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Introduction

Unmanned Aerial Vehicles (UAVs) have become a popular tool in many applications, such as search
and rescue, law enforcement, cinematography, and horticulture. For cheap and easy application these
drones are becoming increasingly autonomous. Whereas in the early days the autonomy of drones
was limited to automatic stabilization, current drones have more advanced capabilities, such as au-
tonomously following the operator and avoiding obstacles. For any application, the UAV must pose
little or no safety risks to people in the drone’s vicinity. This can be achieved with safety measures
such as detection and avoidance of humans. However, it is more reliable to use a UAV that is inher-
ently safe due to its low weight. A lightweight drone poses less danger, even if the avoidance systems
fail. A downside of lightweight drones is that they have simple sensors and low computational capa-
bilities. Despite these limitations, the drone needs to obtain a 3D sense of the environment for tasks
such as collision avoidance and mapping. To obtain this 3D information, stereo vision is a popular
method, as the only sensors it requires are two simple cameras. The images from these cameras
then need to be converted into depth maps using a stereo matching algorithm. The stereo matching
algorithm needs to be as accurate as possible, while using little computational resources. However,
the accuracy of a stereo matching algorithm in a specific environment is often difficult to quantify, be-
cause in most practical applications ground truth is not available. Therefore, this research investigates
self-supervised finetuning of several lightweight stereo matching algorithms. More specifically, it will
answer the following question.

Can conventional stereo matching algorithms be improved through self-supervised
optimization, and how do they compare to self-supervised deep learning?

This question will be answered in the thesis article in Part I. Subsequently, in Part II a literature review
is given to provide background information to the article.It starts with a detailed explanation of stereo
matching and stereo matching algorithms, followed by a chapter about navigation, and a chapter with
preliminary experiments leading up to the main research.

vii
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Self-Supervised Finetuning of Stereo Matching Algorithms

Roelof Stikker∗, Sven Pfeiffer†, Guido de Croon†

Abstract— Stereo vision is a commonly applied method to
achieve depth perception on Micro Air Vehicles (MAVs). Stereo
matching algorithms are often optimized for specific environ-
ments and camera properties, using the ground truth error as
a supervisor. However, in practical applications ground truth
data is usually not available. Therefore, in this research, we
finetune several conventional stereo matching algorithms (BM,
SGBM, and ELAS) and a neural network (AnyNet) using self-
supervision. The settings of the conventional algorithms are
optimized with NSGA-II, using the reconstruction error and
disparity density as objective functions. AnyNet is finetuned
with the reconstruction error, as well as with the disparity
map of conventional methods. We conclude that finetuning
the parameters of conventional stereo algorithms using the
reconstruction error can lead to a slight improvement in
performance compared with the general settings, depending
on the stereo algorithm. The performance of the conventional
methods is comparable to that of AnyNet on a major portion of
the image. However, removing the values with low confidence
in the disparity map of ELAS and interpolating the missing
disparities leads to an accuracy well above AnyNet.

I. INTRODUCTION

MAVs need to have a 3D sense of the environment for
successful autonomous flight. It is required for tasks such as
collision avoidance, navigation, localization, and mapping.
Stereo vision is often used on lightweight drones to obtain
this 3D information because it only requires two simple
cameras. The images from these cameras are used by a stereo
matching algorithm to calculate a depth map. Lightweight
drones do not have the computational capacity to process
complicated stereo matching algorithms. For this reason,
simple stereo matching algorithms such as Block Matching
(BM) [1], SemiGlobal Block Matching (SGBM) [2], and
Efficient LArge-scale Stereo (ELAS) [3] are popular methods
in practical applications [4]–[6]. However, the performance
of these methods is highly dependent on their parameter
settings, the environment, and the camera properties. Fur-
thermore, for each application, a different trade-off might be
preferred between the density and the accuracy of the result-
ing disparity map. An NSGA-II optimization was performed
by [7] to estimate the Pareto front of the trade-off between
density and accuracy. The error with the ground truth was
used to quantify the accuracy. However, in most practical
scenarios, ground truth data is not available. Therefore, in
this work, we will optimize the accuracy and density of BM,
SGBM, and ELAS in a self-supervised way by using the
reconstruction error to quantify the accuracy.

∗MSc student, Faculty of Aerospace Engineering, Delft University of
Technology
†Supervisor, Faculty of Aerospace Engineering, Delft University of

Technology
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Fig. 1: We optimize the parameters of conventional stereo
matching algorithms in a self-supervised way (dots) and
finetune the neural network AnyNet in self-supervised and
supervised ways (triangles). These are compared with the
conventional algorithms with general settings (crosses). The
legend is described in more detail in Table II.

Recent developments in stereo vision have been focused
on the use of neural networks. Originally these were too
computationally expensive to run on board a lightweight
drone, but lately researchers have focused on designing neu-
ral networks specifically for application on resource-limited
systems [8]–[12]. In this work, we compare the results of
one of these networks, AnyNet [10], with the results of the
conventional methods. AnyNet was designed to be trained
on ground truth data only. We finetune AnyNet using self-
supervision instead. Similar to the NSGA-II optimization, the
reconstruction error will be used as a supervisor. In addition,
conventional methods will be used as supervisors.

In short, this research investigates self-supervised param-
eter tuning of several conventional stereo matching algo-
rithms, as well as self-supervised refinement of a deep stereo
matching network.

The remainder of this paper is structured as follows. Sec-
tion II shows an overview of previous research on traditional
stereo matching and deep stereo matching, with a focus on
self-supervised and lightweight methods. Then in section III
the methodology of this research is explained in detail. The
results are presented and discussed in section IV, followed
by a conclusion in section V.
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II. RELATED WORK

A. Conventional stereo matching

Efficient LArge-scale Stereo (ELAS) [3] and the OpenCV
[13] implementations of Block Matching (BM) [1] and
SemiGlobal Block Matching (SGBM) [2] are popular con-
ventional stereo matching algorithms in practical applications
because they produce good disparity maps at high framerates.
BM is the simplest and fastest method and calculates the
disparity by minimizing the sum of absolute differences
between a block in the reference image and a block on
the same row in the other image. SGBM expands on this
by including a penalty for changing disparities between
neighboring pixels. ELAS first matches a reliable set of
support points and then fills the rest of the disparity map,
where a penalty is given if the disparity deviates from the
nearby support points.

The quality of the disparity maps obtained by these
methods is dependent on their parameter settings. All three
methods contain built-in confidence measures to remove
unreliable values in the disparity map. By setting these
parameters, a trade-off is made between the density and
the quality of the disparity map. NSGA-II [14] was used
by [7] to find the Pareto front for this trade-off. However,
the objective function was based on the ground truth. This is
not available in most practical applications. Instead, [15] and
[16] optimized the settings of BM using the reconstruction
error as objective function. However, they only optimized
towards a single point on the Pareto front and did not provide
a comparison of various methods.

B. Deep stereo matching

Self-supervised learning in deep stereo matching was first
applied by [17]. They trained a monocular network to mini-
mize the reprojection error and a disparity smoothness term.
[18] expanded the loss function by including a structural
similarity term [19] and a left-right consistency term. This
loss function forms the basis for many self-supervised stereo
models as well [20]–[24]. However, these models are too
computationally demanding for real-time depth mapping on
an embedded platform. Some models designed for real-
time use are StereoNet [8], MADNet [9], AnyNet [10],
FEStereo [11], and LWANet [12]. However, even some of
these methods still have a rather low framerate when tested
on an NVIDIA Jetson TX2.

Most deep stereo methods rely on the use of ground
truth data to train and finetune the network. They can be
modified to train in a self-supervised way instead. [25]
finetunes a network using a confidence-guided loss and a
smoothing term and tests it on the KITTI 2015 dataset [26].
Here the confidence-guided loss is defined as the difference
between the output of the network and a set of points
from the disparity map of a conventional algorithm that
are deemed reliable. However, the classification of reliable
versus unreliable is done with a neural network [27] that
was trained on the KITTI 2012 dataset [28], using ground
truth data. Although the weights were kept the same, the

process is not fully self-supervised. Applying this method to
a dataset different from KITTI could require retraining of the
confidence network. Instead, [29] modified a network to be
fully self-supervised. They train the network using disparity
maps generated by a Monocular Completion Network. This
is a network that takes as input one of the two images and
a set of reliable disparities obtained from SGM or BM and
gives as output the complete disparity map. The deep stereo
model is then trained on this disparity map. The classification
of reliable versus unreliable is done using the WILD strategy
[30]. This is a machine-learned combination of conventional
confidence measures. However, this method of training a
stereo matching network is rather extensive as it requires
training a monocular model before the stereo model can be
trained.

III. METHODOLOGY

A. Conventional methods

The parameter settings of the conventional methods, BM,
SGBM, and ELAS are optimized using NSGA-II. Instead of
optimizing towards a single objective function consisting of
both the accuracy and density of the result, NSGA-II allows
optimizing for both objectives and finding the Pareto front.

All three models feature confidence filters, which can
be used to invalidate uncertain disparity values. Uncertain
disparities are for example those where the input images
have low texture, so a texture filter can be used to invalidate
these. Also, a match is only retained if it is sufficiently better
than the second-best match (uniqueness ratio) and if it can
consistently be matched left-to-right and right-to-left (left-
right consistency filter). Lastly, a speckle filter removes small
areas with disparity values dissimilar to their surroundings.
These removed disparities can then be filled with interpola-
tion. However, only ELAS has this option. Since allowing
only ELAS to interpolate its missing disparities would give
it an unfair advantage, it is switched off for the optimization.

The accuracy of the result is estimated without ground
truth data. Instead, the reconstruction error is used. This
works by reconstructing one image using the other image
and a disparity map. Then by comparing the reconstruction
with the actual image, the reconstruction error is found. In
this work, the left image (IL) is used as the reference image
for which the disparity map (DL) will be calculated. Once
the left disparity map is calculated, a reconstruction of the
left image (ÎL) is made by sampling from the right image
(IR) as stated below.

ÎL(i, j) = IR(i−DL(i, j), j) (1)

Since the disparities are not necessarily integers, the pixel
values are linearly interpolated. If a pixel in the reconstruc-
tion requires sampling from outside the right image, i.e. when
i−DL(i, j) < 0, the pixel is invalidated.

This method does not prevent double mappings of pixels
from the right image to the reconstruction of the left image.
Consider a grayscale stereo image of a faraway black cross
and a nearby gray square, as is shown in Figure 2. Using the
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Fig. 2: Schematic images illustrating the occlusion filter that prevents double mappings in the reconstruction. From left to
right: the left image, the right image, the left disparity map, the reconstruction of the left image, and the filtered
reconstruction of the left image. In the last image, invalidated pixels are marked blue.

disparity map and the right image, the left image is recon-
structed by sampling according to Equation 1. Consequently,
two copies of the square appear in the reconstruction. Note
that to reconstruct the cross, the right image is sampled at the
correct location, but because it is occluded by the square, the
square shows up instead. The reconstruction then has a large
error, even though the disparity map is correct. To avoid these
errors in the reconstruction, a pixel is invalidated if another
pixel with a higher disparity originates from approximately
the same location in the right image (plus or minus half a
pixel). When the disparity map is a bit noisy this can happen
often with nearby pixels, even on flat surfaces. Therefore,
occluded pixels are only invalidated if the disparity difference
with the occluding pixel is greater than or equal to 4. Thus, if
for any n ≥ 4, |D(i+n, j)−n−D(i, j)| < 0.5, we invalidate
ÎL(i, j). An example of this is visible in the reconstruction
in Figure 3, where a double mapping of the traffic sign in
the top right corner is prevented.

Now that the left image is reconstructed, it is compared
with the actual left image to determine the accuracy of the
disparity map. This is done similarly as in [18]. It consists of
the average absolute difference in intensity (EL1), an error
based on the structural similarity (SSIM) [19] (ESSIM), and a
disparity smoothness component (EDS). EL1 and ESSIM are
defined as in the equations below. In these equations, and in
the remainder of this paper, the input images are assumed to
be 8-bit grayscale, and thus have a range of [0, 255].

EL1 =
1

ND

∑
p∈D

∣∣∣∣∣Ip − Îp255

∣∣∣∣∣ (2)

ESSIM =
1

NB

∑
p∈B

1− S(Ip, Îp)
2

(3)

Where D is the set of ND pixels with a valid disparity. B
is the set of NB pixels for which all pixels in a surrounding
3×3 block have a valid disparity. This ensures that all pixels
required for the calculation of the SSIM function S(·) are
valid. The SSIM function is defined as stated below.

S(Ip, Îp) =
(2µIpµÎp

+ C1)(2σIpÎp + C2)

(µIp
2 + µÎp

2 + C1)(σIp
2 + σÎp

2 + C2)
(4)

Here, µ is the average of a 3×3 block surrounding pixel
p and σ2 is its variance. C1 and C2 are constants used to
avoid instability when either (µIp

2 +µÎp
2) or (σIp

2 + σÎp
2)

is close to zero. They have values of 0.0001 and 0.0009,
respectively, as in [18].

The disparity smoothness error penalizes a gradient in the
disparity map if this does not coincide with a gradient in the
image. It is defined as follows.

EDS =
1

NG

∑
p∈G

(
|∂xDp|e−|∂xIp| + |∂yDp|e−|∂yIp|

)
(5)

Here G is the set of NG pixels for which calculating
the gradients requires no invalid pixels. The gradients are
calculated as follows.

∂xD(i, j) = D(i, j)−D(i+ 1, j) (6)
∂yD(i, j) = D(i, j)−D(i, j + 1) (7)

G is thus the set of pixels with a valid disparity with valid
adjacent disparities to the right and down.

The reconstruction error ER is then defined as the
weighted combination of EL1, ESSIM, and EDS. A visual
representation of these components is shown in Figure 3.

ER = αa

(
(1− αs)EL1 + αsESSIM

)
+ (1− αa)EDS (8)

Here, the weighting factors αa and αs were empirically
set to 0.9 and 0.25, respectively.

B. Deep stereo matching

Current state-of-the-art deep stereo networks produce
much better results than conventional methods. However,
the computational requirements of these methods are much
higher than conventional methods. To determine whether
deep stereo matching is a viable alternative to conventional
methods we select a neural network that was designed for
real-time use on embedded platforms. Table I shows a list
of networks that were tested on an NVIDIA Jetson TX2 and
their performance.

