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Abstract

Suppose that we want to infer the effect of a treatment on a certain outcome, where both the
treatment and outcome are influenced by other variables. It has been well-established that in
the linear setting, in case we know beforehand which of these other variables are instrumental
(for the effect of the treatment on the outcome), we can infer the treatment effect in a consis-
tent sense. This thesis analyses 3 methods that deals with the issue of unknown instrumental
variables (IVs) and functional relationships in different ways to infer the treatment effect. The
first method, Causal Inference with Invalid Instruments (CIII), assumes that we have a linear
setting and a set with potential instrumental variables for whom a majority or plurality rule
holds to obtain a robust confidence interval for the treatment effect. The second method,
Anchor Regression (AR), only assumes a linear setting. By mediating between different meth-
ods, the AR-estimator turns out the be robust to changes in the distribution of the sampled
data. Lastly, Two Stage Curvature Identification (TSCI), does not require a linear setting
or information on the IVs. Instead, it relies on the difference in functional form between the
effect of the variables on the treatment and the effect of the variables on the outcome for
consistent estimation and asymptotic normality. TSCI also provides a test for IV presence in
the non-linear setting. In this thesis, I will explain the workings of these 3 methods, analyse
their theoretical foundation and do simulation studies. Based on these analyses, I make several
additions and suggestions to expand the theoretical scope and improve practical efficacy.

3





Acknowledgements

I would, first of all, like to thank Aad van der Vaart and Özge Şahin for being on my exam
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Frequently used notation

∥X∥p denotes Lp-norm for random variable X.

A ∈ Rm×m: λk(A) refers to the k-th ordered eigenvalue of A.

A ∈ Rm×m : ∥A∥2= max
x∈Rm,∥x∥2=1

∥Ax∥2 =
√
λmax(ATA)

A ∈ Rm×m : ∥A∥F=
√
Tr(ATA) =

√
m∑
i=1

λi(ATA) =
m∑

i,j=1

|Aij |2

A ∈ Rm×m : ∥A∥1= max
1≤j≤m

m∑
i=1

|Aij |

A ∈ Rm×m : ∥A∥∞= max
1≤i≤m

m∑
j=1

|Aij |

For two real sequences (sn)n≥1, (tn)n≥1: sn ≫ tn ⇐⇒ lim sup
n→∞

tn
sn

= 0

A,B ∈ Rm : A ≼ B ⇐⇒ B −A is positive semi-definite

9





1. Introduction

When I was younger, there was a hype for a while regarding new research about dark chocolate.
According to various media sources, the research had suggested that eating dark chocolate
would decrease the risk for particular types of cancer [1]. The overall implication: eat more
dark chocolate as it might save your life. On an initial glance, from an observational study,
this seems quite reasonable to conclude: presumably a lower percentage of people that ate
dark chocolate developed various forms of cancer over a certain period of time compared to
the group of people that didn’t eat the dark chocolate. Well, before we all start eating our
”healthy” daily share of dark chocolate for so called ”cancer prevention”, maybe we should
first consider that the overall conclusion might sound a bit too good to be true (if you like dark
chocolate). Could there be nuances to this research? Maybe it’s not the dark chocolate doing
the magic, but other factors related to it? Below I will list some examples of such potential
related factors:

1. Dark chocolate contains a ton of magnesium, compared to other foods. Maybe it is not
the dark chocolate in specific, but the magnesium that decreases the risk to cancer. If
that is the case, it would hence be more effective to take supplements of magnesium
instead (but yes, less fun).

2. It is well-known that dark chocolate is a snack with less sugar than its other chocolate
counterparts. Maybe the people that eat dark chocolate in this study also consumed less
sugar in their overall diet compared to the general population. It could be the case that
a reduction of sugar in one’s diet reduces the cancer risk rather than the consumption
of dark chocolate.

3. Maybe the risk of cancer is not in our control at all. Perhaps, the people that like the
taste of dark chocolate also prefer more bitter tastes in general. A preference for bitter
tastes could indicate a genetic component that reduces the risk to various types of cancer.

