., whereas
fully debris-covered ice is dominant at lower elevations (around 4600–4800 m a.s.l.). These results are
in good agreement with other observations that debris cover tend to be found on low-lying tongues of
large valley glaciers [31,100]. Debris-covered glacial area tends to concentrate in areas where the debris
supply is high and the ice surface velocity is low relative to the snow-ice ablation [101]. Therefore,
debris covers mainly develop in the lower parts of the ablation zones.
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6. Discussion

6.1. Uncertainty of Glacier Inventory Data

As shown in some previous studies, the uncertainty of automated classification of glaciers was
±1 pixel (30 m of Landsat-8 OLI) in the glacier outline position under cloud-free conditions [31,97].
In this study, there were several uncertainties in the process of mapping glacier facies.

First, the main uncertainty of our method was due to the training data. The accuracy of
classification results was affected by the amount and distribution of training samples. The sample
points were interactively selected based on expert knowledge in the area covered by high-resolution
GF-1 PMS imagery with the aid of images from Google Earth. However, the swath width of the GF-1
PMS image (60 km) was smaller than the width of our study area, and the area of the GF-1 PMS image
only occupied 9% of our study area (Figure 1). Besides this, the high-spatial-resolution images from
Google Earth in this study region were generally acquired in winter, when it is difficult to recognize the
glaciers and debris due to the heavy snow cover. Hence, the classification samples were not sufficient
to include all types of mixed pixels for the whole region. Furthermore, detailed field surveys could
help to identify the pixel as debris-covered glacier or other land cover types. Collecting extensive
ground data could further improve our knowledge of the state of glaciers in this region. Therefore,
further field-based knowledge of the glacier surface area is needed and classification samples covering
the entire area may improve the accuracy of the RF classification results.

Second, the accuracy of the DEM was a crucial factor in this study, which directly affected
topographic features of glaciers used in the RF classification process. The TanDEM-X 90 m DEM data
have a coarse spatial resolution, which might cause uncertainties in the extraction of information
on elevation change. Bilinear interpolation has commonly been used for resampling DEM data
with different spatial resolutions [63,68]. However, the accuracy of the DEM data is degraded by
downsampling to a lower resolution, regardless of the interpolation method [102]. Moreover, the
TanDEM-X DEM was produced by averaging multi-year DEMs over 2010–2015. Using a multi-year
averaged DEM for elevation change detection might result in an average divergence on the dynamic
parts of the scene compared to a single DEM acquired at a given time [102]. The impact of
pulse penetration into snow on the SRTM DTM data could cause higher uncertainties in the snow



Remote Sens. 2019, 11, 452 29 of 38

accumulation areas [69]. The snow penetration can potentially be assessed based on a backscatter
analysis, but such an analysis was not carried out since it went beyond the goal of our study. The
surface condition of the glaciers and their surroundings showed a complex pattern. Crucial surface
characteristics may not be reflected in the DEM with 30-m resolution. Therefore, higher resolution
DEM data are required to capture the rough topography of the glaciers and their surroundings.

Furthermore, cloud shadows were not included in this classification system and classified
as terrain shadows. An analysis of the characteristics of cloud shadow needs to be conducted in
future studies [103,104]. Moreover, the impact of snow outside the glacier could be minimized using
multi-temporal Landsat images. The snow that was present in all images could not be removed by the
multi-temporal classification. In any case, a glacier inventory, such as the Southeastern Qinghai–Tibet
Plateau Glacier Inventory, can be applied to mitigate this problem by filtering out targets classified as
snow-ice that are located clearly outside glacier boundaries.

In addition, land cover classes were simply merged before overlaying classification results of
multi-temporal images. Errors in the classification may propagate in the merged results. The results of
fully debris-covered glacier and unglaciated areas were not considered in the process of overlaying
multiple results. More advanced methods of merging classes and overlaying multi-temporal results
need to be investigated and applied in future studies.

6.2. Comparison with Other Glacier Classification Methods

Glaciers in the southeastern Tibetan Plateau have been delineated using thresholding of the band
ratio [30,76,105]. Pan et al. 2012 [99] extracted glacier borders by using a decision tree classifier that
utilizes multiple thresholds. It is important to note that the selection of most segmentation thresholds
is based on manual work, which significantly increases the requirement of manual editing.

Many studies of mapping debris-covered glaciers in the southeastern Tibetan Plateau have used
visual interpretation; e.g., Pan et al. (2012) [99] extracted the outlines of debris-covered glaciers in
the Gongga Mountains. The debris-covered glaciers were also manually digitized in the second
Chinese Glacier Inventory [30]. Delineation of debris-covered glaciers in the Kangri Karpo Mountain
was entirely based on manual digitization [76]. Previous studies have indicated that mapping
debris-covered glaciers using manual interpretation based solely on spectral images and DEM data
may generate misleading results [31]. For areas with a large number of glaciers (hundreds), our method
is much faster than visual interpretation alone.

