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Josephson junctions defined in strong spin orbit semiconductors are highly interesting for the search for
topological systems. However, next to topological edge states that emerge in a sufficient magnetic field,
trivial edge states can also occur. We study the trivial edge states with superconducting quantum
interference measurements on nontopological InAs Josephson junctions. We observe a SQUID pattern, an
indication of superconducting edge transport. Also, a remarkable h=e SQUID signal is observed that, as we
find, stems from crossed Andreev states.
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Topological systems are a hot topic in condensed matter
physics [1]. This is largely motivated by the existence of
states at the interface between two topologically distinct
phases, for example helical edge states in a quantum spin
Hall insulator (QSHI) [2,3]. Inducing superconductivity in
these edge states would form a topological superconductor
[1]. Superconducting edge transport has already been found
in materials that are predicted to be a QSHI [4,5]. However,
edge states can also have a nontopological origin. Trivial
edge conduction is found in InAs alongside the chiral edge
states in the QH regime [6] and recently in the proposed
QSHI InAs/GaSb as well [7,8]. To be able to discriminate
between topological and trivial states, it is crucial to study
transport through trivial edges also and clarify differences
and similarities between them. In this work we study the
superconducting transport through trivial edge states in
nontopological InAs Josephson junctions using supercon-
ducting quantum interference (SQI) measurements. We
find a supercurrent carried by these edge states and an
intriguing h=e periodic signal in a superconducting quan-
tum interference device (SQUID) geometry.
Trivial edge states arise when the Fermi level resides in

the band gap in the bulk, while being pinned in the
conduction band at the surface. Then, band bending leads
to electron accumulation at that surface as schematically
drawn in Fig. 1(a). The Fermi level pinning can have
several origins: truncating the Bloch functions in space
[9,10], a work function difference [11], the built-in electric
field in a heterostack [12], and the surface termination [13].
In our 2D InAs Josephson junctions the accumulation
surface is located at the edge of the mesa that is defined by

wet etching. The quantum well is MBE grown on a GaSb
substrate serving as a global bottom gate [14]. The super-
conducting electrodes are made of sputtered NbTiN with a
spacing of 500 nm and a width of 4 μm. NbTiN has a bulk
superconducting gap of 2 meVand a critical temperature of
13 K. A SiNx dielectric separates the top gate from the
heterostructure. Electrical quasifour terminal measure-
ments [see Fig. 1(b)] are performed in a dilution refrigerator
with an electron temperature of 60 mK unless stated
otherwise.
The electron density in the InAs quantum well is altered

by using the electrostatic gates, V tg and Vbg, located above
and below the 2DEG. Decreasing the density subsequently
increases the normal state resistance Rn and reduces the
switching current Is as shown in Fig. 2(a). A full resistance
map as a function of the top and bottom gate is shown in the
Supplemental Material [14]. The Josephson junction is first
characterized at V tg ¼ 0 V and Vbg ¼ −1.65 V, where the
largest switching current is observed. From the IV trace in
Fig. 2(a) we estimate an induced superconducting gap
of 0.4 meV and, using the corrected Octavio-Blonder-
Tinkham-Klapwijk model [20], a transmission of T ¼ 0.73.
The junction is quasiballistic because the mean free path of
2.8 μm (extracted from a Hall bar device on the same wafer
[14]) is larger than its length L of 500 nm. The large
superconducting gap and high transmission value indicate a
high quality InAs Josephson junction.
SQI measurements have successfully been used before to

gather information on the supercurrent density profile in
Josephson junctions [4,5,21]. This is typically done, using
the Dynes-Fulton approach [22], which connects the
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critical current dependency on magnetic field IcðBÞ and the
zero-field supercurrent density profile jðxÞ with a Fourier
transform. It was originally developed for tunnel junctions,
but can also be applied to transparent junctions under several
assumptions. First, we should have a sinusoidal current-
phase dependency, which is in accordance with the trans-
mission value and temperature in our experiment [23].
Second, the Andreev levels, that carry a supercurrent in
the junction, may only weakly deviate from the longitudinal
propagation. Our junction satisfies this constraint since the
superconducting coherence length ζ ¼ ℏvF=Δ ≈ 1.3 μm >
L [14,24]. If both assumptions hold, we expect a Fraunhofer
SQI pattern in the case of homogeneous current distribution
[Figs. 1(c) and 1(d)] and a SQUID pattern in the case of
current flowing along the edges [Fig. 1(e) and 1(f)].
A SQI measurement at the largest switching current

reveals a Fraunhofer-like pattern as shown in Fig. 2(b).
The central lobe is twice as wide as the side lobes and the
amplitude decreases as expected. The slight asymmetry in
the amplitudes we attribute to breaking of the mirror
symmetry of the sample in the direction along the current

