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Abstract

The development of novel materials has been of great interest to the aerospace industry in the pursuit of
efficiency and cost reduction. Fibre-steered variable stiffness laminates have promising characteristics due
to ability to better tailor designs for expected loading, as the fibre orientation can be varied within a layer.
In particular, fibre-steered variable stiffness laminates are expected to provide significant improvements
in buckling performance over conventional composite laminates. The TU Delft has been exploring the
feasibility of developing a partially automated solution to generate such laminates based on high-level
design drivers such as expected loading and weight, with the end result being a fibre-steered laminate
design with path placement instructions for each layer. In line with this goal, this thesis was created to
develop a fibre placement planning algorithm for fibre-steered layers on moderately curved open shells
for a given fibre angle distribution.

The fibre-steered layers are to be produced by Automated Fibre Placement (AFP), which means that
several manufacturing defects have to be considered. Gaps between courses are inevitable due to course
shifting in combination with the prescribed fibre paths and tow cuts run the risk of tow straightening
due to loss of steering control of the AFP roller head. Furthermore, steering limits have to be observed
to prevent tow kinking.

The thesis objective was approached by dividing it in three parts. Firstly, the geometry of the mould
and course paths were defined parametrically in the form of NURBS/B-splines surfaces and curves.
NURBS/B-splines have been widely used in Computer Aided Modelling (CAM) and have extensive
support in terms of existing algorithms and documented work. Additionally, performing most operations
in the parametric space allows for greater accuracy compared to general finite element methods.

Secondly, the fibre angle distribution was converted into a fibre layer. This was initiated by generating
initial course centre lines, which were then fit onto the parametric surface. Representations of tow courses
were made by geodesically offsetting the course centre lines in the binormal direction. A curve-curve
intersection algorithm was then used to accurately detect tow overlaps, which were handled according
to the used cutting strategy. Two cutting strategies have been developed, one for general use and one to
specifically prevent tow straightening. In addition, the curvature of the course centre line was registered
to check for tow kinking/buckling, and the minimum cut length was enforced by evaluating the length
of tow segments.

Lastly, fitness criteria for fibre-steered layers were defined. Layers were checked for coverage / gap
percentage, fibre angle error and number of cuts. These can be used to objectively grade layers against
each other, or to assess the effects of fibre steering against conventional laminates. A number of layers
were generated and compared on these criteria. It was found that the layer coverage of fibre steered layers
can be maximized when the course width and the rate of steering is maximized, whereas better fibre
angle compliance is achieved when more, smaller width courses are used with a more gradual steering.
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Chapter 1

Introduction

The demand for weight savings in the aerospace industry has led to the introduction of many novel
materials being applied in structural components as a measure to reduce fuel consumption and increase
their aircraft efficiency [1, 2]. In the late 1960s, the first composite parts were introduced in military as
a measure to reduce weight [3]. Commercial aviation followed shortly after in the early 1970s. Initially
only on smaller parts, but as the years progressed more and more of the (structural) components of
civil aircraft became out of composites. Nowadays, the state of the art commercial aircraft, such as the
A350-XWB and Boeing 787 are composed of between 40 and 50% of composites by weight, and around
80% by volume.

The main advantage of composites over conventional metals such as aluminium alloys is their superior
strength-over-weight ratio, which allows for lighter parts. This is in part due to the ability to better
tailor the properties of the composite laminate to the structural requirements compared to metals. The
novel technique of producing fibre steered composite laminates, which have a variable stiffness over the
panel dimensions, could be the next step in better tailoring structural components to loading to achieve
further weight reductions [4].

The TU Delft has done significant work in developing strategies to design such variable stiffness
composite laminates [5–8]. Currently, the need has arisen for a better algorithm to design fibre paths for
these types of laminates. This would accelerate the design process and allow for testing and validation
of the panels. Therefore, the development of a software solution for the design of machine paths for
variable stiffness laminates is the goal of the thesis.

The latest research on the topic of fibre path generation for variable stiffness laminates by Wurpel
(2015) illustrated the challenges of creating such an algorithm [9]. Currently, it can only be applied to
designs of flat panels, whereas typical aerospace panels are doubly-curved. Furthermore, there is still
room for improvement with regards to reducing the amount of voids per layer by utilizing better cutting
strategies. To this end, the research question of this thesis is defined as follows:

“How can the TU Delft Three-Step Approach for VSL be applied to moderately doubly-curved shells
for aerospace applications, whilst minimizing manufacturing defects by using cutting strategies?”

This thesis is divided as follows: In chapter 2, the state of the art on the topic of all the impor-
tant aspects of variable stiffness laminates is explored. Furthermore, at the conclusion of chapter 2,
the goals of the thesis are outlined. Then in chapter 3, a suitable framework for the new algorithm is
selected. Afterwards, the construction of the new fibre path generation algorithm is discussed in chap-
ter 4. Additionally, chapter 5 will supplement the new algorithm with fitness criteria to evaluate the
generated layers. Finally, chapter 6 will demonstrate the new algorithm, after which conclusions and
recommendations will be given in chapter 7.
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Chapter 2

Current State of Variable Stiffness
Laminate Design

The aim of this chapter is to provide background information on all important aspects of variable stiffness
laminate design. This will provide the necessary context to specify goals for the thesis to answer the
research question, which will then be examined in the further chapters.

This chapter has been divided in three parts. Section 2.1 covers the two main types of variable
stiffness laminates. In section 2.2, manufacturing methods that have been used for the production of
variable stiffness laminates are examined. Then, section 2.3 will be on the development and aspects of
the Three-Step Approach for variable stiffness laminate design. Furthermore, the state of the art within
the context of the research question is explored, after which the goals of the thesis can be properly
defined.

2.1 Types of Variable Stiffness Laminates

As the focus of the thesis is on the development of production methods of so-called Variable Stiffness
Laminates (VSL), this section will explain the two main methods to create this type of laminate. VSL
are composites with a varying stiffness distribution along the length and width of the laminate [4, 9].
The reason to apply this technique is to better tailor laminates to loading. In particular, it has been
shown that VSL could provide significant improvements in buckling performance over quasi-isotropic
laminates [4, 5, 10, 11].

The term was first coined by Gürdal and Olmedo (1992), alongside an analysis of the effects of the
spatially varying fibre orientations [12]. They studied the in-plane response of panels with steered fibres
along a linearly varying path, and used a Rayleigh-Ritz method to determine the lowest buckling load
when subjected to a uniform end displacement. Since then, the development of VSL at the TU Delft has
diverged into two main topics, namely fibre steering and laminate blending.

2.1.1 Fibre Steering

Fibre steering is a production technique, where the fibres are no longer placed unidirectionally, but
instead are steered and placed along a curvilinear path. This is typically achieved by using robotic arms
with a capability to place the long strips of fibre reinforced material at the desired angle within a lamina.
It was first used as an attempt to improve the performance composite panels in compression, by weaving
fibres around a hole [13]. The resulting laminates performed better in compression than a conventional
laminate with a drilled hole. This later expanded towards producing laminates exclusively through fibre
steering. Fibre steering is done almost exclusively with the automated fibre placement manufacturing
technique, which will be discussed in subsection 2.2.1. An early fibre steered panel made by Tatting
and Gürdal (2002) can be seen in Figure 2.1. Note how the steering causes thickness variations over the
panel, which is due to the variation of angles of the neighbouring bands.
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Figure 2.1: One of the early fibre steered panels by Tatting and Gürdal (2002) [14]

Early research on fibre steered laminates also introduced the concept of the linear fibre angle variation
method by Gürdal and Olmedo (1993) [4]. This is a method to describe the path of the steered fibres
with a small number of parameters. Here, the path is described by the fibre angle at the centre T0,
the fibre angle T1 at a distance d from the panel centre and the direction angle θ which determines the
direction of variation, as illustrated in Figure 2.2 and written formulaically in Equation (2.1). Nowadays,
not every panel is designed by this concept anymore, and instead the use of lamination parameters has
resulted in a broader spectrum of fibre steered laminates.

Figure 2.2: Description of a fibre path with the linearly varying fibre angle (LVFA) method [15]

θ(y) =

{
(T0 − T1) 2y

L + T1, for 0 ≤ y ≤ 1
2L

(T0 − T1)(2− 2y
L ) + T1, for 1

2L ≤ y ≤ L
(2.1)

Fibre steering has been explored as a way to vary the stiffness distribution, and subsequently the load
distribution along the panel. Gürdal and Olmedo (1992) and Gürdal et al. (2008) researched the effect of
fibre steering by either aligning the fibres perpendicular to the load, or aligning the fibres alongside the
load. One of these designs is shown in Figure 2.3. The best results were achieved when the loading from
the centre was redistributed to the simply supported sides, which was achieved by steering the fibres in
the centre perpendicular to the load. This resulted in improvements up to 80% when compared to the
best constant stiffness laminates.
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Figure 2.3: Redistribution of the load due to fibre steering perpendicular to the loading direction by
Gürdal et al. (2008) [16]. Note that the fibre angle is defined with reference to the y-axis, whereas this

thesis will define fibre angles with reference to the x-axis.

While most of the research on VSL has been on flat plates, there has been interest in the design of
cylinders through the use of fibre steering as well. Blom (2010) and Wu et al. (2009) produced a number
of cylinders to test for maximum fundamental frequency, maximum buckling load under bending and
manufacturing constraints of the optimized designs [5, 10]. The designs were moderately more effective
than their baseline counterparts, with improvements of around 20-30% per category.

The TU Delft has initialised a program to partially automate the design process of VSL produced
by fibre steering, in order to speed up the production and testing [6, 7, 9]. The full approach will be
reviewed in section 2.3.

2.1.2 Laminate Blending

Laminate blending is another technique utilized to create Variable Stiffness Laminates. Originally pro-
posed by Zabinsky (1994), this technique describes designing a structure in segments, where some or all
of the plies within that segment continue into other segments [6, 8, 17]. An example of such a multi-
segment structure is illustrated in Figure 2.4, with the Roman numerals denoting the segments. For the
most part, the optimisation of a segment is much more on a local scale than fibre steering. However,
the segments cannot be designed independently from each other, or the structural integrity of laminate
is negatively affected. Therefore, parts of neighbouring segments continue into other segments.

Figure 2.4: Example of a multi-segment structure [8]

Several blending definitions have been developed to ensure the segments are sufficiently compatible
with each other. The most straightforward ones are the outward blending strategy and the inward
blending strategy. Simply put, they only allow to drop plies on either the outer ply or the inner ply
resp., as illustrated in Figure 2.5 [18]. Unfortunately, this severely limits the design space of blended
laminates, as it is possible to have a compatible (manufacturable) blended laminate that does not abide
by these restrictions. Therefore, most blended laminates follow a more relaxed blending definition, such
as the one proposed by van Campen et al. (2008), which states that a laminate is fully blended ”if there
are no dropped edges in physical contact between its sections” [8, 19].
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Figure 2.5: Outwardly and inwardly blended laminates [18]

While laminate blending may at some point in the future be combined with fibre steering, this thesis
will focus solely on fibre steering to limit the scope of the project.

2.2 Compatible Manufacturing Techniques for the Production
of VSL

This section aims to provide an overview of robot-assisted manufacturing techniques of composite struc-
tures, to evaluate them for their suitability for the production of VSL by using fibre steering. In subsec-
tion 2.2.1, automated fibre placement is discussed. This is the most commonly used technique for fibre
steering. Then, in subsection 2.2.2 automated tape laying will be evaluated. This technique places larger
widths of tow at the cost of reduced steering capabilities. Tailored fibre placement will be examined
in subsection 2.2.3, which is a textile manufacturing technique that stitches fibre bundles onto a fabric
base while steering the bundles in the desired orientation. Finally, in subsection 2.2.4 the continuous
tow shearing technique is discussed. Continuous tow shearing is a more experimental technique, which
trades increased steering capabilities for severely reduced production speed.

2.2.1 Automated Fibre Placement

Automated Fibre Placement (AFP) is a production technique able to produce advanced high-quality
composite structures. It has widespread use in the aerospace industry, utilized to produce structural
components for the Boeing 787 and 777X (fuselage, wings resp. i.a.) and the Airbus A350 (upper and
lower wing skins, fuselage panels i.a.) [2, 20].

The technique places multiple strips of continuous fibre reinforced tape (tows) via a robotic head.
The tows are typically consist of graphite fibres with an epoxy matrix, with dimensions of about 1/8th to
1/4th of an inch wide, and a thickness of 0.005 to 0.030 inch. Up to 32 tows can be placed simultaneously
(together called a band), each of them fed by an arrangement of spools of tape. A schematic illustration
of a single band is shown in Figure 2.6. The tows can be initialized and terminated individually. The
tows are typically placed by locally heating them to make them tacky, which allows the tows to stick to
the surface, and are then pressed onto the tool or previous ply with a consolidation device (e.g. a roller
or a shoe). This process is repeated band for band until the laminate is completed. A schematic set-up
of an AFP installation is shown in Figure 2.7 [20].
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Figure 2.6: Schematic illustration of an AFP course [21]

After fibre placement, a final trimming step is typically needed to remove the excess material at the
outer contour of the product to create a smooth finished surface. AFP provides a high consistency and
repeatability due to the production being automated, the robot head allows to steer the tows for more
design options and the individual initiation and termination of tows reduces scrap.

Figure 2.7: Example AFP Setup [20]

There are multiple manufacturing constraints that need to be taken into account when developing
production methods for AFP. First of all, there is a curvature constraint to how much a tow can be
steered. Depending on the width of the tow, if the curvature is too high the tow will buckle or kink [5],
as can be seen in Figure 2.8. The wider the strip of material, the lesser the amount of steering can be
applied before tow kinking occurs. Likewise, a higher number of tows per machine path will result in
higher curvatures for tows on the outer edges of the course. Table 2.1 from Blom (2010) shows some
values of the minimum turning radius (the inverse of the curvature) of the course centre line for a 102
mm wide course, but noted that the values are a function of the amount of compaction pressure, the
layup speed and the material and therefore may vary [5].

Table 2.1: Typical turning radii for a 102 mm (4 in) course width [5]

Tow width Typical minimum turning radius
3.175 mm (1/8 in) 635 mm (25 in)
6.35 mm (1/4 in) 1778 mm (70 in)
12.7 mm (1/2 in) 8890 mm (350 in)
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Figure 2.8: Kinking of tows due to excessive tow steering [5]

The second manufacturing constraint is that, due to the nature of how the tows are applied by the
robot, which is parallel to the machine path, there are bound to be overlaps and/or gaps within a layer
[4, 5]. These will result in thickness variations and/or voids respectively, as illustrated in Figure 2.10.
The effect of these kinds of defects and others on the performance of the structure has been the subject
of investigation, such as in [22], albeit on test coupons only. However, it can reasonably be assumed that
both effects have a negative influence on the final laminate. Thickness variations could pose complications
for any bonding of the panel to the rest of the structure, or could disrupt the airflow along the aircraft.
Therefore, overlaps are not considered as a design choice for the thesis. Gaps or voids within the laminate
are obviously also not considered to be ideal, but are deemed less disruptive than overlaps.

Furthermore, there might be problems with controlling the orientation of individual tows after ter-
minating them. The steering capability comes from pulling the tow in the correct orientation, so once
the tow is terminated the consolidation device can only press it onto the surface at whichever orientation
the fibre is facing. This may lead to tow straightening, where the final bit of the tow deviates from the
intended path to an uncurved state due to the intrinsic stiffness of the tow as seen in Figure 2.9. Tow
straightening seems to occur more often on the outer radius of a curved path as compared to the inner
radius, but tow straightening has been documented on both sides [5].

Figure 2.9: Tow Straightening [5]

Lastly, the final manufacturing constraint to be considered in this thesis is the minimum cut length.
The minimum cut length is defined as the minimum tow length that needs to be placed before it can be
cut again, and it varies depending on the machine configuration. Blom (2010) noted lengths between 2.5
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and 6 inches, depending on machine configuration [5]. Tows shorter than this length cannot be properly
controlled by the AFP machine and would induce defects if placed regardless.

2.2.2 Automated Tape Laying

The second, often-used robot-assisted manufacturing technique for composite structures is Automated
tape laying (ATL). It is a similar technique to AFP in that it places composite tape by robots, but
it utilizes a single, wider strip of composite tow rather than multiple smaller tows [23]. This makes it
suitable for producing large composite parts by robotics with little variation in angle. It is for example
utilized on the Boeing 787 Dreamliner, as well as the Airbus A350 XWB [2]. However, the large widths
of the tows make the technique unsuitable for steering, as the steering limit is inversely proportional to
the width of the tape. Furthermore, any gaps due to tow cuts are also proportional to the tow width,
i.e. the gaps will be significantly larger compared to using multiple small tapes with AFP.

