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Abstract — Poor angular resolution is one of the main 
disadvantages of automotive radars, and the reason why lidar 
technology is widely used in the automotive industry. For a fixed 
frequency, the angular resolution of a conventional Multiple-Input 
Multiple-Output (MIMO) radar is limited by the number of 
physical antennas, and therefore improve the resolution involves 
increasing the size and the cost of the system, critical constraints 
in the automotive industry. In this work, a novel approach is 
presented to overcome this limitation, where a Neural Network 
(NN) is used to enhance the angle resolution of a MIMO radar 
without increasing the number of physical elements, but 
extrapolating the antennas signals in a teacher-student fashion. 
The method was validated using real data of stationary 
pedestrians captured outdoors, demonstrating an effective 
increase of three times the antenna array size. To the best 
knowledge of the authors, this is the first method that includes an 
evaluation metric in the final stages of the processing pipeline, 
enforcing the conservation of the target's angular shape, key for 
subsequent object classification. 

Keywords — automotive radar, MIMO, angular resolution, 
neural networks. 

I. INTRODUCTION 
Autonomous driving is one of the biggest trends in the 

automotive industry, and a race for reaching driver-assistance 
level 5 has begun between all the major car manufacturers. To 
achieve this, the sensing suite in autonomous vehicles needs to 
provide the most trustworthy and dense information on the 
surroundings. Therefore, reliable detection and classification of 
very different objects such as pedestrians, cars, potholes, or 
speed bumps should be performed in real-time. Moreover, the 
system must understand which objects can be driven-over, such 
as small debris on the road or speed bumps, which objects can 
be driven-under, such as bridges or tunnel entrances, and which 
objects should be safely avoided as significant obstacles on the 
road for the vehicles. 

This difficult task cannot be done successfully by any single 
sensor, and a combination of radars, cameras, and lidar is the 
most used formula. However, radars have an advantage with 
regards to the other sensors: they work in adverse weather 
conditions, are insensitive to lighting variations, provide direct 
range, azimuth, and speed measurements, and can be mounted 
under the vehicle chassis. On the other hand, radars have a weak 
point that must be solved before they can become the primary 
sensor of an autonomous car: they suffer from poor angle 
resolution. 

The basic principle for angle estimation in MIMO radars 
relies on the extra distance that a signal travels to reach the 
different antennas in the system. The easiest way to exploit this, 
known as Digital Beam Forming (DBF), applies a Fourier 
transform to translate the phase shifts, which are proportional 
to the time delays due to extra distances, into the angle of arrival 
of the signal. There are more advanced algorithms such as 
MVDR [1], MIMO-Monopulse [2], or subspace methods such 
as MUSIC [3] or ESPRIT [4]. However, the angular resolution 
achieved with all of them is still proportional to the number of 
virtual antennas of the system [5]. 

This work presents a novel method that exploits the constant 
phase difference between antennas to extrapolate new elements 
and enhance angular resolution in MIMO systems. To achieve 
this, a back-and-forth estimation approach is used, where each 
extrapolated element is a linear combination of the previous 
ones. A linear one-layer Neural Network (NN) is trained for this 
purpose, where the input is a subsampled antenna array and the 
ground-truth for training is the full antenna array. Although the 
NN is generating samples in the time domain, the optimization 
metric can be evaluated in the spectral domain, resulting in a 
more accurate angle profile reconstruction. This method opens 
the possibility of enhancing the angle resolution of a compact 
and cheap low-resolution radar on autonomous vehicles by 
using a simple NN previously pre-trained with a single larger 
high-resolution system. 

The rest of this paper is organised as follows. In Section II, 
an overview of the related works is presented. Section III 
presents the proposed method, with results in Section IV. 
Finally, some conclusions and future work are discussed in 
Section V. 

II. RELATED WORK 
Recently several extrapolation methods for improving angle 

resolution in automotive radars have been published. A method 
for angle enhancement using piecewise cubic extrapolation is 
presented in [6]. The results show an increase of 37,5% in the 
array size given an original antenna array of 32 virtual elements. 
However, the undesirable effects of this method in a more 
complex environment (e.g., creation of ghost targets, loss or 
artefacts on real targets) are not analysed. 

In [7], the authors propose a Generative Adversarial 
Network (GAN) to generate a super-resolution range-angle map. 
This family of super-resolution methods has been proved very 
effective in the image processing field [8, 9], but they do not 
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apply any radar “expert knowledge” and treat the range-angle 
maps as images. Thus, the data is enhanced after the angular 
Fourier transform, and no complex-valued data is used. 

