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Greenhouse climate control is concerned with maximizing performance in terms of crop yield and resource ef-

ficiency. One promising approach is model predictive control (MPC), which leverages a model of the system to 
optimize the control inputs, while enforcing physical constraints. However, prediction models for greenhouse 
systems are inherently inaccurate due to the complexity of the real system and the uncertainty in predicted 
weather profiles. For model-based control approaches such as MPC, this can degrade performance and lead to 
constraint violations. Existing approaches address uncertainty in the prediction model with robust or stochastic 
MPC methodology; however, these necessarily reduce crop yield due to conservatism and often bear higher com-

putational loads. In contrast, learning-based control approaches, such as reinforcement learning (RL), can handle 
uncertainty naturally by leveraging data to improve performance. This work proposes an MPC-based RL control 
framework to optimize the climate control performance in the presence of prediction uncertainty. The approach 
employs a parametrized MPC scheme that learns directly from data, in an online fashion, the parametrization 
of the constraints, prediction model, and optimization cost that minimizes constraint violations and maximizes 
climate control performance. Simulations show that the approach can learn an MPC controller that significantly

outperforms the current state-of-the-art in terms of constraint violations and efficient crop growth.

1. Introduction

Greenhouse climate control presents a key opportunity to address the 
growing world population’s food production requirements in a changing 
climate, and the grand societal challenge of efficient energy consump-

tion. With modern greenhouses equipped with actuation systems such 
as heating, ventilation, and CO2 injection, effective control approaches 
can lead to high crop yield in an energy-efficient manner. However, the 
control challenge is difficult as the process dynamics are highly nonlin-

ear and complex [28], and the climate variables, such as temperature 
and humidity, must be effectively constrained to avoid damage to crops 
due to, e.g., spread of diseases [6,34,11]. While traditional methods, e.g.,

on-off and PID control, have been used for low-level regulation, these 
strategies are not rooted in optimal control and are in general unable to 
deliver optimal performance and to systematically handle complex state 
and/or input constraints [12,15].

* Corresponding author.

E-mail address: s.h.mallick@tudelft.nl (S. Mallick).
1 These authors contributed equally to this work.

Model predictive control (MPC) is an optimization-based control 
methodology that naturally handles multi-input-multi-output systems 
with state, input, and output constraints [5]. It has seen huge theoret-

ical success and application in process control, and has been proposed 
to solve greenhouse control challenges [3,10,21]. However, MPC relies 
heavily on an accurate prediction model, while in a greenhouse pre-

diction model there always exist uncertainties due to, e.g., modeling 
error and inaccurate weather forecasting. For model-based control, an 
incorrect model can lead the controller to drive the system to an un-

desired point of operation, possibly violating constraints. Furthermore,

as constraints often represent the validity range for the accuracy of the 
prediction model, violations of the constraints can lead to degraded per-

formance when applied to the real system [34].

Some existing works have addressed prediction uncertainty only in 
the context of external disturbances, such as weather predictions [6,14].

In [8], the uncertainty in market prices is addressed with a scenario-
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based stochastic MPC controller; however, the controller is based on 
mixed-integer optimization, requiring significant computational efforts.

Alternatively, the following existing works have explored uncertainty

stemming from an incorrect physical model of the system. In [12], the 
robustness of predictive control for a greenhouse in the presence of 
model uncertainties is considered empirically, however no mechanism 
to compensate for the prediction error is introduced. In [19,20], a neu-

ral network is used as a prediction model, with a robust MPC controller

addressing the prediction uncertainty; however, a min-max robust MPC 
approach is used, which is inherently conservative. In [34], an approach 
to mitigating the negative effects of model uncertainty is presented us-

ing online parameter estimation. However, only a small subset of the 
(possibly) uncertain model parameters are estimated. Of particular note,

in [4], parametric uncertainty in all model parameters is addressed.

A robust sample-based MPC controller is proposed to incorporate the 
uncertainty into the control approach. However, the resulting control 
scheme is unable to adequately reduce constraint violations, and re-

sults in less crop yield due to conservativeness. More recently, [27] has 
proposed a chance-constrained stochastic MPC formulation to address 
parametric uncertainties in greenhouse production systems. However,

this approach relies on linearization of the prediction model, further

increasing prediction uncertainty. Additionally, the chance constrained 
formulation leads to a computational load that is higher than traditional 
MPC schemes.

In contrast to MPC, reinforcement learning (RL) is a model-free con-

trol methodology where a control policy is learned from data observed 
from the system [26]. RL controllers naturally handle uncertainty and 
adapt to changing conditions with no additional mechanisms, as they are 
learned through direct interaction with the real system. For complex sys-

tems with large continuous state and action spaces, the state-of-the-art 
for RL uses deep neural networks (DNNs) as function approximators to 
represent the controller. With the power of DNNs as general function 
approximators, this idea has seen unprecedented success on previously

unsolved problems, e.g., the games of chess and Go [25]. The power

and inherent uncertainty handling of RL has been identified as useful 
for greenhouse climate control, with [32] proposing a DNN-based RL ap-

proach based on deep deterministic policy gradient (DDPG) [17], and 
[22] drawing a comparison between MPC and DDPG. However, an inher-

ent drawback for RL controllers is the absence of theoretical guarantees 
on the satisfaction of constraints and a lack of interpretability due to the 
black-box DNN function approximation. In the context of greenhouse 
control, this means growers have no guarantee that the automated con-

troller will effectively constrain climate variables to safe ranges, with 
potential negative implications on crop health and profit.

Recently, [9] proposed and justified an integrated MPC and RL con-

trol paradigm, where the MPC controller serves as a function approxima-

tor for the optimal policy in model-based RL. Fig. 1 depicts a schematic 
overview of this architecture. In such a scheme, the MPC controller’s op-

timization problem acts both as policy provider, picking actions based 
on a state, and value function approximator, estimating ‘how good’ it is 
to be in a given state. The learning algorithm, e.g., Q-learning [33], is 
tasked with adjusting the parametrization of the MPC controller in an 
effort to discover the optimal control policy, thus improving closed-loop 
performance in a data-driven fashion. In this way, despite the presence 
of mismatches between the prediction model and the real system, the 
MPC control scheme is able to learn and deliver, at convergence, the op-

timal policy and value functions of the underlying RL task, granted the 
MPC parametrization is rich enough. In contrast to DNN-based RL, the 
MPC scheme at the core of this approach provides the option of inte-

grating prior information that may be known on the system in the form 
of, e.g., an expert-based, possibly imperfect, prediction model. More-

over, MPC-based agents are in general more amenable to analysis and 
certification in terms of stability and constraint satisfaction [5]. Finally,

MPC-based controllers can take constraints into account in an explicit 
and structured way, which DNNs are generally incapable of doing. The 
above benefits render this methodology suitable for greenhouse climate 

Fig. 1. Diagram of the MPC-based RL architecture. 

control, where an inaccurate prediction model is known, and climate 
variables must be constrained. 