Since there is neither a GPU implementation of BM,
SGBM, nor ELAS, it is difficult to compare the compu-
tational time of the conventional methods with the neural
networks. However, there is a GPU implementation of SGM,
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Fig. 3: Components of the reconstruction error. In the top row from left to right: the left image, the right image, the left
disparity map (AnyNet-SGBM-K), and the left reconstruction. In the bottom row from left to right: the L1 error, the structural
similarity error, the disparity smoothness error, and the total error

TABLE I: D1 error and computation time of compact stereo
models with publicly available code, tested on the KITTI
2015 dataset on an NVIDIA Jetson TX2

Name D1 [%] Time [ms]
MADNet [9] 4.66 [12] 260 [12]
StereoNet [8] 4.83 [12] 950 [12]
LWANet [12] 4.94 [12] 200 [12]
AnyNet [10] 6.2 [10] 97.3 [10]

FEStereo [11] 11.2 [11] 14 [11]
SGMGPU [31] 8.7 [32] 34.5 [32]

called SGMGPU [31]. Considering that SGBM is a modifi-
cation of SGM to reduce the computation time, a potential
GPU implementation of SGBM is expected to have a lower
inference time. As can be seen from Table I, FEStereo [11]
is the only method that is faster than SGMGPU, but the
disparity map is less accurate. Note that according to the
KITTI 2015 benchmark, SGBM has a D1 error of 10.86%,
which means that 10.86% of the disparities have both an
absolute error greater than 3 and a relative error greater
than 5%. Thus, to improve the disparity map, compared with
SBGM, the fastest method is AnyNet [10]. Therefore, in this
paper, AnyNet is compared with the conventional methods.

AnyNet performs disparity estimation at four stages. This
allows the network to trade off computation time and accu-
racy. The D1 error and time range from 14% and 29.0 ms in
the first stage to 6.2% and 97.3 ms in the final stage. AnyNet
first uses a U-Net feature extractor [33] to build feature maps
of the two images at three resolutions (1/16, 1/8, 1/4). In
the first stage, the features at 1/16th resolution are passed
through a disparity network to produce a disparity map. This
disparity map is then upscaled to 1/8th resolution and used
to warp the 1/8th right feature map onto a reconstructed
left feature map. The reconstruction and the original left
feature map are passed into the disparity network to produce

a residual disparity map. The residual is then added to the
upscaled disparity map of the previous stage to obtain the
current disparity map. This process is repeated for stage 3.
In the fourth and final stage, a spatial propagation network
(SPNet) [34] is used to refine the disparity predictions. For
ease of reference, the network configuration from [10] is
reproduced in Table A.I.

The network is originally supervised, but in this work,
we finetune it in a self-supervised way instead. We still use
the pre-trained model, which was trained on the SceneFlow
dataset [35], using the ground truth error. Two methods
of self-supervised finetuning will be compared. The first
uses the reconstruction error, as explained in section III-A.
The second method uses the disparity maps of conventional
methods as a supervisor, as was also done by [25] and
[29]. Instead of quantifying the error of the disparity map
using the reconstructed image, the error of the disparity
map is quantified as the L1 error with the disparity map
produced by a conventional method. Since the conventional
methods are not perfect, they are filtered to retain only
the high-confidence disparities. We follow four different
versions of this approach. The first three versions use
SGBM-K, ELAS-MNI, and ELAS-M, respectively. In the
fourth version, WILD [30] is used as a supervisor, because
it was found to be effective by [29]. It generates disparity
maps using AD-CENSUS [36]. These disparity maps are
filtered using a machine-learned combination of traditional
confidence filters. The filtered disparity maps then supervise
finetuning AnyNet. An example of a disparity map generated
by WILD is shown in Figure A.1.

IV. EXPERIMENTAL RESULTS
A. Datasets

The purpose of lightweight stereo models is to be used
on lightweight drones with simple cameras and little com-
putational resources. Therefore, we test the stereo models

6



on a set of images recorded with a simple and lightweight
stereo camera, made by connecting two JeVois cameras. The
images are grayscale and have a resolution of 320×240
pixels. The set of images is recorded in a greenhouse, as
this is considered an environment where a lightweight drone
could be of good use. The dataset contains 478 images and is
randomly split into a training and validation set in an 80/20
ratio.

Since this dataset contains no ground truth information, the
only quantitative measure of the results is the reconstruction
error, which is not a perfect measure. The performance on
this dataset will therefore mainly be discussed qualitatively.

To obtain reliable quantitative results, the same methods
are applied to a modified version of the KITTI 2015 dataset.
The original KITTI 2015 dataset is converted to grayscale
and downsampled to the same resolution as the JeVois
camera. Since the images of the KITTI dataset are much
wider, a random portion is cropped with the same aspect
ratio as the JeVois image, and the same height as the KITTI
image. This cropped image is then downscaled to a resolution
of 320×240 pixels. This dataset contains 200 images and is
also randomly split into a training and validation set in an
80/20 ratio.

B. Performance metrics

As stated above, the results will be discussed both qualita-
tively and quantitatively. The quantitative metrics that will be
used are the reconstruction error and, for the KITTI dataset,
the L1 and D1 errors with the ground truth. The L1 error with
the ground truth is the average absolute difference between
the disparity values in the disparity map produced by the
model and the ground truth disparity map, averaged over all
pixels with a valid disparity both in the ground truth and in
the calculated disparity map. The D1 error is the percentage
of the pixels with a valid disparity (in both the ground truth
and the calculated disparity map), that have an absolute error
greater than 3 and a relative error greater than 5%.

C. Conventional methods

1) Implementation details: For ELAS we use the im-
plementation as published by the authors. For BM and
SGBM the implementations by OpenCV are used. In the
implementations by OpenCV, disparities are only calculated
for pixels where the full disparity search range can be
traversed. This means that no matter the parameter settings,
the disparities are not calculated for the left part of the image,
with a width equal to the maximum disparity. In addition, in
the implementation of BM, disparities are not calculated if
the surrounding block does not fully fit in the image. This
means that the border of the disparity map will have no
values. A visualization is shown in Figure A.1.

The parameters of the conventional methods are optimized
using the Pymoo [37] implementation of NSGA-II [14]. In
the optimization, the parameter limits are set as in Tables
A.II, A.III, A.IV. The initial population is set to 1000
and the number of offspring to 100. The optimization is
terminated when the change in the objective space drops

TABLE II: Descriptions of algorithm variations

Name Description
BM-K Block Matching, with manual settings based on

the KITTI 2015 benchmark entry
SGBM-K SemiGlobal Block Matching, with manual set-

tings based on the KITTI 2015 benchmark entry
ELAS-M Efficient LArge-scale Stereo, with manual set-

tings based on the Middlebury benchmark entry
ELAS-MNI ELAS-M, but without interpolation
WILD AD-CENSUS disparity maps filtered with a

machine-learned combination of traditional con-
fidence filters

AnyNet-SF AnyNet trained on SceneFlow
AnyNet-R AnyNet-SF, finetuned with the reconstruction

error
AnyNet-WILD AnyNet-SF, finetuned with WILD
AnyNet-ELAS-M AnyNet-SF, finetuned with ELAS-M
AnyNet-ELAS-MNI AnyNet-SF, finetuned with ELAS-MNI
AnyNet-SGBM-K AnyNet-SF, finetuned with SGBM-K
AnyNet-GT AnyNet-SF, finetuned with the ground truth

below 0.0025 over the last 30 generations. This is evaluated
every 5 generations. To reduce the computational time, the
optimization does not use the full training set, but a random
subset of 40 images. The same subset is used for all NSGA-II
optimizations.

2) Baselines: The results of the NSGA-II optimizations
are compared with the results of general settings, which were
based on submissions to online benchmarks. For BM and
SGBM, the general settings were based on the submissions
to the KITTI 2015 benchmark. They are manually adjusted
to accommodate for the change in resolution. In the plots,
they are indicated with BM-K and SGBM-K. For ELAS,
two baselines are used. One is the parameter configuration
that was used for the Middlebury benchmark (ELAS-M).
In this configuration, all missing disparities are interpolated,
resulting in a 100% dense disparity map.

Since interpolation is always switched off in the NSGA-II
optimization of ELAS, the settings of ELAS-M can not be
reached by the optimizer. It is still included to demonstrate
the effect of interpolation. To make a fair comparison be-
tween general settings and the result of the optimization, a
version of ELAS where no interpolation is done is included
in the plots (ELAS-MNI). An overview of these algorithm
variations is given in Table II. The specific settings are given
in Tables A.II, A.III, and A.IV. In addition, an example scene
with the disparity maps calculated by these algorithms is
given in Figure A.1.

3) Discussion of the results: The Pareto fronts that were
found using the NSGA-II optimization are shown in Figure 4.
From this figure, we can see that in terms of the reconstruc-
tion error, the performance of BM is improved compared
with the general settings. The performances of SGBM and
ELAS are similar to the general settings, except for ELAS-M,
but this configuration was not attainable by the optimizer.
Figures 1 and 5 show that the ground truth is mostly in
agreement with this. They both show an improvement for
BM, while SGBM stays similar. From Figure 1 it looks as
if there is a slight improvement for SGBM in terms of the
L1 error, but around that density there are also solutions
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Fig. 4: Reconstruction error of solutions along the Pareto
fronts. The crosses indicate the conventional methods with
general settings. Triangles indicate AnyNet with varying
finetuning methods.

that perform worse. For ELAS on the other hand, there is a
clear difference between the judgment by the reconstruction
error (Figure 4) and by the ground truth (Figures 1 and 5).
While according to the reconstruction error the optimization
results are similar to ELAS-MNI, according to the ground
truth the optimization results clearly perform worse. Also, the
Pareto fronts in Figures 1 and 5 are much more scattered than
the reconstruction error (Figure 4). Both of these symptoms
indicate that settings with very similar reconstruction errors
can have very different errors with the ground truth. In other
words, a low reconstruction error does not guarantee a low
error with the ground truth. An example of this is illustrated
in Figure 6. In the upper image, large parts of the road have
an incorrect disparity. This leads to an incorrect remapping
in the reconstruction. However, since the road has a uniform
color, these incorrect remappings go undetected. This means
that a poor parameter configuration is not penalized, resulting
in poor optimization results. To verify that the optimized
versions of ELAS do not achieve the performance of ELAS-
MNI because of shortcomings of the reconstruction error,
rather than due to an incomplete optimization, the optimiza-
tions are also performed with the L1 error with the ground
truth as supervisor. The results of these optimizations are
shown in Figures A.2 and A.3. To visualize the completeness
of the optimizations, the convergences of the hypervolumes
are shown in Figure A.4. The figure shows that after around
9000 function evaluations all hypervolumes stop increasing.

Furthermore, we see that the results of ELAS are much
more scattered and have much higher errors than the results
of SGBM and BM. This is a result of the fact that ELAS
performs its matching in two steps. First, a set of support
points is matched, then these support points are used to
perform dense matching. When the number of support points
is too low due to excessive confidence filtering in this stage,
an accurate dense disparity map cannot be achieved.
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Fig. 5: D1 error of solutions along the Pareto fronts. The
crosses indicate the conventional methods with general set-
tings. Triangles indicate AnyNet with varying finetuning
methods.

The fronts of BM and SGBM never reach the full 100%
density. This is because in the OpenCV implementation, the
left part of the disparity map, with a width of the maximum
disparity, is set invalid because the full disparity search
range cannot be traversed. The upper limit of BM is even
lower because additionally, it invalidates pixels for which the
surrounding block does not fully fit in the image. ELAS, on
the other hand, can fill the entire disparity map, although the
error rises steeply as the 100% density is approached. One
could argue that when SGBM achieves a disparity density
of 80%, it is equivalent to a 100% disparity since it only at-
tempts to fill 80%. Technically there is no reason why SGBM
should not be able to fill the remaining 20%. However, for
computational reasons, it is not included in the OpenCV
implementation. In a different implementation, SGBM could
achieve 100% density. To estimate the performance of such
an implementation, simply scaling the results up to 100% and
comparing it to ELAS would not be fair, since the left part
of the disparity map is more difficult to calculate because it
is more likely to contain pixels that have no correct match.
Therefore, we modify ELAS and SGBM to invalidate all
pixels that are not calculated by BM either. This means that
the pixels on the left with a width of the maximum disparity
will be invalidated, and since the minimum block size of BM
is 5, a border with a width of 2 will be invalidated as well.
Now all three methods have a theoretical maximum density
of 77.4%. These results are plotted in Figure 7 and Figure 8.
Note that the algorithms and their settings are the same as
in Figures 1, 4, and 5. The only difference is that now the
left part and the borders are invalidated. They show that the
accuracy of SGBM and ELAS is very similar in terms of the
L1 error, while in terms of the D1 error SGBM is performing
better.
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Fig. 6: Two solutions along the Pareto front of ELAS.
On the left the disparity maps, with invalid pixels set to
black, and on the right the reconstructed images, with invalid
pixels set to blue. The upper and lower disparity maps
have a reconstruction error of 0.053 and 0.059, respectively,
while the D1 error with the ground truth is 36% and 2.7%,
respectively.

D. AnyNet

1) Implementation details: The implementation of
AnyNet is similar to the original work [10]. We use their
published code, but modify the training loss function. The
training parameters are kept the same, except that the
maximum disparity is changed to 64. An overview of the
training settings is given in Table A.V.

Instead of training on a portion of the image, as in [10],
we train on the complete image, since it already has a
much lower resolution than the original KITTI images. We
start from the pre-trained model, which was trained on the
SceneFlow dataset.

2) Baselines: The performance of the finetuned model is
compared with the pre-trained model (AnyNet-SF). These
results are presented to indicate the progress that is made
after finetuning. In addition to this, we also finetune the
model using the L1 error with the ground truth as the training
loss (AnyNet-GT). This is expected to lead to the maximum
attainable performance of the network and is used to show
the effectiveness of the self-supervised training method.
Figure A.1 shows an example scene with disparity maps
calculated by AnyNet-SF and AnyNet-GT. Furthermore, the
result of AnyNet will be compared with the performance of
the conventional methods.

3) Discussion of the results: In this work, AnyNet was
finetuned using various self-supervised methods. An example
scene with the disparity maps calculated by these versions
of AnyNet is shown in Figure A.1. The overall quantitative
performances are plotted as triangles in Figures 1 and 5.
As expected, these plots show that the performance of the
model trained with ground truth performs best, followed by
the self-supervised training using the conventional methods
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Fig. 7: L1 error of solutions along the Pareto fronts.
The left part and border of all disparity maps are in-
validated. The crosses indicate the conventional methods
with general settings. Triangles indicate AnyNet with vary-
ing finetuning methods. The locations of AnyNet-GT and
AnyNet-SGBM-K coincide.

as supervisor. Both of these perform better than the model
that uses the reconstruction error as training loss. This could
be expected after seeing Figure 6. The reconstruction error
does not always penalize incorrect disparity maps.

Furthermore, Figures 1 and 5 show that when AnyNet
is trained on the sparse disparity maps of ELAS-MNI the
performance is much lower than when it is trained on
the fully dense disparity maps of ELAS-M. Note that the
disparity maps are the same, except that in ELAS-M missing
disparities are interpolated. This suggests that AnyNet bene-
fits from denser disparity maps. This is also supported by the
poor performance of AnyNet when it is trained using WILD
since this produces disparity maps with very low density.