[25]. The effective length of the junction [λ¼δBlobe=ðΦ0WÞ]
of 1.2 μm is extracted from the periodicity of the SQI
pattern. Flux focusing due to the Meissner effect causes it to
be larger than the junction length (λ > L) [26]. The extracted
current density profile, plotted in Fig. 2(b), is close to
uniform. The supercurrent is thus dominated by bulk
transport as expected at these gate voltages.
The interference pattern in Fig. 2(b) deviates from the

expected pattern after the second lobe. Recently a similar
distorted Fraunhofer tail was observed and discussed in
graphene [27]. The perpendicular magnetic field exerts a
Lorentz force on the electron and holes suppressing the
formation of Andreev bound states. The suppression
becomes relevant at a magnetic field scale ofΔ=eLvF, equal
to 1 mT in our case, roughly agreeing with the observation.
The analysis only holds for the bulk of the junction, since the
scattering at the edges reduces the difference in the electron
and hole motion in a magnetic field.
Next we study the SQI pattern as the Fermi level is

decreased by tuning the top gate to more negative values.

(a)

(b)

FIG. 2. (a) Normal state resistance Rn and switching current Is
at the respective top gate V tg and bottom gate Vbg voltages. The
left inset depicts a separate measurement at the indicated gate
voltages, where a smaller current bias step size is used for higher
resolution. The right inset shows an IV trace at V tg ¼ 0 V and
Vbg ¼ −1.65 V, where two dashed lines are added for extraction
of the induced superconducting gap Δ and the excess current.
(b) The measured voltage as function of the applied current Ibias
and perpendicular magnetic field B at V tg ¼ 0 V and
Vbg ¼ −1.65 V. The inset depicts the calculated supercurrent
density along the width of the device that is indicated by the
dotted lines.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (a) Sketch of the conduction band minimum around the
edge of a 2DEG with Fermi level pinning at W=2. The band
bending leads to a roughly triangular quantum well in the vicinity
of the edge; therefore, one-dimensional subbands form, of which
three are drawn, as an example. The orange dashed line indicates
the Fermi level corresponding to the current distribution in (e).
(b) False colored SEM image of the device with dimensionsW ¼
4 μm and L ¼ 500 nm, where the quasifour terminal measure-
ment setup is added. Red is the mesa, green the NbTiN contacts,
blue SiNx dielectric, and yellow the gold top gate. (c) Schematic
representation of a Josephson junction of width W and length L.
A homogeneously distributed supercurrent Isc is running through
the whole junction, resulting in (d) a Fraunhofer SQI pattern.
(e) If the supercurrent only flows along the edges of the sample,
(f) a SQUID pattern is observed.
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The upper two (green) traces in Fig. 3(a) have a wide
central lobe, stemming from a Fraunhofer pattern. The side
lobes, however, do not decrease in amplitude, as expected,
but seem to be constant, as for an SQUID pattern. We
conclude that we are in the transition regime from bulk to
edge transport. The effective length is λ ¼ 1.7 μm, different
from before, which we believe is due to different vortex
pinning because of the larger magnetic field range of the
measurement [14]. In the third (first blue) trace we observe
that the first nodes turn into peaks, which is highlighted by
the dashed lines. Therefore, the transition to a SQUID
pattern is completed. Curiously, the amplitude and width of
the peaks are alternating in the blue traces in Fig. 3(a). The
even-odd pattern is composed of an h=e and h=2e periodic
signal. An even-odd pattern was observed before in Pribiag
et al. [5]. In comparison, in this work the amplitude
difference in the lobes is much larger and the pattern is
visible over a large gate range. The calculated supercurrent
density profiles in Fig. 3(b) have a central peak that is
physically unlikely considering the device geometry. The
cause of this intriguing interference pattern will be dis-
cussed in more detail later. Reducing V tg further, we find a
clear h=2e periodic SQUID interference pattern in the
bottom two (orange) traces. This is a strong indication of
edge conduction in our device, confirmed by the edge