Therefore, in this work we propose an integrated MPC and RL frame-

work to address the problem of greenhouse climate control under para-

metric uncertainty stemming from uncertain weather predictions and 
modeling mismatches. Specifically:

1. To the best of the authors’ knowledge, a combined MPC and RL

approach for greenhouse climate control in the presence of uncer-

tainty is proposed for the first time. A parametrized MPC scheme,

inspired by [9], is crafted to serve as policy provider and value func-

tion approximator in an RL formulation of the greenhouse climate 
control problem. A second-order Q-learning algorithm is leveraged 
to adjust the parametrization of the MPC scheme online, automati-

cally learning a control policy. The approach provides an adaptive 
and high-performing climate controller that minimizes potentially

dangerous constraint violations, without negatively affecting crop 
growth due to robustness conservatism, and without relying on an 
expensive-to-acquire accurate prediction model. Additionally, in 
contrast to DNN-based learning approaches, the behavior of the 
resulting controller can be interpreted by analyzing the learned 
parametrization of the constraints, prediction model, and cost func-

tion.

2. The approach is then validated in simulation, and compared against 
both model-based MPC and model-free RL state-of-the-art con-

trollers. The results demonstrate the effectiveness of the approach,

with the proposed methodology outperforming existing controllers 
from the literature in both constraint satisfaction and efficient crop 
growth.

Compared to the state-of-the-art MPC formulations [4,8,19,20,27],

instead of addressing uncertainty in the parametrization in a robust or

stochastic fashion, the proposed methodology adapts its policy via RL in 
order to improve closed-loop performance. This has the distinct advan-

tage of yielding less conservative control schemes while retaining low

computational complexity. In comparison with DNN-based approaches 
such as [22,32], our method integrates MPC as function approximator

in the RL algorithm, fostering a model-based approach that is more suit-

able for learning high-performance, constraint-abiding policies.

The paper is structured as follows. In Section 2 relevant background 
is provided on the greenhouse model used, and on the combined MPC 
and RL paradigm from [9]. The problem we address is formally defined 
in Section 3. Section 4 presents the proposed methodology, which is 
then applied and assessed extensively in simulation in Section 5. Finally,

conclusions and future work directions are given in Section 6.

2. Background

This section describes the greenhouse model considered in this work.

Additionally, background theory on combining MPC and RL is provided,

upon which the methodology proposed in this paper is built.
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Table 1
Physical meaning of the state 𝑥, output 𝑦, input 𝑢, and disturbance 𝑑.

𝑥1 dry-weight (kgm−2) 𝑦1 dry-weight (g m−2) 𝑑1 radiation (W m−2) 
𝑥2 indoor CO2 (kgm−3) 𝑦2 indoor CO2 (‰) 𝑑2 outdoor CO2 (kgm−3) 
𝑥3 indoor temperature (◦C) 𝑦3 indoor temperature (◦C) 𝑑3 outdoor temperature (◦C) 
𝑥4 indoor humidity (kgm−3) 𝑦4 indoor humidity (%) 𝑑4 outdoor humidity (kgm−3)

𝑢1 CO2 injection (mgm−2 s−1) 𝑢2 ventilation (mms−1) 𝑢3 heating (W m−2) 

2.1. Lettuce greenhouse model

We consider a greenhouse for lettuce growing, with the continuous-

time model, presented in [28], given in the Appendix. While the 
continuous-time model is used in all simulations, for control purposes a 
discrete-time model is considered

𝑥(𝑘+ 1) = 𝑓
(
𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘), 𝑝

)
,

𝑦(𝑘) = 𝑔
(
𝑥(𝑘), 𝑝

)
,

(1)

with 𝑥 ∈ ℝ4 the state, 𝑢 ∈ ℝ3 the control input, 𝑑 ∈ ℝ4 the weather

disturbance, and 𝑦 ∈ ℝ4 the output. Furthermore, 𝑝 ∈ ℝ28 is a set of 
model parameters, and 𝑘 ∈ ℤ+ is the discrete-time counter for discrete 
time steps of Δ𝑡 = 900 s (15 minutes). The nonlinear functions 𝑓 and 
𝑔, and the model parameters 𝑝, are given in the Appendix. The physical 
meaning of the states, outputs, inputs, and disturbances is summarized 
in Table 1. Estimation is out the scope of this paper, and it is assumed,

as in [4], that at each time step 𝑘 a perfect estimate of the state 𝑥(𝑘) is 
available. 

2.2. MPC as a function approximator in RL

Consider discrete-time system dynamics as a Markov Decision Pro-

cess (MDP) [26] with continuous state 𝑠 ∈ℝ𝑛, continuous action 𝑎 ∈ℝ𝑚,

and state transitions 𝑠, 𝑎→ 𝑠+ with the underlying conditional probabil-

ity density

ℙ[𝑠+|𝑠, 𝑎] ∶ℝ𝑛 ×ℝ𝑚 ×ℝ𝑛 → [0,1]. (2)

Consider a deterministic policy 𝜋𝜃(𝑠) ∶ ℝ𝑛 → ℝ𝑚 parametrized by 𝜃 ∈
ℝ𝑙 . Selecting actions based on this policy will cause the system to visit 
the MDP’s states with a given distribution, denoted 𝜂𝜋𝜃 . The perfor-

mance of such a policy is defined as [26]

𝐽 (𝜋𝜃) = 𝔼𝜂𝜋𝜃

[
𝑁s∑
𝑘=0

𝛾𝑘𝐿

(
𝑠𝑘, 𝜋𝜃

(
𝑠𝑘
))]

, (3)

where 𝑠𝑘 is the state at time step 𝑘, 𝐿(𝑠, 𝑎) ∶ ℝ𝑛 × ℝ𝑚 → ℝ the stage 
cost, 𝛾 ∈ (0,1] the discount factor, and 𝑁s the number of time steps 
considered in a task. The RL task is then to find the optimal policy 𝜋⋆

𝜃

as

𝜋⋆
𝜃
= arg min

𝜃
𝐽 (𝜋𝜃). (4)

The familiar notions of state- and action-value functions [26] are defined 
respectively as 

𝑄𝜃

(
𝑠𝑘, 𝑎𝑘

)
=𝐿

(
𝑠𝑘, 𝑎𝑘

)
+ 𝔼𝜂𝜋𝜃

[
𝑁s∑

𝜏=𝑘+1
𝛾𝜏−𝑘𝐿

(
𝑠𝑘, 𝜋𝜃

(
𝑠𝑘
))]

, (5)

and 𝑉𝜃
(
𝑠𝑘
)
=𝑄𝜃

(
𝑠𝑘, 𝜋𝜃

(
𝑠𝑘
))

. While DNNs are the most common choice 
for representing the policy and value functions [17], their black-box

nature does not facilitate the injection of prior information, e.g., approx-

imate prediction models, nor is it conducive to an interpretable policy

and the addition of constraints. To account for these drawbacks, [9] pro-

posed the use of an MPC scheme in place of a DNN.