2.2.3 Tailored Fibre Placement

Tailored Fibre Placement (TFP) is a manufacturing method where the fibres are placed on a carrier
material, which is then stitched in place [24–26]. The stitching allows the fibres to be steered in any
direction, which can be used to create VSL. It has for example been used to construct the A350 window
frames and the longerons of the NH-90 helicopter [25].

TFP can produce parts of a variety of sizes, but is best used on a smaller scale [24, 25]. Machine
speeds have been quoted at around two to ten meters of roving per minute for a single-head machine,
depending on the type of fibre used and the geometry of the product. Therefore, production of large
panels such as fuselage frames or wind turbine blades would be impractical.

2.2.4 Continuous Tow Shearing

Continuous Tow Shearing (CTS) is a technique which was developed to address some of the shortcomings
of fibre steered AFP designs, and is by far the most experimental. It has not been used yet for commercial
production, but is still in development. It has mainly been spearheaded by the University of Bristol [27–
29]. Instead of placing fixed-size composite tows that are steered parallel to the machine path, CTS shears
the fibre bundle such that it covers the intended area. The main advantage of CTS over AFP is that
CTS paths can be laid without overlaps and minimal gaps within a layer, as illustrated in Figure 2.10.
However, the trade-off is severely reduced production speed compared to conventional AFP or ATL.
Furthermore, there can be slight thickness variations between each path due to the amount of shearing
required per layer, though it is much less significant than the inevitable gaps with AFP.
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Figure 2.10: Illustration of shifting or shearing the fibre path. (a) and (b) illustrate the gaps and/or
overlaps that occur when shifting with the AFP method. (c) displays the results for the same reference

path with the CTS method, where the tows are sheared [28].

2.2.5 Comparison of the Various Manufacturing Techniques

Now that the different manufacturing techniques have been reviewed, they can be placed within the
context of the thesis. This section will evaluate the manufacturing techniques for the design of VSL.
First of all, ATL can be quickly disregarded due to the restrictive steering limit of the large width of the
tape, as it allows for very little steering [5]. For the remaining three techniques, the comparison comes
down to production speed versus defects. CTS has the capability of placing bands of tape with little to
no voids or gaps, but has only a very limited production speed [28, 29]. On the other hand, AFP will
inherently have gaps in within layers and has a limit to how much the tows can be steered (albeit less
stringent compared to ATL [5]), but reaches a potential production speed of a meter per second [2, 20].
TFP exists somewhere in between the two, with slightly higher production speeds than CTS and fewer
defects than AFP. Considering the large size of aircraft panels, alongside the number of layers per panel,
the production speeds of CTS or TFP seem too restrictive for manufacturing large parts. Therefore,
AFP has been chosen as the intended production technique for the thesis.

2.3 Three-Step Approach for VSL Design of the TU Delft

The aim of this section is provide an overview of the development of Three-Step Approach for VSL by
the TU Delft, why it was needed and what still has to be done. It is the goal of the thesis to provide
solutions to further the development of this approach. Furthermore, this section also reviews the latest
advances on the topic of generating fibre paths for VSL designed by the Three-Step Approach and what
can be added to this program. Finally, at the end of this section the objectives of the thesis with regards
to the research question are outlined, which will conclude this background chapter.

2.3.1 Three-Step Approach

The design of VSL is by no means a trivial task. The introduction of conventional composite structures
opened up a much larger design space compared to metals, such as the stacking sequence and layup of
the material. VSL takes this a step further by attempting to optimize every point within a layer as
well, through the use of the steering of fibres. Besides the manufacturing issues already illustrated in
subsection 2.2.1, there is also the question of balancing the desire to adhere to the theoretical optimal
design with its manufacturability, and the subsequent performance loss due to the compromises that
have to be made.

To tackle these issues and due to the non-existence of necessary software tools, the TU Delft prompted
the development of the so-called “three-step approach” for the design of VSL, schematically illustrated in
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Figure 2.11 [6]. The intention is to provide a full, partially automated solution to generate manufacturable
VSL for a given design load.

The first step consists of obtaining the optimum laminate stiffness distribution for a given design in
terms of lamination parameters [6, 11]. Multiple design drivers can be included in this step, such as
maximum in-plane stiffness, strength, natural frequency and buckling. The lamination parameters are
converted to fibre angle distributions in the second step [7, 30, 31]. This step can take into account the
minimum curvature and the thickness build-up. Finally, the discretized fibre angles need to be converted
into manufacturable machine paths from which the fibre tows are laid [5, 9].

Figure 2.11: Schematic overview of the 3-step approach for VSL [6]

2.3.2 Streamline Algorithm

Within the Three-Step Approach, a special mention should be made of the streamline algorithm for its
importance for the thesis. It converts the fibre angles from the second step into the centrelines of a
course, which are then used as input for the third step, which the upcoming thesis seeks to expand upon
and optimize. Furthermore, some understanding of algorithm is required to generate test cases for the
various parts of the thesis with the algorithm.

For the construction of the course centrelines, a streamline analogy is used, as described by Blom
et al. (2010), Blom (2010) or IJsselmuiden (2011) [5, 6, 32]. An optimization is performed to ”minimize
the maximum thickness”, i.e. minimize the number of courses that overlap each other. This correlates
to how much cutting of tows is required to prevent overlaps and how efficient the placed paths are in
terms of area placed per machine pass.

One of the boundary conditions that is applied by the algorithm is the placement of the inflow and
outflow nodes, as illustrated in Figure 2.12. This means that no paths are terminated prematurely by
the algorithm. Consequently, this means that higher rates of fibre steering will lead to more inefficient
paths, as the streamline algorithm will have to accommodate for the higher curvature. The effect is
illustrated in Figure 2.13. Note how there are many more paths in Figure 2.13 (a) compared to (b), due
to the higher steering. A possible solution would be to perhaps terminate some of the paths prematurely,
or alternate ”full” paths and ”filler” paths, but this is mostly outside the scope of the thesis, as this
would require changes to the streamline algorithm.
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Figure 2.12: Inflow and outflow boundaries for the streamline algorithm [32]

Figure 2.13: Comparison of steering effect on machine path efficiency in linearly-varying fibre angle
(LVFA) layers. The notation prescribes the fibre angle at the longitudinal edges and the centre of the

panel. (a) < 0, 85.94, 0 >x (b) < 10, 62.36, 10 >x [9]

2.3.3 State of the Art in the Design of Fibre Paths for VSL

The streamline algorithm in subsection 2.3.2 was the input for most recent MSc Thesis on the topic of
developing machine paths for Automated Fibre Placement, made by K. Wurpel [9]. What was new about
his work was that he developed a method to generate machine paths for flat 2D fibre steered composites
by using the streamline algorithm. The streamlines were divided between alternating machine paths
and boundary lines (tows were cut once they hit a boundary line) to minimize the angle mismatch.
The thesis could be considered a first step in the right direction of the finalization of the program, as he
explored some of the design options. However, there is still room to improve upon his work by making the
approach compatible to a wider range of (curved) surfaces and by improving upon the cutting algorithm.
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Figure 2.14: A steered layer from Wurpel (2015)[9]

2.3.4 Limitations of the Current Fibre Path Design for VSL

This section will name the possible improvements of the fibre path generation step of the Three-Step
Approach. Each of these improvements will then be main topic of the following chapters.

First of all, the current method as mentioned in subsection 2.3.3 only supports the generation of fibre
paths for 2D layers and some fringe cases in 3D. The design method could be sufficient for producing
a flat test panel, but it will not be able to create designs for typical aerospace panels, as they are
often doubly-curved. With the intention of the Three-Step Approach in mind, it would be much more
preferable to have a robust algorithm that can handle any type of curved surface with the same approach.
To this end, it would be better to use a parametrization of the surface, so that the subsequent operations
such as finding intersections or offsetting curves can have the same approach, regardless of the geometry
of the panel. This will be looked into further in chapter 3.

Furthermore, as can be seen in Figure 2.13 and Figure 2.14, there are still a lot of unnecessary gaps
within a layer in the approach by Wurpel (2015). This is caused by the use of boundary lines, which
are borders between two machines passes where the program automatically cuts the tow. Ideally, tows
should only be cut when they would otherwise intersect with another tow, to minimize the number of
gaps. This can only be achieved if the algorithm is improved upon. However, since the framework of the
model will be different due to the parametrization, the fibre path generation algorithm has to be rebuilt
from the ground up as well. The construction of the new algorithm has been documented in chapter 4.

Moreover, more thought can be put into cutting the tows in a more effective way. As illustrated
by Blom (2010) and Figure 2.9, there could be benefits for adapting a certain cutting strategy, such as
cutting on the inside of a curve to reduce the occurrences of tow straightening [5]. Some of the effects
have already been researched by Mishra (2017) using finite element models from a structural standpoint
[21], but it could be beneficial if the new program would have the option for different strategies for
cutting. This could accelerate the research on physical test samples to evaluate the variable stiffness
concept in general. The cutting strategies will be covered in section 4.8.

Finally, it would be beneficial if the program would be able to evaluate the generated fibre layers
based on a number of variables. For example, it can be hard to determine from sight what the gap
percentage of a layer would be, which would affect the performance of the panel. Likewise, there will
always be a mismatch between the optimal fibre angle distribution from the Three-Step Approach, and
what is physically possible to produce with the robots. As composite panels derive their properties in
part from the fibre orientation, this would also have an effect on performance. An overview of these
fitness criteria will be given in chapter 5.
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Chapter 3

Computational Modelling of
Variable Stiffness Laminates

This chapter will provide an overview of useful computer modelling techniques, as a large part of the
thesis will revolve around generating machine paths, generating offset paths and cutting said paths to
create as close of an representation of the fibre placed layer to the theoretical projections.

When selecting a computer modelling technique, it is important to keep a number of factors in mind.
First of all, it is not the intention to develop new modelling techniques, but rather to utilize and adapt
existing ones for the needs of this thesis. Therefore, it is paramount that the technique is well-documented
by several sources. This ties into a second requirement, namely that the technique has widespread use in
industry, as it will make the transition from computer model to physical design faster. Furthermore, the
speed of the technique, the required storage space and the ease of use can all play a role in the selection.

To this end, there are three main techniques that have widespread use in the 3D computer aided
modelling (CAM) industry today which could be used for the algorithm. By far the most popular method
today is the aforementioned NURBS technique [33], due to its generality, properties and incorporation in
international file formats IGES and STEP. However, B-splines (NURBS are a generalization of B-splines,
or in more layman terms, B-splines are NURBS with all their weights set to one) and Bézier curves have
their place as well. All three techniques have their origin in the second half the 20th century in either
the automotive or the aerospace industry, as there was a need to compute curved 3D surfaces with the
aid of computer numerically controlled manufacturing [34].

3.1 Bézier Curves

Beźıer curves are the first type of parametric curve to be considered, which are used in computer graphics.
They have their origin in the late 1950s, when car manufacturers sought ways to incorporate Computer
Aided Design (CAD) into their design process [34]. Two engineers at different French car companies
(De Casteljau at Citroën and Bézier at Rénault respectively) utilized Bernstein polynomials to represent
curves in a new way. The novelty lay in defining a curve by using control points which ”pulled” the curve
towards them, rather than using points that lay on the curve. The polygon created by the control points
enclosed the curve (see Figure 3.1), and the alteration and design of such curves were quite intuitive.
Bézier curves also have a few more characterizing properties which are of importance for the selection of
a suitable technique. First of all, a Beziér curve always goes through first and final control point, i.e. the
curve interpolates to the first and final control point, and approximates the control points in between.
Furthermore, any change to the curve by altering any of the control points has a global effect on the
shape of the curve.
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Figure 3.1: Example of a four control point Bézier curve [33]. bi are the control points, the dashed lines
encompass the control polygon and the curved line is the actual Bézier curve.

The Bézier curves have two main disadvantages when it comes to manipulation of the curve’s prop-
erties [33]. First of all, the number of control points is directly related to the degree of the curve. To
increase the complexity of the curve, the degree of the curve has to be increased as well. Higher degree
curves are more inefficient to process and often numerically unstable [35]. The second disadvantage is
related to the ability to make changes to a curve. For Bézier curves, every control point affects each
point on the curve. Therefore, changing one control point changes the entire curve as well. This can
be inconvenient or impractical for some of the applications the design algorithm has to be capable of,
e.g. cutting/removing parts of the curve. There is little flexibility in positioning the control points while
maintaining the desired continuity degree of the curve [35]. These issues are both addressed by the
B-splines and NURBS techniques, which is why they are preferred for this thesis.

3.2 B-Splines and NURBS

As mentioned before, B-splines and NURBS are very closely related to each other, and it is therefore
appropriate to discuss them in conjunction with one another. Naturally, B-splines pre-date NURBS as
NURBS are a generalization of B-splines. The first proposal of the use of B-splines was made by Gordon
and Riesenfeld in the early 1970s [35], but the fundamentals originate as early as the post-World War two
era by Schoenberg, followed up by the development of essential algorithms by Cox and de Boor [33, 36].

They differ from Bézier curves in the sense that they are piecewise polynomials, i.e. the basis functions
and control points only affect a part of the curve, as opposed to the whole curve. This allows for lower
degree curves while maintaining a sufficient order of continuity, which are generally (more) numerically
stable and not as computationally expensive as Bézier curves. Furthermore, it is more convenient to make
alterations to a curve since only a part of the control polygon controls its shape. Therefore, B-splines
or NURBS are the preferred method of choice for the parametric representation for this thesis. The
properties of NURBS, with B-Splines as a special case of NURBS will be explored in the next sections.

3.2.1 NURBS Terminology

As there are many features that make up a NURBS curve, their attributes will be explained on a surface
level as a way to acquaint the reader in this section. More thorough explanations on the topic of NURBS
can be found in [33, 35–37].

A NURBS curve C, as defined in [35], is given by Equation (3.1):

C(t) =

∑n
i=0Ni,pwiPi∑n
i=0Ni,pwi

(3.1)

Where {Pi} are the control points, {wi} are the weights and {Ni,p(t)} are the B-spline basis functions,
with degree p on the knot vector U . The weighted control points, the degree and the knot vector are the
basic building blocks for any NURBS curve.



15 Delft University of TechnologyAerospace Engineering

Control Points

The control points and the weights are the main defining factors for the shape of the curve. Depending on
the weights (and to a lesser extent, the knot multiplicity and knot vector spacing, which will be discussed
later), a curve will move more or less towards a given control point, as can be seen in Figure 3.2. Moreover,
control points only affect an interval where the points are active, based on the order of the curve. A
NURBS curve is always contained within the convex hull of the control points. Also, unlike Bézier curves,
a NURBS curve does not have to go through the first and last control point.

Weights

The weights of a NURBS curve, or maybe more correctly, the weights distribution of a NURBS curve,
give the designer one extra layer of options to tweak the design. A higher relative weight value will make
a curve move more towards a specific control point, as shown in Figure 3.2. If all the weights are set to
be one, then the NURBS curve is effectively a B-spline, i.e. a simpler form of parametric curve. It should
be noted that altering weights is not an absolute necessity, and one should always consider creating their
curves/surfaces without weights unless there is a reason not to. For example, some geometrical shapes
such as circles can only be defined exactly if a weights distribution are used.

Figure 3.2: Increasing the weights for the control point P1 moves the curve more towards P1 [35]. It
can be noted how the curves intersect the control polygon between P1 and P2 at different locations due

to the varying weights for P1, but coincide with each other again after they crossed the polygon
between P2 and P3 due to the piecewise nature of NURBS.

Degree

The degree p is positive whole number which defines the type of polynomial used to interpolate between
points. A degree of one creates linear curves, a degree of two has quadratic curves and so on. Higher
degree polynomials result in more continuous functions. For most applications, cubic curves are used for
their curvature continuity. The order m of a curve is equal to the degree plus one, which defines how
many of the control points affect any given point on the curve. Therefore, the order is also the minimum
number of control points required for any curve.

Basis Functions

The basis functions are the ”weighted, piecewise polynomial functions which form a basis for the vector
space of all the piecewise polynomial functions of the desired degree and continuity” [35–37]. In practice,
most of the properties of NURBS act so through the basis functions. However, to properly explain the
basis functions, it is more convenient to first cover the parts that make up the basis functions, as they
have many intricacies.

Knot Vector

The knot vector is an ordered, non-decreasing list of parameter values (called knots), which determines
where and by how much the control points affect the curve. The length of the knot vector is always
equal to the sum of the number of control points and the order of the curve. The knot vector divides
the parametric space into intervals/lengths called knot spans, which determine which control points have
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an influence on a region of the curve. As one travels from one knot span to another, new control points
become active and the oldest control points get discarded, hence why a knot vector has to be non-
decreasing. On any knot span, the maximum number of control points that can affect the curve is equal
to the order of the curve. Similarly, the number of knot spans then has to be equal to the number of
control points minus the order plus one. A few examples of knot vectors are shown in Figure 3.3.