Interestingly, from Figure 7 and Figure 8 we see that the
L1 error of AnyNet trained on SGBM is equal to the version
trained on ground truth. The D1 error for the SGBM-trained
version is even slightly lower than the version trained on
ground truth. This could also be caused by the fact that
the disparity maps from SGBM are much denser than the
ground truth, as is shown in Figure A.1. Comparing these
results with the results from Figure 1 and Figure 5 we
can conclude that the error of AnyNet-SGBM-K is mainly
located in the left part of the image and/or the borders. This is
also confirmed by visual inspection of the disparity maps. An
example scene where this is visible is shown in Figure A.1.
This is likely a result of the fact that in all the training data,
the left part of the disparity map has no valid value.

Furthermore, Figure 7 and Figure 8 show that the error
of the best versions of AnyNet are comparable to the error
of SGBM and ELAS. However, the version of ELAS that
interpolates its missing disparities (ELAS-M) is still better
than even the best version of AnyNet. The performance of
ELAS near 100% density is much better when this density
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Fig. 8: D1 error of solutions along the Pareto fronts. The
left part and border of all disparity maps are invalidated.
The crosses indicate the conventional methods with general
settings. Triangles indicate AnyNet with varying finetuning
methods.

is achieved by interpolating the invalidated disparities, than
when it is achieved by invalidating fewer disparities. This
poses the question of whether AnyNet would benefit from
this in the same way. There is no built-in confidence filter,
but it is possible to apply the same confidence filters.
AnyNet applies a series of convolutions to arrive at a cost
volume, similar to conventional methods. It then computes
the disparity through a weighted average. This means that
if there are for example two matching candidates with an
equally low cost, the average of the two disparities will
be selected. The conventional methods, on the other hand,
would in such a case classify the match as unreliable, because
the uniqueness ratio is not sufficient. Besides a uniqueness
ratio, a left-right consistency filter, and texture filter could
perhaps be beneficial to AnyNet.

Besides training and testing on the KITTI 2015 dataset,
we also trained AnyNet on the dataset from the greenhouse.
Since the reconstruction error has proven to be an unreliable
performance metric, the performance on this dataset will only
be discussed qualitatively.

Figure 9 is an example that shows that AnyNet has diffi-
culty detecting thin obstacles, especially if they are nearby.
The thin stick is detected when it is far away, but when it
gets closer it blends in with the background. This is because
AnyNet works in four stages. The full disparity range is only
traversed in the first stage at very low resolution. At such low
resolution, the stick is not visible. In the subsequent stages,
the disparity map is upscaled and only a small disparity
range of ±2 is traversed to finetune the disparity map, but
because the stick has a higher disparity difference with the
background, it goes undetected. This problem also occurs in
the KITTI dataset, as is shown in Figure 10.

Figure 11 shows a challenging scene including a horizontal
uniformly colored beam. This is fundamentally difficult to

Fig. 9: Two subsequent disparity maps by AnyNet-ELAS-M

Fig. 10: A scene from the KITTI 2015 dataset with the
disparity map calculated by AnyNet-SGBM-K

detect with stereo vision if the cameras are in the same
plane as the beam. Unsurprisingly, all methods have trouble
detecting the beam. The image also shows a small error near
the entire left edge of the image. This is common among
the disparity maps from AnyNet-SGBM-K and is likely to
be caused by the fact that the disparity maps of SGBM have
invalid values here.

V. CONCLUSIONS

In this work, we have optimized the settings of the
conventional stereo matching algorithms BM, SGBM, and
ELAS by minimizing the reconstruction error. Using NSGA-
II optimization we estimated the Pareto front and compared
this with the results obtained using general parameter con-
figurations. These optimizations based on the reconstruction
error lead to a slight improvement of BM, compared with the
general settings. For SGBM and ELAS, the performance is
similar to the general settings. However, if a different trade-
off is required between density and accuracy, the NSGA-II
optimization can be useful to find the parameter settings.

Besides optimizing the settings of conventional algo-
rithms, we compared multiple self-supervised finetuning
methods for AnyNet. Finetuning using the disparity maps
of conventional methods was found to lead to better results
than finetuning using the reconstruction error. Furthermore,
AnyNet seems to benefit from training on denser disparity
maps. When the left portion of the left disparity map is

10



Fig. 11: A scene from the greenhouse dataset with a horizon-
tal obstacle and the disparity map from AnyNet-SGBM-K

disregarded, finetuning using conventional disparity maps
is comparable to finetuning using ground truth data. The
good performance of finetuning using conventional methods
could be a result of their high density compared with the
ground truth. Perhaps training on ground truth can be further
improved by filling the missing disparities using conventional
methods.

Comparing the results of the traditional methods to the
results of AnyNet we conclude that at similar density, the
performance is similar. However, when ELAS interpolates
low-confidence disparity values, the error drops well below
that of AnyNet. Future work could investigate whether
interpolation of low-confident disparity values is as beneficial
to AnyNet as it is to ELAS.
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APPENDIX

TABLE A.I: AnyNet network configuration, reproduced from
[10]. Note that ’conv’ stands for a sequence of operations:
batch normalization, rectified linear units (ReLU) and con-
volution. The default stride is 1.

0 Input image
2-D Unet features

1 3× 3 conv with 1 filter
2 3× 3 conv with stride 2 and 1 filter
3 2× 2 maxpooling with stride 2
4-5 3× 3 conv with 2 filters
6 2× 2 maxpooling with stride 2
7-8 3× 3 conv with 4 filters
9 2× 2 maxpooling with stride 2
10-11 3× 3 conv with 8 filters
12 Bilinear upsample layer 11 (features) into 2x size
13 Concatenate layer 8 and 12
14-15 3× 3 conv with 4 filters
16 Bilinear upsample layer 15 (features) into 2x size
17 Concatenate layer 5 and 16
18-19 3× 3 conv with 2 filters

Cost volume
20 Warp and build cost volume from layer 11
21 Warp and build cost volume from layer 15 and layer 29
22 Warp and build cost volume from layer 19 and layer 36

Regularization
23-27 3× 3× 3 3-D conv with 16 filters
28 3× 3× 3 3-D conv with 1 filter
29 Disparity regression
30 Upsample layer 29 to image size: stage 1 disparity output
31-35 3× 3× 3 3-D conv with 4 filters
36 Disparity regression: residual of stage 2
37 Upsample 36 it into image size
38 Add layer 37 and layer 30
39 Upsample layer 38 to image size: stage 2 disparity output
40-44 3× 3× 3 3-D conv with 4 filters
45 Disparity regression: residual of stage 3
46 Add layer 44 and layer 38
47 Upsample layer 46 to image size: stage 3 disparity output

Spatial propagation network
48-51 3× 3 conv with 16 filters (on input image)
52 3× 3 conv with 24 filters: affinity matrix
53 3× 3 conv with 8 filters (on layer 47)
54 Spatial propagate layer 53 with layer 52 (affinity matrix)
55 3× 3 conv with 1 filters: stage 4 disparity output

BM
Parameter Optimization limits BM-K

preFilterType [0, 1] 1
(preFilterSize-5)/2 [0, 42] 18

preFilterCap [1, 63] 31
(blockSize-5)/2 [0, 10] 2
minDisparity 0 0
numDisparities 64 64
textureThreshold [0, 200] 20
uniquenessRatio [0, 200] 10
disp12MaxDiff [0, 64] 1
speckleRange [0, 5] 2

speckleWindowSize [0, 100] 8

TABLE A.II: Parameter optimization limits of BM. The
values between brackets indicate the lower and upper bound,
respectively. Parameters for which only one value is given
were fixed.

SGBM
Parameter Optimization limits SGBM-K

preFilterCap [15, 127] 63
minDisparity 0 0
numDisparities 64 64
(blockSize-1)/2 [0, 4] 1

mode 2 2
P1 [0, 500] 36
P2 [0, 5000] 288

uniquenessRatio [0, 99] 10
disp12MaxDiff [0, 64] 1

speckleWindowSize [0, 200] 139
speckleRange [0, 5] 1

TABLE A.III: Parameter optimization limits of SGBM. The
values between brackets indicate the lower and upper bound,
respectively. Parameters for which only one value is given
were fixed.

ELAS
Parameter Optimization limits ELAS-M
disp min 0 0
disp max 255 255

support threshold [50, 100] 95
support texture [0, 30] 10

candidate stepsize [1, 10] 5
incon window size [1, 10] 5
incon threshold [0, 30] 5
incon min support [0, 10] 5

add corners True True
grid size [1, 50] 20
beta*1000 [0, 100] 20
gamma [0, 30] 5
sigma [1, 10] 1
sradius [0, 10] 3

match texture [0, 30] 0
lr threshold [0, 64] 2

speckle sim threshold [0, 5] 1
speckle size [0, 500] 200
ipol gap width 0 5000
filter median False False

filter adaptive mean False False
postprocess only left True True

subsampling False False

TABLE A.IV: Parameter optimization limits of ELAS. The
values between brackets indicate the lower and upper bound,
respectively. Parameters for which only one value is given
were fixed. The settings of ELAS-MNI are the same as
ELAS-M, except that the interpolation gap width is set to 0.
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(a) Left image (b) Right image (c) Ground truth

(d) BM-K (e) SGBM-K (f) ELAS-MNI

(g) ELAS-M (h) WILD (i) AnyNet-SGBM-K

(j) AnyNet-ELAS-MNI (k) AnyNet-ELAS-M (l) AnyNet-WILD

(m) AnyNet-R (n) AnyNet-SF (o) AnyNet-GT

Fig. A.1: A scene from the KITTI 2015 dataset and the disparity maps calculated by various algorithms
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Fig. A.2: L1 error of solutions along the Pareto fronts. In
these optimizations, the L1 error with the ground truth was
used as a supervisor in the NSGA-II optimization.
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TABLE A.V: Settings used to finetune AnyNet

Parameter Value
maxdisp 64

loss weights (0.25, 0.5, 1.0, 1.0)
max disp list (12, 3, 3)

epochs 300
train batch size 6
test batch size 8

with spn True
init channels 1

nblocks 2
channels 3d 4
layers 3d 4
growth rate (4, 1, 1)

spn init channels 8
start epoch for spn 121
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Fig. A.4: Convergence of the hypervolume when optimizing
for the reconstruction error. The reference point of the
hypervolume is (-0.1, 1.1) in Figure 4.
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1
Summary

Autonomous drones are used in many applications, such as search and rescue, law enforcement,
cinematography, and agriculture. In many applications, a lightweight drone would be preferred because
of its inherent safety. However, opting for a lightweight drone also has some disadvantages, such as
reduced computational capabilities and reduced sensor quality and quantity. Stereo cameras are often
used in lightweight drones because of their low sensor complexity, compared to active range sensors.
This project uses the application of a drone in agriculture as a case study. More specifically, the design
options are judged for their suitability on a drone operating in a greenhouse. However, autonomously
navigating lightweight drones can be used in many other applications as well.

Scharstein and Szeliski [1] observed that stereo matching generally consists of matching cost compu-
tation, followed by cost aggregation and disparity optimization, and finalized with a disparity refinement
step. The matching cost methods requiring the least computational effort are simple methods based
on absolute differences. For more robustness to illumination differences, a census or rank transform
[2] can be used, or methods based on normalized cross-correlation [3]. These matching costs are
then aggregated. The simplest methods use a fixed window for aggregation. This is computationally
lightweight but can lead to bad performance near object edges. For higher quality disparity maps, ag-
gregation can be based on segmentation [4, 5], shiftable windows [6, 7], adaptive window sizes [8], or
adaptive weights [9–11]. However, methods using fixed windows usually already produce satisfactory
results, so the additional computational time for better results is often not worth it. The disparity opti-
mization step is simple in local methods. It is based on a winner-takes-all approach, which means that
the disparity with the lowest matching cost is selected. In the final step, the disparity map is refined.
This includes detecting disparity values that are unreliable and removing them. The gaps can then be
filled using interpolation or left empty. To make the disparity map smoother, a Gaussian blur or median
filter can be applied.

The CPU-based stereo matching methods which are used most often are Block Matching (BM) [12],
SemiGlobal Block Matching (SGBM) [13], and Efficient LArge-scale Stereo matching (ELAS) [14]. BM
is the simplest and is based on a fixed window with the sum of absolute differences as cost computation
method. SGBM expands on this by adding a penalty cost if the disparity changes between neighboring
pixels. ELAS tries to reduce the computation time by first calculating disparity values for a subset of
pixels. Then an initial guess is made for the remaining pixels by interpolation, and the disparity search
range is set around this interpolated value.

These methods perform well only if their parameters are tuned well. Parameter tuning has been done
based on ground truth data [15–17]. However, to optimize the settings for environments for which
ground truth data is not available, self-supervised methods are used. These methods aim to improve
the quality of the disparity map by minimizing the reprojection error. To the best of my knowledge, only
Cheung et al. [18] and Nasroddin et al. [19] performed self-supervised optimization of traditional stereo
matching algorithms.

Besides calculating a depth map to avoid nearby obstacles, the drone needs to track its position and
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navigate towards the target location. Simultaneous Localization And Mapping (SLAM) is often used for
localization and mapping. However, for a resource-limited system, it is too computationally expensive.
Onboard tracking of the position can be done using Visual Inertial Odometry (VIO). Forster et al. [20,
21, 22] proposed a fast odometry system and tested it on an embedded platform with limited resources.
However, according to Van Dijk [23], it suffers from too much drift. He concludes that the embedded
Visual Odometer (eVO) [24] is a better option. As opposed to defining the position as a coordinate in
a global frame, it is also possible to define the position relative to landmarks [25] or navigate based on
route memory [26–29].

When the drone knows its own location and the location of the target, a route can be planned. This
can be done based only on what is currently in sight, such as a Rapidly-exploring Random Tree (RRT)
planner in the image space [30]. Unfortunately, this will not work effectively in complicated maze-like
environments. A more general solution would be a 3D bug algorithm [31, 32]. However, this only works
in simplified 3D environments. A route can also be planned based on memory of what the drone has
seen before. A map then needs to be made and kept up to date. The route can be planned using a
form of an RRT planner [33–37], or an A*-based planning algorithm [38, 39].

After the literature review, some preliminary experiments were performed on self-supervised optimiza-
tion of BM, SGBM, and ELAS. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [40] was
used to perform a multi-objective optimization. The two objectives were the reprojection error and the
percentage of the disparity map with a valid disparity. The optimizations showed that SGBM performs
best along the entire Pareto front. However, the optimized versions still have difficulty with repetitive
and textureless areas. BM has the lowest computational cost, followed by SGBM. The computational
cost of ELAS heavily depends on the parameter setting. The low computation time of SGBM and BM
can be partly due to optimized CPU instructions. On a different machine, such as on board the drone,
the difference in computation time could be very different, as stated by Selbek [17]. An improvement
to the parameter optimization would be to take into account the computation time as well. In addition,
further research can focus on improving the performance in repetitive and textureless areas.