Consider the following MPC problem approximating the value func-

tion, parametrized by 𝜃, 𝑉𝜃 ∶ℝ𝑛 →ℝ as

𝑉𝜃(𝑠) = min
x,u,𝝈

𝜆𝜃
(
𝑥(0)

)
+

𝑁−1∑
𝑘=0 

𝛾𝑘
(
𝐿𝜃

(
𝑥(𝑘), 𝑢(𝑘)

)
+𝜔⊤𝜎(𝑘)

)
+ 𝛾𝑁

(
𝑉 f
𝜃

(
𝑥(𝑁)

)
+𝑤⊤

f
𝜎(𝑁)

)
(6a)

s.t. 𝑥(0) = 𝑠, (6b)

for 𝑘 = 0,… ,𝑁 − 1

𝑥(𝑘+ 1) = 𝑓𝜃
(
𝑥(𝑘), 𝑢(𝑘)

)
, (6c)

ℎ𝜃
(
𝑥(𝑘), 𝑢(𝑘)

)
≤ 𝜎(𝑘), (6d)

𝜎(𝑘) ≥ 0, (6e)

ℎf
𝜃

(
𝑥(𝑁)

)
≤ 𝜎(𝑁), (6f)

𝜎(𝑁) ≥ 0, (6g)

where slack variable 𝜎(𝑘) softens the inequality constraint for time step 
𝑘, and the vectors x, u and 𝝈 respectively collect the states, actions, and 
slack variables over the horizon 𝑁 . Problem (6) is solved numerically

online to generate the value 𝑉𝜃(𝑠). In (6), 𝜆𝜃 is an initial cost term, 𝐿𝜃

is the stage cost, and 𝑉 f
𝜃

is a terminal cost approximation, all of which 
are parametrized by 𝜃. Furthermore, 𝑓𝜃 is the model approximation, and 
ℎ𝜃 , ℎf

𝜃
are inequality constraints. Lastly, 𝑤 and 𝑤f are the weights of the 

slack variable in the objective. Note that the formulation (6) is general,

i.e., the dimension of 𝜃, and how it enters into the respective functions 
in (6), is not made explicit. In Section 4 we will introduce a concrete 
realization, designed for the greenhouse climate control problem.

Given (6), the action value function 𝑄𝜃 and the policy 𝜋𝜃 , satisfying 
the fundamental equalities of the Bellman equations [9], are defined as 
follows:

𝑄𝜃(𝑠, 𝑎) = min
x,u,𝝈

(6a)

s.t. (6b) − (6g),

𝑢(0) = 𝑎,

(7)

𝜋𝜃(𝑠) = arg min
𝑎 

𝑄𝜃(𝑠, 𝑎). (8)

Therefore, in RL terms, the parametric MPC scheme acts as policy

provider for the learning agent, whose goal is to modify the parame-

ters 𝜃 of the controller in order to minimize (4). Various forms of RL

[26] exist that solve this problem directly or indirectly via iterative up-

dates 

𝜃← 𝜃 − 𝛼∇𝜃

𝑚 ∑
𝑖=1 

𝜓(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1, 𝜃), (9)

where 𝛼 ∈ ℝ+ is the learning rate, 𝑧 denotes the number of observa-

tions used in the update (i.e., a batch of observations), and 𝜓 captures 
the controller’s performance and varies with the specific algorithm. For

example, in recursive Q-learning we have that 𝑚 = 1 and 𝜓 = 𝛿2
𝑖
, where 

the temporal-difference (TD) error

𝛿𝑖 =𝐿(𝑠𝑖, 𝑎𝑖) + 𝛾𝑉𝜃(𝑠𝑖+1) −𝑄𝜃(𝑠𝑖, 𝑎𝑖) (10)

captures the estimation error of the value functions [26].

Smart Agricultural Technology 10 (2025) 100751 
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3. Problem formulation

We address the problem of optimal greenhouse climate control for

crop yield and resource efficiency. As in [4], we consider the predictive 
uncertainty, stemming from uncertain weather predictions and mod-

eling errors, to be captured by parametric uncertainty2 in the model 
parameters 𝑝. Specifically, the true values for 𝑝 are assumed to be un-

known.

Growth cycles of 40 days are considered, where control inputs are 
computed at 15 minute time steps, i.e., growth cycles of 𝑁s = 3840
time steps. This duration is in line with the literature [4,22], and rep-

resents a standard lettuce growth cycle, at the end of which the let-

tuce is harvested and sold, generating economic profit. During each 
growth cycle, we wish to maximize the yield and minimize the viola-

tions of constraints on the system outputs, whilst minimizing the cost 
associated with control signals. The system outputs are constrained as 
𝑦min(𝑘) ≤ 𝑦(𝑘) ≤ 𝑦max(𝑘), with [4,22]

𝑦min(𝑘) =
(
0,0, 𝑦3,min

(
𝑑1(𝑘)

)
,0
)⊤

,

𝑦max(𝑘) =
(
∞,1.6, 𝑦3,max

(
𝑑1(𝑘)

)
,70

)⊤
,

(11)

and with the time-varying third element defined as

𝑦3,min

(
𝑑
)
=

{
10, if 𝑑 < 10
15, if 𝑑 ≥ 10

,

𝑦3,max

(
𝑑
)
=

{
15, if 𝑑 < 10
20, if 𝑑 ≥ 10

.

(12)

These time varying constraints are common in the literature; they reflect 
that inside the greenhouse it is colder during the night than during the 
day [22,4,24]. The inputs are constrained as 𝑢min ≤ 𝑢(𝑘) ≤ 𝑢max, with 
[4,22]

𝑢min = (0,0,0)⊤,

𝑢max = (1.2,7.5,150)⊤.
(13)

Finally, the input rate is constrained as [4,22]

|𝑢(𝑘+ 1) − 𝑢(𝑘)| ≤ (1∕10)𝑢max. (14)

Define the following performance indicators:

• Final yield 𝑦1(𝑁s)
• Constraint violations Ψ
• Economic profit indicator 𝑃 .

The final yield 𝑦1(𝑁s) is the dry lettuce weight at the end of a growth 
cycle of 𝑁s time steps. The constraint violations indicator Ψ is defined 
as

Ψ=
𝑁s∑
𝑘=0

4 ∑
𝑖=1 

(
max

(
0,

𝑦𝑖(𝑘) − 𝑦𝑖,max(𝑘) 
𝑦𝑖,max(𝑘) − 𝑦𝑖,min(𝑘)

)

+max
(
0,

𝑦𝑖,min(𝑘) − 𝑦𝑖(𝑘) 
𝑦𝑖,max(𝑘) − 𝑦𝑖,min(𝑘)

))
. (15)

2 The choice to represent modeling error and weather prediction inaccuracy

via the uncertainty in 𝑝 results in a prediction model in which even the param-

eters that may represent known physical quantities, e.g., the ideal gas constant 
𝑝23, being unknown.

Table 2
Coefficient values for the economic profit 
indicator 𝑃 (the former Dutch currency Hfl,

the Guilder, is used for adherence to the lit-
erature [4,22,27–29]).

Symbol Value Unit 
𝑐price,1 1.8 Hf lm−2

𝑐price,2 1.6 Hf l kg−1

𝑐q 6.35 ⋅ 10−9 Hf l J−1
𝑐CO2

42 ⋅ 10−2 Hf l kg−1

Δ𝑡 900 s

This performance indicator captures the magnitude of violations on the 
output constraints over a growth cycle. Finally, the economic profit in-

dicator3 𝑃 is defined as [29,22]

𝑃 = 𝑐price,1 + 𝑐price,2 𝑦1(𝑁s) −
𝑁s∑
𝑘=0

(
𝑐CO2

𝑢1(𝑘) + 𝑐q𝑢3(𝑘)
)
Δ𝑡, (16)

where the relation between auction price and harvest weight of lettuce 
is modeled linearly with coefficients 𝑐price,1 and 𝑐price,2, and the finan-

cial cost of the climate conditioning equipment is linearly related to the 
amount of energy and carbon dioxide put into the system, weighted by

prices 𝑐q and 𝑐CO2
, respectively. Note that in 𝑃 no cost is associated to 

natural ventilation used for cooling and dehumidification, i.e., 𝑢2 [8].