Figure 3.3: (a) An example (clamped) knot vector. (b) An incorrect knot vector, since it is not
non-decreasing. (c) An equivalent knot vector to (a), as only the ratio between the individual knots

matter for the shape of the curve.

Knot Multiplicity

It is possible for consecutive knots to have the same value. The number of repetitions of the same knot
value is referred to by the knot multiplicity. Increasing the knot multiplicity decreases the continuity of
the curve at that point. At a knot of multiplicity k, the curve will be Cp−k continuous. If a location on
the curve is C−1 continuous, then that location is considered ”clamped”, as the knot span then has a
width of zero and the curve coincides with the respective control point. Therefore, the knot multiplicity
can never be higher than the order of the curve. The knot vectors shown in Figure 3.3 all have a
multiplicity of four at their endpoints, which would clamp the knots at the first and final control point
if the order of the curve would be four as well.

Increasing the knot multiplicity through knot insertions is a common way to split curves into segments
by effectively creating a new clamping point within the curve [33, 35]. This does not alter the shape of
the curve itself, but only the knots and control points. Because NURBS are piecewise polynomials, the
two segments are independent of each other and can be removed or split if desired.

Knot Vector Types

There are various denominations for knot vectors. An open knot vector is a knot vector where the
initial and final point on the NURBS curve do not coincide with the initial and final control points. A
closed/clamped knot vector on the other hand has the first and final point on the curve coincide with
the first and final control point respectively. This is achieved by having a knot with a multiplicity of the
order at the beginning and end of the vector. Subsequently, the knot span will have zero length there.
A closed knot vector can be achieved by repeating some of the control points and knots. This creates
closed contours. The various types of curves due to the knot vector can be seen in Figure 3.4.

Furthermore, a uniform knot vector is defined by Piegl and Tiller (1997) as a vector where the internal
knots are equally spaced, such as the knot vectors (a) and (c) in Figure 3.3, whereas a non-uniform knot
vector can have different spacings or more than one repetition.

For the purposes of the upcoming thesis, clamped knot vectors are deemed the most appropriate.
The ability to select the endpoints of a curve through the control points is practical and clamped knot
vectors are the most common for CAD. Also, since the parametric range of the knot vector is only defined
in the centre part of the knot vector (with a length of the number of control points minus the order),
effectively the outer knots are ignored for the evaluation, whether the knot vector is clamped or not.



17 Delft University of TechnologyAerospace Engineering

Figure 3.4: Different knot vectors can lead to distinctly different curves for the same set of control
points [38].

Knot Vector Spacing

The selection of a knot vector can be an unintuitive process. Particularly, the selection of the spread of
the knots has not yet been discussed. Unfortunately, there is no unified answer to which spread is ideal,
although the ”spacing” between knots does have a noticeable effect on the resulting curve, as can be seen
in Figure 3.5. Here, the degree, weights and control points are kept constant, but the spread of the knots
is varied, which leads to three distinctly different curves. In Piegl and Tiller (1997), several methods for
the selection of a suitable knot vector are explained. Generally, it is desirable that the knots are evenly
spaced, to minimize the length of each span and each segment that a single control point influences.

Figure 3.5: Effect of knot vector spacing on the resulting NURBS curve. By changing the spacing, the
curve was altered while the control points remained the same.

Computation of Basis Functions

Basis functions are typically computed recursively with the ”Cox-de Boor recursion formula” [36, 39, 40].
The ith basis function Ni,p(t) with degree p and knots t is defined as:

Ni,0(t) =

{
1, if ti ≤ t < ti+1

0, otherwise
(3.2)

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t) (3.3)
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The Equations (3.2) and (3.3) show two things. Firstly, a 0th degree basis function is equal to
the step function on the corresponding knot span. Secondly, to compute a basis function of degree p,
two basis functions of degree p − 1 at that interval are required. When working with higher degree
curves and many control points, this can be quite an arduous process to do by hand. Fortunately,
these formulas lend themselves well enough for computer algorithms. In Piegl and Tiller (1997), many
fundamental algorithms are already written out for ease of use [35]. Moreover, it also has several examples
of Bézier/B-spline/NURBS curves to be used to gain some experience with them. An illustration of the
shape of basis functions of varying degrees is shown in Figure 3.6.

Figure 3.6: (Clamped) basis functions for various degrees with a single knot at the halfway point.

Homogeneous Coordinates

A common way to simplify rational curves such as NURBS is to use homogeneous coordinates for more
efficient processing [35]. A rational NURBS curve in n-dimensional space is represented as a polynomial
curve in (n+ 1)-dimensional space by including the weights in the control points. A given control point
Pi = (xi, yi, zi) in three-dimensional space becomes Pwi = (wixi, wiyi, wizi, wi) in four-dimensional space.
Equation 3.1 can then be rewritten into Equation 3.4.

C(t) =
Cw(t)

W (t)
=

∑n
i=0Ni,pP

w
i

W (t)
; W (t) =

n∑
i=0

Ni,pwi (3.4)

NURBS Derivatives

NURBS derivatives are be an essential tool for performing many algorithms that will be used in this
thesis, such as offsetting and intersecting. There are several ways to evaluate NURBS derivatives, but
this thesis will use the method which continues from the homogeneous coordinate system, where the
curve derivatives of C(t) will be expressed in terms of the derivatives of C(w)(t).

Consider the numerator of Equation 3.4. The kth order derivative of Cw(t) is given by Equation 3.5,

where the kth order derivative of the basis function N
(k)
i,p (t) is given by Equation 3.6 [35].

C(k)w(t) =

n∑
i=0

N
(k)
i,p P

w
i (3.5)

N
(k)
i,p (t) =

p

p− k

(
t− ti

ti+p − ti
N

(k)
i,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

N
(k)
i+1,p−1(t)

)
(3.6)

Furthermore, note that the coordinate components of Cw(t) can be related to C(t) by way of Equa-
tion 3.7. Here, A(t) has the coordinates from Cw(t), while excluding W (t).
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C(t) =
W (t)C(t)

W (t)
=

A(t)

W (t)
(3.7)

Then, the general Leibniz rule can be used to write the kth order derivative of A(t) as Equation 3.8,
where the values for A(k)(t) are obtained from Equation 3.5[41]. Rearranging the terms gives the final
expression for the kth order derivative of C(t) in Equation 3.9.

A(k)(t) = (W (t)C(t))(k)

=

k∑
i=0

(
k

i

)
W (i)(t)C(k−i)(t)

= W (t)C(k)(t) +

k∑
i=1

(
k

i

)
W (i)(t)C(k−i)(t)

(3.8)

C(k)(t) =
A(k)(t)−

∑k
i=1

(
k
i

)
W (i)(t)C(k−i)(t)

W (t)
(3.9)

Knot Insertion

Knot insertion is the process of adding a knot to a knot vector without altering the shape of the curve
[35]. While it has many uses, the main reason of interest for this thesis is the ability to subdivide or
cut curves through multiple knot insertions. Whenever a knot is inserted, a number of control points
are altered as well. Due to the local support property of NURBS, only p− 1 control points are affected,
which are replaced by p new control points. Suppose a knot t ∈ [ti, ti+1) is inserted, then the new set of
(n+ 1) control points Q is given by the old n control points P in the form of Equation 3.10.

Qa =


Pa, a ≤ i− p
(1− t−ta

ta+p−ta )Pa−1 + t−ta
ta+p−taPa, i− p ≤ a ≤ i

Pa−1, otherwise

(3.10)

3.2.2 NURBS Surfaces

NURBS surfaces are computed in much of the same way as NURBS curves are. It is obtained as a tensor
product between two NURBS curves. Two independent knot vectors, typically denoted by U and V are
used. To compute a point on the curve, one must find the knot spans for each variable, then compute the
basis functions in the same way as before, and then simply multiply them with the control points. The
full equation to compute a point on the surface then becomes as shown in Equation (3.11). Note that the
basis functions only depend on their respective independent variables, and therefore can be manipulated
independently as well.

S(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

(3.11)

A NURBS surface, as illustrated in Figure 3.7, holds the same properties as a NURBS curve would
with the same knot vector with regards to continuity and local modification. Furthermore, knot vectors
U and V do not have to have the same degree. A prime example would be a NURBS curve profile with
an arbitrary degree, which is extruded (degree in the direction of the extrusion is equal to one). Again,
Piegl and Tiller (1997) has a number of examples available for study [35].
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Figure 3.7: A NURBS surface in parametric and Cartesian coordinates [42].

NURBS Surface Derivatives

NURBS surface derivatives can be derived in the same fashion as NURBS curve derivatives, but the
process is a lot more laborious due to the extra variable. The first step is expressing the NURBS surface
in homogeneous coordinates as shown in Equation 3.12, with Pwi,j = (wi,jxi,j , wi,jyi,j , wi,jzi,j , wi,j).

Sw(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pwi,j (3.12)

Derivatives in terms of Sw(u, v) can be expressed with the same basis function derivatives from
Equation 3.6:

∂k+l

∂ku∂lv
Sw(u, v) =

n∑
i=0

m∑
j=0

N
(k)
i,p (u)N

(l)
j,q(v)Pwi,j (3.13)

Similar to Equation 3.7, the coordinate values of Sw(u, v) are grouped in a variable A(u, v) in Equa-
tion 3.14, which is then used to apply the general Leibniz rule to in Equation 3.15.

S(u, v) =
W (u, v)S(u, v)

W (u, v)
=

A(u, v)

W (u, v)
(3.14)

A(k,l) =
(
(W (u, v)S(u, v))k

)l
=

k∑
i=0

(
k

i

) l∑
j=0

(
l

j

)
W (i,j)S(k−i,l−j) (3.15)

Finally, the general expression for a (k, l)th surface derivative is given in Equation 3.16. If desired, a
more complete derivation can be found in Piegl and Tiller (1997).

S(k,l) =
1

W

A(k,l) −
k∑
i=1

(
k

i

)
W (i,0)S(k−i,l) −

l∑
j=1

(
l

j

)
W (0,j)S(k,l−j) −

k∑
i=1

(
k

i

) l∑
j=1

(
l

j

)
W (i,j)S(k−i,l−j)


(3.16)

3.2.3 Selection of Computer Modelling Technique

For this thesis, the choice between B-splines and NURBS is one of the right tool for the job. NURBS are
able to handle more types of shapes such as cylinders, circular arcs and other bodies of revolution and
has more design options due to the inclusion of weights. However, the selection of these weights outside
of known cases (such as cylinders) can be arbitrary and difficult. Therefore, the surfaces and curves will
be in a B-spline format, unless stated otherwise due to the choice of curve or surface.
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Chapter 4

Construction of the New Fibre Path
Generation Algorithm

In the previous three chapters, the outline of the new fibre path algorithm has already been somewhat
formulated by a set of requirements from the research question, and a set of design choices in terms of
manufacturing technique and computer modelling framework. At this point, it is useful to reiterate and
specify what the goals will be of the algorithm, which are as follows:

� be able to design for moderately doubly-curved open shells.

� be able to create steered fibre paths.

� be designed for Automated Fibre Placement (AFP), with a variable input for the number of tows
and the tow width

� be designed in a B-spline or NURBS framework

� be able to address or identify (some of the) potential manufacturing issues

Similarly, the limitations of the algorithm should be mentioned. In particular, it should be noted that
some causes of manufacturing defects will not be considered for this thesis. First of all, the algorithm
will work under the assumption that the mould and AFP roller are compatible for a given path and
number of tows and the interaction between the mould surface and the AFP roller will not be consid-
ered. Secondly, it is assumed that mould surface does not change due to the thickness build-up of placed
tows. For thin-walled structures, this could still be a conservative assumption, but it would not hold up
for thicker structural components.

The chapter is divided in several sections, some of which have an overarching theme. A schematic
overview of the flow of the chapter is provided in Figure 4.1. First of all, the conventions used during
the thesis are provided in section 4.1, such as the description of surfaces and curves and concepts of
differential geometry.

Secondly, course centre line (re)construction is covered by sections 4.2 to 4.4. As the path from the
streamline code is in Cartesian coordinates, the points first need to be projected onto the parametric
surface. Then, the path is reconstructed in B-spline format through a curve fitting algorithm. Also,
some observations are made on the streamline code and its fibre path design.

Tow generation is discussed in sections 4.5 and 4.6. The course centre lines are elongated beyond the
panel edges to ensure the full course reaches every border. Then, offsets in the binormal direction of the
curve represent the outer edges of individual fibres.

Tow cutting is covered by sections 4.7 and 4.8. Intersections are found between paths with a curve-
curve intersection algorithm, then tows are cut according to a cutting strategy and panel edges. A small
subset of designs is presented that limits or eliminates tow straightening, although it remains a difficult
problem in the automation of fibre-steered designs.



22 Delft University of TechnologyAerospace Engineering

Finally, two sections are dedicated to addressing some of the manufacturing issues that may arise with
AFP. In section 4.9, the minimum cut length requirement of AFP tows is addressed, and in section 4.10,
the method for checking the curvature of the tows is described.

Figure 4.1: Schematic overview of the steps in the creation and evaluation of a layer.

4.1 B-Spline Description of the Mould and Paths

In this section, the notations and conventions of the surface and curves are described as they will be used
throughout the thesis. Furthermore, this section also introduces two concepts of differential geometry
which will be referred to in this chapter, as they play a vital role in bridging the gap between the
parametric B-spline surface and the 3D Euclidean surface.

Figure 4.2 shows a schematic representation of the mould surface. The mould surface S(u, v) is
defined by clamped knot vectors U and V and the control points matrix P , and is a function of surface
parameters u and v. The outer edges of the mould surface coincide with the outer control points due to
the clamped knot vectors.

In a similar fashion, curves on the surface are denoted by C(t), with clamped knot vector T and
control point vector P and is a function of surface parameter t. Curve control points are defined in
surface parameters u and v, such that the control points and the curve by definition lie on the mould
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surface. Points on the curve can then be returned to Cartesian coordinates as any other point on the
surface.

Figure 4.2: Schematic of the mould, the design area and a curve

Moulds can either be constructed manually (recommended only for flat plates or known geometrical
shapes such as cylinders) by creating a mesh of control points and two knot vectors, or imported from
a CAD data exchange format such as STEP if it is curved. It should be noted though that the CAD
software may choose not to use B-splines / NURBS to describe a surface. During the thesis, the most
consistent results were achieved by using the Generative Shape Design toolbox from CATIA, with the
surface being defined by a number of multi-section surfaces [43].

Regarding the mould, a distinction must be made between the mould surface and the ”design surface”,
as illustrated in Figure 4.2. The design surface is defined as the outer dimensions of the fibre steered
panel, which should always be smaller than the mould surface. This is because the AFP machine requires
a part of the surface to be free for several production reasons, such as the minimum cut length of fibres
and the contact between the AFP rollers and the mould.

Although the surface is defined in parametric form, it will still need to refer back to properties and
relations in Euclidean space, such as lengths, areas, angles and curvatures, e.g. ”What’s the length and
angle of this tow on the surface?”. Fortunately, such relationships between the two spaces have already
been well established, such as in the first fundamental form of differential geometry [44].

The first fundamental form is defined as the inner product between two tangent vectors of a surface
in R3, and can be used to calculate metric properties of a surface consistent with the two spaces. In
particular, this will be useful for the calculations of lengths of a curve along the surface, such as in
sections 4.4 to 4.6. It is written in many different ways, but Equation (4.1) shows the metric tensor
notation.

g =

[
g11 g12
g12 g22

]
=

[
S2
u SuSv

SuSv S2
v

]
(4.1)

In a similar light, to help define the properties of a point on one of the parametrized (B-spline)
curves, irrespective of its motion, the Frenet-Serret frame is used [45]. The Frenet-Serret frame is an
orthonormal basis in R3 which consists of three unit vectors: unit tangent vector t, unit normal vector n
and binormal unit vector b. These will be used to determine the direction of offsets and extrapolations
in sections 4.5 and 4.6. An illustration of the frame is shown in Figure 4.3, which demonstrates how the
axis system moves with the direction of the curve.
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Figure 4.3: Frenet-Serret or TNB frame.

4.2 Progenitor Course Generation

This section covers the generation of the progenitor curves (centre lines of the machine passes) of a fibre
steered layer. The conversion of a fibre angle distribution to fibre paths is one of the biggest challenges for
the feasibility of fibre steered panels, as the difference between the theoretical lamination parameters of
the design and the actual performance of a steered panel can make or break the projected performance
gains over conventional composite panels. The streamline algorithm is discussed, as well as possible
improvements that will be used throughout the thesis.

4.2.1 Streamline Algorithm Course Generation

As mentioned in subsection 2.3.2, the streamline algorithm generates the paths while attempting to min-
imize the maximum thickness through a finite element method optimization. To generate the progenitor
paths, it requires a finite element mesh, a fibre angle distribution and the width of one machine pass (i.e.
the tow width times the number of tows per pass) as inputs.