2
Introduction

Unmanned Aerial Vehicles (UAVs) have become a popular tool in many applications, such as search
and rescue, law enforcement, cinematography, and agriculture. For cheap and easy application these
drones are becoming increasingly autonomous. Whereas the autonomy of early consumer drones
was limited to automatic stabilization, current drones feature for example autonomous following of
the operator and obstacle avoidance. However, this project will focus on the application of drones in
agriculture. Here, the drone is used to monitor large areas of crops and detect diseases and pests
at an early stage. This helps in preventing the further spread of the disease. Note that such a drone
can be used for many different applications as well. For any application, the drone must pose little or
no safety risks to people in the drone’s vicinity. This can be achieved with safety measures such as
the detection and avoidance of humans. However, it is more reliable to use a drone that is inherently
safe due to its low weight. A lightweight drone poses less danger, even if the avoidance systems
fail. Therefore, this project will focus on lightweight drones. Consequently, the drone will have low
computational capabilities and simple sensors. This means that stereo vision is preferred over active
range sensors such as LIDAR. The stereo camera used is a custom-made combination of two JeVois
cameras and a single JeVois processor.1 In addition to the stereo camera, the drone has an Inertial
Measurement Unit (IMU).

This report aims to provide an overview of previous research related to the autonomous flight of
lightweight drones. This includes a literature study on stereo vision and navigation, and a prelimi-
nary optimization of the three most promising stereo matching algorithms, SemiGlobal Block Matching
(SGBM), Block Matching (BM), and Efficient LArge-scale Stereo matching (ELAS). Considering that
the algorithms will run on a lightweight computer on board the drone, the methods must be efficient.
The literature will therefore be evaluated with this in mind.

The drone’s task package has been split into vision and navigation. The vision task is discussed in
chapter 3. This chapter introduces the concept of stereo matching. It provides an overview of steps
that need to be followed to arrive at a depth map. The various options for each step are discussed. The
stereo matching algorithms BM, SGBM, and ELAS are explained, as well as tuning their parameters.
Then, the navigation task is discussed in chapter 4. This chapter provides an overview of various meth-
ods of localization, mapping, and planning. In chapter 5 the results of some preliminary experiments on
tuning the parameters of BM, SGBM, and ELAS are shown. Finally, the report ends with a conclusion
in chapter 6.

1 http://jevois.org/doc/Hardware.html
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3
Vision

For safe autonomous flight, the drone needs to detect and avoid obstacles. The drone needs to have
a sense of depth of the image to decide if an obstacle is nearby. This sense of depth is created
through stereo matching. This chapter will first discuss some general concepts and approaches in
stereo matching in section 3.1. Then in section 3.2 the most efficient CPU-based algorithms with
publicly available code will be explained in detail. Finally, in section 3.3 the methods for tuning their
parameters will be discussed.

3.1. Stereo matching
To obtain depth information from the two images, they need to be compared to find out which parts of
the images correspond. Luckily, for finding the corresponding pixel of a pixel in one image one does not
need to search the entire other image. This is explained using Figure 3.1. This image is a schematic
representation of two pinhole cameras, located at O and O’. The plates represent the image planes.
An object at any of the X locations will be captured on the image plane in x, thus the depth information
is lost. However, on the second camera (the right one) all these locations X do not result in the same
location on the image frame. They can be located at any of the x’ locations. The line connecting the x’
locations is called the epipolar line. An element that is photographed by the left camera and is located
at x in the image, can be anywhere along the epipolar line in the right image. For each point in the left
image, there is a corresponding epipolar line in the right image and vice versa. The pattern of epipolar
lines is a direct result of the relative position and orientation of the two cameras. As long as the cameras
stay fixed relative to each other, the pattern does not change. This is convenient in stereo matching
because it means that the pattern of epipolar lines can be found in advance, and does not need to be
recalculated for every image pair.

Figure 3.1: Epipolar lines, from [41]
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To speed up the stereo matching algorithms, they only search along the epipolar lines for candidate
matches. However, due to lens distortion, the epipolar lines are often curved. Also, the two cameras
are usually not perfectly aligned, resulting in an epipolar line pattern that is shifted or rotated between
the images. To correct for these effects and to align the epipolar lines, calibration and rectification need
to be performed. Calibration refers to the correction of lens distortion and rectification refers to the
alignment of the two cameras. The goal is to align the epipolar lines with the image rows because this
makes it immediately clear that the epipolar line of a pixel in one image lies on the same image row in
the other image.

The calibration and rectification process is commonly performed by taking a set of images of known
geometry. Usually, this geometry is a flat chessboard pattern. The corners of the squares provide a set
of points that is known to be on a rectangular grid in real life. This is used by the OpenCV [41] function
stereorectify to build a map that specifies the translation per pixel.

After the images are calibrated and rectified the stereo correspondences can be found. Stereomatching
algorithms can be categorized into local or global methods. Local methods try to optimize the matching
choice for each pixel (or a subset of pixels) independently, whereas global methods try to optimize
the entire disparity map using all pixels. Local methods are generally faster but less accurate than
global methods. Because of the limited computational resources on the JeVois a local method is more
feasible. Therefore these will be discussed in more detail. Global methods will be only be discussed
briefly in subsection 3.1.5.

Scharstein and Szeliski [1] made a taxonomy of dense two-frame stereo matching algorithms. They
observed that stereo matching algorithms generally consist of four steps.

1. matching cost computation
2. cost aggregation
3. disparity computation/optimization
4. disparity refinement

These steps will be further elaborated on below.

3.1.1. Matching cost computation
The first step is matching cost computation. In this step, the similarity of a pixel with its matching
candidates is calculated. The matching candidates are the set of pixels within a specified disparity
search range. This results in a 3-dimensional array of matching costs, the matching cost volume.

For calculating the matching cost, various methods have been tried. These are for example simple
matching costs based on the pixel-wise intensity differences such as the squared intensity difference
(SD), the absolute intensity difference (AD), or a truncated absolute difference (TAD). A sampling-
insensitive intensity difference metric was given by Birchfield and Tomasi [42]. They compare the pixel
values in one image with a linearly interpolated function of the pixel values in the other image. These
methods are very common and require little computational effort, but they may not work well if there are
illumination differences between the two images. As a result, corresponding pixels may have a higher
matching cost than non-corresponding pixels. Illumination differences can be a result of using different
cameras, using different camera settings, or due to the difference in view direction.

Tomake thematching cost less sensitive to illumination differences there are several options. A Census
Transform (CT) [2] calculates for each pixel a bit vector describing whether or not neighboring pixels
have a lower intensity than the center pixel. The similarity of pixels can then be quantified using the
Hamming distance between their bit vectors. Similar to CT is the Rank Transform (RT) [2], which for
each pixel assigns a value stating the number of pixels in the window that have a lower intensity than
the center pixel. In other words, it is the sum of the bit vector given by the census transform, or the
rank in the list of pixels in the window ordered by increasing intensity. Another option to mitigate the
effect of illumination differences is Normalized Cross-Correlation (NCC) [3]. A disadvantage of NCC
is that outliers in the window lead to high errors, resulting in a fattening effect. A possible solution to
this is adaptive normalized cross-correlation (ANCC) [43], where the pixels in the window are weighted
based on their intensity difference with the center pixel. This way, pixels across an edge are assigned
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a lower weight. Hirschmüller [13] used mutual information [44] in SemiGlobal Matching (SGM) as a
matching cost because of its insensitivity to recording and illumination changes.

A more extensive overview of matching cost computation methods is given in [45]. Hirschmüller and
Scharstein [46] provided a comparison of cost functions when applied on stereo pairs with global in-
tensity changes, local intensity changes, and noise. They concluded that the performance of the cost
function depends on the stereo method that uses it. The Rank transform performed best for window-
based stereo methods, whereas hierarchical mutual information performed best for pixel-based global
and semiglobal stereo methods.

3.1.2. Cost aggregation

The next step is to aggregate the matching costs of neighboring pixels to obtain a better estimate of
the similarity with the matching candidate. The purpose is to try to group pixels that belong to the same
object because these are expected to have approximately the same disparity. This group of pixels is
called the support window.

The support window can be constant, or it can be modified in terms of size, shape, and/or location to
achieve better matching. The weight of the pixels in the support window can be modified as well. This
weight can represent the confidence that a pixel has the same disparity.

The fixed window approach is the most common in fast stereo matching algorithms due to its simplicity.
Summation of the absolute differences in this window results in the common Sum of Absolute Difference
(SAD) metric. The advantage of a fixed window is that there is no need to calculate the optimal size
and shape of the support window. A disadvantage, however, is that at the edges of objects, the support
window covers both the object and the background. This means that the disparity calculation of this
pixel on the edge will be disturbed by the background. In practice, this can lead to the disparities of the
foreground being smeared over the background as well [47]. This is also referred to as foreground-
fattening or bleeding.

A solution to bleeding would be to try to have all the pixels in the support window belong to the same
object. This has been tried in several ways. A useful overview of cost aggregation methods has been
provided by Tombari et al. [48]. They experimentally assess both the accuracy and computational
requirements of the algorithms on a standard dataset. They divide the methods into the following
categories: methods that are based on the selection of one window out of a set of windows, methods
that allow for unconstrained support shapes, and methods that are based on adaptive weights.

Methods that are based on a selection of support windows out of a set of possible options are for
example the shiftable window method by Arnold [6] or Bobick and Intille [7]. They shift the window
such that the pixel to be matched is no longer in the middle, but on the side. This helps at the edges
of objects because more of the support window’s pixels will then belong to the object. Another method
is the adaptive window size method proposed by Kang et al. [8]. This method ensures that larger
regions with little texture get handled by larger windows. According to Tombari et al. [48] this way of
cost aggregation takes a long time to compute.

Methods that allow unconstrained support shapes are for example segmentation-based methods [4,
5]. Although segmentation-based stereo matching can produce high-quality disparity maps, this often
comes at a computational cost.

A method that uses adaptive weights is for example the information permeability approach by Cigla
and Alatan [9, 10]. The weights of the support window are determined by the intensity similarity of the
neighboring pixels and used to calculate the permeability towards that direction. This way, connected
pixels with a similar color form the support window. Another method that uses adaptive weights is the
one proposed by Hosni et al. [11]. Their method computes the geodesic distance from all pixels within
a square support window to the center pixel. If a pixel has a path to the center pixel along which the
color does not change it is given a high weight because it is then assumed to be part of the same
object.
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3.1.3. Disparity computation and optimization
In local matching, disparity computation is usually done on a winner-takes-all basis. The disparity with
the lowest matching cost is selected. A limitation, as stated by Scharstein and Szeliski [1], is that if the
left disparity map is being generated, pixels of the right image might be mapped to multiple points. In
other words, uniqueness is only enforced in the reference image.

In global matching, disparity computation and optimization is a much bigger step. However, because
global methods are too computationally expensive for the JeVois, the various optimization methods will
not be discussed.

3.1.4. Refinement of disparities
Refinement of disparities consists of removing ambiguous disparity values, filling gaps in the disparity
map, and smoothing the disparity map.

Several metrics can be used to classify a pixel as ambiguous. Common metrics are the uniqueness
ratio, left-right consistency, the amount of texture, or the size of an area with dissimilar disparity. These
will be explained in section 3.2. Apart from checking the left-right consistency, we can also check the
temporal consistency. Cigla et al. [49] proposed a temporal fusion method based on Gaussian Mixture
Models. By using temporal fusion, temporally consistent, flicker-free disparity maps with fewer errors
can be obtained. It takes 0.4 seconds per frame on a 3.4 GHz i7 CPU on average on the KITTI stereo
2012 training set, which has an average resolution of 1250x350, which is still a long time considering
that the entry for ELAS states 0.3 seconds on the KITTI benchmark.

Essentially, the classification of ambiguity is similar to generating a confidence map, where the pix-
els with low confidence are discarded. Hu and Mordohai [50] provided a quantitative evaluation of
confidence measures.

The removed disparity values can either be left empty, or filled with a new estimation. This new esti-
mation is usually an interpolation using neighboring pixels.

To make the disparity map smoother a Gaussian blur, a median filter, or an adaptive mean filter can be
applied.

3.1.5. Global Methods
Global methods generally perform better than local methods but require considerably more computation
time. Some examples of global optimization methods are dynamic programming, scanline optimization,
graph cuts, and simulated annealing. Recently another global method is becoming more and more
common. Almost all of the top-performing submissions on the Middlebury website1 are based on neural
networks [51–53]. Recent literature reviews on deep stereo matching are for example the ones by Laga
et al. [54] and Zhou et al. [55]. Deep stereo matching algorithms can be run very efficiently on GPUs as
they allow for parallel computing. The JeVois has a dual-core MALI-400 GPU, but this is unlikely to be
powerful enough to run the large neural networks that obtain the best result. Perhaps a more compact
deep learning method can be run on the JeVois. Some compact deep learning models are StereoNet
[56], AnyNet [57], and MABNet_tiny [58]. AnyNet has 40K parameters and can process 1242×375 at
10-35 fps on an Nvidia Jetson TX2. MABNet_tiny has 47K parameters and a processing time of 0.11
s on a 256×512 stereo pair on four Nvidia RTX2080Ti’s. StereoNet uses 1.77M parameters, has a
runtime of 0.015s per frame on an Nvidia Titan X, and possibly more than twice as fast if the refinement
steps are skipped.

3.2. Stereo matching algorithms
Due to the limited computational capacity on board the drone, it is relevant to ask which algorithms are
lightweight enough to be run on board. This paragraph discusses some stereo vision algorithms that
have been proven to work on a micro air vehicle.
1 https://vision.middlebury.edu/stereo/eval3/
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McGuire et al. [59] presented an algorithm for efficient determination of velocity and depth on an
STM32F4 microprocessor. The STM32F4 has a speed of 168 MHz and 196 kB of RAM. The algorithm
works by first calculating the image gradients. The gradients are summed along the image columns
to obtain the edge distribution. The edge distributions of the left and the right image are matched to
obtain the disparity distribution. However, this means that there is no dense depth mapping, making
the method unsuitable for our application.

A modified version of the information permeability-based algorithm of Cigla and Alatan [10] was imple-
mented by [60] on a 20g flapping wing MAV, the DelFly Explorer. The images, which have a resolution
of 128x96 pixels, are processed on board a 168-MHz STM32F405 micro-controller, with only 196 kB
of RAM, demonstrating the resource-efficiency of this method. Earlier, De Wagter et al. [61] introduced
LongSeq, a stereo matching algorithm specifically designed to cope with the flapping motion and to
run on the restricted computational resources. LongSeq performs optimization along one image line
at a time. The fact that these methods can run on board a platform with such low processing speed
makes them interesting options. However, higher-quality disparity maps are desired. Considering that
the JeVois is capable of running for more advanced methods, this should be possible.