The values of the coefficients of this economic model are given in Ta-

ble 2, and more details are available in, e.g., [29, Section 2.1]. This 
performance indicator represents the monetary value of a growth cy-

cle, and captures the efficiency of the control with respect to the use of 
costly actuators. 

4. Methodology

To address the issues caused by inaccurate knowledge of the true 
prediction model parameters 𝑝 for model-based MPC controllers, we 
propose a novel parametrized MPC scheme for the greenhouse climate 
control problem. Then, leveraging closed loop data, we show how the 
parameter values can be learned using RL techniques [9], compensating 
for the performance loss introduced by an inaccurate prediction model.

4.1. Greenhouse climate control as an RL problem

In order to apply an RL methodology to learn the MPC parametriza-

tion, the greenhouse climate control must be modeled as an RL task, i.e.,

as an MDP defined as in Section 2.2. Trivially, the greenhouse input vari-

able 𝑢 corresponds directly to the actions 𝑎 in the RL context. Define the 
concatenation of the current state, and the current and previous outputs,

as the RL state:

𝑠(𝑘) =
(
𝑥⊤(𝑘), 𝑦⊤(𝑘), 𝑦⊤(𝑘− 1)

)⊤
. (17)

Furthermore, the state transitions are determined by the true system 
model (1), where the exact probabilities are conditioned on the weather

disturbance 𝑑. Note that, to enforce the control rate constraint (14) in 
the MDP, the input variable is clipped prior to being applied to the sys-

tem.

The stage cost 𝐿 requires particular attention, as it implicitly defines 
the optimization problem (4) that the RL agent is tasked with solving.

Crafting the stage cost 𝐿 such that the resulting RL policy performs well 
with respect to the performance indicators defined in Section 3 is a de-

sign challenge. Consider the stage cost

3 Note that 𝑃 represents a profit indicator per square meter, as the lettuce 
model in this work is normalized by the surface area (see Section 2.1 and [28,

29]).
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𝐿
(
𝑠(𝑘), 𝑎(𝑘)

)
=𝐿𝑦1

(
𝑠(𝑘)

)
+𝐿𝑢

(
𝑎(𝑘)

)
+𝐿Ψ

(
𝑠(𝑘)

)
. (18)

The function

𝐿𝑦1

(
𝑠(𝑘)

)
= −𝑐𝛿𝑦1

(
𝑦1(𝑘) − 𝑦1(𝑘− 1)

)
, (19)

with 𝑐𝛿𝑦1 > 0, rewards the step-wise increase in dry lettuce weight. The 
function

𝐿𝑢

(
𝑎(𝑘)

)
= 𝑐⊤

𝑢
𝑢(𝑘), (20)

with 𝑐𝑢 ∈ℝ3 > 0, penalizes the control inputs, while the function

𝐿Ψ
(
𝑠(𝑘)

)
= 𝜔⊤max

(
0,

𝑦(𝑘) − 𝑦max(𝑘) 
𝑦max(𝑘) − 𝑦min(𝑘)

)
+𝜔⊤max

(
0,

𝑦min(𝑘) − 𝑦(𝑘) 
𝑦max(𝑘) − 𝑦min(𝑘)

)
(21)

penalizes constraint violations, with 𝜔 ∈ ℝ4 > 0, and with the max op-

erator and vector division performed element-wise. The constants 𝑐𝛿𝑦1 ,

𝑐𝑢, and 𝜔 are then hyper-parameters that are tuned such that the RL

policy performs well on the performance indicators in Section 3. Lastly,

the RL policy 𝜋𝜃 , and value functions 𝑉𝜃 and 𝑄𝜃 , are addressed via the 
parametrized MPC scheme, which is introduced next.

4.2. Parametrized MPC scheme

In this section we introduce the parametrized MPC scheme that, fol-

lowing the theory outlined in Section 2.2, serves as policy provider and 
value function approximator for the RL task outlined in Section 4.1.

Consider the following parametrized MPC scheme, a concrete real-

ization of (6), representing the value function, with prediction horizon 
𝑁 ∈ℤ+ and discount factor 𝛾 ∈ (0,1]:

𝑉𝜃(𝑠) = min 
y,x,u,𝝈

𝜃0 − 𝜃𝛿𝑦1

𝑁∑
𝑘=1

𝛾𝑘
(
𝑦1(𝑘) − 𝑦1(𝑘− 1)

)
+ 𝜃⊤

𝑢

𝑁−1∑
𝑘=0 

𝛾𝑘𝑢(𝑘) + 𝜃⊤
𝜔

𝑁∑
𝑘=0

𝛾𝑘
𝜎(𝑘) 
𝑦range

+ 𝜃𝑦1 ,f
𝛾𝑁 𝑉𝜃,f

(
𝑦1(𝑁)

)
(22a)

s.t. 𝑥(0) = 𝑥, (22b)

for 𝑘 = 0,… ,𝑁 − 1

𝑥(𝑘+ 1) = 𝑓
(
𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘), 𝜃𝑝

)
, (22c)

𝑢min ≤ 𝑢(𝑘) ≤ 𝑢max, (22d)

− 𝛿𝑢 ≤ 𝑢(𝑘) − 𝑢(𝑘− 1) ≤ 𝛿𝑢, (22e)

for 𝑘 = 0,… ,𝑁

𝑦(𝑘) = 𝑔
(
𝑥(𝑘), 𝜃𝑝

)
, (22f)

𝑦min(𝑘) − 𝜎(𝑘) ≤ 𝑦(𝑘) ≤ 𝑦max(𝑘) + 𝜎(𝑘), (22g)

𝜎(𝑘) ≥ 0, (22h)

where4 𝑦range = (∞,1.6,5,70)⊤. The cost (22a) rewards step-wise lettuce 
weight increase, and penalizes constraint violations and control inputs.

The first and last terms, 𝜃0 and 𝑉𝜃,f, are additional initial offset and 
terminal costs respectively, enriching the parametrization to help the 
MPC scheme capture the true RL value functions. In particular, 𝜃0 is 
required in order to learn the (possibly non-zero) offset in the value 
function due to its economic nature (see [9] for more theoretical de-

tails), while 𝑉𝜃,f encodes the cost-to-go. The parameters 𝜃𝛿𝑦1 , 𝜃𝑢, 𝜃𝜔, and 
𝜃𝑦1,f

weight the contributions of each cost term. Since in general 𝜃𝑝 ≠ 𝑝,

4 The ∞ in 𝑦range causes the first component of the violation penalty to be 
always zero, as the first output is unbounded.

the constraints for the dynamics and output equations, (22c) and (22f),

are parametrized by 𝜃𝑝 in place of the true model parameters 𝑝. Hence,

the predicted state and output trajectories from solving (22) do not nec-

essarily respect the dynamics and output functions of the true system.

The parameter 𝜃𝑝 then provides a degree of freedom to optimize the pre-

dicted trajectories for closed-loop performance, using closed-loop data.

Remark 1. Note that the MPC parameters 𝜃𝛿𝑦1 , 𝜃𝑢, 𝜃𝜔, and 𝜃𝑝 are dis-

tinct from the parameters in the RL stage cost 𝑐𝛿𝑦1 , 𝑐𝑢, 𝜔, and the true 
model parameters 𝑝. While they represent equivalent notions, the MPC 
parameters will be adjusted to optimize closed-loop performance and 
will not, in general, converge to the corresponding values in the RL stage-

cost and the true model. Indeed, in [9] it is stressed that the prediction 
model yielding the best closed-loop performance for an MPC controller

is not necessarily the one with the smallest prediction error. Hence, even 
if instantiated with accurate model parameters 𝜃𝑝 = 𝑝, it is likely the 
RL agent would adjust 𝜃𝑝 regardless, optimizing for closed-loop perfor-

mance.