There are few studies that have used semi-automatic methodologies to map debris-covered
glaciers in the southeastern Tibetan Plateau. Song et al. (2007) [106] recognized the glaciers by using
segmentation of spectral indices and an unsupervised classification method based on Landsat and
DEM data. Ke et al. (2016) [31] presented a semi-automated method for mapping glaciers based on
Landsat, DEM, and SAR coherence data. They estimated an uncertainty of 3% for the total mapped
glacier area. However, there was no separate accuracy provided for debris-free and debris-covered
glaciers. It should be noted that these methods need manual selection of the thresholds used for map
segmentation. Therefore, our method is more reliable and robust due to its automatic estimation of the
segmentation threshold and its application over large study areas.

6.3. Comparison with Previous Glacier Inventories

The RF-based automatic classification result using multi-temporal images has been compared with
two existing glacier inventories, the second Chinese Glacier Inventory (CGI2) and the Southeastern
Qinghai–Tibet Plateau Glacier Inventory (SEQTPGI). CGI2 was compiled using the band ratio
segmentation method with the aid of intensive manual interpretation based on 2005–2010 Landsat
TM/ETM+ scenes. SEQTPGI was delineated by a semi-automated method on the basis of Landsat
images acquired mainly during 2011–2014 and coherent images from Synthetic Aperture Radar data.

The comparison between the RF classification result and the other two glacier datasets is shown
in Figure 16. In total, the area of glaciers (>0.02 km2) in the CGI2 was 2268.52 km2, which is larger than
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total area of the RF glacier and SEQTPGI (2007.64 km2 and 1836.19 km2, respectively). The original
Landsat images of CGI2 were acquired in 2005, whereas the images used for SEQTPGI were acquired
in 2013–2014. Some of the differences in the glacier area were more likely due to the glacier changes.
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Figure 16. A comparison of the RF classification results (black lines), Southeastern Qinghai–Tibet
Plateau Glacier Inventory (SEQTPGI, red lines), and the second Chinese Glacier Inventory (CGI2,
yellow lines). (a) A false color composite image acquired on 6 October 2015 (band7-SWIR, band5-NIR,
and band3-Green for R/G/B); (b–d) Glacier outlines of different datasets with the Landsat-8 OLI image
(6 October 2015) as a background.

A visual inspection showed that the RF classification results agree well with the glacier outlines
of SEQTPGI in the northeastern portion of the study area (Figure 16b). However, CGI2 generally
estimated a larger glacier area than the other two results (Figure 16d). This inconsistency in the CGI2
may be due to the seasonal snow cover or glacier retreat in this area, which was also mentioned in
other studies [31]. Furthermore, the glaciers of CGI2 contain some terminal moraine lakes at the end
of the glacier tongue, which are not included in the SEQTPGI and RF results (black rectangles in
Figure 16c). The differences for these zones may partly be caused by glacier retreat along the terminus.

A large difference has been found at the tongue of the glaciers before and after adding the
change information on glacier elevation. Some debris-covered parts at the glacier tongue were not
mapped by RF classification without using elevation change information (pink lines in Figure 17).
Such similar findings were also shown in previous studies [18]. Their results documented a significant
difference between applying the thermal-optical approach proposed by them and the geomorphological
approach, especially in the ablation area. One of the reasons might be the coarser spatial resolution of
the TIR bands. The TIR bands of Landsat-8/TIRS have a coarser spatial resolution (acquired at 100-m
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resolution) than the L8/OLI bands, which may have resulted in some difficulties when analyzing
L8 data. The lower resolution of TIR image data limits their application over heterogeneous land
surfaces [107]. Mixed pixels in TIR imagery affected the retrieved LST. Some debris-covered areas
at the lower tongue of the glaciers were not classified by the RF method, which might be due to the
upscaling effect of the 100-m pixels of surface temperature. Furthermore, the LST image clearly shows
a higher temperature in the vicinity of the glacier tongue (Figure 17b). During the analysis of RF
importance metrics for various ice cover types in Section 5.1, it appeared that LST is an important
feature for the classification of fully debris-covered glaciers. The debris cover in relation to the LST is
highly dependent on the composition, distribution, and thickness of debris [33,108]. Delineation of
debris-covered glaciers based on LST is effective when the thickness of debris cover does not exceed
40–50 cm [17,18,109]. These areas at the lower tongue of the glaciers may be debris-covered glaciers
with a very thick layer and high LST. Due to the similarity in the spectral properties and LST of
debris-covered glaciers with the surrounding bare land areas, the classification method by applying
the thermal-optical approach could not identify the lower tongue of the debris-covered part of the
glaciers. We tried to increase the number of training samples to capture a higher variability of LST;
however, more unglaciated areas were included in the supraglacial debris class. A possible reason for
this might be that the classification features derived from the thermo-optical approach were inadequate
to express the difference between supraglacial debris and the surrounding bare land areas. This might
be a weakness of applying the thermo-optical approach without adding more features, e.g., the information
on glacier elevation changes. In contrast, the RF classification results using elevation change as an input
feature identified the fully debris-covered areas at the lower tongue of the glaciers, which agreed well with
the glacier outlines of SEQTPGI and CGI2 (dotted rectangles in Figure 17). It shows that the information
on glacier elevation change was helpful to classify the surface types of the lower tongue of glaciers.