The finite element mesh consists of a simple triangle mesh with a connectivity matrix, and a desired
fibre angle for each data point. The points of the mesh are generated by a modified form of the point
projection algorithm as will be explained in section 4.3, where a point on the surface is found for a
combination of x and y coordinates, i.e. the z-coordinate is found for a given combination of x and y.
This is done to have control over the spacing of the mesh, because generating points on the surface by
using the surface parameters alone does not guarantee that the points are e.g. evenly spaced.

The fibre angle distribution is given either by the type of layer, such as unidirectional or linearly
varying as illustrated in Figure 2.2, or generated through an lamination parameter optimisation proce-
dure, such as described in Peeters et al. (2014) [30]. The streamline algorithm takes these angles and
the other inputs and outputs a number of fibre paths.

Unfortunately, streamline code has been mostly a ”black box”, and the results have often been subpar.
Initial tests with a flat plate and constant angle or Linearly Varying Fibre Angle (LVFA) distributions
have shown that it cannot estimate the offset distance between progenitor curves correctly, which results
in overlapping courses. This problem is exacerbated when the algorithm is applied to curved plates, which
is the main application goal for this thesis, or when there is a large variation between the minimum and
maximum fibre angle, as Wurpel (2015) had already shown, such as in Figure 4.4. While this example is
obviously an extreme case, the effect is visible for all fibre angle distributions. However, the streamline
algorithm is the only tool available to convert the fibre angles into paths, especially for more complex
fibre angle distributions. Therefore, it was decided to continue with the streamline algorithm for the
optimised angle distributions, and to selectively use parts of it for simpler constant angle, LVFA and
other ”prototype” designs, as described in sections 4.2.2 and 4.2.3.
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Figure 4.4: A <0,85.94,0>x LVFA layer by Wurpel (2015) on the left and its progenitor curves (in red)
on the right [9].

4.2.2 Altered Progenitor Curve Design

To address the issues with the offset distance with the streamline algorithm, a work-around for generating
progenitor curves for LVFA layers is proposed. Instead of using the full results from the streamline code,
only a single progenitor curve is taken from the centre of the plate. It is then ”copied” by generating offset
courses in the transverse direction of the progenitor, using the methods from sections 4.4 and 4.6. The
offset distance can be accurately approximated by using the surface derivatives, and is set to minimum
width the full course will have in the transverse direction. This ensures that at some point in the
layer, the full course (with all tows) can be placed, and that the gaps between courses are minimized.
Additionally, this prevents uncovered areas from forming near the corners of a layer, as described by
Wurpel (2015) in several of his designs due to lack of data points. An comparison of the two methods is
shown in Figure 4.5. The difference in offset distance between the two methods is small, but any course
spacing inaccuracies would result in gaps of at most one full tow width between courses when no overlaps
are allowed. Additionally, the improved spacing results in the LVFA courses being slightly more efficient
by placing more tows per course.

Figure 4.5: Output from the streamline algorithm and the corrected course centre lines. The progenitor
course, indicated in blue, was copied from the streamline algorithm, then elongated and offset using the

methods described in this chapter to generate the new course centre lines.
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Note that the ’single-progenitor’ work-around as described is only applicable if the progenitor exists
along the full length or width of the layer, depending on the direction in which the fibre angle variation
is applied. This is illustrated in Figure 4.6. However, the improvement in course generation is deemed
significant enough to include the work-around for suitable fibre angle distributions.

(a) <20,60,20>y (b) <20,45,20>y

Figure 4.6: Feasibility of the ’single-progenitor’ work-around on two fibre angle distributions. Whereas
Figure 4.6a has a suitable candidate for the work-around (indicated in red), Figure 4.6b does not, as

there is no course that exists along the full width of the panel. Copying any course in Figure 4.6b
would therefore alter the fibre angle distribution.

4.2.3 New Fibre Path Design Type

LVFA designs have been used for proof of concept or prototype purposes, as they are relatively easy
to describe and reproduce despite often not being optimised for actual design cases. However, most of
(older) the LVFA designs allowed fibres within a layer to overlap instead of cutting them, such as in
Figure 2.1. During the design process of generating fibre steered layers, it was noted that the continuous
variation of the fibre angle in LVFA designs had a detrimental effect to the coverage of the layer when
fibres had to be cut. Every angle variation causes towpaths to overlap with their neighbours, which
therefore occurs constantly for LVFA designs. From a manufacturing point of view, it would be more
beneficial if the paths were constant, but then it would no longer be a steered layer. However, if only
a section of the layer of a LVFA design was designated to have a constant fibre angle, then this would
have multiple beneficial effects while still having a varying stiffness distribution (i.e., Discrete Linearly
Varying Fibre Angle or DLVFA instead of LVFA). The constant region improves the coverage of the layer
and may be advantageous when a smooth surface patch is required, such as for joining. The formulaic
description of these paths is shown in Equation (4.2), where L is the width of the panel, L1 is the length
of one of the zones where the fibre is steered, measured along the panel width, and L2 is the length of
the constant region, also measured along the panel width.

θ(y) =


(T0 − T1) y

L1
+ T1, for 0 ≤ y ≤ L1

T0 for L1 ≤ y ≤ L1 + L2

(T0 − T1)L−yL1
+ T1, for L1 + L2 ≤ y ≤ L

(4.2)

The main benefit comes in the form of fewer overlaps due to the constant fibre angle. Fewer overlaps
means that fewer tows have to be cut, which in turn reduces the percentage of gaps or voids in a
layer. Secondly, fewer cuts mean that there are fewer chances for manufacturing defects such as tow
straightening to occur. Finally, the region can be used as a reference for offsetting courses, since the
width of the course with respect to the panel dimensions can be approximated quite well, which is
something the streamline algorithm struggles with. The main downside of this approach is the more
stringent requirements on the steering limit, as the tow steering has to occur in a much more limited
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space. Quantitative comparisons between the two types of designs will be made in chapter 6, but a visual
comparison can already be made with Figure 4.7.

Figure 4.7: A <47,75,47>y LVFA layer on the left and a suggested DLVFA layer on the right. The
DLVFA layer has identical fibre angles to the LVFA design at the centre and the outer ends, but a zone

(in this case between a quarter and three quarters of the width of the plate) is designated to have a
constant fibre angle instead.

4.3 Point Projection on the Surface

As the results from the (altered) streamline algorithm are in Cartesian coordinates, they need to be
adapted to be compatible with the B-spline framework. Due to the discrete nature of the finite element
method, the generated points may not exactly lie on the mould surface, and therefore cannot be con-
verted outright. Instead, a point projection algorithm must be used to find a nearest solution such that
S(ū, v̄) ≈ Q within set tolerances ε. Piegl and Tiller (1997) and Patrikalakis et al. (2009) suggest using
Newton’s method to approximate [ū, v̄] [33, 35].

For a two variable Newton’s method, two functions f and g are required for iteration on u and v.
Each iteration, the gradients of f and g are computed at a point [ui, vi] and set to zero, as shown in
Equation (4.3). This will give a new initial point [ui+1, vi+1]. When the new value for S(ui+1, vi+1) is
computed, often there is still an error, which is denoted by r as in Equation (4.4). As more iterations are
performed, r should decrease and u and v should converge to the nearest point on the surface to point
Q.

f(ui, vi) = r(ui, vi)Su(ui, vi) = 0
g(ui, vi) = r(ui, vi)Sv(ui, vi) = 0

(4.3)

r(ui, vi) = S(ui, vi)−Q (4.4)

The convergence may depend on the selection of the initial guess [u0, v0], which therefore should be
selected carefully. The strategy employed in this thesis is to generate a number of points in a grid on
the surface for known values of u and v. The point nearest to point Q is selected as the initial guess.

Equation (4.3) must be solved, and for that a system of two equations is set up as shown in Equa-
tions (4.5) to (4.8). Ji is the Jacobian matrix of f and g with respect to u and v, δi is the difference in u
and v between two iterations and κi contains f and g. By rewriting Equation (4.5) into Equation (4.9),
one can then solve for [ui+1, vi+1].

Jiδi = κi (4.5)

δi =

[
du
dv

]
=

[
ui+1 − ui
vi+1 − vi

]
(4.6)
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Ji =

[
fu fv
gu gv

]
=

[
|Su|2 + r(u, v)Suu SuSv + r(u, v)Suv
SuSv + r(u, v)Svu |Sv|2 + r(u, v)Svv

]
(4.7)

κi = −
[
f(ui, vi)
g(ui, vi)

]
(4.8)

[
ui+1

vi+1

]
=

[
ui
vi

]
−
[
|Su|2 + r(ui, vi)Suu SuSv + r(ui, vi)Suv
SuSv + r(ui, vi)Svu |Sv|2 + r(ui, vi)Svv

]−1 [
f(ui, vi)
g(ui, vi)

]
(4.9)

The convergence criteria are then as follows:

1. Absolute distance: the computed point is within error tolerance ε1 of point Q as shown in Equa-
tion (4.10).

|S(ui, vi)−Q| ≤ ε1 (4.10)

2. Zero cosine: shown in Equation (4.11).

|Su(ui,vi)(S(ui,vi)−Qi)|
|Su(ui,vi)||(S(ui,vi)−Qi)| ≤ ε2

|Sv(ui,vi)(S(ui,vi)−Qi)|
|Sv(ui,vi)||(S(ui,vi)−Qi)| ≤ ε2 (4.11)

3. Parameters converge: if Equation (4.12) is satisfied, then the u and v do not noticeably change
any more.

|(ui+1 − ui)Su(ui, vi) + (vi+1 − vi)Sv(ui, vi)| ≤ ε1 (4.12)

If any of the conditions is met, then the algorithm is terminated and a projection S(ū, v̄) ≈ Q is
found. Otherwise, Equation (4.9) is computed again. This is repeated for all data points Q of a curve,
which can now be reconstructed into a curve onto the B-spline surface with the curve fitting algorithm
in section 4.4.

This method was also used to generate the finite element method mesh for the streamline code in
section 4.2, but in a slightly altered form. Instead of comparing all three components of S(ui, vi) with
the point Q, only the x and y components are considered. The result is a point on the surface with a z
component for a given x and y, which is then used as a coordinate of the finite element mesh. It should
be noted that some geometries could have multiple valid solutions for this altered algorithm, which would
makes the selection of the initial guess even more critical.

4.4 B-spline Curve Fitting

As mentioned in section 4.3, a curve fitting algorithm is required to reconstruct the course centre lines
onto the B-spline surface. This is a standard type of operation as described in Piegl and Tiller (1997) [35].
There are two types of curve fitting to select from: curve interpolation and curve approximation. Whereas
interpolation follows the data points exactly, approximation naturally only does it approximately. There
are several reasons to elect curve approximation over curve interpolation for this application.

First of all, the data points in this case are from a finite element method. The finite element mesh
geometry is a discretization of the mould surface, which introduces errors in the data set. Furthermore,
the points are then also projected onto another surface. This will most likely introduce further noise
to the data set. These two sources of noise would affect the smoothness and accuracy of the curve if
interpolation was used. However, curve approximation would be able to capture the general shape of
the curve without having to fit through every point, therefore minor errors would not affect it as much.
Lastly, the varying number of the data points per curve also advocates for an approximation method.

The curve approximation will be a least squares solution to minimize the deviation from the curve
to the data points. Also, the number of control points can be varied accordingly to prevent undesirable
oscillation of the curve. Since the points are not distributed evenly along the length of the curve due to
the finite element mesh, the least squares solution will be weighted proportionally to the arc length of
the segments. This way, smaller segments will have a lower impact on the overall shape of the curve.
Furthermore, a suitable knot vector must be chosen such that each knot span contains at least one data
point from the projection, before the control points may be computed.
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Consider n points Qi of the same curve C at coordinates [ūi, v̄i] for i = 1 : n, that have been
projected on the parametric surface in section 4.3. The arc length of a segment of the curve can then be
approximated per Equation (4.13):

ds =
√
g11du2 + 2g12dudv + g22dv2 (4.13)

Where ds is the line segment, gij are the coefficients of the first fundamental form as shown in
Equation (4.1) and du and dv are the differences in u and v respectively between two data points. Since
the gij coefficients depend on the slope of the curve, it is best to evaluate them at midpoints between
two data points, defined as ūavg and v̄avg.

ūavg =
ūi+1 + ūi

2
for i = 1:n-1 (4.14)

v̄avg =
v̄i+1 + v̄i

2
for i = 1:n-1 (4.15)

Equations (4.1) and (4.13) to (4.15) combine to create n− 1 line segments with lengths ds, which are
summed together for total length s. These are then used to create a diagonal matrix in Equation (4.16),
that will function as weights for the least squares approximation, based on the length of the segments.
The weights are determined according to the trapezoid rule.

W =
1

2s


ds(1)

ds(1)+ds(2)

. . .
ds(n−2)+ds(n−1)

ds(n−1)

 (4.16)

To generate the knot vector, first the curve parameter t̄ is approximated by mapping the length of
the curve s on [0,1] according to t̄ = s(i)/s [35]. Then, for a given degree p and number of control points
c, a knot distribution scheme can be used from Piegl and Tiller (1997) to compute the knots t [35]. First,
the average of the number of points per knot span, denoted by d is computed in Equation (4.17). An
interpolation scalar α is chosen such that it reflects the distribution of parameters t̄ in Equation (4.18).
Then, the internal knots t are computed in Equation (4.19). This procedure ensures that each knot span
contains at least one t̄, which is a condition from [36] for a well-conditioned matrix (NT

i,p(t)Ni,p(t)) for
the least squares approximation. Finally, the control points Pk can be computed from Equation (4.20).

d =
n

c− p
(4.17)

l = int(jd) α = jd− l for j = 1, ..., c− p− 1 (4.18)

tp+j+1 = (1− α)t̄(l + 1) + αt̄(l + 2) for j = 1, ..., c− p− 1 (4.19)

Pk = [uk, vk] = (NT
i,p(t̄)WNi,p(t̄))

−1 [NT
i,p(t̄)Wūi, N

T
i,p(t̄)Wv̄i

]
for i = 1 : n, k = 1 : c (4.20)

This completes the process of reconstructing the data points into B-spline curves on the B-spline
surface. These course centrelines will serve as progenitor paths for the offsetting procedure in section 4.6,
to simulate the tow edges from a single AFP machine pass. Before this can be done however, the paths
need to be extended beyond the panel edges first, for reasons outlined in section 4.5.

4.5 Path Extrapolation

After curve fitting, the course centre lines should accurately represent the intended paths from the finite
element method optimization. Unfortunately, the optimization procedure only produces lamination
parameters and fibre angles within the panel edges. It does not account for what happens (partially)
outside the panel dimensions. However, the paths need to be extended beyond the panel boundaries to
avoid gaps and for other manufacturing reasons.
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It is important that the course centre lines are not affected by the extension, therefore this step can
only take place after fitting the curves. Having said that, the requirements on the extrapolated paths are
a lot less stringent than on paths within the panel. Also, the common concerns regarding extrapolation
in data sets as a form of prediction beyond the original observation range shouldn’t apply here, as it
is merely a way to fill voids and prevent manufacturing issues that would otherwise occur. Rather, the
main concern should be that the paths do not vary widely in direction, but are somewhat equidistantly
spaced along the edges without interfering too much with neighbouring paths. To this end, the most
straightforward approach is to do linear extrapolations from the endpoints of each course centreline.

The approach in this thesis is based on an offsetting procedure from Patrikalakis et al. (2009) and
Patrikalakis and Bardis (1989), which is similar in implementation, but along a different direction of the
Frenet-Serret frame from Figure 4.3.