The terminal cost 𝑉𝜃,f is added to capture the future reward from 
lettuce weight increase for the remainder of the growth cycle, occurring 
after the prediction horizon of the MPC controller. The step-wise reward 
for lettuce growth for the remainder of the cycle can be simplified as

𝑁s∑
𝑘=𝑁+1

𝛾𝑘𝐿𝑦1

(
𝑠(𝑘)

)
= − 𝑐𝛿𝑦1

𝑁s∑
𝑘=𝑁+1

𝛾𝑘
(
𝑦1(𝑘) − 𝑦1(𝑘− 1)

) (23)

= − 𝑐𝛿𝑦1

(
𝛾𝑁s𝑦1(𝑁s) − 𝛾𝑁+1𝑦1(𝑁)

+
𝑁s−1 ∑
𝑘=𝑁+1

(
𝛾𝑘 − 𝛾𝑘+1

)
𝑦1(𝑘)

)
,

(24)

≈ − 𝑐𝛿𝑦1

(
𝑦1(𝑁s) − 𝑦1(𝑁)

)
, (25)

where, for the sake of simplicity, it is assumed that 𝛾 ≈ 1, which is com-

mon when a non-myopic policy is desired [26]. Of course, (25) cannot 
be used as terminal cost directly, as the final yield 𝑦1(𝑁s) is not known 
and varies depending on the weather disturbance and the control inputs.

As the value functions attempt to capture the expected cost under the 
current policy (see (5)), we introduce the learnable parameter 𝜃𝑦𝑁 in or-

der to learn the expected value 𝔼𝜂𝜋𝜃
[
𝑦1(𝑁s)

]
, where, again, 𝜂𝜋𝜃 is the 

state distribution induced by the policy 𝜋𝜃 and the weather disturbance 
𝑑. To capture (25), the terminal cost is then defined as

𝑉𝜃,f
(
𝑦1(𝑁)

)
= −𝜃𝛿𝑦1

(
𝜃𝑦𝑁

− 𝑦1(𝑁)
)
. (26)

The full parametrization is then

𝜃 = (𝜃0, 𝜃𝛿𝑦1 , 𝜃
⊤
𝑢
, 𝜃⊤

𝜔
, 𝜃𝑦1 ,f

, 𝜃𝑦𝑁
, 𝜃⊤

𝑝
)⊤. (27)

The allowable range for the parameters 𝜃 can be bounded during learn-

ing, incorporating prior knowledge on viable ranges, or enforcing real-

istic values on parameters that have physical significance. Table 3 gives 
a summary of the parametrization, while the bounds and initialization 
of the parameters in our experiments is given in Section 5. 

As outlined in Section 2.2, the MPC scheme (22) for the value func-

tion approximation 𝑉𝜃(𝑠) satisfies the Bellman equalities [9], such that 
the action-value function and policy are delivered by the same scheme 
as

𝑄𝜃(𝑠, 𝑎) = min
y,x,u,𝝈

(22a)

s.t. (22b) − (22h),

𝑢(0) = 𝑎,

(28)
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Table 3
Summary of MPC parametrization in (22).

Symbol Scope Space 
𝜃0 cost - offset ℝ
𝜃𝛿𝑦1 cost - weight reward ℝ
𝜃𝑢 cost - control penalty ℝ3

𝜃𝜔 cost - violations penalty ℝ4

𝜃𝑦1 ,f cost - terminal cost weight ℝ
𝜃𝑦𝑁 cost - terminal weight estimate ℝ
𝜃𝑝 model parameters ℝ28

𝜋𝜃(𝑠) = arg min
𝑢 

𝑄𝜃(𝑠, 𝑢). (29)

Instead of (29), the equivalent form

𝜋𝜃(𝑠) = arg min
𝑢(0) 

(22a)

s.t. (22b) − (22h),

(30)

is used in practice such that both 𝑉𝜃(𝑠) and 𝜋𝜃(𝑠) are found by solving 
the one optimization problem (22).

4.3. Second-order LSTD Q-learning

We apply a second-order least-squares temporal difference (LSTD)

Q-learning algorithm [16] to learn the parametrization 𝜃 of (22), such 
that the policy 𝜋𝜃 optimizes the greenhouse climate control RL task,

as defined in Section 4.1. Q-learning attempts to learn a parametriza-

tion 𝜃 such that the action-value function 𝑄𝜃 fits the observed data.

The policy is then inferred from the action-value function as 𝜋𝜃(𝑠) =
argmin𝑎 𝑄𝜃(𝑠, 𝑎). In this work the Q-learning algorithm is applied on-

line, i.e., training data is generated via interaction with the real system,

as the policy is trained. Reformulating the fitting of 𝑄𝜃 as a least-squares 
problem, in combination with a second-order Newton’s method and an 
experience replay buffer of the past observed transitions [18], provides 
faster convergence and better sample efficiency with respect to tradi-

tional first-order methods. This approach has been effectively applied 
in the context of MPC [7,1].

As in [1], we impose lower and upper bounds on the parameters with 
the following constrained optimization problem

Δ𝜃∗ = arg min
Δ𝜃

1
2
Δ𝜃⊤�̄�Δ𝜃 + 𝛼�̄�⊤Δ𝜃

s.t. 𝜃lb ≤ 𝜃 +Δ𝜃 ≤ 𝜃ub,

Δ𝜃lb ≤Δ𝜃 ≤Δ𝜃ub,

(31)

with 𝛼 > 0 the learning rate, and �̄� and �̄� the gradient and Hessian of 
the Q-learning fitting problem averaged over 𝑚 samples drawn from the 
replay buffer, i.e., 

�̄� = −
𝑚 ∑
𝑖=1 

𝛿𝑖∇𝜃𝑄𝜃(𝑠𝑖, 𝑎𝑖), (32)

�̄� =
𝑚 ∑
𝑖=1 

∇𝜃𝑄𝜃(𝑠𝑖, 𝑎𝑖)∇𝜃𝑄
⊤
𝜃
(𝑠𝑖, 𝑎𝑖) − 𝛿𝑖∇2

𝜃
𝑄𝜃(𝑠𝑖, 𝑎𝑖). (33)

Note that the sensitivities ∇𝜃𝑄𝜃 and ∇2
𝜃
𝑄𝜃 are available automatically

upon solving (28); see [1,7] for details. This formulation additionally

allows to limit the rate of change of each parameter with Δ𝜃lb and Δ𝜃ub.

Finally, the parametrization 𝜃 is then updated as 𝜃← 𝜃 +Δ𝜃⋆.

Note that during training of the policy two optimization problems are 
solved at each time step: (22) for 𝑉𝜃 and 𝜋𝜃 , and (28) for 𝑄𝜃 , in order

to be able to compute and store in buffer the TD error and sensitivities 
necessary for an update. Furthermore, the quadratic program (31) must 
be solved only once per parameter update. In contrast, when the policy

is not being trained, only (22) must be solved for 𝜋𝜃 .

Table 4
Initial values and bounds on parametrization in (22).