The overall message of the three examples above: we could credit dark chocolate for things it
isn’t actually doing. In the cases of example (2) and (3): eating extra dark chocolate wouldn’t
benefit us at all! So, when we wonder whether eating dark chocolate benefits us in preventing
cancer, what we specifically want to find out it whether the chocolate benefits us when we take
other potential factors of influence into account.
To answer the question about dark chocolate properly, mathematicians tend to work in 3 steps
in their problem-solving:

Step 1. We first need to come up with factors that could potentially influence the risk to cancer
besides dark chocolate. We have already come up with three such factors, namely:
magnesium, sugar intake and genetics. We also need to take into account that there are
some unmentioned factors that might also influence the cancer rate.

Step 2. Next, we need to come up with possible relations between these factors and think about
in what way they may influence each other. One such example can be found in figure
1.1 (where the caption explains the notation in the figure. An arrow from node X to f.e.
Y means that X influences Y ). Here, we can pay attention to two things in particular:
firstly, how the arrows are pointed. Beforehand, we don’t know this. In figure 1.1, makes
the suggestion that sugar intake does not directly influence your risk to cancer but only
suggests something about the amount of dark chocolate you eat. What is interesting

11



1. Introduction

X

Z(1)

Z(2)

D Y

H

Figure 1.1.: An example causal representation of magnesium (X), sugar intake (Z(1)), genetics
(Z(2)), dark chocolate intake (D), unmeasured (or hidden) factors (H) and risk of
various cancer types (Y ).

here is that magnesium and genetics influence both the chocolate intake and the cancer
rate while sugar only influences the dark chocolate intake. In the context of figure 1.1,
we call the sugar intake an instrumental variable (IV), while we call the magnesium,
genetics and the unmeasured factors confounders. Magnesium and genetics could here
also be classified as invalid instrumental variables. Once we are aware which variables
are instrumental are IVs and which are confounders, there are well-established methods
to infer the effect of dark chocolate intake on getting cancer (the black arrow in figure
1.1). The first method I’m going to discuss in my thesis (section 2) provides a method to
distinguish between IVs and invalid IVs (for linear models). The second method (section
3 mediates the effects of IVs with the effects of confounders (again for linear models).

Step 3. Lastly, we need to ask ourselves what the arrows exactly mean as a means for a functional
relation. In the previous step, it was already mentioned that we assume linear relations
for the first and second method. For the third method (section 4), we don’t need such
linearity assumptions. We do, however, assume that we are able to distinguish between
the functions that represent the direct effect of factors on the outcome (so the blue arrows
in figure 1.1) from the functions that represent the influence on the treatment (so the
red arrows in figure 1.1).

All the mentioned methods above will be specified in the next sections. There I will discuss the
methods, provide my analysis of the theoretical justification behind these methods (including
my additions) and I will also perform simulation studies and discuss what they revealed about
said methods.

12



2. Causal inference with invalid
instruments (CIII) using Searching &
Sampling

2.1. General idea CIII

For the proposed CIII-method in this section (which originated from [2]), we work with linear
models only. Coming back to figure 1.1, this could then be translated to mathematical terms
as follows:

Yi = β∗Di + π∗
2Z

(2)
i + ϕ∗Xi + ei

Di = γ∗1Z
(1)
i + γ∗2Z

(2)
i + ψ∗Xi + δi

where π∗
2 , ϕ

∗, γ∗1 , γ
∗
2 , ψ

∗ are non-zero and (Yi, Di, Xi, Zi)
n
i=1 represent n data points. In this

model, we can also assume that (Xi, Zi) are independent of confounding effects i.e. (Xi, Zi) ⊥⊥
(ei, δi), together with E(ei) = E(δi) = 0 and that Di does not influence (ei,δi) or (Zi, Xi). In
that case, β∗ is (in a formal sense when we also assume consistency in the context of [11] i.e.
Y = Y D) the causal effect per unit intervention on D with respect to outcome Y . Due to the
influence of confounders on D, we can’t apply ordinary least squares (OLS) to the Yi-equation
and obtain a consistent estimator for β∗. We will be in a position to apply OLS once we
substitute the Di−equation into the Yi−equation above:

Yi = Γ∗
1Z

(1) + Γ∗
2Z

(2) +Ψ∗X + ϵi

Di = γ∗1Z
(1)
i + γ∗2Z

(2)
i + ψ∗Xi + δi

Here: Γ∗
1 = β∗γ∗1 ,Γ

∗
2 = β∗γ2 + π∗

2 ,Ψ
∗ = β∗ψ∗ + ϕ∗ and ϵi = β∗δ + ei. Now observe that we

can apply OLS to both the Yi and Di equation above so that we are in a position to obtain
a consistent estimator for γ∗1 (let’s call this estimator γ̂1) and for Γ∗

1 (let’s call that estimator
Γ̂1). As Γ∗

1 = β∗γ∗1 : Γ̂1/γ̂1 is a consistent estimator for β∗. As Γ∗
2/γ

∗
2 = β∗ + π∗

2/γ
∗
2 and π∗

2

can’t be estimated from the data (i.e. the data can’t distinguish between the indirect effect of
Z(2) through D and the direct effect of Z(2) on Y ): the same trick won’t work there. We call
this special variable Z(1) an instrumental variable (as it influences Y only through D and not
directly).

Once we know which variables are instrumental in a model we can obtain consistent esti-
mators for β∗. The general problem is that we don’t know (for certain) beforehand which
variables are instrumental and which aren’t. We might have an idea of which variables are
potentially instrumental. The methods proposed in this section, provides a procedure for
selecting IVs under the assumption of a majority and/or plurality rule on a subset of the
potential instrumental variables. The set of potential IVs is selected beforehand by the user
(using for example domain knowledge).

Instead of selecting IVs (which involves also checking this majority/plurality rule) and then
computing the likely consistent estimators for β∗ (which has been done in previous literature

13



2. Causal inference with invalid instruments (CIII) using Searching & Sampling

[2, p.1-3 1.Introduction]), the method provides a (more robust) searching procedure where for
β ∈ R, under hypothesis that β = β∗ and i being instrumental Γ̂i−βγ̂i ≈ 0 is checked (through
asymptotic normality of the OLS-estimators). For the specific example derived from figure 1.1,
it is presumed that for enough data points Γ̂1 − β∗γ̂1 ≈ 0 is not rejected while Γ̂2 − β∗γ̂2 ≈ 0
will be rejected.

2.2. Models, assumptions, goals

Consider iid observations with errors (Yi, Di, Xi, Zi, ei, δi)
n
i=1 ∼ (Y,D,X,Z, e, δ), where:

• Yi ∈ R outcome

• Di ∈ R treatment

• Xi = (X
(1)
i , ..., X

(pX)
i )T ∈ RpX baseline covariates.

• Zi = (Z
(1)
i , ..., Z

(pZ)
i )T ∈ RpZ candidate instrumental variables (with respect to the direct

effect of the treatment on the outcome)

Below we define the model corresponding to the observations and what we require of an
instrumental variable.

Definition 2.2.1. The outcome model is defined as:

Yi = Diβ
∗ + ZT

i π
∗ +XT

i ϕ
∗ + ei

E(eiZi) = 0,E(eiXi) = 0

β∗ is called the treatment effect.

Definition 2.2.2. The association model is defined as:

Di = ZT
i γ

∗ +XT
i ψ

∗ + δi

E(δiZi) = 0,E(δiXi) = 0

The main objective will be to infer the treatment effect β∗. Note that because we don’t require
that E(eiDi) = 0, we can’t obtain a (consistent) estimator of the treatment effect by directly
applying the OLS-method to the outcome model.

We now define what it means for Z(j) to be an instrumental variable within the context
of the outcome and association model. Note that beforehand, we don’t know whether Z(j) is
instrumental: it is a candidate.