Consider two points A and B on a B-spline surface. There exists a (geodesic) path such that the
distance travelled between A and B is at a minimum. Equation (4.13) gives an expression for a segment
of the arc length in terms of surface parameters u and v, which are functions of a curve parameter t.
The total length between points A and B is then given by integration in Equation (4.21) [46]:

L =

∫ tB

tA

√
g11u̇2 + 2g12u̇v̇ + g22v̇2dt (4.21)

where the dots denote derivatives with respect to t. In order to minimize the total length from
Equation (4.21), standard methods of variational calculus can be used.

d

dt

δF

δu̇
− δF

δu
= 0 ;

d

dt

δF

δv̇
− δF

δv
= 0 (4.22)

where F is the integrand of Equation (4.21). As shown in Patrikalakis and Bardis (1989), the
curve parameter t can be substituted with arc length s if a normalization is applied [46]. When used
on Equation (4.22), the following system of two non-linear equations is obtained in Equations (4.23)
and (4.24):

d2u

ds2
+ d11(

du

ds
)2 + 2d12

du

ds

dv

ds
+ d22(

dv

ds
)2 = 0 (4.23)

d2v

ds2
+ e11(

du

ds
)2 + 2e12

du

ds

dv

ds
+ e22(

dv

ds
)2 = 0 (4.24)

where dij and eij are the Christoffel symbols, as shown in Equations (4.25) to (4.30). The unit normal
vector n is given in Equation (4.31).

d11 =
n · (Suu × Sv)
|Su × Sv|

(4.25)

d12 =
n · (Suv × Sv)
|Su × Sv|

(4.26)

d22 =
n · (Svv × Sv)
|Su × Sv|

(4.27)

e11 =
n · (Su × Suu)

|Su × Sv|
(4.28)

e12 =
n · (Su × Suv)
|Su × Sv|

(4.29)

e22 =
n · (Su × Svv)
|Su × Sv|

(4.30)

n =
Su × Sv
|Su × Sv|

(4.31)
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To solve Equations (4.23) and (4.24), the two second order differential equations can be rewritten to
a system of four first order differential equations in Equations (4.32) to (4.35).

du

ds
= u′ (4.32)

dv

ds
= v′ (4.33)

du′

ds
= −d11u′2 − 2d12u

′v′ − d22v′2 (4.34)

dv′

ds
= −e11u′2 − 2e12u

′v′ − e22v′2 (4.35)

Equations (4.32) to (4.35) require four boundary conditions to be solved. The most straightforward
approach is to use the initial location and initial derivatives of the extrapolation points, as both are
known at any location due to the properties of the B-spline curve. These are shown in Equation (4.36).
The initial derivatives are normalized with λ from Equation (4.37) in Equation (4.39), such that the
normalisation condition from Equation (4.38) holds.

[u0, v0] = C(t0) ; [u̇0, v̇0] = Ct(t0) (4.36)

λ =
1√

g11u̇20 + 2g12u̇0v̇0 + g22v̇20
(4.37)

g11u̇
2
0 + 2g12u̇0v̇0 + g22v̇

2
0 = 1 (4.38)

[u′0, v
′
0] =

Ct(t0)√
g11u̇20 + 2g12u̇0v̇0 + g22v̇20

(4.39)

Obtaining the initial conditions concludes the development of the path extrapolation function. The
set of differential equations and initial conditions can now be solved by an ODE solver. For the purposes
of this thesis, the ode45.m solver of MATLAB was used [47]. The extrapolation distance can be set
as an input, which allows the user to elongate the path to account for voids as well as manufacturing
constraints.

4.6 Geodesic Offsets to Simulate Tow Paths

This section will provide an overview on how tow paths are simulated in this thesis. In section 4.4
and section 4.5, the progenitor curve has been reconstructed and elongated such that it represents the
machine pass of an AFP robot. To simulate a band of tows, offsets from the progenitor curves are
generated, according to the width and number of the tows.

As mentioned in section 4.5, the extrapolation procedure has a lot of similarities with the offset
procedure. It uses the same approach, same set of differential equations and is based on the same
references [33, 46]. But whereas the extrapolation travels in a direction tangent to the curve endpoints,
offsets are taken in the binormal direction, denoted by binormal vector B, or the unit binormal vector
b in the Frenet-Serret frame. Consequently, the initial derivatives need to be altered to travel in the
direction orthogonal to the curve along the surface, obtained from Equation (4.40) and Equation (4.41).

T = u̇0Su + v̇0Sv (4.40)

B = (Su × Sv)×T = u′(0)Su + v′(0)Sv (4.41)

The left part of Equation (4.41) can be rewritten from a double cross product to a sum of two dot
products in Equation (4.42). Then, by rearrangement the terms for the initial derivatives and applying
the same normalization as in Equation (4.39), the offset direction can be obtained from Equation (4.43)
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and Equation (4.44). Note how the plus-minus sign correspond with the two possible directions of
geodesic offsets relative to the progenitor curve.

B = −(Sv ·T)Su + (Su ·T)Sv = U1Su + V1Sv (4.42)

u′(0) = ± U1√
g11U2

1 + 2g12U1V1 + g22V 2
1

(4.43)

v′(0) = ± V1√
g11U2

1 + 2g12U1V1 + g22V 2
1

(4.44)

As in the previous section, the four initial conditions are used by the MATLAB solver to generate
points offset from the progenitor curve. Then, a curve-fitting procedure from section 4.4 is required to
construct final curves. These lines represent the boundaries of a single tow, which will be compared
against neighbouring tows in section 4.7 to check for intersections.

4.7 Curve-Curve Intersection Algorithm

As mentioned before in subsection 2.2.1 on automated fibre placement, the occurrence of gaps and/or
overlaps are inevitable due to the nature of VSL and the AFP technique. Since this thesis will only
consider designs without overlaps, an algorithm has to be developed to find all the intersections between
the neighbouring tows and then decide on where the cutting occurs. This section will cover the first part
of this problem, namely of a curve-curve intersection algorithm.

The offset lines from section 4.6 represent the outer borders of the tows of a single machine pass.
An intersection is found whenever two offset lines cross, which has to be handled by cutting one of the
two tows. Finding intersections is also imperative to determine the crossings of tows with the panel
boundary. This is needed from a manufacturing standpoint to reduce scrap waste while conforming to
the minimum cut length for placing AFP tows.

Since finding intersections is another fundamental technique for many Computer Aided Design
(CAD)/ Computer Aided Modelling (CAM) applications, there are a variety of options available. Seder-
berg and Parry (1986) and Patrikalakis et al. (2009) were used to obtain an overview of the current
methods [33, 48]. For curve-curve intersections, three different kinds of methods have been identified.

1. Bézier clipping, which is a curve-curve intersection algorithm that utilizes the convex hull prop-
erty of Bézier curves to iteratively clip away regions where no intersections can occur until all
intersections are found [49].

2. Subdivision methods, as described by Lane and Riesenfeld (1980), Koparkar and Mudur (1983) and
Wang (1984) [50–52]. This method subdivides the curves into smaller parts based on characteristic
points as a form of preprocessing. These subdivisions are then guaranteed to lie within the bounding
box defined by the end points of the curve segment, which makes finding the intersections of these
curves very convenient.

3. Modified Newton-Raphson methods, which all (loosely) utilize the root-finding technique in some
way to find the intersections. Mørken et al. (2009) uses the control polygons of the control points
of two B-spline curves as a preprocessing step to determine quickly where intersections may occur,
before applying Newton’s Method [53]. Rajab and Piegl (2014) proposed an algorithm to find curve-
curve intersections by using a knowledge-guided NURBS system with a tight bi-arc decomposition
along with pre- and post-processing the results for accuracy [54].

The decision was made to use the method from Mørken et al. (2009), since it would require the
least amount of preprocessing and the examples from the paper were similar to the type of intersections
expected in the thesis [53].
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Figure 4.8: Schematic outline of the intersection finding algorithm [53].

The full procedure is best explained (globally) with the help of Figure 4.8. First the control polygons,
consisting of the control points of the two curves, are generated. If the control polygons intersect, then the
curves should also intersect at some point. To find this point, knot insertions are iteratively performed
until the new knots of both curves have converged to the intersection, which can then be stored. A
demonstration of this procedure is shown in Figure 4.9. As illustrated, knot insertions do not change the
shape of the curve itself, but add new knots and control points to alter the control polygon as a form of
refinement.

However, it is possible for the curves to intersect without intersections between the control polygons.
To account for this, if no intersection is detected, then also the two local convex hulls are compared. If
there is any overlap, then a midpoint pair of knots is inserted to refine the control polygons. This is
repeated until either a control polygon intersection is found, or the convex hulls no longer overlap. If
there is no control polygon intersection or convex hull overlap, then the curves do not intersect on that
interval.

The algorithm will now be explained in more detail in two parts: first the setup of the two curves is
described, then the method for selecting the values for the knot insertions to attain the intersections.

Figure 4.9: Through repeated knot insertions of the intersections between the control polygons, a
sequence is obtained that converges to the intersection of the two curves. [53].
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Consider a B-spline curve f . The curve has a set of control points P that together form the in-
terpolants of the linear piecewise function of the control polygon Γf . A one-to-one mapping between
the knots s and the control polygon Γf is required to iteratively perform knot insertions to find the
intersections. To achieve this, the knot interval [sd+1, sn+1] is used, where d is the degree of the curve
and n the number of control points. A relation can then be established between the control polygon and
the knots in Equation 4.45, with the knot average s̄ (or Greville abscissa [55]) shown in Equation 4.46.
A similar procedure is performed for the second curve g, with control polygon Γg, control points Q and
knots t.

Γf (s) =
s̄i+1 − s
s̄i+1 − si

Pi +
s− s̄i

s̄i+1 − si
Pi+1 (4.45)

s̄i = (si+1 + ...+ si+d)/d (4.46)

Now onto the knot insertion. The process of knot insertion does not change the shape of the curve,
but it does add new knots and control points, as illustrated in Figure 4.9. Furthermore, some of the
existing control points are replaced.

Consider σ to be a new knot location, inserted in the interval σ ∈ [sµ, sµ+1). This results in a new set
of control points (Ri)

n+1
i=1 . Since B-splines are piece-wise continuous, only d control points are affected.

This means that Ri = Pi for i = 1, ..., µ− d and Ri = Pi−1 for i = µ+ 1, ..., n+ 1. The affected control
points are generated according to Equation 4.47. For the second curve, the new knot location will be
referred to with τ .

Ri =
σ − si
si+d − si

Pi +
si+d − σ
si+d − si

Pi−1 for i = µ− d+ 1, ..., µ (4.47)

The actual locations of the knots are determined with a two-variable Newton’s method. Suppose the
two control polygon segments [Pi−1, Pi] and [Qj−1, Qj ] intersect. The two segments can be equated by
rewriting Equation 4.45 for the two knot insert values σ and τ in Equation 4.48.

s̄i − σ
s̄i − s̄i−1

Pi−1 +
σ − s̄i−1
s̄i − s̄i−1

Pi =
t̄j − τ
t̄j − t̄j−1

Qj−1 +
τ − t̄j−1
t̄j − t̄j−1

Qj (4.48)

Then, each side of equation Equation 4.48 is rewritten according to Equation 4.49, which then leads
to Equation 4.50 when rearranging the terms. Grouping the ”derivatives” together in two-by-two matrix
M in Equation 4.51, the modified Newton’s method can be recognized, as shown in Equation 4.52.

Pi + (s̄i − σ)
Pi − Pi−1
s̄i − s̄i−1

= Pi + (s̄i − σ)∆Pi ; ∆Pi =
Pi − Pi−1
s̄i − s̄i−1

(4.49)

Pi −Qj = −((σ − s̄i)∆Pi − (τ − t̄j)∆Qj) (4.50)

M =

[
∆Pi1 −∆Qj1
∆Pi2 −∆Qj2

]
(4.51)

[
σ
τ

]
=

[
s̄i
t̄j

]
−M−1(Pi −Qj) (4.52)

As this is an iterative process, the knot insertions continue until a desired accuracy is reached. This
is repeated for all polygon segments until every intersection is found. The results are stored in a table,
which functions as a database for the cutting algorithm. It registers the location of the intersection in
terms of the curve parameter t, the opposing course and tow that the curve intersected with (important
for the cutting logic), the number of times a curve intersects with an opposing tow (important for tow
adds/restarts) as well as the ”type” of intersection. For example, an intersection between a course and
the panel edges is registered differently than an intersection with a neighbouring tow, as the panel edges
indicate the boundaries wherein the course should exist, i.e. the start and end location. The types of
intersection and the subsequent decision-making is further expanded upon in section 4.8.
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4.8 Tow Cutting

This section will cover the work to cut tows according to their intersections. The general guideline for
the cutting algorithm is to allow the user to decide where to cut tows with the same basis, i.e. to
register all possible cutting locations and to let the user decide which parts to keep. Secondly, the types
of intersections that were encountered are described, and how they were handled. Finally, the chosen
cutting ’strategy’ is described. Although there are many possible ways to cut the tows, for this thesis
only one type is considered.

4.8.1 Cutting Algorithm

The first step is to prepare the curves such that parts can be ”cut” with the intersections known from
section 4.7. With B-spline curves, this is typically done by applying multiple knot insertions at the
desired location until the continuity of the curve reaches C−1 [35], as increasing the knot multiplicity
decreases the curve continuity at that location. The curve has then effectively been split in two, as
the two segments are practically independent of each other, only sharing the knots and control point at
the cut. This allows for the removal of parts of the curve without affecting the other segments. Then,
according to the cutting strategy, it can be decided per segment whether it should be cut. Similarly to
the intersection tables, a table for each segment of each curve is made, alongside a vector and matrix for
the control points and knots of the ’segmented’ curve, i.e. with the knots inserted. The segment table
refers to the indices of the first and last knot for the segment, as well as the first and last control point.
Furthermore, each segment also has a boolean which prescribes if it exists in the design, or whether it
is cut. This allows for different cutting strategies for the same design without altering previous work.
Examples of an intersection table and segments table are shown in Table 4.1 and Table 4.2, and how
they are used to cut the tows in this thesis is explained in detail in Appendix A.

Table 4.1: Example intersection table.

# Curve Parameter Course Tow Intersection Type
1 0.05 4 15 1
2 0.12 4 16 1
3 0.17 4 16 2
...

...
...

...
...

n 1 4 14 0

Table 4.2: Example segments table.

# First Knot Last Knot First CP Last CP Active
1 1 9 1 5 0
2 6 18 6 14 0
3 15 23 15 19 1
...

...
...

...
...

...
m 46 56 46 52 0

Regarding the cutting logic, if a tow segment does not overlap with any other segments, then it
should always exist. Unfortunately, this cannot be deduced by only looking at the intersection locations.
For example, a tow could start within the area of another course, leading to the overlapping parts to
be removed, but added/restarted later when it is no longer overlapping. This is where the intersection
table comes in, as it checks the opposing tow that it intersected with and registers the number of times it
intersected with this tow before. This provides the algorithm with the direction of the tow with respect
to the neighbouring tows, i.e. does it go further towards the opposing tows, or does it move away. Then,
if a unplaced/cut tow intersects again with the outer tow of its neighbour, it can be deduced that the
tow can be restarted. An illustration of tow adds/restarts is shown in Figure 4.10.
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Figure 4.10: Tow adds/restarts within a layer. The middle course is cut on both sides at the start of the
course due to overlap with its neighbours, with the unplaced/cut parts illustrated with the dashed lines.

When a ’cut’ tow intersects with the outer edge of a neighbouring course, it can be added/restarted.

Secondly, regardless of cutting strategy, intersections with the edges of the panel indicate the start-
and endpoints of the tow (unless the minimum cut length is not reached) and need to be trimmed
accordingly. However, due to the approach of using the outer edge of the fibre as the curve, this can lead
to incorrect results. This is best illustrated with the help of Figure 4.11. Notice how all the tow edges
have been trimmed to the panel edge, but the blue tows do not cover the edge of the panel. This will
always occur for either the left or the right offsets of the tows, depending on the orientation of the course
and the panel edge. It is solved by instead looking at the inner edge of the tow as a trimming point,
which is the panel edge intersection of the curve to the right of the tow. Projecting this point onto the
curve (arrow and dashed line), the blue tows can be trimmed correctly. In this case, the neighbouring
intersection is offset one tow width towards the blue tow edge (simulating a tow width), and then a point
projection algorithm is applied to find the nearest point on the curve.
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Figure 4.11: Tow trimming to panel dimensions. In this example, the red and blue tows are all
trimmed by comparing their outer edge, as seen from the course centre line, to the panel edge. This
results in the blue tows being too short, due to their flipped orientation compared to the red tows.

Point projection from the inner point (arrow and dashed line) allows for correct trimming.

Another issue that arose from using the outer edge of the fibre, was that looking solely at intersections
between the offset curves (or tow edges) fails to account for tow overlaps without intersections. For
example, imagine a case of two parallel machine paths with identical fibre angles, but spaced too close
together. It is then possible for two fibres to overlap, without their edges ever intersecting. This can
be solved by including the endpoints of the tow to the outer edge of the tow, with an extra intersection
check. This too should be registered in the intersections, but with a different flag such that it can be
recognized as an ’endpoint intersection’. It is registered differently because a endpoint intersection should
not be taken into account when checking for tow restarts.

4.8.2 Cutting Strategy

Finally, a decision has to be made on the cutting strategy/strategies for the designs. Throughout the
years, several options have been suggested. Factors to consider are the number of cuts, panel coverage
and manufacturing issues such as tow straightening.

Single-Sided and Alternating Course Cutting

The simplest option from a programming point of view would be to use single-sided cuts, irrespective
of any other parameters other than course number. An example of single-sided cutting is shown in
Figure 4.12. Double single-sided cuts (or alternating course cutting in terms of tow courses) have the
added benefit that half the courses would effectively be untouched. Alternating course cutting is a
robust form of cutting that can be applied almost anywhere, regardless of fibre angle distribution. The
main downside is that tow straightening is not taken into consideration, which could cause significant
manufacturing defects. Alternating course cutting was included as a cutting strategy due to its broad
applicability, and a flow diagram explaining the cutting process is shared in Appendix B.