Symbol Initial value Bounds 
𝜃0 0 (−∞,∞)
𝜃𝛿𝑦1 100 (0,∞)
𝜃𝑢 (10,1,1)⊤ (0,∞)
𝜃𝜔 (105,105,105,105)⊤ (0,∞)
𝜃𝑦1 ,f 1 (0,∞)
𝜃𝑦𝑁 135 (0,∞)
𝜃𝑝 ∼ (0.5|𝑝|,1.5|𝑝|)

Table 5
Coefficients in the RL stage cost.

Symbol Value 
𝑐𝛿𝑦1 100
𝑐𝑢 (10,1,1)⊤

𝜔 105

Remark 2. In general, problem (4) is nonlinear and non-convex. This 
implies that the RL algorithm is likely to converge to local suboptimal 
solutions. To alleviate this issue, exploratory behavior can be injected 
into the learning policy in an effort to escape such local minima and to 
converge to a better (possibly global) solution. One method is to perturb 
the gradient of the objective of 𝑄𝜃 in an, e.g., 𝜀-greedy fashion [1]. In 
the current work, exploration is instead induced during the learning pro-

cess by the weather forecast disturbances which, as explained in more 
detail in Section 5.1, are stochastically generated at the beginning of 
each training episode. As later shown in Section 5.3, this is enough to 
provide satisfactory convergence of the TD error.

5. Numerical experiments

In this section the methodology proposed in Section 4 is demon-

strated in simulation, with the resulting performance compared against 
existing state-of-art approaches. In the following, all MPC simulations 
are run on a Linux machine using one AMD EPYC 7252 core, 1.38 GHz 
clock speed, and 251Gb of RAM. All simulations for training DNN-based 
RL methods, i.e., DDPG, are run on the same Linux machine using four

NVIDIA RTX 2090 GPUs. Python source code and simulation results can 
be found at https://github.com/SamuelMallick/mpcrl-greenhouse. All 
optimization problems are solved using the CasADi framework [2] and 
the IPOPT solver [31].

Assume that the values of all model parameters 𝑝 are unknown. What 
is known is an uncertainty range 

[
𝑝−0.2 ⋅ |𝑝|, 𝑝+0.2 ⋅ |𝑝|] that contains 

the true values, where | ⋅ | is the element-wise absolute value, and define 
a uniform distribution spanning the uncertainty range as

 =
(
𝑝− 0.2 ⋅ |𝑝|, 𝑝+ 0.2 ⋅ |𝑝|). (34)

The initial values for the learnable model parameters are then a random 
sample from , and they are bounded to an enlargement of the uncer-

tainty range. To initialize the cost parameters, the values from the RL

stage cost are used. Further, we bound all cost terms to be non-negative,

such that the notion of rewarded and penalized behavior does not in-

vert. The initial values and bounds for the full MPC parametrization are 
given in Table 4. The RL stage cost coefficients used in our experiments 
are given in Table 5. 

5.1. Weather disturbances

The weather disturbance profile 𝑑 used in the experiments is real 
weather data presented in [13], collected from ‘the Venlow Energy

greenhouse’, located in Bleiswijk, The Netherlands. The data covers a 
full growth cycle of 40 days and, originally sampled at 5 minute inter-
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Fig. 2. Last two days of weather profiles. The blue profile is the original, and 
the red lines are five example perturbed profiles.

vals, has been resampled using an FIR anti-aliasing low pass filter at the 
sampling time used in this work, i.e., 15 minutes [4].

As RL approaches train on repeated growth cycle episodes, to avoid 
over-fitting of the learned policy to a specific instance of weather data 
and to foster generalization over a wider range of weather disturbances,

a stochastic process is added to the real weather data in order to gener-

ate a new perturbed profile for each episodic growth cycle. In particular,

Brownian noise, a time-correlated stochastic process, is added to the 
original weather profile. The Brownian noise is generated as the cumu-

lative sum of white noise as

𝐵(𝑘) =
𝑘 ∑
𝜏=0 

𝑊 (𝜏), 𝑊 (𝜏) ∼ (−𝜌, 𝜌), (35)

where 𝜌 = (0.01,0.005,0.01,0.005)⊤, and 𝐵(𝑘) is the noise value at time 
step 𝑘. For the outdoor CO2 level (𝑑2) and the outdoor humidity (𝑑4),

this noise is added directly to the weather data. For the radiation (𝑑1)

and the outdoor temperature (𝑑3), special care is required to ensure the 
perturbed weather profiles still follow a reasonable day/night cycle. To 
achieve this, Brownian excursions [30], stochastic processes that have 
constrained initial and final values, are used such that the Brownian 
noise only takes effect during the day cycle, and arrives at the relative 
night-time values at the start of the night cycle. Fig. 2 demonstrates the 
original, and five perturbed, weather disturbance profiles for the last 
two days of the growth cycle. 

5.2. Comparison approaches

We compare our approach, referred to as MPC-RL, against the robust-

sample based MPC controller from [4], and a model-free RL controller

trained with DDPG [22,32]. Furthermore, we include two nominal MPC 
controllers for comparison. One is ideal, with perfect (but unrealistic)

model knowledge, while the other is a nominal MPC controller using an 
incorrect prediction model. All MPC controllers in the following use a 
horizon of 𝑁 = 24. This value is selected to balance performance and 
computation time [4,22]. In particular, the comparison approaches are:

• Ideal MPC controller (I-MPC): The ideal MPC controller is a stan-

dard MPC controller with knowledge of the true dynamics via the 
real values of 𝑝.

Table 6
Hyper-parameters for the DDPG RL

Controller.

Parameter Value 
learning rate 10−5
gradient threshold 1 
𝐿2 regularization factor 10−5
experience buffer size 104
experience mini-batch size 64 

Fig. 3. Stage cost, TD error, and constraint violations over 100 growth cycles of 
training.

• Nominal MPC controller (N-MPC): The nominal MPC controller

is a standard MPC controller using an incorrect prediction model 
with parameters �̂� ∼.

• Robust MPC controller (R-MPC-𝑛) [4]: The robust sample-based 
MPC controller is essentially an implementation of a stochastic MPC 
controller based on the scenario approach [23]. The parametric 
model uncertainty is addressed by sampling the probability distri-

bution of model parameters, in this case the uniform distribution ,

and optimizing one state trajectory for each sample in the MPC opti-

mization. In [4], 20 samples were used. In our experiments we test 
a range of numbers of samples 𝑛, indicating the number of samples 
in the shorthand name, e.g., 5 samples is denoted R-MPC-5.

• DDPG RL controller (DDPG) [22,32]: DDPG is a model-free 
off-policy RL algorithm that leverages DNNs as function approx-

imators. Conversely to the proposed Q-learning algorithm, this 
method belongs to the policy gradient family, which optimizes the 
parametrization via estimates of the gradient of the policy w.r.t. 𝜃
[17]. The learning hyper-parameters are taken from [22] and are 
reported in Table 6.

Note that both learning-based and non-learning-based controllers de-

scribed above are deployed in simulations on the same greenhouse 
environment. Obviously, this environment employs the correct model 
to simulate the evolution of the real dynamics and to generate training 
data.