Barry et al. [62] achieved high-speed flight of a 664g fixed-wing aircraft using pushbroom stereo. They
implemented a block matching algorithm that only searches at a single disparity, corresponding to a
single distance 𝑑 away from the drone. The system relies on continuous forward motion. It remembers
what it has seen in previous frames, and propagates those detections to have a sense of obstacles
closer than 𝑑. By only looking at a single disparity, the algorithm can be much faster, and high-speed
flight is possible. Since they only look for matches at a single disparity, they cannot find the best match,
instead, they take a threshold. Although high-speed flight is not an objective inside the greenhouse, a
lightweight stereo matching algorithm is desired. Looking at a single disparity only may not be suitable
in our low-speed application as it makes the drone blind for obstacles closer than 𝑑 (and further than
𝑑). This would pose a problem when the drone changes heading while hovering, for example, to avoid
an obstacle ahead. This exposes the camera to an environment that was not previously seen and
obstacles closer than 𝑑 cannot be detected. Therefore, the pushbroom stereo may not be suitable
as-is, but limiting the search space can save time. By only looking for matches from a certain disparity
and up, the drone only scans for obstacles up to a certain distance ahead, and will not spend time
matching pixels corresponding to obstacles in the far distance.

Tippetts et al. [63] provided an overview of stereo vision algorithms and evaluated their suitability for
resource-limited systems. However, it should be noted that it was completed in 2012, so it does not
include more recent algorithms. Also, hardware has improved since then, so algorithms that were too
computationally expensive then might be acceptable using today’s hardware. Therefore, in 2020, Van
Dijk [23] continued the work to include more recent algorithms. He compared the algorithms on the
Middlebury and KITTI benchmarks for which the code is publicly available. He concludes that Efficient
LArge-scale Stereo matching (ELAS) [14] and SemiGlobal Block-Matching (SGBM) [13] are still among
the best performers. Therefore, this section will discuss these algorithms in detail. Block Matching (BM)
[12] will be included as well, because of its simplicity and speed. In situations where ELAS and SGBM
are too computationally expensive, BM could be an option. BM has previously been used by Goldberg
and Matthies [64] on a system comparable to the JeVois and with the same image resolution. They
report a framerate of 46 fps when using a disparity search range of 32, indicating that BM could be a
feasible option on the JeVois. Depending on the computational requirements of other tasks it might
be possible to use SGBM or ELAS instead. An overview of the difference in approach between these
algorithms is shown in Table 3.1. The difference in performance is discussed in section 5.2.

3.2.1. Block Matching (BM)
The fastest and simplest stereo algorithm for a CPU is the SAD-based Block Matching (BM) algorithm
in OpenCV, which was implemented by Konolige [12]. Kaehler and Bradski [65] provide a good expla-
nation of how StereoBM works. Here follows a summary of their explanation. An overview of the input
parameters is given in Table 3.2.

The algorithm works in three steps. The first step is prefiltering. In this step, the images are nor-
malized for brightness and the texture is enhanced. Secondly, the matching costs are calculated
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BM SGBM ELAS
Prefiltering Sobel filter in x-direction

or normalized response
filter

Sobel filter in x-direction Sobel filter in x-direction
and in y-direction

Matching cost Absolute differences Birchfield-Tomasi on
fixed square window

Absolute differences

Cost aggregation Summation over fixed
square window

Penalty for chang-
ing disparity between
neighboring pixels

Summation over fixed
square window, and
smoothness term based
on difference with prior

Postfiltering Uniqueness ratio Uniqueness ratio Uniqueness ratio
Left-right consistency Left-right consistency Left-right consistency
Speckle filter Speckle filter Speckle filter
Texture threshold Texture threshold

Gap interpolation
Median filter
Adaptive mean filter

Table 3.1: Overview of differences between BM, SGBM, and ELAS.

along the epipolar lines using a SAD window. The last step is postfiltering and aims to remove bad
matches.

The prefiltering step can be done in one of two ways and is set by preFilterType. The de-
fault option PREFILTER NORMALIZED RESPONSE is to normalize the intensities in a window of size
preFilterSize, and clip this value by [-preFilterCap, preFilterCap]. The other option,
PREFILTER XSOBEL, is to apply a Sobel filter in x-direction and clip its value by [-preFilterCap,
preFilterCap]. Note that preFilterSize is not used when Sobel filtering is chosen.

Then in the second step, thematching costs are calculated by sliding a SADwindow of size blockSize
over the epipolar lines, which are assumed to be the image rows. The minimum disparity is set by
minDisparity and is zero by default. If the axes of the cameras are parallel, this should be kept at
zero. However, if the cameras are pointing slightly towards each other, distant objects might have a
negative disparity. The disparity range is set by numDisparities. This means that the maximum
disparity will be numDisparities + minDisparity.

After the matching costs have been calculated we go to the postprocessing step. If the texture of a
block is below the textureThreshold no disparity value is given, because the block is assumed to
lack distinct features, which makes matching unreliable.

To remove ambiguous matches, a match will only be accepted if the costs of the other disparities are
sufficiently higher. If the match has matching cost 𝑆(𝑑∗) and the other disparities have cost 𝑆(𝑑), then
the match will only be accepted if 𝑆(𝑑) ≥ 𝑆(𝑑∗) (1 + uniquenessRatio

ኻኺኺ ) for all |𝑑 − 𝑑∗| > 1 within
the search range. In other words, the uniquenessRatio specifies the percentage by which the costs
of all other disparities, except the adjacent, need to exceed the cost of the best disparity to accept the
match. This parameter can thus have any positive value.

The next postprocessing step is to remove matches that cannot be consistently matched left-to-right
and right-to-left. If the optimal disparity for a pixel at (𝑥, 𝑦) in the left image equals 𝑑፥, and the optimal
disparity of its corresponding pixel at (𝑥 −𝑑፥ , 𝑦) in the right image equals 𝑑፫, then the disparity value in
the left image will only be retained if |𝑑፫ − 𝑑፥| < disp12MaxDiff.

The last step is to remove small areas with a different disparity than their surroundings. These ar-
eas are called speckles. The speckles are removed by first connecting each pixel in the image to
neighbors with a similar disparity. If the disparity difference between neighboring pixels is smaller than
speckleRange, they are connected. This means the disparity map is divided into segments of con-
nected pixels. If a segment contains less than speckleWindow pixels, the disparity values in that
segment are discarded. This can help to remove noise from the disparity map. However, it can have
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adverse effects if the goal is to detect small obstacles.

The pixels that are removed from the disparity map are left empty in the OpenCV implementation of
BM. However, it is also possible to fill the removed pixels by interpolation.

Prefiltering
preFilterType Option to choose between a normalized response filter or a Sobel filter in

x-direction.
preFilterSize Size of normalized response filter window
preFilterCap Truncation value for prefilter response
Cost calculation
blockSize Matched block size

minDisparity Minimum disparity
numDisparities Disparity search range
Postprocessing

textureThreshold The disparity is only computed if the texture meets the threshold.
uniquenessRatio The best match is only retained if it is sufficiently better than the second-

best match.
disp12MaxDiff Maximum allowed difference in the left-right consistency check
speckleRange Maximum disparity variation across connected pixels in smooth disparity

region
speckleWindowSize Maximum size of a smooth disparity region to consider it a speckle and

invalidate

Table 3.2: BM input parameters.

3.2.2. SemiGlobal Block Matching (SGBM)
The OpenCV function StereoSGBM is an implementation of the SemiGlobal Matching (SGM) approach
by Hirschmüller [13]. The OpenCV implementation deviates from the original algorithm in a few ways.
As the name implies, one of those differences is that the OpenCV implementation, SGBM, matches
blocks, whereas the algorithm by Hirschmüller, SGM, matches individual pixels. StereoSGBM also
includes some pre- and postprocessing steps from StereoBM. The process of StereoSGBM can be
split into the same steps as for StereoBM. This section explains how these steps work, and how it
differs from SGM. An overview of the input parameters of StereoSGBM is given in Table 3.3.

Unlike in StereoBM, the prefiltering step of StereoSGBM only offers one option: a Sobel filter in x-
direction. This works the same way as in StereoBM. The output of the Sobel filter is clipped by
[-preFilterCap, preFilterCap].

Whereas the cost calculation in [13] uses mutual information [44] as a correspondence measure, the
OpenCV implementation uses the simpler Birchfield-Tomasi [42] measure. Furthermore, the original
paper matched individual pixels, and the OpenCV implementation matches blocks of size blockSize.
The algorithm calculates the full cost volume with a minimum disparity of minDisparity and a dis-
parity range of numDisparities.

After the matching cost volume has been calculated, a penalty cost is added to each element in the
cost volume if the disparity of neighboring pixels is different. To do this, the image is traversed in three
(←→↑), five (←→↑↖↗), or eight directions (←→↑↖↗↓↙↘). If the disparity changes along that direction, a
penalty cost is added. If the disparity changes by plus or minus 1, a penalty of 𝑃ኻ is added, which equals
the input parameter P1. If it changes by more than one, a penalty of 𝑃ኼ is added. Since the disparity
usually has a big change across object edges, the input parameter P2 is adapted to the image intensity
gradient, 𝑃ኼ =

P2
|ፈpዅፈq|

. This ensures that the penalty is lower if a big disparity change is expected.
The options with three or five directions can be done in a single pass, whereas traversing in eight
directions requires a double pass, making the execution slower. The original paper by Hirschmüller
[13] considered only two options, with 8 or 16 directions.
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𝐶(p, 𝑑) is the Birchfield-Tomasi cost value for pixel p with disparity 𝑑. The penalty cost along direction
r is then defined recursively as

𝐿r(p, 𝑑) = 𝐶(p, 𝑑) +min(𝐿r(p− r, 𝑑),
𝐿r(p− r, 𝑑 − 1) + 𝑃ኻ,
𝐿r(p− r, 𝑑 + 1) + 𝑃ኻ,
min
።
𝐿r(p− r, 𝑖) + 𝑃ኼ) −min፤ 𝐿r(p− r, 𝑘)

(3.1)

The total aggregated cost 𝑆(p, 𝑑) is found by summing the 𝐿 costs of each direction.

𝑆(p, 𝑑) =∑
r
𝐿r(p, 𝑑) (3.2)

Then the disparity map is made by choosing for each pixel the disparity with the lowest 𝑆 cost.
Just like with StereoBM the match is only accepted if it is sufficiently better than the second-best
match. However, the definition is slightly different. In StereoSGBM the best match is only accepted
if its cost, 𝑆(𝑑∗), is sufficiently lower than the cost of the second-best match, 𝑆(𝑑). The match is
accepted if 𝑆(𝑑∗) < 𝑆(𝑑) (1 − uniquenessRatio

ኻኺኺ ). This means that the uniquenessRatio needs
to be between 0 and 100.

Next, a pseudo left-right consistency check is done. The other disparity map is built using the same
𝑆 cost volume. The pseudo left-right consistency check works the same as in StereoBM. It is called
a pseudo left-right consistency check because the cost aggregation step is not symmetric, i.e. the
𝑆 cost volume using the left image as a reference is different from the 𝑆 cost volume when the right
image is used as a reference. Slightly better results can be expected with a full left-right consistency
check, according to [13] This means that for the right disparity map, the 𝑆 cost volume is built again, but
using the right image as reference. However, this takes a considerable amount of extra computation
time.

Similar to StereoBM, speckles are again removed by setting speckleWindowSize and
speckleRange.

Michael et al. [16] modified SGM to improve the quality of the result. Instead of using a constant 𝑃ኻ and
𝑃ኼ for each direction. They introduced 𝑃ኻ(r) and 𝑃ኼ(r). In other words, they made 𝑃ኻ and 𝑃ኼ depen-
dent on the direction of aggregation. This makes it possible to give a different penalty if the disparity
changes along some directions than along other directions. Furthermore, instead of scaling 𝑃ኼ with
the image gradient, they choose a different �̂�ኻ(r) and �̂�ኼ(r) if the image gradient exceeds a threshold.
Furthermore, they introduce a scaling factor that defines the contribution of 𝐿r. These parameters are
then optimized using an evolutionary algorithm. Using these modifications they achieved a reduction
of the number of bad pixels by 27.5%.

3.2.3. Efficient LArge-Scale Stereo matching (ELAS)
The approach of Efficient LArge-Scale Stereo Matching (ELAS) [14] consists of three steps. First, a
regular grid of support points is built and matched. Then dense matching is performed using interpo-
lation of the disparities of surrounding support points as an initial estimate. After the dense disparity
map is completed, postprocessing is done to improve the results.

The regular grid of support points is built with a step size of candidate stepsize pixels. These
points are matched, but only if their texture exceeds the threshold set by support texture. Then,
the horizontal and vertical Sobel filter response is calculated with a mask size of 3×3. For each point
to be mapped, a feature vector is calculated. The feature vector is the concatenation of the hori-
zontal and vertical Sobel filter responses on a 9×9 pixel window, resulting in a 2×9×9=162 dimen-
sional feature vector. The matching cost between two pixels is then the sum of absolute differences
of the feature vectors. For matching the support points, a disparity range of [disp min, disp max]
is used. If the disparity of a support point is very different from the disparities of neighboring support



3.2. Stereo matching algorithms 31

Prefiltering
preFilterCap Truncation value for prefiltered image pixels. The algorithm first computes

the x-derivative at each pixel and clips its value by [-preFilterCap,
preFilterCap]. The result values are passed to the Birchfield-Tomasi
pixel cost function.

Cost calculation
minDisparity Minimum disparity

numDisparities Maximum disparity minus minimum disparity
blockSize Matched block size

Cost aggregation
mode Can be either MODE_SGBM, MODE_HH, MODE_SGBM_3WAY, or

MODE_HH4. It specifies the number of aggregation directions.
P1 Penalty for disparity change of 1 along the aggregation direction
P2 Penalty for disparity change greater than one along aggregation direction

Postprocessing
uniquenessRatio Margin by which the cost of the best disparity should be below the cost of

the other disparities
disp12MaxDiff Maximum disparity difference in left-right consistency check

speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
and invalidate

speckleRange Maximum disparity variation within each connected component.

Table 3.3: StereoSGBM input parameters with descriptions from the documentation [41]

points, it is removed. This is done by counting the number of support points inside a window of size
incon window size that have a similar disparity as the center support point. incon threshold is
the threshold for a support point to be considered similar. If the number of similar support points is
below incon min support, it is invalidated. The setting add corners enforces that support points
are added at the image corners. The disparities of these are set to the disparities of their nearest
neighbors.

Thematched support points are then used to create a 2Dmesh using Delaunay triangulation. Inside the
triangles, a plane is fitted in the disparity space. In other words, a linear interpolation of the disparity
is performed between the support points. The interpolated value at pixel p is 𝜇(p). Based on the
interpolated value, a disparity range is set for that specific pixel. The disparity search range is 𝜇(p)
plus or minus sradius×sigma. In addition, all disparities that occur on support points within a window
of size grid size are also added to the disparity search range.