Definition 2.2.3. Within the context of the outcome and association model, we define Z(j)

to be an instrumental variable if it satisfies the following 2 conditions:

1. The IV is associated with the treatment, i.e. γ∗j ̸= 0.

2. The IVs have no direct effect on the outcome, i.e. π∗
j = 0.

14



2.2. Models, assumptions, goals

Remark 2.2.4. It could be that due to unmeasured/hidden confounders: ei and δi are cor-
related. In that case we could have that E(eiDi) ̸= 0. In the context of causal inference, this
raises a question about potential relations between (X,Z) and (e, δ). It is, in theory, not ex-
cluded for X and Z to influence the hidden confounders in this setting. For instance, in case
(X,Z, ẽ) ∼ N3(0, Id) with e = Z2 − 1 + ẽ, then it still holds that E(Ze) = E(Xe) = 0. In the
same way, it is in theory not excluded for D to influence e and/or δ which would result in β∗

not being the causal effect of the treatment of the outcome anymore (in the context of [11]).

Based on what we require an instrumental variable to satisfy, we can categorise the candidate
instrumental variables as follows:

Definition 2.2.5.

• Set of relevant instruments: S = {1 ≤ j ≤ pZ : γ∗j ̸= 0}

• Set of valid instruments: V = {j ∈ S : π∗
j = 0}

Remark 2.2.6.

• In case γ∗j=0, we would see that any change in a potential instrumental variable would
not impact the treatment. Hence we would not be able to apply instrumental methods to
determine the treatment effect.

• Note that any valid instrument is also relevant and that every valid instrument is an
instrumental variable as defined in definition 2.2.3.

Lemma 2.2.7 (Reduced form equations). The outcome model and association model satisfy
the following expressions:

Yi = ZT
i Γ

∗ +XT
i Ψ

∗ + ϵi, E(ϵiZi) = 0,E(ϵiXi) = 0

Di = ZT
i γ

∗ +XT
i ψ

∗ + δi, E(δiZi) = 0,E(δiXi) = 0

where:

Γ∗ = β∗γ∗ + π∗

Ψ∗ = β∗ψ∗ + ϕ∗

ϵi = β∗δi + ei

Proof. For the equations:

Yi = Diβ
∗ + ZT

i π
∗ +XT

i ϕ
∗ + ei

= (ZT
i γ

∗ +XT
i ψ

∗ + δi)β
∗ + ZT

i π
∗ +XT

i ϕ
∗ + ei

= ZT
i (γ

∗β∗ + π∗) +XT
i (ψ

∗ + ϕ∗) + δiβ
∗ + ei

def
= ZT

i Γ
∗ +XT

i Ψ
∗ + ϵi

For the error-term:

E(ϵiXi) = E(β∗δiXi + eiXi) = 0

It can be observed that OLS-estimation can be applied to the reduced form equations for
consistent estimators for the coefficients.
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

2.3. β∗ identification

Observe that for the j-th (candidate) IV, we have that: Γ∗
j = β∗γ∗j + π∗

j . In case it this

candidate IV valid, we have that β∗ =
Γ∗
j

γ∗
j
. In case it is only relevant:

Γ∗
j

γ∗
j
̸= β∗ =

Γ∗
j

γ∗
j
− π∗

j

γ∗
j
.

The following condition, the population majority rule, requires that β∗ can be identified using
the majority of relevant instruments:

Condition 2.3.1. The Population Majority Rule: More than half of the relevant IVs are valid

i.e. |V | > |S|
2 .

A second, less restrictive, approach to identify β∗ is through a plurality rule. For invalid (but

relevant) IVs we have that β∗ =
Γ∗
j

γ∗
j
− π∗

j

γ∗
j
,

π∗
j

γ∗
j
̸= 0. We call the term

π∗
j

γ∗
j
the invalidity level. In

case an IV is valid, the invalidity level of that IV is 0. By assuming that the number of valid
IVs is larger than the number of relevant but invalid IVs at any invalidity level v ̸= 0, we can
identify β∗.

Condition 2.3.2. The Population Plurality Rule: the number of valid IVs is larger than the
number of invalid IVs with any invalidity level v ̸= 0, that is:

|V | > max
v ̸=0

|Iv|, Iv = {j ∈ S :
π∗
j

γ∗j
= v}

Remark 2.3.3. As V = I0, the condition above could be rewritten to requiring that |I0| >
max
v ̸=0

|Iv|

The next lemma shows that the majority rule is indeed stronger than the plurality rule:

Lemma 2.3.4. If the population majority rule holds, so does the population plurality rule.