transport only in the extracted supercurrent density profiles
in Fig. 3(b). The transition from bulk to edge transport as a
function of gate voltage is measured in several other
Josephson junctions [14]. Since we observe a supercurrent
through the trivial edge states of an InAs quantum well, we
conclude that a clear demonstration of superconducting
edges alone does not prove induced superconductivity in
topological edge states.
We now return to the remarkable h=e SQUID signal to

investigate its origin. Figure 4(a) shows a more detailed
measurement in this gate regime, the even-odd pattern is
observed over more than 25 oscillations. The envelope of
the peaks is attributed to the finite width of the edge
channels. The effect is suppressed by raising the temper-
ature [see Fig. 4(b)], for T > 850 mK a regular h=2e
SQUID pattern remains. The origin cannot lie in effects that
occur beyond a certain critical magnetic field, like 0 − π
transitions [28], edge effects [29,30], and a topological
state, because we observe the even-odd pattern around zero
magnetic field as well. An effect that does not rely on
magnetic field and is strongly temperature dependent is
crossed Andreev reflection [31].
The lowest order crossed Andreev reflection (up to

electron-hole symmetry) is schematically depicted in
Fig. 5(a). An electron travels along one edge, whereafter
a hole is retroreflected over the other edge. This process
alone is independent of the flux through the junction, but
still adds to the critical current [32]. Higher order processes
that include an electron that encircles the junction

(a) (b)

FIG. 3. (a) The switching current plotted as a function of
perpendicular magnetic field and (b) the corresponding current
density along the width of the device (see inset), assuming the
validity of the Dynes-Fulton approach. The gate values used are
from bottom to top: V tg − 5.4 V to −3.6 V (0.2 V step) and Vbg −
1.270 V to −1.396 V (0.014 V step). The green, blue, and orange
traces are Fraunhofer, even-odd, and SQUID patterns, respec-
tively. Since the current is only swept up to 100 nA, the green traces
are not suitable for extracting a supercurrent density profile. The
traces are offset by 50 nA in (a) and 25 nA=μm in (b).

(a)

(c) (b)

FIG. 4. (a) Measured voltage as a function of Ibias and magnetic
field B at V tg ¼ −5 V and Vbg ¼ −1.29 V. (b) Switching current
versus the magnetic field for different temperatures at the same
gate voltages as (a). The traces are offset by 5 nA for clarity.
(c) Current density profile, calculated from the SQI pattern of
(a) (see also Ref. [14]). The blue trace uses Eq. (1), thus
correcting the vertical offset in the SQI pattern. The yellow
dashed trace is extracted without this correction.
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completely pick up an h=e phase when a flux quantum
threads through the junction; hence, the supercurrent
becomes h=e periodic [33,34]. Additionally, interference
processes between crossed Andreev and single edge
Andreev states could lead to a h=e contribution [35]. It
is important to note that the critical current is h=e periodic
in flux trough the sample, but still 2π periodic in the
superconducting phase difference.
Forming crossed Andreev states in the junction is only

possible if the particles can flow along the contacts.
Electrostatic simulations indeed show a large electron
density close to the contacts at gate voltages where the
bulk is already depleted [14], because of local screening of
the top gate. Nevertheless the needed coherence length for a
crossed Andreev reflection is on the order of 10 μm, where
the estimated superconducting coherence length (from bulk
values) is 1.3 μm. The difference between these values
remains an open question.
The phenomenological model proposed by Baxevanis

et al. considers both single edge and crossed Andreev states
[32]. In our device we expect the lowest order crossed
Andreev states to contribute most because of the short
coherence length. Combining their flux insensitive con-
tribution to the critical current and the usual h=2e periodic
contribution from single edge Andreev bound states, the
model predicts an even-odd or h=e SQUID pattern:

IcðΦÞ ¼ I0j cosðπΦ=Φ0Þ þ fj; ð1Þ

where I0 is the critical current at zero magnetic field and Φ
is the applied flux. Constant f can be arbitrarily large, it
depends on the ratio Γ between the probability to Andreev
reflect on a node versus the probability to scatter to another
edge and is exponentially suppressed by the width of the
sample:

f ∼ Γ−1 kBT
Δ

e−2πðkBT=ΔÞðW=ζÞ: ð2Þ

The predicted pattern is thus the absolute value of a
vertically offset cosine function. That is exactly the pattern
we measured in Figs. 3(a) and 4(a) as both the amplitude
and width of the lobes alternate (see also Ref. [14]). From
the data we estimate f ¼ 0.3 and, using the other known
parameters, find Γ ∼ 10−1. Taking the Fourier transform in
the Dynes-Fulton analysis, offset f leads to a nonphysical
current density around zero, like we observe in the current
density profiles in Fig. 3(b) and the yellow dashed line in
Fig. 4(c). Moreover, the Dynes-Fulton approach is not valid
here since crossed Andreev reflection does not meet the
second assumption of having straight trajectories only. We
can compensate the crossed Andreev contribution by
subtracting the constant offset of fI0 ¼ 11 nA. This results
in a current distribution with mainly current along the
edges, as plotted in the blue trace of Fig. 4(c). We did not
take into account that I0 is actually not constant due to the
Fraunhofer envelope of the SQI pattern, so the current
density in the center of the junction is not entirely
eliminated.
Even though the SQI pattern from the phenomenological

model is in qualitative agreement with our data, we also
present a tight bindingmodel of system in order to connect it
directly to experimentally accessible parameters. In the
microscopic model we include the superconducting gap
asmeasured, thewidth of the paths along the contactsWns of
20 nm [extracted from the Fraunhofer envelope in Fig. 4(a)],
and Fermi level pinning on the edges leading to edge current
in the region We. It is crucial to also take into account a
tunnel barrier Γ at the contacts that has a magnitude
consistent with the measured transmission value. This
barrier enhances normal reflection and therefore elongates
the length electrons and holes travel before Andreev
reflecting [14]. Incorporating these experimental values
we find an h=e SQUID pattern. Emulating the experi-
mental gating effect by changing the overall chemical
potential results in a crossover from even-odd to
Fraunhofer [Fig. 5(c)], consistent with the measurement
in Fig. 3. As a check,Wns is reduced in steps to zero, which
results in a SQUIDpattern [14]. Additionally, in Fig. 5(d)we
observe that increasing the temperature indeed smears out
the even-odd pattern and leaves us with a regular SQUID
pattern, similar to the experimental data in Fig. 4(b).
Summarizing, both the phenomenological model and the
microscopic model support our hypothesis of the h=e
SQUID originating from crossed Andreev states.

(a) (b)

(c) (d)

FIG. 5. (a) Schematic representation of two crossed Andreev
processes. The black and white lines indicate electron and hole
trajectories or vice versa. The solid lines represent a single edge
Andreev state and the dotted lines a crossed Andreev state.
(b) Detailed sketch of one corner of the junction in our tight
bindingmode indicating thewidthsWns andWe, and tunnel barrier
Γ. (c) Calculated SQI patterns at overall chemical potential ranging
from −0.06 eV to 0.18 eV (0.04 eV step) at 0.46 K and (d) at
temperatures 0.4 K, 0.9 K, 1.4 K, 1.9 K, 2.3 K at a chemical
potential of −0.2 eV. Traces are offset by 10 nA for clarity. In
(c) the color represents the type of interference pattern, green for
Fraunhofer, blue for even-odd, andorange forSQUID, respectively.
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We have experimentally shown that trivial edge states
can support highly coherent superconducting transport that
also becomes visible in an h=e periodic SQI pattern. Both
effects have been considered as possible signatures for
inducing superconductivity in topological edge states
before [4,5]. Therefore, we conclude that superconducting
edge transport and an h=e SQUID pattern only, cannot
distinguish between topological and trivial edge states, nor
can it be considered a definite proof for a topological phase.
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