The matching cost is a combination of the amount by which the disparity differs from the interpolated
value and the sum of absolute differences between the feature vectors. The feature vectors are slightly
different from the feature vectors in the support point matching. Here, the Sobel filter responses of a
5×5 window are included in the feature vector f, resulting in a 2×5×5=50 dimensional feature vector.
The matching cost 𝐸(p,q) between pixel p in the left image and pixel q in the right image with disparity
𝑑 is given below.

𝐸(p,q) = beta ‖fp − fq‖ − log [gamma+ exp(−
[𝑑 − 𝜇(p)]ኼ
2sigmaኼ

)] (3.3)

As we can see, the first term includes the sum of absolute difference of the feature vectors in the total
matching cost, and its weight is given by beta. The second term includes the disparity similarity with
the interpolated value. The disparity for pixel p is then set such that 𝐸(p,q) is minimum.

This process is done for both images, and a left-right consistency check is performed, using the
threshold set by lr threshold. Speckles are again removed by setting speckle size and
speckle sim threshold.

Whereas ELAS uses a regular grid to select candidate support points, LS-ELAS [66, 67] improves on
this by sampling them along edge segments. This results in a reduction of computation time because
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Support point matching
disp min Minimum disparity
disp max Maximum disparity

support threshold Maximum uniqueness ratio
support texture Minimum texture for support points

candidate stepsize Step size of regular grid on which support points are matched
incon window size Window size of inconsistent support point check
incon threshold Disparity similarity threshold for support point to be considered con-

sistent
incon min support Minimum number of consistent support points

add corners Add support points at image corners with nearest neighbor disparities
grid size Size of neighborhood for additional support point extrapolation

Dense matching
beta Image likelihood parameter
gamma Prior constant
sigma Prior sigma
sradius Prior sigma radius

match texture Min texture for dense matching
Postprocessing
lr threshold Disparity threshold for left-right consistency check

speckle sim threshold Similarity threshold for speckle segmentation
speckle size Maximum size of a speckle (small speckles get removed)
ipol gap width Interpolate small gaps
filter median Optional median filter (approximated)

filter adaptive mean Optional adaptive mean filter (approximated)
postprocess only left Saves time by not postprocessing the right image

subsampling Saves time by only computing disparities for each 2nd pixel

Table 3.4: ELAS input parameters with descriptions from the documentation [14]

a higher percentage of candidate support points can be robustly matched. They state a reduction
of a factor three for the computation of support points. On the entire calculation, this results in a
reduction of about 10%. This difference increases with higher resolution and becomes negligible at
lower resolution.

Rahnama et al. [68] implemented ELAS on an FPGA. They use a Census Transform descriptor with
Hamming Distance instead of SAD to achieve illumination invariant matching without the need for Sobel
filtering in the pre-processing. This change reduces the number of computations and the memory
requirements.

3.3. Parameter tuning
A prerequisite for obtaining high-quality disparity maps using the previously described stereo matching
algorithms is that their parameters are tuned properly. The optimal parameter settings can depend on
factors related to the imaging hardware, such as resolution, and factors related to the environment,
such as lighting. Furthermore, the optimal settings are application-specific. Sometimes a different
trade-off is preferred between computation time, accuracy, and the percentage of pixels with a valid
disparity value.

Parameter tuning of a stereo algorithm is a high-dimensional nonlinear problem that is commonly solved
either manually by trial-and-error or automatically using a grid search or more advanced methods like
evolutionary algorithms. Needless to say, manual tuning is a tedious process and will often underper-
form automatic tuning. Therefore, this section discusses automatic parameter tuning. First, supervised
parameter tuning will be discussed, followed by self-supervised parameter tuning.
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3.3.1. Supervised parameter optimization
The simplest and most effective method of parameter optimization uses ground truth data to evaluate
the performance of a combination of parameters. Nguyen and Ahn [15] proposed a Robust Evolu-
tionary Algorithm (REAL) and applied it to optimize the parameters of SGBM, ELAS, and other stereo
matching algorithms. The objective function is the average absolute difference between the produced
disparity map and the ground truth disparity map. Compared with L-SHADE [69] and Particle Swarm
Optimization (PSO) [70] they achieved faster convergence, mainly because the initial population of
REAL is generated randomly around user-specified initial settings.

As mentioned in subsection 3.2.2 Michael et al. [16] modified SGM by introducing some additional
parameters. They tuned these parameters using CMA-ES [71]. Again, the quality of the disparity map
is quantified by comparing it with the ground truth data. More specifically, the objective function is the
number of pixels in the disparity map whose difference with the ground truth exceeds 1.

Instead of optimizing a single objective, Selbek [17] performed a multi-objective optimization with
NSGA-II [40] on SGBM, ELAS, and BM, and presented the Pareto fronts. The quality of the disparity
maps is quantified by comparing them with ground truth data.

3.3.2. Self-supervised parameter optimization
Sometimes ground truth data is not available and an algorithm needs a self-supervised approach to
judge the performance of a parameter combination. This is done by reprojecting one image onto the
other image using the disparity map. The quality of the disparity map is then judged based on the
similarity of the reprojection with the original image. To the best of my knowledge, this has only been
done by Cheung et al. [18] and Nasroddin et al. [19].

Cheung et al. [18] applied CMA-ES to optimize the parameters of BM and update adaptively when
the environment changes. First, they minimize the disparity search range while covering all important
details of the scene in the depth map. Then they optimize the other parameters. They do this by mini-
mizing a single objective function, which is a linear combination of the following sub-objectives.

• The number of pixels with a valid disparity
• The average pixel-to-pixel intensity difference between the original image and the reprojected
image, normalized with the maximum intensity in the image

• The average difference between the maximum and minimum disparity within a sector of the im-
age. This sub-objective is used to prevent noise in the disparity map.

• The computation time

They conclude that with automatic parameter tuning comparable or better depth maps can be found
than with manual tuning and find that their method can quickly adapt to a changing environment.

Nasroddin et al. [19] applied PSO and Binary Particle Swarm Optimization (BPSO) to optimize the
parameters of BM. The objective function is the sum of absolute differences between the original left
image and the reconstructed left image. They compare the results of PSO and BPSO and conclude
that PSO performs better. Unfortunately, they do not compare the result to a manually tuned version
of BM.

Self-supervised optimization is not only used for parameter optimization of engineered stereo match-
ing algorithms. It is also used for deep stereo matching algorithms. The loss function used in these
algorithms can also be used as the objective function in evolutionary algorithms, used for parameter
optimization.

Garg et al. [72] were the first to develop a neural network for depth estimation that was trained in a self-
supervised way. They used a combination of the L1 error between the reconstruction and the original
image and a disparity smoothness term penalizing gradients in the disparity map. Godard et al. [73]
used a more extensive loss function. They combined the following.

• L1 error between the original image and the reconstructed image
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• A structural similarity term (SSIM) [74] to reduce the effect of illumination differences. The SSIM
term is a combination of the difference in luminance, contrast, and structure. The mathematical
definition is given in subsection 5.1.1.

• A disparity smoothness term scaled with the image gradient. This allows high disparity gradients
at locations where the image gradient is high.

• A left-right disparity consistency loss which attempts to make the left disparity map equal to the
projected right disparity map.

Zhong et al. [75] had a similar approach but also included the L1 error between the gradient of the
original image and the reconstructed gradient image. Furthermore, they introduce a loop consistency
term, which is the L1 error between the original left image and a reconstruction of the left image, formed
by reconstructing the right image first using the right disparity map and warping that image using the
left disparity map to arrive back at a synthetic left image. They also add a maximum-depth heuristic
loss, which minimizes the sum of all disparities. This is to train the model to favor low disparities in
textureless areas.

Tonioni et al. [76] modified DispNet [77] to use self-supervised training instead of supervised training.
The loss function consists of a confidence-guided loss and a smoothness term. The confidence-guided
loss is the difference between DispNet’s disparity map and a disparity map generated by a conventional
stereo matching algorithm (SGM [13] or AD-CENSUS [2]). However, such a network would be trained
to imitate the stereo algorithm’s shortcomings as well. To avoid this, they use a different network to
discriminate between reliable and unreliable pixels. Their smoothness term is based on the average
absolute difference between the disparity of a pixel and pixels within a specified range of that pixel.
Their disparity smoothness term does not consider the image gradient, and will therefore penalize a
changing disparity even if it is correct.
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Navigation

The navigation task is split into two subtasks. The first subtask is localization and mapping, i.e. to
know the agent’s position relative to the goal. Localization andmapping is considered one task because
building amap inherently provides a position. The second subtask is motion planning. This can be done
locally based on what is currently in sight, or globally by using a global map. Localization and mapping
will first be discussed in section 4.1. Motion planning will then be discussed in section 4.2.

Similar to stereo matching, deep learning is also increasing in popularity in autonomous navigation.
Due to the limited computational resources on the JeVois, deep learning is not considered a viable
option and will therefore not be discussed any further. The interested reader is referred to Lee et al.
[78] for a recent research overview of deep learning in autonomous drone navigation.

Previous literature studies on mapping and localization are for example those by Kanellakis and Niko-
lakopoulos [79] and Lu et al. [80].

4.1. Localization and mapping
Localization can be done in multiple ways. Pérez et al. [81] and Yuan et al. [82] presented overviews
of various localization systems. For outdoor navigation, the most commonly used is GPS, but in indoor
environments such as the greenhouse, the signal can be distorted, leading to inaccurate and unreliable
positioning. A solution would be to build an indoor positioning system. Such a system can for example
be vision-based motion capture systems such as Vicon1 or Optitrack2. These use external cameras to
follow the drone and triangulate its position, using images from cameras at different locations. Other
positioning systems can be based on radio frequency, such as Ultrawideband (UWB), Radio Frequency
Identification (RFID), Wireless Local Area Network (WLAN), or Bluetooth. These use either the signal
strength or time of arrival measurements to calculate the position. However, the downside of these
external systems is that a large investment is needed before a drone can be used. Therefore, this
section only discusses localization methods that run on board. This allows the drone to be used in an
unknown environment.

4.1.1. Mapping
The most complete form of onboard localization builds a map while navigating and determines the
agent’s position in that map. The advantage of this is that by remembering the surroundings, the agent
can plan the shortest path to previously seen locations. VanDijk [23] dividesmapping into three classes:
image-space maps, discretized space maps, and continuous space maps. The simplest form of a map
would be an image-based map. This is essentially a map of the environment based solely on what is
currently in sight. This can be obtained after converting the disparity map of a stereo algorithm to a
1 https://www.vicon.com/
2 https://optitrack.com/
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depth map. The drone can then plan a route to avoid obstacles that are in sight. A more complete map
would combine successive images into a single map. The benefit would be that the drone can then plan
a route based on everything it has seen before, and thus plan a shorter path and avoid getting stuck in
a loop. The observations can then be saved in a discretized space map or a continuous space map.
The discretized space map is most common in applications that use SLAM. The surrounding is split
into a collection of cells that can be free or occupied. Unfortunately, SLAM is still too computationally
demanding for use on a lightweight drone. In a continuous space map, each observation is given a
location coordinate. A point cloud is an example of this.

Another way of efficiently storing the observations would be using a topological map. This is used in
topological SLAM [83]. The map then only saves certain locations and their relative positions. The
benefit is that this is less computationally demanding. However, a disadvantage is that if two different
locations are incorrectly recognized as the same, this leads to errors in the map.

4.1.2. Visual (inertial) odometry

Another commonmethod is Visual Odometry (VO). The basic idea behind VO is to integrate the change
in position and orientation. These changes are measured by comparing subsequent images from the
camera stream. VO can be combined with inertial measurements from accelerometers and gyroscopes
to estimate the change in position and orientation more accurately. The algorithm is then called Visual
Inertial Odometry (VIO).

The problem with odometry, in general, is the error accumulation. Especially if the orientation esti-
mation is inaccurate this can cause translations to be integrated along the wrong direction and lead
to a large position error. A drift-free measurement of orientation can improve the accuracy greatly.
Options for obtaining a drift-free measurement of orientation include sensing the Earth’s magnetic field
using magnetometers, or visual landmarks. In indoor environments the magnetic field is usually too
disturbed to make it work, so a visual landmark-based orientation measurement could produce better
results. Note that it does not necessarily need to be the same landmark during the entire mission. It
can also be a successive selection of landmarks. Keeping track of the same landmark over multiple
timesteps can at least mitigate the drift over a portion of the mission.

Forster et al. [20, 21, 22] proposed a Semi-direct Visual Odometry (SVO) system without loop-closure
that is significantly faster than Simultaneous Localization And Mapping (SLAM) while achieving com-
parable accuracy. In [22] they present the first version, which uses a single camera. They implement
it on an embedded platform (Odroid-U2, quadcore ARM Cortex A9) and achieve a framerate of 55 Hz,
using two threads. Considering that the JeVois system features a comparable processor (quadcore
ARM Cortex A7), similar performance can be expected. In [21] they show the extension using inertial
measurements. They performed several indoor and outdoor experiments on a standard laptop (Intel i7,
2.4 GHz). On an outdoor trajectory of 300m around an office building with the end location the same as
the start location they measure an end-to-end error of around 1 meter. In [20] they report results with
several variations of monocular and stereo SVO without IMU. For stereo SVO the average processing
time is around 4 ms per frame on a laptop with an Intel i7 processor (2.8 GHz), using two threads. This
is similar to the time it takes to compute a single disparity map, as indicated in section 5.2, and could
therefore be a feasible option. The tracked features could potentially form a basis for a map, allowing
the drone to plan a trajectory towards a target location.

However, Van Dijk [23] tested SVO on a Parrot Bebop 2 with SLAMDunk and concluded that it suffers
from too much drift. Better results were achieved with the embedded Visual Odometer (eVO) [24]. They
perform stereo matching using Zero-mean Normalized Cross-Correlation (ZNCC) at low resolution first
with a 3×3 window size, and then at higher resolution with a 9×9 window size. Then they track features
across successive views with a KLT feature tracker [84]. The drone’s pose relative to a keyframe is
then calculated using a Perspective-3-Point algorithm [85, 86]. When the ratio of successfully tracked
features drops below a threshold, a new keyframe is initialized. They report a processing time of 0.05s
on the Kitti Odometry benchmark with an Intel Core2Duo. The implementation of Van Dijk [23] runs at
around 0.15s on a SLAMDunk.
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4.1.3. Non-metric methods

Whereas visual odometry provides a position coordinate in the global frame, it is also possible to cal-
culate a position relative to landmarks seen along the route, or without a position coordinate at all. The
latter would work through remembering the route and the scenes and navigate back based on what
looks familiar.