On the other hand, Auto-Regressive (AR) models have been 
used in the past for extrapolating the range and Doppler 
dimensions with good results. In [10], the authors proved that it 
is possible to enhance the velocity resolution of a Frequency 
Modulated Continuous Wave (FMCW) radar using AR models 
to generate artificial chirps. Similarly, they artificially increased 
the sweep bandwidth to enhance the range resolution. Their 
results show that this method can double the range resolution 
and triple the speed resolution. Moreover, AR model-based 
extrapolation has been used in airborne devices to improve 
angle resolution in Front-Looking Synthetic Aperture Array 
(FL-SAR) radars [11]. 

Having in mind all this previous research, the main 
contributions of this work are: 

 A novel method for extrapolating MIMO antenna 
arrays, which surpasses the limitations of AR models. 

 A methodology for enhancing angle resolution which 
uses a teacher-student fashion between two radar 
systems. 

 The introduction of a new tuneable metric used for 
evaluating the performance of the NN, which considers 
undesirable effects of the extrapolation. It also enforces 
the preservation of the object shape, needed for 
subsequent classification purposes. 

III. PROPOSED METHOD 
The proposed method aims to enhance the angle resolution 

of a low-resolution radar using a NN trained with data from a 
high-resolution radar. The first step, which can be seen in Fig.1, 
is to process the radar data cube using a 2D FFT and later apply 
a detector in each range-Doppler map to select those cells that 
contain at least one detection. With this step, it is ensured that 
the channel vectors which will be used to train the NN are not 
only noise. Hereafter, the channel vectors are pre and post 
trimmed, keeping the number of central elements the same as 
the low-resolution radar has. 

Now, using the full array as the ground-truth, the trimmed 
vector must be reconstructed. This could be done by fitting the 
data into an AR model, finding the model parameters with the 
Burg or Yule-Walker method, and then forecasting the missing 
samples, such as in [10] and [11]. However, as can be seen in 
the AR model equation (1), this will limit the reconstructed 

channels to simple linear relationships of the previous samples. 
Moreover, finding a common model order , and common 
coefficients  that yield good performance for all the test cases 
is not trivial. 
 

  (1) 
 

To overcome these limitations a one-layer NN is used, 
where the real and imaginary components of the signal are 
concatenated before inputting them to the network. It uses a 
linear activation function, and therefore the output can be 
understood as a Vector Autoregressive Model (VAR) in which 
the complex signal is a multivariate time series. The function 
the NN is applying can be seen in (2). 

 

 

 (2) 
The coefficients  and  are optimized on a 

custom loss function. Since the main goal of this algorithm is to 
reconstruct the spectral characteristics of the signal, the loss 
function is computed in the frequency domain according to the 
equation 

 (3) 
          

This loss function enforces the reconstructed spectrum 
(where ^ represents reconstructed) to be as similar as possible 
to the original one, maintaining the angular shape of the 
observed objects, crucial for later classification processing. 
However, this metric does not directly reflect how well the 
position and extent of the targets are reconstructed. For this 
reason, a tuneable cost function to assess the performance at the 
user level (i.e., the latest stage of the signal processing, where 
the detection list is reported) of different algorithms has been 
implemented. This metric, shown in (4), is composed of two 
terms. The first term, , evaluates if the algorithm has erased a 
target or has created a new one. Moreover, a second term, , is 
included for considering the error in the angle of the targets as 
well as their angle extension. A weighting parameter  is 
included to balance their contributions, allowing flexibility in 
which error is more important for the specific application. 

 
Fig. 1. Method pre-processing pipeline: 2D FFT followed by a detection stage; then the output is trimmed to the desired length. 

59

Authorized licensed use limited to: TU Delft Library. Downloaded on June 03,2022 at 06:51:39 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 2. Block diagram of the proposed method. The NN is fed with the trimmed vectors, and the output is processed with an FFT to compute the loss in the angle 
domain. After the NN is trained, an evaluation metric is computed using the processed detection points. 

 
 

 
 

(4) 
A visual representation of the full pipeline can be seen in 

Fig.2. The proposed method is considered as the baseline 
implementation of more complex algorithms for angular 
resolution enhancement. Since targets are not point-like in the 
range and Doppler spectrum, more advanced network 
architectures, such as Convolution Neural Networks (CNN), 
can be used to exploit the spatial relationship between angular 
profiles. Also, it is important to notice that this is a single-frame 
method, and therefore using several frames with a Recurrent 
Neural Network can be beneficial as future work stemming 
from these initial results.  