’Zipper’ cuts

’Zipper’ cuts have been suggested as a way to minimise the fibre angle mismatch by evenly cutting both
sides of a course. However, initial research by Mishra (2017) did not show any benefit for this type
[21]. Additionally, fibre straightening could occur even more frequently than alternating course cutting,
as even more tows would be affected. As part of the emphasis of this thesis is on the minimization of
manufacturing defects, this concept was discarded. An example of ’zipper’ cuts can also be found in
Figure 4.12.
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Figure 4.12: Single-sided cuts and Zipper cuts were compared by Mishra (2017) from a performance
standpoint [21].

Curvature-Based Cutting

Curvature-based cutting has been suggested based on the experiences from Blom (2010) with tow straight-
ening of cut tows [5]. She noted that tow straightening occurred less on the inner side of a curve compared
to the outer side when a tow was cut. This is equivalent to using the curvature of the tow courses as
a guideline for which side of the courses to cut. Unfortunately, curvature-based cutting could not be
implemented correctly in this thesis. The usage of the B-spline curves with its control points and the
curve-fitting procedure from section 4.4 led to regions with minute changes in curvature where they would
not be expected, which led to incorrect results. Therefore, this method was not pursued further in this
thesis. It should also be noted that curvature-based cutting would not fully eliminate tow straightening,
as it is only less likely to occur on inner side of a curve, instead of fully eliminating it.

Anti-Straightening Cutting

Anti-straightening ’cutting’ is a strategy that severely limits the design space at the benefit of fewer
potential manufacturing issues, mostly notably tow straightening. Tow straightening only occurs when
the AFP robot loses the capability to steer the tow in the desired direction, i.e. when it is cut. However,
tow adds/tow restarts do not have this problem, as noted by Blom (2010), since the machine retains
control [5]. In other words, if a layer can be designed such that tows in overlapping regions between
two courses are only added instead of being cut, this should eliminate the risk of tow straightening.
Unfortunately, this is easier said than done and should only be possible for a specific subset of (D)LVFA
panels. For example, high amounts of steering and/or multiple angle shifts would all but negate the
possibility of only doing tow adds without incurring extra gaps and/or other manufacturing defects.
Nevertheless, it is included in this thesis as an example of a set of steered fibre layers without overlaps
or tow straightening, which could be used for validation or testing purposes. A comparison between
alternating course cuts and ”anti-straightening” cuts for a compatible fibre angle distribution is shown
in Figure 4.13 and a flow diagram explaining the cutting process is provided in Appendix B.
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(a) Alternating course cutting (b) Anti-straightening cutting

Figure 4.13: Comparison between two <45,75,45>y DLVFA layers with differing cutting strategies.
With alternating course cutting, only the odd courses are ’cut’, and the even courses are untouched. In
contrast, the courses in the anti-straightening layer are all ’cut’ at the start of the course, but become

full-width at the end.

The anti-straightening method as just described can only be used for fibre angle distributions where
the overlap areas are at the ends of the course. If the fibre angles in Figure 4.13b were reversed, then
the overlaps would occur in the middle instead, negating the ability to only add tows within the panel
dimensions. A variation on anti-straightening cutting can be achieved by using ’filler courses’ instead,
meant to fill gaps between two regular, full-size courses. This is illustrated in Figure 4.14. An extra filler
course is placed at the half-way point between each two full courses. The filler courses are then cut with
alternating course cuts, resulting in small patches that fill some of the gaps between the two full courses.
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(a) Alternating course cutting. (b) Anti-straightening cutting by using filler courses.

Figure 4.14: Comparison between two <75,45,75>y DLVFA layers with differing cutting strategies.
Note how the overlaps occur in middle of the course for Figure 4.14a. ’Regular’ anti-straightening cuts

are therefore not possible for this fibre angle distribution, but with filler courses a setup can still be
achieved where tows are only added within the panel dimensions.

4.9 Minimum Cut Length

As mentioned in subsection 2.2.1, AFP machines have a limit to the minimum length of the tow that
can be placed. Therefore, a check must be created to account for this occurrence, by comparing the
length of the tow to the minimum cut length. Then, the possibilities to extend the tow are examined,
and otherwise it is removed from the design. The cases are illustrated in Figure 4.15. In addition, if a
tow segment can be extended, but is shorter than a chosen length threshold, it may be removed as well
to prevent single protruding tows.
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Figure 4.15: Potential cases where the minimum cut length may play a role [5]. Whereas the tows in
(a) can be extended, the tows in (b) cannot, and may have to be removed if below the threshold.

The intersections at the ends of the tow are examined to determine if it can be elongated. Tow
elongation can only be performed if it borders at least one panel edge. The number of bordering panel
edges is taken into consideration as well, since the elongations are preferably divided evenly on each side.
If a tow is too short and is enclosed by two other tows, then it has to be removed.

The tow length is calculated by using an arc length numerical integration. B-spline curves can be
infinitely sampled within their domain, so the approximation can be very accurate depending on the
interval of the curve parameter. It should be noted however that the lengths of the outer tows are used,
which may vary slightly from the actual length of the fibre. However, as the tows widths are small
compared to their length, this will only incur a minor error and can be accounted for by simply adding
a small percentage to the desired cut length in the algorithm. For m points Pi = [xi, yi, zi] on the curve
C, the total length of a tow edge is given by Equation (4.53).

L =

m−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (4.53)

Then, the new tow ends are determined. First, an approximation is made by calculating the para-
metric speed ds

dt (change in arc length s for a change in curve parameter t) at the endpoints of the tow
and projecting outwards. Although the parametric speed is not constant in general, it is often close
to constant if the control points and knots are spaced evenly. With the parametric speed at each end
determined, the approximated curve parameter corresponding with the required elongation of the tow
can be calculated. Finally, the length of the new curve is re-examined to ensure it is within the margin.
This is repeated until the desired length is reached.

4.10 Curvature

The curvature of the course centre lines is the final manufacturing constraint from subsection 2.2.1 that
will be considered by the new algorithm. As mentioned there, tows may kink out of plane if too much
steering is applied. Although the values of maximum steering from Table 2.1 are not set in stone, it is
important to register the curvature to give some measure to predict possible tow kinking. Specifically, the
geodesic curvature κg will be used for the evaluation, because it is a representation of planar curvature
as if you were on the (curved) surface.

The approach in this thesis closely mimics the one by Patrikalakis et al. (2009), with one important
exception. Whereas Patrikalakis et al. (2009) uses an arc length parametrized curve, this thesis uses the
regular curve parameter t and applies a normalization as needed, similar to what was used in sections 4.5
and 4.6 with Equation (4.37). The following equations will show the approach from Patrikalakis et al.
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(2009) and the equivalent curve parameter expressions.

For a given B-spline surface S(u, v) and an arc parametrized curve C(s) on S, let there be a point
on the surface such that:

S(s) = S(C(s)) = S(u(s), v(s)) (4.54)

The unit tangent vector t of C is then obtained by differentiating with respect to the arc length s
and applying the chain rule in Equation (4.55), which can then be related to curve parameter derivatives
through the normalization λ.

t =
dS(u(s), v(s))

ds
= Su

du

ds
+ Sv

dv

ds

= λ(Su
du

dt
+ Sv

dv

dt
)

(4.55)

Likewise, by differentiating the unit tangent vector t with respect to the arc length and applying the
chain rule, the curvature dt

ds or k is obtained in Equation (4.56).

dt

ds
= Suu(

du

ds
)2 + 2Suv

du

ds

dv

ds
+ Svv(

dv

ds
)2 + Su

d2u

ds2
+ Sv

d2v

ds2

= λ2(Suu(
du

dt
)2 + 2Suv

du

dt

dv

dt
+ Svv(

dv

dt
)2 + Su

d2u

dt2
+ Sv

d2v

dt2
)

(4.56)

Then, the scalar quantity of the geodesic curvature κg can be written as the product of the curvature
vector k and the binormal vector b in Equation (4.57). Effectively, the geodesic curvature is obtained by
taking the components of the curvature in the direction of the binormal vector. The right-hand side of
Equation (4.57) is rewritten to use the expressions from this section and the unit normal vector n from
Equation (4.31).

κg = k · b =
dt

ds
· (n× t) (4.57)

Equation (4.57) provides a single value for any single point of the curve C, which can then be sampled
as desired and the absolute value of the curvature compared to some maximum value.

During the verification of the curvature code, an issue was identified regarding the smoothness of the
fit from the curve fitting algorithm, which gave unexpected results for the curvature of a curve. This is
discussed in Appendix C.
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Chapter 5

Fitness Criteria for Variable
Stiffness Laminates

This chapter is dedicated to defining measures of objectively grading fibre steered designs from the fibre
path algorithm. As illustrated in Figure 2.10, fibre steering with Automated Fibre Placement (AFP)
typically causes defects or errors in the form of gaps or overlaps, as identical courses cannot be shifted
without either of these cases occurring. Additionally, as will be shown in this chapter, fibre steering
can be a source of fibre angle errors, due to the way that the fibre angle remains constant along the
width of the course. Lastly, the number of cuts within a panel layer, and what fraction of the tows are
affected by cuts are registered as well. Each cut tow within the panel could be considered to create a
load discontinuity, and each cut reduces the production speed.

It should be noted that none of the aforementioned phenomena occur in ’conventional’ constant
stiffness composite layers. Therefore, the fitness criteria are predominantly parameters to compare
different fibre steered designs to each other or to assess the consequences of using fibre steering designs
over constant stiffness laminates.

5.1 Layer Coverage

The layer coverage is a measure of how much of the design area of a layer is covered by tows, given as
the ratio of the tow area over the total area of the layer. Inevitably, gaps will occur between courses
when they are shifted with AFP, but gaps should be kept to a minimum and therefore registering the
uncovered area has merit in rating designs quantitatively. For Linearly Varying Fibre Angle (LVFA)
designs, the percentage of gaps is proportionate to the tow width, the number of courses and the fraction
of the length of the course that is steered, as it is the steering of courses that induces the overlap of
neighbouring tows.

The coverage is calculated by taking the total area of the design and comparing it to the area of all
the fibres within the design area. The design area can be approximated by converting the NURBS/B-
spline surface into a triangulated mesh and then calculating the area of each triangle with the aid of a
connectivity matrix. The connectivity matrix D relates a set of points P of the triangulated surface,
shown schematically in Figure 5.1, and has the size of 2(m−1)(n−1)×3, where m and n are the number
of points in the length and width of the mesh, with each row containing the indices of the three corners
of a triangle. The area of a single triangle is then given as the cross product of the three corners as
shown in Equation (5.1)[56].

A = 1/2

2(m−1)(n−1)∑
i=1

|P (D(i, 2))− P (D(i, 1))× (P (D(i, 3))− P (D(i, 1))| (5.1)
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Figure 5.1: Numbering of the triangulated mesh as used in the connectivity matrix D

The tow areas are calculated similarly with the triangle area approximation, but within the bounds
of the mould and the two edges of the fibre. The intersection and segment tables of Appendix A are used
here to determine which segments are active, and what type of intersection occurs at their endpoints.
If the intersection is with a panel edge, then the panel edge intersection of the N − 1th offset is used
to trim the tow area to only include fibre area within the design area, as shown in Figure 5.2. If the
intersection is with a tow, then the intersection is projected onto the N − 1th offset instead, by using a
point projection algorithm. Then, the two borders are sampled by m points each for a m× 2 mesh and
the area is calculated with Equation (5.1).

Figure 5.2: Determining the bounds of the area of a fibre.

This method also allows the calculation of the total fibre area placed on the mould, including the
parts of the tows outside the design area. This can be used as an estimate of the required fibre material
to produce the layer.
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5.2 Fibre Angle Error

The Fibre Angle Error is the difference in fibre angle between a placed tow and the design value.
Although the design angle is followed as closely as possible by course centre line during the progenitor
course generation process, the actual fibres will most likely have some mismatch, as a point on a fibre
shares the same orientation of a point on the centre line perpendicular to the course direction. This is
illustrated in Figure 5.3. The effect is magnified the further the fibre is located from the course centre
line. This effect has to be registered such that the designer can make adjustments to the design if a part
of the design becomes non-compliant.

Figure 5.3: An illustration of fibre angle mismatch within a single course. The fibre angle is equal along
a dashed line. Assuming that the course centre line exactly follows the design angle, there will still be

fibre angle mismatches due to the geometry of the course.

Before the direction of a fibre can be assessed, an axis system needs to be defined for each point
on the surface such that the fibre angle can be evaluated in the tangent plane of the surface (for 2D
structures, normal trigonometry can be used). The axis system consists of a modified 0◦* line, which
is defined as the slope of the surface in x, the unit normal vector n as shown in Equation (4.31) and
completed by a modified 90◦* line, defined as the cross product between n and 0◦*. The local fibre angle
orientations are illustrated in Figure 5.4. Notice how the 90◦* lines bend due to the doubly-curved shape
of the mould.
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(a) Top View (b) Perspective View

Figure 5.4: Local fibre angle orientations for the curved surface, as well as a comparison between a 2D
45◦ line and a 45◦ line for the surface.

The direction of the fibre is obtained from the unit tangent vector t, as shown in Equation (5.2). It
is then projected onto unit vectors in 0◦* and 90◦* to get the components in-plane from which the fibre
angle can be deduced.

t =
T

|T|
=

u̇Su + v̇Sv
|u̇Su + v̇Sv|

(5.2)

Then, the obtained fibre angle can be compared against the design value. In the case of (D)LVFA
designs, the position of the evaluation point is sufficient to obtain the exact design value, from Equa-
tion (2.1) or Equation (4.2). For generic designs, where the input is a grid of fibre angles as seen in
Figure 2.11, an interpolation step is required. The interpn.m function of MATLAB can be used to inter-
polate an N-D grid with various interpolation methods [57]. For this application, a linear interpolation
method is used.

An example of an fibre angle error figure for a <40,65,40>y layer with a constant region is shown
in Figure 5.5. The fibre angle mismatch along the width of the course is clearly visible, with the lowest
errors occurring at the course centre lines and at the constant regions. However, the mismatch is not
exactly symmetric, instead showing some oscillations near the inflection points of the course. This is a
result of the fitting procedure as described in Appendix C. A closer examination of the fibre angle in
Figure 5.6 reveals the same oscillation issue at the endpoints of the curve, where the fibre angle is set to
continue with the last prescribed value (in this case 40◦). Recommendations are made in section 7.2 to
tackle this effect.
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Figure 5.5: Fibre angle error illustration of a <40,65,40>y with a constant region.

Figure 5.6: Fibre angle comparison for the fifth course of the <40,65,40>y layer from Figure 5.5 and
the design angle. While the course centre line generally shows good adherence to the design angle, it

struggles with the inflection points and the ends of the curve.

5.3 Continuous Tow Percentage and Number of Cuts

The final fitness criteria is for registering the occurrence of cuts and non-continuous tows within the
panel. Cuts and tow restarts/adds affect the production speed, as the AFP roller head has to slow down
while trimming or initiating the tow. Non-continuous tows are also a cause of load discontinuities and
stress concentrations within the panel [58].
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The intersection and segment tables, as explained in Appendix A, are used to determine cuts and
non-continuities. For each active segment / tow within the panel dimensions, the two outer intersections
are examined. If any of these are not an panel edge intersection, then it is counted as a cut and the tow
is non-continuous. Every non-continuous tow is considered ’cut’ for the purposes of this section, even
if the tow was added mid-course. An illustration is shown in Figure 5.7. It should be noted there is a
significant difference in the tow continuity per course near the corners, compared to the longer courses
in the centre, which should be taken into account when viewing this number.

Figure 5.7: Continuous tow counting for a given layer. Tows that are cut anywhere within the layer
dimensions are counted as ’non-continuous’. Tows that are placed for the production reasons, but are

otherwise outside the dimensions of the layer are ignored.



49 Delft University of TechnologyAerospace Engineering

Chapter 6

Results

In this chapter, the results from the developed algorithm are displayed. In section 6.1, the algorithm is
demonstrated on different types of surfaces and fibre angle distributions, and a quantitative comparison
of several parameters on the fitness criteria of chapter 5 is made in section 6.2.

The parameters of the layers are not based on any actual designs, but are merely chosen for demon-
strative purposes. Specifically, the curvature constraint has been ignored for all but one of the layers,
as a compromise was made for the generation of images in the results section. In order to not exceed
the curvature constraint, the layers would have either needed to be steered a lot less or the size of the
layer would have needed to be significantly increased. Both cases were deemed undesirable. Limiting
the steering would have lead to fewer course overlaps and fewer points of interest on the layer and a
larger mould in combination with the small tows would obscure some of the results without additional
close-ups.