Maravall et al. [87, 88] presented a navigation algorithm based on self-semantic localization and nav-
igation based on entropic vision. The algorithm in [87] was implemented on a Parrot AR.Drone 2.0.
The navigation relies on a provided visual topological map of the environment. The drone then uses
the visual landmarks for localization, in order to find the target location. Although this will not work in
new environments, it can be an effective method after building the topological map. Instead of using
existing landmarks and adding them to a topological map, convenient landmarks can also be added
to the environment to improve coverage and reliability. Effective landmarks are for example the tags
presented by Olson [89].

Lambrinos et al. [25] presented the Average Landmark Vector (ALV) model. When the agent is in the
home position it constructs several unit vectors to landmarks that are in sight. These are averaged to
produce the average landmark vector. When the agent moves around in its environment and wants to
return home it constructs the unit vectors to the landmarks and averages it. The vector pointing home
is then calculated by subtracting the target ALV from the current ALV. Note that this method requires
compass information (or any other reference direction) to give the vector meaning. In the indoor envi-
ronment, a compass is not reliable enough, so the reference direction would have to be tracked with
odometry. This makes the ALV model superfluous because odometry would already provide a position
measurement and hence directly provide a homing vector. Furthermore, in the greenhouse the drone
will need to navigate through corridor-like pathways where the scene frequently changes and previously
seen landmarks quickly go out of sight, complicating the construction of the homing vector.

Denuelle and Srinivasan [26] presented a localization strategy based on the memorization of snapshots
at regular intervals. The relative location of the snapshots is stored in memory as well. The drone
can then retrace its previous path back home. Unfortunately, they do not specify the computational
performance of the algorithm, but the drone is equipped with an Intel NUC computer (dual-core 2.6
GHz), which is more powerful than the JeVois computer.

A similar algorithm is visual homing based on scene familiarity [27, 28]. Baddeley et al. [27] propose
an ant-inspired model for visual navigation and test it in simulation. Instead of saving all previously
captured images, they train a two-layered neural network to perform familiarity discrimination. The
images are only shown once to the network and the network’s parameters change accordingly. This
means that the memory load stays constant and does not scale with the length of the path. The input
images were downscaled to 90×17 pixels, meaning that there are 1530 input parameters. The number
of parameters in the second layer is equal, so it is a very lightweight network. They even state that a
second layer with as little as 200 parameters can work well in many cases.

Stankiewicz andWebb [29] recently published a route-following approach that makes use of transverse
oscillations to center the flight path on a learned trajectory. The image processing takes place on board
an Odroid XU4. They demonstrate robust performance up to a travel distance of 30m. Furthermore,
they find surprisingly robust descriptors of precise spatial locations in self-similar terrains such as a field
of grass. To quantify the similarity of two views, they apply normalized correlation to the coefficients on
the lowest level of the complex wavelet transform.

Although localization methods without position coordinate can be effective at returning to the base
station, the lack of position coordinate can be a dealbreaker in some applications, such as when the
drone is used to gather location-specific data. Location-specific data would be required when labeling
an area in a greenhouse as infested by pests, for example. However, if the method is sufficiently
lightweight it could be useful to assist visual odometry.
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4.2. Motion planning
The second subtask of the navigation task is motion planning. Literature studies on motion planning
algorithms are given in [90–92]. Motion planning can be performed with an image-space map or a map
of the complete environment. Using a complete map will lead to the shortest path as a complete route
can be planned, taking into account all obstacles between the current location and the destination.
However, sometimes complete maps are not available and the route needs to be planned using only
what is directly in sight. Minguez et al. [91] called the first global planning, and the latter local planning.
Global planning typically requires a lot more memory and processing power to keep the map up-to-date
than local planning. Therefore, local planning will likely be more suitable for lightweight drones with little
computing capabilities.

4.2.1. Local planning
Droplet strategy

Tijmons et al. [93] demonstrated an obstacle avoidance strategy called the ”Droplet” strategy. The
drone continuously checks if an obstacle is ahead and tries to keep an area ahead of the drone free
of obstacles to allow for sufficient space to make a turn while maintaining the same speed. The area
ahead of the drone that needs to be safe is shaped like a droplet, hence the name. The algorithm is
very lightweight, but its purpose is only to avoid hitting obstacles. There is no destination that the drone
is flying to, making it unsuitable for our purpose.

RRT

Matthies et al. [30] flew an Asctec Pelican in a grove of trees. They performed a C-space-like obstacle
expansion on the disparity map, meaning that obstacles are expanded in the image space to take into
account the size of the drone. An obstacle that is nearby is expanded more than an obstacle far away.
This way, a single free pixel in the C-space expanded image represents a path just large enough for the
drone to fly through. After the C-space expansion the drone checks for collision by projecting candidate
3D trajectories into the image space with a closed-loop RRT planner. A visualization they gave is shown
in Figure 4.1.
In [94] they extended the field of regard to 180 by adding side-looking cameras. The depth data from all
cameras is then merged into a cylindrical image space surrounding the drone, called the egocylinder.
Similar to the previous work, C-space expansion is then performed on the egocylinder and a trajectory
is planned. In [95] they further extended it by including full configuration flat dynamics.

Figure 4.1: Visualization of the
RRT planner in [30]

The RRT planning directly onto the C-space expanded disparity map works
well in environments with sparsely scattered obstacles, which take up only
a small portion of the image space. If the space around the obstacle can
be seen, it makes sense to directly plan a trajectory around it. In an en-
vironment such as the gerbera greenhouse (as seen on the cover image),
where the main obstacles are support columns, this would be a feasible
solution. In a greenhouse for tomato plants, however, the environment is
much more maze-like. The drone then needs to navigate through the long
aisles dividing the rows of plants, and a passage around a plant might not
be immediately visible. An RRT planner based on a complete map might
still be feasible, as long as storing and updating the map is feasible.

Bug algorithms

A solution that would work in a maze-like environment such as the tomato greenhouse is a Bug al-
gorithm. Bug algorithms were first introduced by Lumelsky and Stepanov [96]. The agent starts by
moving directly towards the target and reacts when it is immediately in front of a wall. The agent then
starts following the wall until it can continue its path towards the target.

To shorten the path, the agent can already change its heading when it approaches a wall. This is
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called a range sensor-based bug algorithm and was already mentioned in the original paper. Kamon
et al. [97] further elaborated this and called their algorithm TangentBug. Based on TangentBug [97]
Laubach and Burdick [98] presented the WedgeBug algorithm. They improved the algorithm in two
ways; TangentBug assumes omnidirectional vision, whereas WedgeBug only uses a limited field of
view. The algorithm was designed for planetary micro rovers. It bases its decisions on a limited field
of view, which has the shape of a wedge. As is common in bug algorithms, WedgeBug is based
upon two modes; motion-to-goal and boundary following. When in motion-to-goal mode the robot’s
distance to the target always decreases. If no obstacles are seen within the wedge, it moves directly
towards the target (’direct mode’). If there is an obstacle it will change its heading to avoid the obstacle,
while still decreasing its distance from the target (’sliding mode’). To improve efficiency, the robot
can scan additional wedges to find a shortcut, if it assumes a shortcut is possible. When the robot
cannot decrease its distance to the target a local minimum has been found and it switches to boundary
following.

The previous algorithms were designed for rovers that avoid obstacles in 2D only. They move over
the ground and can either go left or right around an obstacle. For our application, the drone has
the benefit that it can utilize the third dimension as well and can avoid obstacles by going over or
under the obstacles. However, this also makes the algorithm more complex. This is because now the
obstacle’s boundary is a 2D surface instead of a 1D curve, whereas the agent’s path is still a 1D curve.
In 2D, completing a loop around the obstacle will guarantee successful avoidance of the obstacle,
unless the target is unreachable. In 3D, the entire surface may need to be explored to find a path
towards the target. This is especially complex in concave boundaries, which are ubiquitous in indoor
environments.

To solve the 3D avoidance problem, Kamon et al. [31, 32] extended their 2D TangentBug [97] to 3D and
called it 3DBug. It again has a motion-to-target mode and an obstacle-surface-traversal mode. In the
motion-to-target mode, the robot moves directly towards the target if the target is visible. If the target
is not visible, i.e. an obstacle is blocking the direct path to the target, the robot computes the shortest
path to the target based on the current location and the locations of the points on the blocking contour.
If none of the points on the blocking contour is closer to the target than the current position, the robot
is in a local minimum and switches to obstacle-surface-traversal mode. During the traversal mode, the
drone saves knowledge on the obstacle surface in the Convex Edges Graph (CEG). The robot saves
the convex obstacle edges and the paths between the obstacle edges. The downside of this method
is that it relies on the environment containing only polyhedral obstacles. This would be a problem in
real-world applications because the obstacles are not perfect polygons.

McGuire et al. [99] presented a comparative study of bug algorithms, including the more complex meth-
ods mentioned above and simpler algorithms. They conclude that although the use of bug algorithms
on resource-restricted platforms seems like an obvious choice considering the simplicity of the algo-
rithm, many variants experience significant performance degradation when the robot is dependent on
imperfect sensors generating noisy measurements. Keeping the algorithms simple is key for resiliency
to odometry drift, and a robust loop detection system is crucial.

Imitation learning

Ross et al. [100] trained a controller using imitation learning based on a set of human pilot demonstra-
tions. They implemented the system on a 420 g Parrot ARDrone and flew 3.4km with it, avoiding over
680 trees. The camera stream was sent to a separate computer for processing. The computer then
sent the commands to the drone. Although they do not mention details on the type of computer they
used, it seems like the algorithm is too expensive to be run on board.

4.2.2. Global planning
If the previous observations are saved in a global map, a path can be planned through this map towards
a target location. This kind of path planning has been studied extensively. The algorithm can be search-
based, such as A*, or sampling-based, such as RRT.

A Rapidly-exploring Random Tree (RRT) [33, 34] constructs a path to the goal by creating a tree that
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is rooted at the starting location. The environment is then sampled, and if possible, connected to the
tree. The downside is that if a path to a location is made, it will not be improved by adding more
samples.

To improve this, RRT* was introduced by Karaman and Frazzoli [35]. When a new node is sampled in
RRT*, it updates the tree within a specified radius to reduce the total distance. This ensures as long
as enough samples are added, the path to the goal will converge to the optimal path.

Both RRT and RRT* generate paths to every location in the environment. However, we are only in-
terested in the path towards the target location. Gammell et al. [36] presented Informed RRT*. After
an initial solution has been found using RRT*, Informed RRT* only samples new points that have the
potential to improve the solution. This makes convergence orders of magnitude faster.

Wilson et al. [37] recently developed a non-uniform sampling approach for fast and efficient path plan-
ning. The algorithm divides the environment into obstacle-free cells. The route-planner then only
samples points along the edges of the obstacle-free cells to reduce the number of samplings com-
pared to a traditional RRT* planner. The approach gives significantly better convergence compared
with a traditional RRT* planner, as well as a smaller memory footprint. In a simulation on a map with
several obstacles, their algorithm takes only 0.019s and needs a tree size of only 20 nodes, whereas
the traditional RRT* planner needs 13.590s and 6888 nodes while generating a path of the same length
after smoothing. The algorithm seems to be designed for a 2D environment, but it should be possible
to extend this to 3D.

Besides RRT-based planning, A* is used as well. For example by Valenti et al. [101]. They used an A*
planning algorithm to plan a route through a map generated using SLAM.

Heng et al. [102] presented a stereo-based obstacle avoidance and navigation system. They use the
OpenCV implementation of the sum-of-differences block matching stereo algorithm to build a disparity
map. This is then used to build a 3D occupancy map with an octree structure. The drone then plans
a path towards the user-defined goal using an anytime replanning search algorithm called Anytime
Dynamic A* (ADA*) [38].

An efficient path planning method called Local Tangent A* (LTA*) was proposed by [39]. The method
works in three steps. First, it detects convex corners. Then only the local tangent corners are kept,
the other ones are discarded. Finally a standard A* algorithm is applied. Selecting only locally tangent
convex corners significantly reduces the number of samples, leading to faster convergence. It is guar-
anteed to find a solution if it exists. The algorithm is currently designed to work in 2D, but the writers
intend to extend the approach to planning in 3D environments.
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Preliminary experiments

To test which stereo matching algorithm works best in this application, they are tested on a dataset of
images from a gerbera greenhouse. As can be seen on the cover image, the gerberas are all around
the same height, with a lot of free space above. The most prevalent obstacles in this greenhouse are
the supporting beams of the greenhouse. These are rather easily detected due to their size. More
difficult obstacles are the spray booms because they have many thin hoses, electrical cables, and
support cables. This chapter will show a comparison of stereo matching algorithms on the images
taken in the greenhouse. Since the performance of the stereo matching algorithm is highly dependent
on their parameter configuration, the parameters are optimized first.

5.1. Parameter optimization
When the stereo matcher is not able to find a sufficiently good match for a pixel, it is not given a disparity
value. This produces areas in the disparity map where the disparity is unknown. Naturally, the number
of unknown pixels needs to be minimized. At the same time, the error of the disparity map needs to
be minimized. These two objectives cannot be optimized independently. Declaring fewer pixels in the
disparity map as unknown can increase the error. If the number of invalid pixels is at its minimum, then
the error can only be reduced by reducing the number of valid pixels. This presents a trade-off between
the error and the fraction of the image with a valid disparity value. The line along which this trade-off
can be made, the Pareto front, can be estimated with NSGA-II [40].

5.1.1. Objective functions
To run this parameter optimization, the objective functions need to be defined first. The first objective
function is simply the fraction of the image with an invalid disparity. The second objective function aims
to quantify the error of the disparity map and will be discussed below.

Since no ground truth data is available, the error of the disparity map is defined using the reconstruction
error. This was also discussed in section 3.3. In this optimization, the measure of disparity error is a
modified version of the loss function given by Godard et al. [73]. The error is a combination of the
appearance error and the disparity smoothness error.

The appearance error is a combination of the structural similarity (SSIM) [74] and the absolute intensity
difference and is defined for the pixel at (𝑖, 𝑗) as the following.

𝐸ፚ፩(𝑖, 𝑗) = 𝛼ፚ፩
1 − SSIM(𝑖, 𝑗)

2 + (1 − 𝛼ፚ፩)
|𝐼(𝑖, 𝑗) − ̂𝐼(𝑖, 𝑗)|

255 (5.1)

Here, 𝐼(𝑖, 𝑗) is the intensity of the pixel at (𝑖, 𝑗) in the original left image and ̂𝐼(𝑖, 𝑗) is the intensity in the
reconstructed left image. 𝛼ፚ፩ is set at 0.25. The SSIM function is defined as follows.
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SSIM(𝑖, 𝑗) =
(2𝜇፱𝜇፲ + 𝐶ኻ)(2𝜎፱፲ + 𝐶ኼ)

(𝜇ኼ፱ + 𝜇ኼ፲ + 𝐶ኻ)(𝜎ኼ፱ + 𝜎ኼ፲ + 𝐶ኼ)
(5.2)

Here, 𝑥 is the block centered at (𝑖, 𝑗) in the original left image and 𝑦 is the block centered at (𝑖, 𝑗) in the
reconstructed left image. 𝐶ኻ and 𝐶ኼ are constants to avoid instability when either (𝜇ኼ፱+𝜇ኼ፲) or (𝜎ኼ፱ +𝜎ኼ፲)
is close to zero. They have values of 0.0001 and 0.0009, respectively, as in [73]. 𝜇፱ is the average
intensity value of the block, as stated below.