Proof. |V |
(1)
> |S/V |

(2)

≥ Iv, ∀v ̸= 0. Hence: |V | > max
v ̸=0

|Iv|.

(1): The majority of S is valid.
(2): Iv ⊆ S/V for v ̸= 0.

2.4. Data-dependent estimators for γ∗ and Γ∗

In both the identification of β∗ through the majority rule and plurality rule, one needs expres-
sions for Γ∗ and γ∗. By the application of OLS, we can obtain consistent estimators of Γ∗ and
γ∗ which has a rate of convergence of order

√
n. Using these estimators, we can also obtain

asymptotically normal and consistent estimators for π∗ if we are willing to assume validity of
certain potential IVs. These notions are specified below.
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2.4. Data-dependent estimators for γ∗ and Γ∗

2.4.1. Asymptotic normality OLS-estimators Γ∗, γ∗

First I will introduce some notation.

Notation 2.4.1. For 1 ≤ i ≤ n:

• Wi :=

(
Zi

Xi

)
, W :=

WT
1

. . .
WT

n


• Σ := E(WiW

T
i ), Σ̂ := 1

n

n∑
i=1

WiW
T
i

• Y := (Y1, ..., Yn)
T , D := (D1, ..., Dn)

T

• ϵ := (ϵ1, ..., ϵn)
T , δ := (δ1, ..., δn)

T

Definition 2.4.2 (OLS estimators from reduced form equations). AssumeWTW is invertible.
Then the OLS-estimator from outcome equation as seen in the reduced form equations is defined
as: (

Γ̂

Ψ̂

)
= (WTW )−1WTY

and from the association model: (
γ̂

ψ̂

)
= (WTW )−1WTD

The following theorem establishes asymptotic normality for
√
n(

(
Γ̂
γ̂

)
−
(
Γ∗

γ∗

)
). This property

was mentioned in the original paper [2, p.9 C.Proofs] with more restrictive conditions and
without proof. I came up with the proof myself.

Theorem 2.4.3. Assume the following:

• Σ is finite and invertible

• E(ϵ2iWiW
T
i ), E(ϵiδiWiW

T
i ) and E(δ2iWiW

T
i ) are finite.

Then:

√
n(

(
Γ̂
γ̂

)
−
(
Γ∗

γ∗

)
)

d−→ N (0,Cov)

Here,

Cov =

(
V Γ C
C V γ

)
V Γ = [Σ−1 E(ϵ2iWiW

T
i )Σ−1]1:pZ ,1:pZ

V γ = [Σ−1 E(δ2iWiW
T
i )Σ−1]1:pZ ,1:pZ

C = [Σ−1 E(ϵiδiWiW
T
i )Σ−1]1:pZ ,1:pZ
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Proof. The strategy here will be to first prove asymptotic normality for (Γ̂, Ψ̂, γ̂, ψ̂)T and then
to restrict ourselves to (Γ̂, γ̂)T by multiplying with a linear mapping.

√
n(


Γ̂

Ψ̂
γ̂

ψ̂

−


Γ
Ψ
γ
ψ

) =
√
n

(
(WTW )−1WT ϵ
(WTW )−1WT δ

)

=
√
n

(
(WTW )−1 0

0 (WTW )−1

)(
WT ϵ
WT δ

)
=

(
Σ̂−1 0

0 Σ̂−1

)
((
√
n)−1

n∑
i=1

(
Wiϵi
Wiδi

)
)

d−→
(
Σ−1 0
0 Σ−1

)
N (0,

(
Cov(Wiϵi) Cov(Wiϵi,Wiδi)

Cov(Wiϵi,Wiδi) Cov(Wiδi

)
)

In the last step I first applied the law of large numbers to see that Σ̂
d−→ Σ, then the continuous

mapping theorem to see that Σ̂−1 d−→ Σ−1 (which we can do as Σ is invertible), then applied
the continuous mapping theorem again to see that:(

Σ̂−1 0

0 Σ̂−1

)
d−→
(
Σ−1 0
0 Σ−1

)
After that, I applied the multivariate central limit theorem to

(
√
n)−1

n∑
i=1

(
Wiϵi
Wiδi

)
as we also have that E(Wiϵi) = E(Wiδi) = 0 and then lastly I applied Slutsky’s lemma for
multiplication.
It holds that:

Cov(Wiϵi) = E(ϵ2iWiW
T
i )

Cov(Wiϵi,Wiδi) = E(ϵiδiWiW
T
i )

Cov(Wiδi) = E(δ2iWiW
T
i )

Hence, we end up with:

√
n(


Γ̂

Ψ̂
γ̂

ψ̂

−


Γ
Ψ
γ
ψ

)
d−→
(
Σ−1 0
0 Σ−1

)
N (0,

(
E(ϵ2iWiW

T
i ) E(ϵiδiWiW

T
i )

E(ϵiδiWiW
T
i ) E(δ2iWiW

T
i ))

)

d
= N (0,

(
Σ−1 E(ϵ2iWiW

T
i )Σ−1 Σ−1 E(ϵiδiWiW

T
i )Σ−1

Σ−1 E(ϵiδiWiW
T
i )Σ−1 Σ−1 E(δ2iWiW

T
i )Σ−1

)
)

=: N (0,CovA)

Again using Slutsky’s for multiplication, we obtain that:

√
n(

(
Γ̂
γ̂

)
−
(
Γ∗

γ∗

)
)

d−→ N (0,

(
V Γ C
C V γ

)
)
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2.4. Data-dependent estimators for γ∗ and Γ∗

As notation, I will write that Var(

(
Γ̂
γ̂

)
) =

(
V Γ C
C V γ

)
throughout the text. As a consequence

of theorem 2.4.3, we also obtain consistency of the OLS-estimators (apply Slutsky’s lemma to
the expression that converges in distribution to the normal and the sequence 1√

n
by multiply-

ing them).

2.4.2. Challenges with variance estimation

For this β∗ identification method, estimators are used for the asymptotic covariance matrix of
(Γ̂, γ̂)T . The following estimators are used for the errors terms:

ϵ̂i = Yi − ZT
i Γ̂−XT

i Ψ̂

δ̂i = Di − ZT
i γ̂ −XT

i ψ̂

Consequently, we get the following estimators for the elements of Var(

(
Γ̂
γ̂

)
):

V̂ Γ = [Σ̂−1(
1

n

n∑
i=1

ϵ̂2iWiW
T
i )Σ̂−1]1:pZ ,1:pZ

V̂ γ = [Σ̂−1(
1

n

n∑
i=1

δ̂2iWiW
T
i )Σ̂−1]1:pZ ,1:pZ

Ĉ = [Σ̂−1(
1

n

n∑
i=1

δ̂iϵ̂iWiW
T
i )Σ̂−1]1:pZ ,1:pZ

For the estimators above, we might hope to obtain convergence (in probability) without too
many extra constraints. We might wonder whether for example:

1

n

n∑
i=1

ϵ̂2iWiW
T
i

P−→
?
E(ϵ2iWiW

T
i ) (2.4.1)

Although it is true that by consistency of Γ̂ and Ψ̂:

ϵ̂2i
P−→ ϵ2i , ∀i ≥ 1

ϵ̂2i are not, in general, iid samplings from the distribution of ϵ2i . Hence, the law of large numbers
can’t be directly applied. Despite this, under the same conditions as theorem 2.4.3 plus extra
mixed moments assumptions (up to the 4-th moment), there is consistency for the variance
estimators. These variance estimators were mentioned in [2, p.9 C.Proofs]. Here it was not
alleged (or directly used) that these were consistent estimators under some conditions and I
came up with the conditions and proof myself.