IV. RESULTS 
To validate the proposed method, data from two different 

scenarios have been captured with an 86 virtual non-
overlapping channel FMCW radar board, operating at 78 GHz. 
Firstly, the system was set-up in a laboratory environment, and 
scene captures from different perspectives were done using 
small reflectors in different positions as targets. After the pre-
processing, 1345 angle profiles were obtained. Moreover, 
another 1000 angle profiles of point targets were synthetically 
generated and added to the dataset. The data were then trimmed 
to a length corresponding to only 30 channels, around 35% of 
the original length of 86 channels. Therefore, the network must 
extrapolate 56 elements, 28 at the beginning and 28 at the end 
of the array, enhancing the angular resolution of the system by 
a factor of 3. Different trimming lengths have been tested, but 
the 30-channel configuration was selected as a trade-off 
between performance and resolution improvement.  

The network was trained with the 2345 time-series of 30 
complex numbers (i.e., the response of the virtual antennas). It 
is important to note that only synthetic data and data from the 
laboratory environment with static reflectors were used to train 
the network. The Adam optimization algorithm was used using 
the default hyperparameters (η=0.001, =0.9, =0.999, ε=1e-
7). 

To test the trained network, more meaningful data for an 
automotive radar perspective were collected. A second batch of 
captures was performed outdoors involving several people. 
This resulted in 1262 times-series that were used for testing, 
acquired in a very different environment from the one where the 
training dataset was collected. Fig. 3 shows the result of the 
network for an angle profile where two people were standing at 
5m range and with an air gap of approximately 25cm between 
them to simulate standing pedestrians. 

 

 
Fig. 3. Angle profile of two standing people captured outdoors. In green, the 
angle profile obtained with the original 86 channels; in red the angle profile 
generated with the trimmed signal; in blue the angle profile generated with the 
reconstructed samples. 
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Three different signals are presented in Fig. 3. In green, the 
angle profile obtained with the full capabilities of the radar, i.e., 
all 86 channels, where three main peaks can be seen (probably 
the two peaks in the left are scattered from the same person or 
multipath due to multiple scattering between them). In red, the 
response that would have been obtained with a 30 virtual 
antenna system is shown, where only one lobe is perceived for 
both targets. Finally, in blue, the reconstructed signal using the 
proposed method is shown. As it can be seen, the shape is close 
to the original one, preserving the three main peaks. Using the 
equation (4) and a p=0.75, a loss of 0.704 is obtained. Several 
tests with other types of objects in different ranges and angles 
have been performed with a successful result, but this scene has 
been presented because being the most representative for an 
automotive scenario point of view. 

The method reconstructs simultaneously all angular profiles 
of the scene. Fig. 4 shows a cartesian projection of the static 
component of a full-frame of the scene, where the two people 
are standing still, and some other opportunity targets are present.  

Fig. 5 shows the same scene but computing the angular FFT 
only with the 30 middle elements, displaying how the scene 
would be perceived by a low-resolution radar. It is clear that the 
angular resolution has been severely decreased, and the targets 
cannot be split anymore.  

Finally, Fig. 6 presents the output of the proposed method. 
It can be seen how it represents the scene in a more accurate 
way, being very similar to the one captured with the high-
resolution radar system. 

 
Fig. 4. The static part of a full-frame with two people, generated with the 
original experimental 86 virtual antennas. 

 
Fig. 5. The static part of a full-frame with two people, generated with the 
trimmed 30 middle virtual antennas. 

V. CONCLUSIONS 
This paper presents a novel method to increase the angular 

resolution of a low-resolution MIMO radar using a Neural 
Network trained with data from a high-resolution radar. A 

metric to assess the quality of the output is also introduced, 
reducing the undesirable effects while trying to preserve the 
shape of the targets. The method has been validated with 
meaningful experimental data from an automotive scenario 
(two pedestrians standing close to each other) with a very 
successful result.  

The proposed approach can be used to increase the angular 
resolution of MIMO radars without including extra physical 
antennas and their respective analogue hardware. In future, 
more complex neural networks to exploit the space and 
temporal relationships of the signals will be developed, and the 
method will be validated in denser and dynamic scenarios. Also, 
efforts in including the evaluation metric inside the 
learning/optimization loop of the NN will be considered. 

 
Fig. 6. The static part of a full-frame with two people, generated with the 
reconstructed signal from the method proposed in this paper. 
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