𝜇፱ =
1
𝑁

ፍ

∑
።ኻ
𝑥። (5.3)

Here 𝑁 equals the number of pixels in the block. The definition of the variance 𝜎ኼ፱ is the same as in the
implementation by Godard et al. [73]. Note that it is slightly different from the definition in [74].

𝜎ኼ፱ = −𝜇ኼ፱ +
1
𝑁

ፍ

∑
።ኻ
𝑥ኼ። 𝜎፱፲ = −𝜇፱𝜇፲ +

1
𝑁

ፍ

∑
።ኻ
𝑥።𝑦። (5.4)

Similar to Godard et al. [73], a block size of 3×3 is used.

The reconstructed left image contains some unknown pixels due to unknown disparities. The appear-
ance error is undefined when the pixel value of an unknown pixel is needed for its calculation. This
means that the appearance error is undefined if there is an unknown pixel within a 3×3 window neigh-
borhood. The appearance loss is then defined as the average appearance error of all pixels with a
defined appearance error.

The disparity smoothness error penalizes a high disparity gradient if it does not coincide with a high
image gradient. The disparity smoothness error at pixel 𝑝(𝑖, 𝑗) is defined as follows.

𝐸፝፬(𝑖, 𝑗) = |𝜕፱𝐷(𝑖, 𝑗)|𝑒ዅ|max(Ꭷ፱ፈ፥(።,፣),Ꭷ፱ፈ፫(።,፣))| + |𝜕፲𝐷(𝑖, 𝑗)|𝑒ዅ|max(Ꭷ፲ፈ፥(።,፣),Ꭷ፲ፈ፫(።,፣))| (5.5)

Figure 5.1: Local area of high
disparity (orange), bordering
with unfilled pixels (black)

Where 𝐷 is the disparity map, 𝐼፥ is the left image, and 𝐼፫ is the right image.
The gradient in x-direction of a pixel is defined as its intensity difference
with its direct neighbor to the right. Similarly, the gradient in y-direction is
defined as its intensity difference with the pixel directly below.

Sometimes a disparity change is correct even if the image gradient is low.
This happens for example on slanted surfaces, where the disparity changes
gradually, while the intensity stays more or less constant. To avoid pe-
nalizing this, the gradient of the disparity map is set to zero if it is below
20.

Unlike the appearance error, the disparity smoothness error is defined even
if its calculation includes a pixel with an unknown disparity. The reason
for this is that sometimes a local area of high disparity borders an area of
unknown disparity, as visualized in Figure 5.1. A disparity of 0 is used for pixels with unknown disparity.
Inside areas of unknown disparity, the disparity smoothness area will always be zero, because the
disparity is constant at zero. However, along the edges, the disparity smoothness error might have a
positive value.

As a consequence, the disparity smoothness error penalizes a transition from a valid disparity value to
an invalid disparity value if this does not coincide with a high image gradient. In general, the disparity
smoothness error penalizes missing disparity values. However, occlusion is an example where a miss-
ing disparity value is actually desired. This is shown in Figure 5.2. The missing pixels in the disparity
map to the left of the pole cannot be seen by both the left and right camera, and can not be matched.
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Figure 5.2: An example of occlusion. The image shows the left image, the right image, and the left disparity map, respectively

BM SGBM
preFilterType (0,1) preFilterCap (15,127)

(preFilterSize-5)/2 (0,10) minDisparity 0
preFilterCap (1,63) numDisparities 64
(blockSize-5)/2 (0,10) (blockSize-1)/2 (0,4)
minDisparity 0 mode 2
numDisparities 64 P1 (0,500)

textureThreshold (0,200) P2 (0,5000)
uniquenessRatio (0,200) uniquenessRatio (0,99)
disp12MaxDiff (0,64) disp12MaxDiff (0,64)
speckleRange (0,5) speckleWindowSize (0,200)

speckleWindowSize (0,100) speckleRange (0,5)

Table 5.1: Parameter optimization limits of BM and SGBM. The values between parentheses indicate the lower and upper bound,
respectively. Parameters for which only one value is given were fixed.

Therefore, no disparity value is given. To avoid giving a disparity smoothness error at the transition
of the background to the occluded background, the disparity smoothness error is also scaled with the
image gradient of the right image, as indicated in Equation 5.5.

The disparity smoothness loss is then defined as the average disparity smoothness error over the entire
image.

The error value that is used in the NSGA-II optimization is the weighted summation of the appearance
loss and the disparity smoothness loss, where the weights are 0.9 and 0.1, respectively.

ELAS
disp min 0 sigma (1,10)
disp max 255 sradius (0,10)

support threshold (50,100) match texture (0,30)
support texture (0,30) lr threshold (0,64)

candidate stepsize (1,10) speckle sim threshold (0,5)
incon window size (1,10) speckle size (0,500)
incon threshold (0,30) ipol gap width 0
incon min support (0,10) filter median False

add corners True filter adaptive mean False
grid size (1,50) postprocess only left True
beta*1000 (0,100) subsampling False
gamma (0,30)

Table 5.2: Parameter optimization limits of ELAS. The values between parentheses indicate the lower and upper bound, respec-
tively. Parameters for which only one value is given were fixed.
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5.1.2. Parameter optimization
Out of the dataset of 478 images, 59 images were selected while the rest was discarded. These images
contain challenging scenarios with thin objects, and large areas of little or repeating texture. Taking the
full dataset would result in too much computation time. In addition, most images in the dataset contain
no nearby obstacles. To train the algorithms to perform well in the presence of obstacles, a substantial
number of images need to have nearby obstacles. Similarly, to draw a conclusion on the ability of
the algorithms to detect obstacles, the test data needs to contain sufficient obstacles. Out of the 59
images, 40 images were used as training for the optimization, and 19 were used as test data. Selecting
algorithms with nearby obstacles does not result in an underrepresentation of objects far away, because
the images with obstacles still contain a background. This way, both nearby and faraway objects are
represented in the dataset.

The training data consists of approaches to a beam, a cable, a wall, a device with horizontal support,
and a spray boom. These are shown in Figure 5.3. The test data consists of approaches to a cable, a
marker with a thin support pole, and a wall. These are shown in Figure 5.4. The approach to the wall is
the same as for the training data. To avoid training and testing on the same images, the odd-numbered
images are used for training, and the even-numbered images are used for testing. Ideally, the test
data contains an approach to a different wall than the training data, but the dataset only contains one
approach to a wall.

The NSGA-II optimization was run using the Pymoo implementation [103], with an initial population of
1000 and 100 offspring. The optimization is terminated when the change in the objective space drops
below 0.0025 over the last 30 generations.This is evaluated every 5 generations.

The optimization only uses integer parameters, within a range specified in Table 5.1 and Table 5.2.
Table 5.1 shows that the disparity range for BM and SGBM is kept fixed at (0,64). The lower limit of
zero is set because objects in the far distance were found to have a disparity of zero. The maximum
disparity is set constant at 64 because it specifies the operational limits in terms of how close the drone
can fly to obstacles and still detect them. In other words, it is a design trade-off between the operational
limits and the computation time of the disparity map, rather than a parameter affecting the quality of
the disparity map. As can be seen in Table 5.2, the disparity search range for ELAS is set at (0,255),
as in the default settings. It was not changed to (0,64), as with BM and SGBM, because it only has a
very limited effect on the computation time, as opposed to BM and SGBM, where the computation time
is very sensitive to the disparity search range. The mode of SGBM is set fixed at 2. This corresponds
to the mode where the image is traversed in three directions. It is chosen because this is the fastest
method. For ELAS, add corners is set fixed to True, because it increases the number of pixels with
a valid disparity. The postprocessing methods that are not included in BM and SGBM are kept off,
to keep a fair comparison between the three algorithms. Subsampling is set off because it reduces
the quality of the input images, which is not desired because it would result also result in an unfair
comparison.

5.2. Results
The resulting Pareto fronts are shown in Figure 5.5. The crosses indicate the performance usingmanual
tuning. The manual tuning is based on the settings used for the KITTI entry for BM and SGBM, and on
the default settings of ELAS.

Since BM and SGBM exclude the left part of the left disparity map, a disparity map with only valid
disparity values will never be achieved. The disparity is declared unknown if the full disparity range
cannot be evaluated. This means that for a disparity search range of (0, 64) and an image width of
320, 20% of the image will always be declared unknown, and 80% is the maximum fraction of the image
that will have a valid disparity value. The fraction valid disparity, as shown in the plots, is the fraction of
valid disparity values in this part of the image. In other words, the fraction value is divided by 0.8.

Figure 5.7 and Figure 5.8 show the average time for the computation of the disparity map over the test
dataset. The time was measured on a laptop with an Intel i7 processor, using a single core. To avoid
giving BM and SGBM an unfair advantage compared to ELAS, since they only calculate 80% of the
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Figure 5.3: Obstacles approached in the training data

Figure 5.4: Obstacles approached in the test data

disparity map, their time was divided by 0.8.

Figure 5.5: Error versus the fraction of the disparity map with
a valid disparity value. The dots show the points along the
Pareto front as found using NSGA-II. The crosses show the
performance of the baseline configuration.

Figure 5.6: Convergence of the optimization, shown using the
hypervolume of the objective space (Figure 5.5) with (-0.1,1.1)
as the reference point. Since the reference point is arbitrarily
chosen, the absolute value of the hypervolume is meaning-
less. However, the change and the difference in hypervolume
are relevant.

As can be seen from Figure 5.5, SGBM outperforms ELAS and BM across the entire Pareto front.
Furthermore, the optimizations slightly improve the performance of the manually tuned settings for
ELAS and SGBM, and more considerably for BM.

Visual inspection of the disparity maps produced by the solutions along the Pareto front of SGBM
shows that small details such as cables are generally detected well. However, repetitive areas with
little texture, such as the walls, produce problems. Interestingly, the version of SGBM with hand-tuned
settings performs better on these images, as visualized in Figure 5.9a. In images where the version
with hand-tuned settings has an error, all the solutions along the Pareto front have the same error,
or worse, as visualized in Figure 5.9b. This is likely because these errors are not recognized by the
reprojection error metric, and thus not penalized. It is questionable whether a local method will ever
consistently perform better on such challenging images. After all, the window frames are individually all
extremely similar. Due to lighting differences between the left and right image, another window frame
might appear more similar than the actual corresponding frame. This makes it extremely difficult for
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Figure 5.7: Average time for the computation of the disparity
map on the test dataset, along the Pareto front. The crosses
show the performance of the baseline configuration.

Figure 5.8: Zoomed-in version of Figure 5.7

(a)

(b)

Figure 5.9: Disparity maps of two challenging images of the wall. The three leftmost images are solutions of the Pareto front with
an increasing percentage of valid disparity values. The fourth image is the disparity map generated using hand-tuned settings.
The right image shows the image of the wall.

a local method to find the correct match. Perhaps this can only be improved upon by using a global
method.

BM performs worse on these textureless areas. Also, the disparity maps are less detailed but it has
the benefit that it has the lowest computational requirements.

The solutions along the Pareto front of ELAS still vary greatly. Both in terms of computational time
and quality of the disparity map, although the latter is not visible from the plots. This is illustrated in
Figure 5.10. As can be seen from the image, the quality of the disparity map can go up or down when
traversing the Pareto front.

The average times to calculate a disparity map for the solutions along the Pareto front are shown
in Figure 5.7 and Figure 5.8. The parameter configuration of ELAS has a much bigger impact on the
computation time than BM and SGBM. As can be expected, BM is the fastest. It is remarkable, however,
that even the fastest versions of ELAS are slower than SGBM. With the hand-tuned settings of ELAS,
it takes about 21 ms to calculate the disparity map. Figure 5.11 shows a breakdown of the execution
time of ELAS. The parameters sigma and sradius were set to 1 and 2, respectively. This means that
for most pixels, the disparity search range was only plus or minus 2, centered around the interpolated
value. Even after completing the interpolation, ELAS spends about 14 ms on calculating the disparity
map, as can be seen in Figure 5.11. SGBM, on the other hand, has a disparity search range of 64 and
needs only about 12 ms for the full calculation. This could in part be because BM and SGBM make
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Figure 5.10: Disparity maps of four solutions along the Pareto front of ELAS, with an increasing percentage of valid disparity.

use of optimized CPU instructions. On a different CPU architecture, however, SGBM and BM could
become a lot slower if the optimization is not effective, as was experienced by Selbek [17]. With the
right CPU optimization, ELAS potentially becomes much faster.

Looking at the convergence of the hypervolume in Figure 5.6, it seems like BM could be further improved
when letting the optimization run longer.

Figure 5.11: Breakdown of ELAS disparity map generation.





6
Conclusion

Many different approaches for stereo matching exist. Stereo matching algorithms have traditionally
been designed for use on CPUs. However, recent developments in stereo matching have been more
focused on deep learning methods on GPUs. For application on the JeVois system, a CPU-based
method is more suitable. The fastest CPU-based methods are SGBM, BM, and ELAS. Their perfor-
mance is highly dependent on their parameter settings. The parameter settings have previously been
optimized in a supervised manner using ground truth data, or in a self-supervised manner using the
reprojection error. Previous research on self-supervised optimization of stereo matching on resource-
limited systems has been very limited, so this presents an opportunity for future research.

A lot of research has been performed on autonomous navigation on drones. SLAM is often used,
but it is too computationally demanding for use on a JeVois. Positioning based on visual odometry
might be an option, but its accuracy and computational requirements remain to be tested. As for path
planning, simple image-based planning is the least computationally demanding but does not guarantee
the fastest path. A bug algorithm would be a computationally lightweight solution, but these have so
far only been designed for 2D environments or simplified 3D environments. Possible improvements to
the current state of the art would be the development of a bug algorithm designed for use in realistic
3D environments. Another option is global path planning. This would lead to shorter paths, but it has
the disadvantage that a map needs to be made and kept up to date. Further studies could focus on
keeping a map up to date on a system with limited computational resources.

Preliminary experiments on self-supervised optimization of SGBM, BM, and ELAS indicate that SGBM
is most suitable for stereo matching on a lightweight drone. No matter what trade-off is made between
the percentage of valid disparity values in the disparity map and the error, SGBM always outperforms
BM and ELAS. However, the experiments also showed that the problems with repetitive and textureless
areas that were present in the manually tuned version persist after optimizing the parameters. Further
research needs to be done to improve in these areas.
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