5.3. Results

We run 100 growth cycles to learn the parametrization of the MPC 
scheme (22), with the initial parametrization in Table 4. We simulate 
online learning, where the data generated while interacting with the 
system is used to learn the policy. The learning is concluded after 100 
episodes as, for this case study, this is sufficient to observe satisfac-

tory convergence of the TD error and the learned MPC parametrization,
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Fig. 4. Outputs over first and last growth cycle of training with upper (red lines) and lower (black lines) bounds. 

alongside improvements to both the economic profit and constraint sat-

isfaction. The hyper-parameters of the learning process are tuned as fol-

lows. The discount factor is selected as 𝛾 = 0.99, while the learning rate 
is 𝛼 = 0.1. The parameters are updated once at the end of each growth 
cycle, with the maximum update being constrained to 5% of their cur-

rent values, i.e., Δ𝜃lb = −0.05|𝜃| and Δ𝜃ub = 0.05|𝜃|. A replay buffer

stores the observations from the last three cycles, and every update con-

siders two cycles worth of observations, with all observations from the 
most recent cycle guaranteed to be used. Three different parametriza-

tions are learned for both RL-based approaches, where, for each, the 
random seed for generating the weather profiles is different. The initial 
state for each cycle is 𝑥(0) =

(
0.0035 0.001 15 0.008

)𝑇
.

Fig. 3 shows the episode-wise stage cost 𝐿ep =
∑𝑁s

𝑘=0𝐿
(
𝑠(𝑘), 𝑢(𝑘)

)
,

the TD error 𝛿ep = 1∕𝑁s

∑𝑁s

𝑘=0 𝛿(𝑘), and the constraint violations Ψ for

each growth cycle during training. It can be seen that the incurred stage 
cost and TD error are significantly reduced during training. This is fur-

ther represented in the constraint violations, which, starting from a large 
value, approach zero. Fig. 4 shows the constrained outputs during the 
first and last growth cycles of training. It can be seen that in the first 
growth cycle, the indoor CO2 upper bound (𝑦2) is violated several times 
towards the end of the cycle, while the indoor humidity upper bound 
(𝑦4) is violated for practically the entire cycle. After 100 cycles of learn-

ing, it can be seen that the indoor CO2 level never violates the bounds,

and the indoor humidity level exceeds the upper bound only a few times,

quickly dropping back to allowable levels. Fig. 5 shows the parameter

evolution over the training for a subset of the learnable parameters; the 
four parameters whose values changed the most. Finally, in Appendix A
the control inputs during the first and last growth cycles of training are 
included for completeness.

In an evaluation phase, i.e., with the policy fixed, we compare our

final trained RL-based MPC controller against the approaches outlined 
in Section 5.2. Each approach is evaluated over 100 growth cycles, with 
Fig. 6 demonstrating the results with respect to the performance indica-

tors given in Section 3. The episode-wise stage cost is included for in-

terest, especially for comparison between the two RL-based approaches,

that during training learn policies to minimize this cost, as in (4). For

completeness, the state, output, and input trajectories for the final 10 
days of an evaluation growth cycle are included in Appendix A.

The constraint violations Ψ show that our approach has reduced the 
constraint violations the most, approaching the level of the ideal MPC 
controller. The robust MPC controller does improve the constraint viola-

tions over the nominal MPC; however, they remain at an unsatisfactory

level. Finally, the DDPG-based controller improves the violations over

both the nominal and robust MPC controllers, but does not reach that 
of our approach.

The crop yield 𝑦1(𝑁s) shows that the controllers with very high 
constraint violations, i.e., the nominal MPC controller and robust MPC 
controller with 5 samples, generate a very high crop yield. This is in 
line with observations in the literature [34], and is due to the unrealis-

Fig. 5. Parameter evolution, for the 4 most changed parameters, over 100 
growth cycles of training. Note that model parameters 𝜃𝑝 have been normal-

ized with respect to their true values.

tic growth that occurs in the model when variables such as CO2 levels 
and humidity are dangerously high. Notably, for higher numbers of sam-

ples, the robust MPC controllers significantly reduce the crop yield due 
to conservatism. Our approach has reduced the drop in crop yield, even 
while vastly improving the constraint violations. The DDPG controller

gives superior crop yield even with respect to the ideal MPC controller.

This is again in line with observations in the literature [22], and is due 
to the DDPG approach’s tendency to optimize the crop yield over effi-

ciency and constraint violations.

The economic profit indicator 𝑃 shows similar trends to the crop 
yield for all MPC-based controllers. Again, we highlight that the high 
economic profit of the nominal MPC controller, and the robust MPC con-

troller with 5 samples, is due to the unrealistic growth occurring in the 
model when the output constraints are significantly violated. A clear dif-

ference from the crop yield trend is for the DDPG controller, which now

under-performs in comparison to both the ideal MPC controller and our

approach. This demonstrates how the DDPG controller maximizes the 
yield in an inefficient way with respect to the control inputs, resulting 
in an overall reduced profit.

Finally, with respect to the stage cost 𝐿ep, our approach outperforms 
the DDPG controller. This is notable as, during training, both RL-based 
approaches attempt to solve an optimization problem that minimizes 
𝐿ep, i.e., the performance (3). 

Table 7 shows the average computation time needed per time step 
for each of the approaches. Naturally, the DDPG approach is the fastest 
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Table 7
Average computation time required by each approach.

Approach I N R5 R10 R20 MPC-RL

training

MPC-RL

evaluation

DDPG 

Time (s) 0.0378 0.0390 0.229 0.570 1.234 0.0793 0.0430 0.000155 

Fig. 6. Comparison of all approaches over 100 growth cycles. The learning-based 
strategies are tested after convergence. Bars show the mean value, with error

bars showing a standard deviation.

as no optimization problem is solved when computing its actions. Com-

paring the MPC-based approaches, our approach requires similar com-

putation times to those of the I-MPC and N-MPC approaches during 
evaluation, and is only slightly slower during training. In contrast, the R-

MPC approaches introduce additional optimization variables with each 
additional sample, and the required computation time increases as the 
samples increase. 

6. Conclusions

In this work, we propose an RL-based MPC controller for green-

house climate control. At the core of the approach is a parametrized 
MPC scheme that can serve as policy provider and value-function ap-

proximator for an RL task. The greenhouse climate control problem has 
been formulated as an RL task, such that the MPC scheme can learn a 
parametrization online using closed-loop data. Second-order Q-learning 
has been proposed as the RL algorithm for learning the parametrization.

In simulations, the proposed approach has been shown to learn an MPC 
scheme that significantly reduces the violations of output constraints in 
closed-loop operation. The final learned controller has then been com-

pared against state-of-the-art MPC- and RL-based controllers from the 
literature, showing the best performance in terms of constraint viola-

tions and efficient crop growth.

Future work directions include the application of this methodology

to alternative greenhouse models, and experimental validation in real-

world tests. Additionally, alternative learning algorithms, such as policy

Fig. 7. Control inputs for the first and last growth cycle of training with upper

(red lines) and lower (black lines) bounds.

gradient approaches, could be explored to learn the parametrization of 
the MPC scheme.
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Appendix A. Extra input, output, and state trajectories

Fig. 7 shows the control inputs of our approach during the first and 
last episodes of training. The trajectories are clearly different, as the ap-

proach has learned a policy that optimizes for closed-loop performance.

Figs. 8, 9, and 10 show the output, state, and input trajectories, re-

spectively, for the final 10 days of a growth cycle during evaluation of 
the compared controllers. Notably, the additional constraint violations 
in the outputs, introduced by the comparison controllers, are evident.

Further, the control inputs demonstrate the inefficiency of the DDPG 
controller’s actuation.
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Fig. 8. Output trajectories for the last 10 days of a growth cycle during evalua-

tion, with upper (red lines) and lower (black lines) bounds.