6.1 Algorithm Demonstration for Typical Use Cases

The main goal of thesis has been to extend the fibre steering method to include doubly-curved shells,
and to accept a range of fibre angle distributions. To this end, three layers were chosen to demonstrate
the algorithm’s capabilities. A Discrete Linearly Varying Fibre Angle (DLVFA) layer on a doubly-curved
plate is shown in subsection 6.1.1 and a generic fibre angle distribution layer is given in subsection 6.1.2.
Lastly, a curvature-constrained layer is shown in subsection 6.1.3 to give a better idea of the required
scale of fibre steering.

6.1.1 Doubly-Curved Plate

This example is a <-45,-75,-45>y layer with a constant region on a doubly-curved plate and demonstrates
the ability of the algorithm to generate layers on curved surfaces, shown isometrically in Figure 6.1.
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Figure 6.1: Isometric view curved plate.

The top view in Figure 6.2 shows that all tows are placed in the constant region of the layer. This
means that the offsetting procedure works for curved plates. Likewise, the intersection detection and
cutting algorithm also show no errors, with gaps only occurring in the overlap areas between courses.
This illustrates the value of using a parametric approach when modelling generic curved shells.

Figure 6.2: Top view curved plate.

The fibre angle error results in Figure 6.3 are noteworthy as well. It can be seen that the error is larger
at the outer edges of the plate, and that the lowest errors no longer occur at the centre line of a progenitor
course, in contrast to Figure 5.5. This is a result of the single-progenitor approach from subsection 4.2.2
in combination with the curved surface. Only the progenitor curve shows reasonable compliance with
what is expected, with the lowest errors at the course centre line and a mostly symmetrical fibre angle
error distribution. This is a downside of using the single-progenitor approach and somewhat limits its
use for doubly-curved moulds.
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Figure 6.3: Fibre angle error of the curved plate.

6.1.2 Generic Fibre Path

This example demonstrates the algorithm on a generic fibre angle distribution on a flat plate. The
distribution was taken from an example of Wurpel (2015), although the chosen panel dimensions and
course properties are different. Paths were fully generated by the streamline code instead of the single-
progenitor approach for obvious reasons. The fibre angle distribution and the resulting course centre
lines from the streamline code are illustrated in Figure 6.4 and the ensuing layer is shown in Figure 6.5.

Figure 6.4: Generic fibre angle distribution and resulting course centre lines, as given by the streamline
code. The tangent and normal directions of the fibre angle inputs are given by the red and blue local

axis. The bar graph is an indication of how ’crowded’ an area on the layer is.

Gaps between courses are much more prevalent in this layer compared to the doubly-curved plate of
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subsection 6.1.1. This is partially because of the streamline code, which seems to have difficulties with
correctly spacing the courses. A peculiar detail was that the streamline code sometimes achieved better
results in terms of coverage were when the offset distance between courses was artificially increased above
the course width, effectively pretending that the courses were wider than they actually are. It is possible
that the streamline code views the offset distance as the upper limit of the distance between two courses.
However, the nature of generic fibre angle distributions make it difficult to prevent these gaps completely,
regardless of the method used.

As it is not possible to do anti-straightening cuts in this layer, the alternating cutting method was used
instead. In this case, it means that the odd-numbered courses are cut and the even-numbered courses
are ignored. As a result, there are areas where only a few tows remain active for an odd-numbered
course. This is undesirable, as the fibre angle of tows nearest to the course centre lines are the closest
to the desired fibre angle distribution. In contrast, as can be seen in the fibre angle error illustration of
Figure 6.6, the largest errors occur almost exclusively on the outer edges of the even-numbered courses.
This begs the question if the current cutting techniques are appropriate enough.

In section 4.8 on tow cutting, the concept of ’zipper-cuts’ was discarded because of the limited benefits
reported by Mishra (2017) compared to single-sided cutting and the high risk of fibre straightening.
Although fibre straightening cuts are practically unavoidable for this fibre angle distribution, the result
from Figure 6.6 may yet prompt an implementation of a form of ’zipper’ cutting for generic fibre angle
distributions, as the fibre angle compliance could be considered more critical for such layers. On the other
hand, if fibre straightening is deemed a critical manufacturing flaw, then this should also be reflected in
the fibre angle distributions themselves, to allow for some form of anti-straightening cuts.

Figure 6.5: Generic fibre angle distribution from Wurpel (2015).

Figure 6.6 also displays more frequent fibre angle error oscillations compared to an example image
such as Figure 5.5. The inflection points of the courses make it difficult to obtain the lowest fibre angle
errors at the course centre line due to the current fitting algorithm, with courses with fewer inflection
points performing better. Large errors also occur where the local fibre angle is no longer a function of
the fibre angle distribution, but of the extrapolated endpoints of a course. This predominantly occurs
around the corners of the layer.
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Figure 6.6: Fibre angle error of the generic fibre layer.

6.1.3 Curvature-Constrained Layer

The final layer in this demonstration section is one that is constructed while adhering to the curvature
constraint. Due to the scale of the layer, individual tows are more difficult to discern, which is why this
setup was not chosen for every layer.

The mould is created from a half-cylinder with a radius of 0.75m, and was constructed with NURBS
by extruding a semi-circle. For drawing purposes, the drawn mould was then trimmed to be slightly larger
than the size of the layer. The layer consists of steered <48,75,48>y courses from a single-progenitor
approach, with a constant region between 3/10th and 7/10th of the width of the mould. The top view
of the layer is shown in Figure 6.7, and a rotated isometric view is shown in Figure 6.8.
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Figure 6.7: Top view of the curvature-constrained layer.

Figure 6.8: Isometric view of the curvature-constrained layer.

The curvature constraint was taken to be at most ±1/635mm or ±1.57× 10−3mm−1, based on the
figures from Table 2.1, and is shown for all courses in Figure 6.9. It should be noted that there are slight
variations in the curvature profiles of the courses, despite all courses having the same fibre angles. This
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is due to some of the courses having different lengths, which meant that during fitting, fewer data points
were available. This led to small differences in the curvature.

Figure 6.9: Curvature values of the course centre lines of the layer.

Finally, the fibre angle error of this layer should be mentioned. As Figure 6.10 shows, the curvature-
constrained layer has a maximum error of only around 2.5◦. This is significantly lower than the previous
two layers in this section, and it raises the question if the two ’demonstration’ layers in this section
provide an distorted view of the expected magnitude of the fibre angle error. It must therefore be
reiterated that all but this layer are solely made for the demonstration of the new algorithm.
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Figure 6.10: Fibre angle error of the curvature-constrained layer.

6.2 Results Comparison

In this section, the effects of several parameters on the fitness criteria from chapter 5 are investigated by
comparing the results of a single fibre layer. A ’baseline’ design is presented in subsection 6.2.1 against
which the other designs are compared. The results are summarized in a table in subsection 6.2.9. Unless
otherwise stated in their respective sections, each design consists of the following specifications:

� Flat plate with a 700 x 500 mm design area.

� Courses consist of 32 x 1/8 inch tows.

� A DLVFA fibre angle distribution of <45,75,45>y with a constant region between 1/4th and 3/4th

of the width of the plate.

� 50 mm minimum cut length for tows.

� 10 mm margin around the design area.

� Anti-straightening cuts as described in subsection 4.8.2.

It should be noted that the values for the minimum cut length and the margin were chosen solely for
demonstration purposes, and are not based on any manufacturing specifications.

6.2.1 Baseline Design

The baseline design follows all the specifications mentioned at the start of this section. They were
selected because it seemed the most conventional and manufacturable. Gaps are limited to the overlap
areas between courses, with the number of courses themselves also being kept to a minimum for the same
reason. As a result, the fibre angle error is quite high at the outer ends of each course. It will be up to
testing and other future work to determine the feasibility of this kind of design.
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Figure 6.11: Baseline design.

Figure 6.12: Fibre angle error of the baseline design.

6.2.2 Effect of Number of Tows

This design has half the number of tows per course and therefore (roughly) double the number of courses
compared to the baseline. This has two distinct effects on the results. Firstly, by halving the course
width, the maximum fibre angle error has been significantly decreased. Additionally, the smaller course
width would also allow for higher amounts of steering, as the minimum turning radius from Table 2.1 is
a function of both tow width and course width. Secondly, due to the extra courses, there are also more
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areas where courses overlap, resulting in more cuts and therefore gaps. Effectively, halving the course
width trades a lower coverage for a lower fibre angle error and more steering capability.

Figure 6.13: Halved course width design.

Figure 6.14: Fibre angle error of the halved course width design.

6.2.3 Effect of Tow Width

In this design, the number of courses is kept equal but the tows are twice the width (16 x 1/4 inch instead
of 32 x 1/8 inch). Interestingly enough, when comparing the values of this design with the previous two
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in Table 6.1, it has the worst parts of both. The gaps between courses are larger due the increased tow
width, while the fibre angle error is identical to the baseline design. Lastly, it should be noted that 1/4
inch tows tend to kink at higher minimum turning radii than 1/8 inch tows.

Figure 6.15: Doubled tow width design.

Figure 6.16: Fibre angle error of the doubled tow width design.
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6.2.4 Comparison with Streamline Path Result

The streamline path design is a result from taking the output of the streamline code directly, as opposed
to the altered approach from subsection 4.2.1 for the baseline design. Several differences can be noted.

The main difference between the streamline path result and the baseline is how the paths were
constructed. For the streamline result, the progenitor paths are only defined within the design area of
the mould, whereas the baseline design uses one progenitor curve, which is copied along the mould as
described in subsection 4.2.1. In both cases, the progenitor curves are then extended from the endpoints
to ensure that the outer tows also reach to the panel edges. However, as can be seen on the vertical
edges of the panel in Figure 6.17, if the path is extended in a region where the course should be steered,
it instead leaves a gap between two courses. Furthermore, the lack of steering may also lead to higher
fibre angle errors, as can be noted in the bottom-left corner of Figure 6.18.

In addition, the incorrect spacing between the streamline paths, as already illustrated in Figure 4.5,
also results in extra gaps between courses compared to the baseline. These are at most the width of one
tow between two courses.

More interestingly though, the spacing also has an effect on the cutting algorithm, as can be seen in
the less ’staggered’ tow initiations in the top half of Figure 6.17. This is due to the cutting algorithm
assuming that the outer edges of the course (i.e. the outer tows) act as the cutting barriers between
courses. For the anti-straightening cutting as used here, the courses are trimmed alternately at the top
and bottom by these outer edges, with the lower edges taking precedence over the top edges. This is not
a flaw of the streamline path design as much as a limitation of the developed cutting algorithm.

Lastly, a note should be made of the fitting of the shorter paths from the streamline path design.
Shorter paths, which consist of fewer data points, are more difficult to fit as the number of data points
affects the number of control points that can be created. This can be mitigated for the most part by
using a finer mesh for the streamline code, resulting in more data points, but this comes at the cost of
severely increased run times.

Figure 6.17: Streamline path design.
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Figure 6.18: Fibre angle error of the streamline path design.

6.2.5 Cutting Comparison

In this design, the overlapping tows are only cut from the odd course numbers instead of with the ’anti-
straightening’ strategy. This cutting strategy is more widely applicable as it is less dependent on the fibre
angle distribution to generate a valid layer. Furthermore, the number of unaffected, continuous tows is
the highest for all designs. However, the number of cuts within the panel remains the same compared to
the baseline design, which means that there could be an equal number of load discontinuities in addition
to the higher chance of tow straightening.

Figure 6.19: Alternated cutting design.



62 Delft University of TechnologyAerospace Engineering

Figure 6.20: Fibre angle error of the alternated cutting design.

6.2.6 Constant Region Comparison

Compared to the baseline design, this layer lacks a region with a constant fibre angle. Therefore, it
should be noted that the resulting panel should be intrinsically different from the previous ones, and
that this comparison is made mainly to qualitatively assess the effects of the constant region.

First of all, the lack of a constant region results in more gaps between courses as there is a larger
region where the courses are steered (and therefore overlap). However, the fibre angle error is considerably
lower, as the steering is more gradual along a longer distance. It is also noteworthy that fibre angle error
at the centre of the width very clearly illustrates the oscillations noted in Appendix C, as this is the
location of the inflection point for the path.
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Figure 6.21: No constant region design.

Figure 6.22: Fibre angle error of the no constant region design.

6.2.7 Inverted Fibre Angle Distribution

For this layer, the two fibre angles from the baseline design have been reversed, i.e. a fibre angle
distribution of <75,45,75>y with a constant region between 1/4th and 3/4th of the width of the plate.
For these kinds of designs, an extra step is required in determining the offset distance between courses.
This has to do with the effective width of a tow in the direction of shift, i.e. the width of a tow along the
length of the panel. Because there should be no gaps in the constant region, the offset distance is raised
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from the smallest effective width of the course, i.e. at θ = 75◦ to the nearest whole number of tows at
θ = 45◦.

Furthermore, this design also illustrates how ’regular’ anti-straightening cuts are not always possible.
As the overlaps occur in the middle of the course, it is not attainable to only place new tows within the
panel dimensions.

Figure 6.23: <75,45,75>y layer.

Figure 6.24: Fibre angle error of the <75,45,75>y layer.
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6.2.8 Filler Course Layer

Lastly, a ’filler course’ anti-straightening layer as described in subsection 4.8.2 is demonstrated for a
<75,45,75>y fibre angle distribution. Contrary to the previous <75,45,75>y layer, the cutting occurs at
the end of the panel again, enabling the anti-straightening cuts.

Figure 6.25: <75,45,75>y layer with filler courses.

Figure 6.26: Fibre angle error of the <75,45,75>y layer with filler courses.
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6.2.9 Results Table

The results of this section have been summarized in Table 6.1 and allows for a quantitative comparison
between designs (where applicable), based on the fitness criteria defined in chapter 5.

Unsurprisingly, the best results in terms of coverage were achieved when the courses could be neatly
placed adjacent to each other, while keeping the size and number of cutting regions to a minimum.
Increasing the number of courses (Halved Course Width) or doubling the tow width (Doubled Tow
Width) negatively affected the coverage by respectively increasing the number of cutting regions or
increasing the size of the gaps between courses. Likewise, both the Streamline Path layer and the No
Constant Region layer had lower coverage than the baseline (in part) due to a larger portion along the
course length being subject to cutting. In contrast, the Inverted Fibre Angle layer has very similar
coverage to the baseline despite only sharing the region where gaps occurred.

Three layers stand out in terms of the fibre angle error. The Halved Course Width has a lower
fibre angle error than most, as the smaller course width incurs lower errors while being steered. The
No Constant Region layer has a lower fibre angle error due to the lower steering rate. Both design
choices had a negative effect on the coverage though, which makes it an interesting trade-off for design
considerations. On the other side of the spectrum, the Streamline Path layer had the largest fibre angle
error due the loss of steering of the fibre paths outside the dimensions of the layer.

The Continuous Tow Percentage (CTP) is largely the same for most layers, with outliers in the two
layers that used the alternating cutting strategy instead of the anti-straightening cuts. However, the
number of cuts is almost equal compared to most other designs. This is due to the cutting occurring
multiple times on the same tow number. One could consider these two segments to be two individual
tows, which would have lowered the CTP, but this convention was used instead.

Table 6.1: Fitness criteria results of the presented designs. The Maximum Fibre Angle Error (MFAE)
and Continuous Tow Percentage (CTP) have been abbreviated for formatting reasons.

Design Fibre Area Uncovered Area Coverage MFAE CTP Cuts
Baseline 3.46e5 mm2 4.0e3 mm2 98.9 % 8.31◦ 58.9 % 113

Halved Course Width 3.42e5 mm2 7.7e3 mm2 97.8 % 4.22◦ 58.0 % 114
Doubled Tow Width 3.43e5 mm2 7.4e3 mm2 97.9 % 8.31◦ 56.9 % 59

Streamline Path 3.43e5 mm2 7.1e3 mm2 98.0 % 17.2◦ 53.0 % 134
Double-sided Cutting 3.46e5 mm2 4.1e3 mm2 98.9 % 8.31◦ 75.6 % 113

No Constant Region(*) 3.43e5 mm2 6.6e3 mm2 98.1 % 4.21◦ 60.4 % 116
Inverted Fibre Angle(*) 3.46e5 mm2 4.2e3 mm2 98.8 % 8.38◦ 76.4 % 108

Filler Course(*) 3.44e5 mm2 6.0e3 mm2 98.3 % 8.34◦ 72.3 % 96

(*) indicate different fibre angle distributions.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The main goal of this thesis was to extend the Three-Step Approach for fibre steering to include generic
doubly-curved open shells that are more representative of aerospace structures. The parametric approach
is suitable for this objective, by representing the surface and tows as a set of NURBS/B-spline surfaces
and curves, as described in this thesis. It has demonstrated surface and course generation, tow cutting
through intersection detections and accurate data gathering through the use of the parametric surface.