Nonetheless, there were some areas at the glacier tongue that were delineated in SEQTPGI and
CGI2, but not mapped by RF classification in the middle of the study area. One of the reasons might
be the coarser spatial resolution of and data gaps in the TanDEM-X 90 m DEM data. We calculated the
mismatch area of the lower tongue of debris-covered glaciers between RF classification results (with
elevation change) and SEQTPGI data. It accounted for 5.4% of the total area of fully debris-covered
glaciers and 1.1% of the total glacial area in the RF classification results. Such a glacier mismatch
between the RF classification results and the other two datasets needs to be verified by field surveys
and higher-resolution DEM data.  
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Figure 17. A comparison of the RF classification results with (black lines) or without (pink lines)
elevation change information, SEQTPGI (red lines) and CGI2 (yellow lines). (a) A false color composite
image acquired on 6 October 2015 (band7-SWIR, band5-NIR, and band3-Green for R/G/B); (b) LST
map; and (c) Elevation change map.

In summary, the RF classification results and SEQTPGI show good coherence in the northeast of
this region. The RF classification results using elevation change information could identify the lower
tongue in the debris-covered part of glaciers, as delineated in SEQTPGI and CGI2. The overestimation
of glacierized areas in CGI2 or glacier retreat needs more analysis in this region. The RF classification
results have been made available at the Global Change Research Data Publishing & Repository
(http://www.geodoi.ac.cn/WebEn/doi.aspx?Id=1150).

7. Conclusions

This study explored the efficacy of a machine-learning technique for the automated extraction of
non-or-partially debris-covered and fully debris-covered glaciers based on multi-temporal Landsat-8
data and multiple DEM data in the Parlung Zangbo basin. Except for land surface reflectance, four
types of features were considered in the Random Forest classification, which included spectral indices
and textural features from optical OLI data, land surface temperature from the TIRS data, and terrain
metrics derived from DEM data. The results demonstrate that this method classifies all of the glaciated
land cover types with satisfactory overall accuracy, which means that the Random Forest classifier is
capable of discriminating non-or-partially debris-covered and fully debris-covered glaciers and may
be applied for automatic glacier facies mapping using satellite imagery. This method has correctly
classified the terminal moraine lakes and glaciers in a shadowed area. However, some problems
occurred in cloud-covered glaciers, misclassified debris around clouds and terrain shadows, and
frozen lakes using one image. Using multi-temporal satellite images to recognize glaciers can help
to overcome the problem of misclassified frozen lakes and minimize the effect of seasonal snow and
cloud cover.

The results indicate that 1476 glaciers (>0.01 km2), covering an area of almost 2011.32 km2, were
mapped in the high-mountain subregion of the Parlung Zangbo basin in the southeastern Tibetan
Plateau. The results of this study also show that approximately 20.7% of the total glacier area is covered
by debris, which are distributed mainly at altitudes between 4600 m and 4800 m a.s.l.. Moreover, our
findings reveal that the glaciers with an elevation between 4600 m and 5600 m amount to 1558.79 km2

(77.5%), and small glaciers (<1 km2) with a fractional abundance of 88.3% are distributed at a lower
elevation than large glaciers. In addition, a majority of glaciers (both in terms of glacier number and
area) have mean slopes from 20◦ to 30◦, and 42.1% of glaciers have a northeast and north orientation.
The main uncertainties of our method lay in the influences of the selected training samples and DEM

http://www.geodoi.ac.cn/WebEn/doi.aspx?Id=1150
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data. Further improvements are expected based on additional information from field measurements
for the selection of training samples and the validation of debris-covered glaciers and higher-resolution
DEM data for the accurate extraction of topographic information.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/4/452/s1,
Figure S1: Examples of input data for the RF classification method for a subset of the study region. (a) A false
color composite image (band7-SWIR, band5-NIR, and band3-Green for R/G/B); (b) Land surface temperature;
(c) Elevation; (d) Slope; (e) Shaded relief; (f) NDSI; (g) NDWI; (h) NDVI; and Textural (i) mean, (j) variance,
(k) homogeneity, (l) contrast, (m) dissimilarity, (n) entropy, (o) second moment, and (p) correlation images of OLI
band 2.
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