Fig. 9. State trajectories for the last 10 days of a growth cycle during evaluation.

Appendix B. Greenhouse model

The continuous-time lettuce growing greenhouse model is described 
by the following set of equations [28]

�̇�1(𝑡) = 𝑝1𝜙phot,c(𝑡) − 𝑝2𝑥1(𝑡)2𝑥3(𝑡)∕10−5∕2,

�̇�2(𝑡) =
1 
𝑝9

(
− 𝜙phot,c(𝑡) + 𝑝10𝑥1(𝑡)2𝑥3(𝑡)∕10−5∕2

+ 10−6𝑢1(𝑡) −𝜙vent,c(𝑡)
)
,

Fig. 10. Input trajectories for the last 10 days of a growth cycle during evalua-

tion, with upper (red lines) and lower (black lines) bounds.

�̇�3(𝑡) =
1 
𝑝16

(
𝑢3(𝑡) −

(
10−3𝑝17𝑢2(𝑡) + 𝑝18

)
,

⋅
(
𝑥3(𝑡) − 𝑑3(𝑡)

)
+ 𝑝19𝑑1(𝑡)

)
,

�̇�4(𝑡) =
1 
𝑝20

(
𝜙transp,h(𝑡) −𝜙vent,h(𝑡)

)
,

𝑦1(𝑡) = 103𝑥1(𝑡),

𝑦2(𝑡) = 103𝑥2(𝑡)
𝑝12

(
𝑥3(𝑡) + 𝑝13

)
𝑝14𝑝15

,

𝑦3(𝑡) = 𝑥3(𝑡),

𝑦4(𝑡) =
102
11 

𝑥4(𝑡)
𝑝12

(
𝑥3(𝑡) + 𝑝13

)
exp

(
𝑝27𝑥3(𝑡) 
𝑥3(𝑡)+𝑝28

) .

where 𝑡 ≥ 0 is continuous time. Further, define the following functions:

𝜙phot,c(𝑡) =
1 
𝜑(𝑡)

(
1 − exp

(
− 𝑝3𝑥1(𝑡)

))
⋅
(
𝑝4𝑑1(𝑡)

(
− 𝑝5𝑥3(𝑡)2 + 𝑝6𝑥3(𝑡) − 𝑝7

)
⋅
(
𝑥2(𝑡) − 𝑝8

))
,

𝜑(𝑡) = 𝑝4𝑑1(𝑡) +
(
− 𝑝5𝑥3(𝑡)2 + 𝑝6𝑥3(𝑡) − 𝑝7

)
⋅
(
𝑥2(𝑡) − 𝑝8

)
,

𝜙vent,c(𝑡) =
(
𝑢2(𝑡)10−3 + 𝑝11

)(
𝑥2(𝑡) − 𝑑2(𝑡)

)
,

𝜙transp,h(𝑡) = 𝑝21

(
1 − exp

(
− 𝑝3𝑥1(𝑡)

))
⋅

(
𝑝22

𝑝23(𝑥3(𝑡) + 𝑝24)
exp

(
𝑝25𝑥3(𝑡) 
𝑥3(𝑡) + 𝑝26

)
− 𝑥4(𝑡)

)
,

𝜙vent,h(𝑡) =
(
𝑢2(𝑡)10−3 + 𝑝11

)(
𝑥4(𝑡) − 𝑑4(𝑡)

)
,

where 𝜙phot,c(𝑡), 𝜙vent,c(𝑡), 𝜙transp,h(𝑡) and 𝜙vent,h(𝑡) are the gross canopy

photosynthesis rate, mass exchange of CO2 through the vents, canopy

transpiration and mass exchange of H2O through the vents, respec-

tively.

To generate the discrete-time prediction mode (1), discretization is 
performed using the explicit fourth order Runge-Kutta method with a 
time step of 15 minutes, as in [4]. Finally, the values for the model 
parameters 𝑝 are given in Table 8. 

Data availability

Data will be made available on request.
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Table 8
Model parameters.

Symbol Value Unit Explanation from [28,29]

𝑝1 0.544 - Yield factor; aggregation of 𝑐𝛼 (CO2-glucose stoichiometric conversion factor) and 𝑐𝛽 (yield of carbohydrates 
conversion to structural material)

𝑝2 2.65 ⋅ 10−7 s−1 Aggregation of 𝑐resp,s and 𝑐resp,r (maintenance respiration rates for shoot and root at 25 ◦C) weighted by 𝑐𝛽 and 
𝑐𝜏 (ratio of root dry weight to total crop dry weight)

𝑝3 53 m2 kg−1 Effective canopy surface; aggregation of 𝑐lar,d (shoot leaf area ratio) with 𝑐k (canopy extinction coefficient)

and 𝑐𝜏
𝑝4 3.55 ⋅ 10−9 kg J−1 Aggregation of 𝑐par (photosynthetically activate radiation to total solar radiation ratio) and 𝑐rad,rf (roof solar

radiation transmission coefficient)

𝑝5 5.11 ⋅ 10−6 m s−1 ◦C−2 Second-order term in polynomial approximation of temperature effect on CO2 leaf diffusion

𝑝6 2.3 ⋅ 10−4 m s−1 ◦C−1 First-order term in polynomial approximation of temperature effect on CO2 leaf diffusion

𝑝7 6.29 ⋅ 10−4 m s−1 Zeroth-order term in polynomial approximation of temperature effect on CO2 leaf diffusion

𝑝8 5.2 ⋅ 10−5 kgm−3 CO2 compensation point at 25 ◦C
𝑝9 4.1 m Volumetric capacity of greenhouse air for CO2
𝑝10 4.87 ⋅ 10−7 s−1 Aggregation of 𝑐resp,s and 𝑐resp,r weighted by 𝑐𝛼 and 𝑐𝜏
𝑝11 7.5 ⋅ 10−6 m s−1 Leakage air exchange through greenhouse cover

𝑝12 8.314 J K−1 mol−1 Gas constant

𝑝13 273.15 K Absolute temperature

𝑝14 101325 Pa Sea level standard atmospheric pressure

𝑝15 0.044 kgmol−1 CO2 molar mass

𝑝16 3 ⋅ 104 J m−2 ◦C−1 Heat capacity of greenhouse air

𝑝17 1290 J m−3 ◦C−1 Heat capacity per volume unit of greenhouse air

𝑝18 6.1 W m−2 ◦C−1 Heat transfer coefficient through greenhouse cover

𝑝19 0.2 - Sun heat load coefficient accounting for roof transmission, solar radiation interception by structural 
components, and conversion from absorbed solar energy to sensible heat load by canopy

𝑝20 4.1 m Volumetric capacity of greenhouse air for humidity

𝑝21 0.0036 m s−1 Canopy transpiration mass transfer coefficient

𝑝22 9348 J kgm−3 kmol−1 Aggregation of 𝑐H2O (water molar mass), 𝑐v,0 (calibration parameter) and 𝑐v,1 (saturation water vapor pressure 
parameter for canopy transpiration)

𝑝23 8314 J K−1 kmol−1 Gas constant

𝑝24 273.15 K Absolute temperature

𝑝25 17.4 - Saturation water vapor pressure parameter for canopy transpiration

𝑝26 239 ◦C Saturation water vapor pressure parameter for canopy transpiration

𝑝27 17.269 - Saturation water vapor pressure parameter for humidity

𝑝28 238.3 ◦C Saturation water vapor pressure parameter for humidity
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