Furthermore, some of the manufacturing defects that would arise from design flaws are taken into
consideration. The minimum cut length of tows can be accounted for by evaluating the length of each
tow segment, the curvature is registered to prevent areas of tow kinking and a cutting strategy was
proposed to counter tow straightening for a subset of designs. Fitness criteria have been proposed to
evaluate fibre-steered layers on coverage / gap percentage, fibre angle mismatch and continuity. Although
these values have little relevance to conventional fibre layers, it provides an objective grading between
fibre-steered layers.

Additionally, the following observations were made during the creation of the fibre path algorithms
and results generation:

� Fibre straightening remains an issue for most AFP produced fibre steered layers without overlaps,
for both Linearly Varying Fibre Angle (LVFA) and generic distributions. The anti-straightening
cuts proposed in subsection 4.8.2 can only be applied when the fibre angle either only gradually
increases or only gradually decreases from the point of symmetry outwards, and there is a limit to
the amount of steering that can be applied before too many courses overlap and anti-straightening
cuts are impeded.

� While generic fibre angle distributions are possible with the current setup, there is still much room
to improve. The initial path generation by the streamline algorithm is mostly unsatisfactory, with
the spacing between courses being a limiting factor as noted in subsection 6.1.2. This can somewhat
be alleviated with the single-progenitor approach for LVFA layers (subsection 4.2.2), but obviously
cannot be applied to generic fibre angle distributions. The course spacing is a critical parameter
in obtaining good coverage in a layer, as small deviations can lead to gaps between courses of at
most one full tow width.

Furthermore, cutting has been a more difficult task for generic fibre angle distributions than for
LVFA layers. Generic fibre angle layers lend themselves worse for anti-straightening cuts due to
the lack of a consistent repeated course ’pattern’. Also, alternating cuts may induce higher fibre
angle errors than needed, as was shown in subsection 6.1.2. A re-evaluation of the ’zipper’ cuts
may be required, depending on the impact of the fibre angle error.

� For LVFA layers, the only viable method of placing multiple courses on a layer is through course
shifting. This results in gaps or overlaps in the areas where the fibre angle is steered. A better cov-
erage can be achieved by implementing constant regions within LVFA as shown in subsection 4.2.3,
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but further research is needed to prove the viability of this design choice. Constant regions can also
be beneficial when good surface smoothness is required without gaps, such as for joining. However,
as the steering would need to occur over a smaller distance, the expected fibre angle error would
be higher.

� Several drivers for the coverage and fibre angle error parameters of fibre steered layers have been
identified in subsection 6.2.9, but optimizing for one generally comes at the cost of the other. For
example, higher coverage is achieved when the number of courses and the fraction of the length of
the course along which the steering occurs are minimized. This results in fewer overlap areas that
are shorter in length along the course. In contrast, lower fibre angle errors are achieved when the
course width is smaller and when the steering is more gradual, which would result in more gaps.
Additionally, proper course spacing is critical for good layer coverage.

7.2 Recommendations

� A form of iterative curve fitting could be implemented to improve the curvature predictions. As
mentioned in section 4.10 and Appendix C, the current fitting algorithm has difficulties with
modelling inflection points in the fibre path. This can be alleviated by performing knot insertions
at the inflection points to lower the continuity there to C0 (positional continuity), as this better
reflects the shape of the curve.

Inflection points could be identified by examining the angle along the fibre path. Additionally, for
LVFA layers the approximate location of the inflections points may be known beforehand. It is
important that the knots are inserted near the inflection point or it will have an adverse effect.
This is where an iterative approach may be required to find the best fit.

� The initial course centre line generation could be improved upon by creating a replacement for the
streamline code. The difficulties of the streamline code have been documented in subsection 4.2.2,
along with the proposal of the single-progenitor work-around for LVFA layers. Unfortunately, this
is limited to a subset of LVFA distributions, is not applicable to generic fibre angle distributions
and may produce fibre angle errors on curved surfaces as mentioned in subsection 6.1.1. A new al-
gorithm, with a strong emphasis on proper course spacing would be highly beneficial for the further
development of fibre steering layers. A promising direction could be to research the integration of
isogeometric analysis within the Three-Step Approach for a more holistic solution for fibre steered
variable stiffness laminates.

� Development of a new cutting strategy that prioritizes the placement of continuous tows near
the course centre line could lower the fibre angle error for generic fibre layers. As was shown in
subsection 6.1.2, the alternating cutting of courses resulted in relatively high fibre angle errors.
Some courses overlapped so much that only a few tows could be placed. This is partially due to
course spacing, but also due to the fibre angle distribution itself, where . Tows near the course
centre line are closer to the design angle and should therefore be prioritized over tows near the
edges.

� There are types of surfaces that are not possible yet with the current methods, but would still be of
interest to be included. In particular, bodies of revolution and multiple connected B-spline/NURBS
surfaces seem like the most impactful additions.

Bodies of revolution, such as cylinders, were not considered due to several reasons. Most im-
portantly, exact cylinders in NURBS are not possible without repeated knots, thereby making
concessions in continuity at the points where the control polygon and control points coincide. This
could pose problems for a program that requires surface derivatives for most operations. Addition-
ally, a work-around would need to be implemented if the current intersection algorithm is used.
The intersection algorithm checks for convex hull overlaps of the control polygons of NURBS/B-
spline curves as part of detecting possible intersections, which can be tricky when the intersection
algorithm does not consider the surface to be revolving.

Combining multiple NURBS/B-spline surfaces are of interest as well, because multiple surfaces may
be required to describe more complex geometries. As NURBS/B-spline curves only exist within
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the domain of the surface itself, a global interface would be required to connect multiple (local)
curves to one global course. The main challenge would lie in performing operations such as course
offsets when the global curve lies on multiple surfaces, as the continuity cannot be guaranteed
on the surface border. In a way, this is a similar problem as the one encountered with bodies of
revolution, as the cylinder could be considered to be multiple connected surfaces with only C0

continuity at specific points. A solution for one could therefore perhaps also be applied to the
other.

� A more general method for the anti-straightening cutting than the one described in section B.2
may be required to make the algorithm more broadly applicable. Currently, a work-around is
used to decide if a segment is cut depending on the position of the intersection on the surface, in
addition to the ’regular’ anti-straightening cutting. This ensures that tows are never cut but only
added inside the panel dimensions. While this works for (D)LVFA layers, a generic layer may have
different configurations where it would not be applicable to.
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[18] D.B. Adams, L.T. Watson, Z. Gürdal, and C.M. Anderson-Cook. Genetic algorithm optimization
and blending of composite laminates by locally reducing laminate thickness. Advances in Engineering
Software, 35:35–43, 2004.

[19] J.M.J.F. van Campen, O. Seresta, M.M. Abdalla, and Z. Gürdal. General blending definitions for
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Appendix A

Mock-up Intersection and Segments
Table

This appendix demonstrates the implementation of the cutting of tows in this thesis through the use of
the intersection and segments table, according to the cutting strategy.

Figure A.1 shows a full course (blue and red) and a tow from the neighbouring course (dashed line)
of a mock design. Every white dot is an intersection between the left (outer) edge of the tow and any
part of the neighbouring course or the panel edge.

Figure A.1: The intersections of the tow with the panel edge and the neighbouring course.
Intersections are only checked between the outer, nearest edges of the tows.

For the sake of this example, assume that the dashed line tow should be cut at any point where
it overlaps with any part of the neighbouring course, or if crosses the panel edges. Visually, it can be
seen that there is a segment between intersections #4 and #5 that does not overlap with any tows and
therefore should still be placed, which should be deduced by the algorithm through the intersection table.

Figure A.2 shows the same course and tow, but with the intersection table of the tow and the
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convention of the panel edges. Each intersection corresponds with the numbering in the table. The table
columns display the following information:

� Curve parameter - location of intersection in curve parameter t [0,1].

� Course - the course or panel edge that the curve intersected with. A positive number represents a
course, a negative number is one of the four panel edges. In this case, the full course is the fourth
course of the mock design.

� Tow - the tow that the curve intersected with, if applicable. Tows are counted from the centre
outwards, and a distinction is made between the tows on the left and the tows on the right of the
machine path. For example, the rightmost tow of the course is named as Course(4).right(4).

� Intersection type – A number that acts as an extra identifier or as a counter. A zero is an ‘Overlap’
intersection, which means that while the lines did not intersect at that point, the tows are still
overlapping. Any number larger than zero represents the number of times the tow has intersected
with that particular tow or edge.

Figure A.2: The intersection table for the tow and their locations.

The registrations in the intersection table are used for two applications:

1. Tow, course and intersection type are registered to identify when a tow can be restarted, i.e. outside
the bounds of the outer tow of Course 4. In this case, the first identified intersection (intersection
#1) was with tow 3 of Course 4. This means that at the beginning of the dashed line, the tow
cannot be placed yet. Only when it intersects with the outer tow (intersection #4) will it be free
to be placed. Then, when it intersects with the outer tow again (intersection #5, the intersection
‘type’ counter is increased by one), it is again terminated.

2. Panel edge intersections are used to trim the panel to the minimum length to cover the design area,
if not cut already by other tows.
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Intersections #2 to #8 divide the curve into eight segments. For each segment, the algorithm should
register if it is placed in the final design. This is done in the segments table, shown in Figure A.3. The
table columns display the following information:

� First Knot - First index of the knot vector for this segment

� Last Knot - Last index of the knot vector for this segment

� First CP - First index of the control point vector

� Last CP - Last index of the control point vector

� Active - A boolean that determines if a tow segment is placed

� Length - Length of the segment. The sum of adjacent non-zero segments should be larger than the
minimum cut length.

Figure A.3: Segments Table and active segments of the tow.

It can be seen that indices in the knot and control point vectors are shared between segments. The
vectors have been modified through knot insertions at the intersection locations such that the segments
are independent of each other. By using this method, only one knot vector and one control point vector
are required for all segments. Moreover, this setup allows for different cutting strategies to be used while
using the same dataset. For example, if the course was to be cut instead of the tow, one would only need
to alter the ‘Active’ column in the segment tables of the tows according to the cutting strategy. This is
illustrated in Figure A.4. Here, segments III and V of the tow are also placed, and it is only cut by the
panel edges.
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Figure A.4: Segments Table and active segments of the tow, course cut instead of tow
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Appendix B

Cutting Algorithms

B.1 Alternating Course Cutting

Alternating course cutting is applied to either the odd or even course numbers, cutting them at any
point when they overlap with any part of the neighbouring courses. As such, only segments outside
the boundaries of the outermost tow can be placed. The flow diagram of the algorithm is shown in
Figure B.1.

Figure B.1: Flow diagram describing the alternating course cutting logic.
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To determine if the tow is free to be placed, the intersection table is used. The intersection and
segment tables are explained in Appendix A. Endpoint intersections, i.e. intersections at the start- or
endpoint of the curve, are temporarily removed from the intersection table to ensure that there are always
n− 1 intersections for n segments. This way, the ith intersection can be used to determine placement of
the ith segment.

The first intersection (i == 1) and the endpoint intersection (or lack thereof) are used to deduce the
initial position and direction of the tow. If there is an endpoint intersection, or if the first intersection
is not with the outermost tow, then the first segment is cut, as the tow started on the inside of a
neighbouring course. If first intersection is with the outer tow and there is no endpoint intersection, then
it can be assumed that the tow started outside of any boundaries and the first segment may be placed.

From this point onwards, a count is kept of how many times a tow intersects with the outermost tow.
The count can be used to alternatingly place or cut a segment. This is continued until the last segment
(i == n), as there are only n−1 intersections. Here instead, the last intersection is examined in addition
to the potential endpoint intersection to determine if the final segment can be placed.

B.2 Anti-Straightening Cutting

Anti-straightening cutting can be divided into two types: ’regular’ anti-straightening cutting, and ’filler
course’ anti-straightening, as shown in Figure 4.14. This section is about the first type, since the latter
is performed by using the alternating course cutting strategy.

The anti-straightening cutting logic, shown in Figure B.2, is very similar to the previous section, with
regions of the course being cut whenever they overlap with any part of neighbouring courses. The main
difference lies in the fact that all courses are ’cut’ as opposed to only half of them, and that the cutting
only occurs near the start of the course, as is illustrated in Figure 4.13. This ensures that the tows are
only ever placed/added within the layer dimensions, which prevents tow straightening in the design area.

Since the anti-straightening cuts imply the direction of course by design, the direction in which the
segments are checked should account for that; the intersection and segment tables are flipped depending
on the course direction. Additionally, a breakpoint is added in the cutting logic, which checks the
position of the ith intersection on the surface against some value (in this example the half-way point),
after which every remaining segment is placed. The addition of the breakpoint is a work-around at
best, as it only works reliably for neatly organized (Discrete) Linearly Varying Fibre Angle layers. A
more widely applicable anti-straightening cutting logic algorithm may need to be developed if it is to be
applied for generic fibre angle distributions.
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Figure B.2: Flow diagram describing the anti-straightening course cutting logic.
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Appendix C

Curve Fitting LVFA Designs

This appendix was made to report the findings of fitting Linearly Varying Fibre Angle (LVFA) designs
by the curve fitting algorithm. Two recommendations are made for future work to address the problems
that were encountered.

As part of the verification of the curvature code, comparisons were made between the results from
the code to a known result from an external MATLAB module. Both methods used the same dataset,
consisting of a set of points (x,y,z) prescribing a typical LVFA fibre path. The MATLAB module
converted the values to curvatures directly, whereas the curvature code used the results from the curve
fitting algorithm from section 4.4.

(a) Position graph (b) Error graph

Figure C.1: Position and Error graphs of the B-spline fit

Although the curve fitting algorithm reproduced the curve quite well in terms of position as shown in
Figure C.1, the curvature results were unsatisfactory. Oscillations were found around the discontinuity
in the curvature graph, which should not be present according to the verification results, as seen in
Figure C.2a. The discontinuity is a result of the change of direction (or inflection point) of the fibre
angle at the halfway point, which is an inherent feature of LVFA paths. The oscillations were deemed
problematic because it limited how well the curvature could be predicted. In turn, this would limit the
ability of the algorithm to pre-emptively filter bad designs with excessive curvature.
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(a) Oscillations in the curvature plot due to the curve
fitting algorithm

(b) Oscillations at the discontinuity have disappeared
due to knot additions.

Figure C.2: Curvature graphs of the B-spline fit. Figure C.2b has extra knots at the location of the
discontinuity, resulting in a better fit.

Further testing revealed that the curvature code produced identical results to the external module
when the curve fitting results were used as inputs for both. This led to the conclusion that the curve
fitting algorithm could not fit the current curve well enough to obtain acceptable curvature values.
Furthermore, it was noted that the oscillations disappeared when the fibre path had no discontinuities,
which suggested that the discontinuity induced the issues in the curve fitting algorithm.

Wurpel (2015) also described difficulties with the curvature results, for which he decided to use P-
splines [9]. P-splines are “Penalized B-splines”, which includes a penalty function in addition to the
regular B-spline expression to induce smoothness to the curve [59]. However, the inclusion of the penalty
function in the current curve fitting algorithm had adverse effects with regards to the positional fit of
the curve, and the concept was therefore discarded.

Instead, the solution lay in lowering the continuity of the B-spline curve at the location of the inflection
point / curvature discontinuity to C0 (positional continuity), as this more accurately represents the
geometry of the curve. This was done by adding extra knots to the knot vector when constructing the
B-spline in the curve fitting algorithm from Equations (4.17) to (4.19) at the location of the inflection
point. These knots are a single repeated value such that only the positional continuity is preserved. The
value of the knots is determined by taking the normalized arc length at the estimated location of the
inflection point. The resulting fit is shown in Figure C.2b.

It is paramount that the knot additions are close to the inflection point, or the effect of the knot
additions is adverse to the fit. This can be difficult in the case of a generalized result, such as from the
streamline code due to the discrete nature of the finite element model. For this application, preferably
an iterative method is used for the curve fitting, where the locations of knot additions are varied and
then compared for fitness.

On the other hand, this has been one of many difficulties experienced from the streamline code and
the finite element method approach. The problems from sections 4.2.2 and 4.2.3 could probably be
avoided all together if a different approach was used to generate the fibre paths. One such method would
be to use an isogeometric analysis approach, which integrates the finite element analysis into the desired
B-spline/NURBS format more smoothly. This would probably negate the need for adaptive fitting, as
the inflection points are easier to determine on continuous curves.

However, both options were decided to be outside the scope of the current thesis. Therefore, two
recommendations will be made regarding this topic. The implementation of an adaptive curve fitting
method will be included as a recommendation for future work if one decided to continue with the
streamline algorithm. Secondly, a suggestion is made to redo the streamline code by isogeometric analysis
to better suit the B-spline design of the rest of the thesis.
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