Theorem 2.4.4. Under the same conditions as theorem 2.4.3 together with the assump-

tion that the following list of mixed moments are finite ∀k, l = 1, ..., p: E(ϵiZT
i W

(k)
i W

(l)
i ),

E(ZiZ
T
i W

(k)
i W

(l)
i ), E(ϵiW (k)

i W
(l)
i ), E(XiX

T
i W

(k)
i W

(l)
i ), E(ZiX

T
i W

(k)
i W

(l)
i ), E(δiZT

i W
(k)
i W

(l)
i )

and E(δiXT
i W

(k)
i W

(l)
i ). Then:

(V̂ Γ, V̂ γ , Ĉ)
P−→ (V Γ, V γ , C)
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Proof. I will show that V̂ Γ P−→ V Γ and the others can be shown in a similar manner.
By observing that: ϵ̂i = ϵi + ZT

i (Γ
∗ − Γ̂) +XT

i (Ψ
∗ − Ψ̂), one can also see that:

ϵ̂2i = ϵ2i + 2ϵiZ
T
i (Γ

∗ − Γ̂) + 2ϵiX
T
i (Ψ

∗ − Ψ̂) + (ZT
i (Γ

∗ − Γ̂))2 + (XT
i (Γ

∗ − Γ̂))2

+ 2ZT
i (Γ

∗ − Γ̂)XT
i (Ψ

∗ − Ψ̂)

Furthermore, it holds that (using definition 2.4.2 and lemma 2.2.7):

Γ∗ − Γ̂ = [(WTW )−1]1:pZ ,·

n∑
j=1

ϵjWj

Now we will look at the terms of 1
n

n∑
i=1

(ϵ̂2i − ϵ2i )WiW
T
i related to Zi. The Xi terms follow a

similar argument.
We first look at:

1

n

n∑
i=1

ϵiZ
T
i (Γ

∗ − Γ̂)WiW
T
i =

1

n

n∑
i=1

ϵiZ
T
i ([(W

TW )−1]1:pZ ,·

n∑
j=1

ϵjWj)WiW
T
i (2.4.2)

Now consider the (k, l)-th element of (2.4.2):

[
1

n

n∑
i=1

ϵiZ
T
i (Γ

∗ − Γ̂)WiW
T
i ]k,l =

1

n

n∑
i=1

ϵiZ
T
i ([(W

TW )−1]1:pZ ,·

n∑
j=1

ϵjWj)W
(k)
i W

(l)
i =

{ 1
n

n∑
i=1

ϵiZ
T
i W

(k)
i W

(l)
i }{[( 1

n
WTW )−1]1:pZ ,·

1

n

n∑
j=1

ϵjWj}

By the law of large numbers (and the assumptions of this theorem):

1

n

n∑
i=1

ϵiZ
T
i W

(k)
i W

(l)
i

P−→ E(ϵiZT
i W

(k)
i W

(l)
i )

By the law of large numbers and continuous mapping theorem (together with the fact that Σ
is finite):

(
1

n
WTW )−1 P−→ Σ−1

hence also:

[(
1

n
WTW )−1]1:pZ ,·

P−→ [Σ−1]1:pZ ,·

As E(ϵjWj) = 0 by definition 2.2.1:

1

n

n∑
j=1

ϵjWj
P−→ E(ϵjWj) = 0
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2.4. Data-dependent estimators for γ∗ and Γ∗

Hence, overall ∀k, l = 1, ..., p:

[
1

n

n∑
i=1

ϵiZ
T
i (Γ

∗ − Γ̂)WiW
T
i ]k,l

P−→ 0

Which gives us:

1

n

n∑
i=1

ϵiZ
T
i (Γ

∗ − Γ̂)WiW
T
i

P−→ 0

Next, consider:

[
1

n

n∑
i=1

(ZT
i (Γ

∗ − Γ̂))2WiW
T
i ]k,l =

1

n

n∑
i=1

(ZT
i (Γ

∗ − Γ̂))2W
(k)
i W

(l)
i =

1

n

n∑
i=1

(Γ∗ − Γ̂)TZiZ
T
i (Γ

∗ − Γ̂)W
(k)
i W

(l)
i =

(Γ∗ − Γ̂)T (
1

n

n∑
i=1

ZiZ
T
i W

(k)
i W

(l)
i )(Γ∗ − Γ̂)

P−→ 0

Lastly:

[
1

n

n∑
i=1

ZT
i (Γ

∗ − Γ̂)XT
i (Ψ

∗ − Ψ̂)WiW
T
i ]k,l =

1

n

n∑
i=1

ZT
i (Γ

∗ − Γ̂)XT
i (Ψ

∗ − Ψ̂)W
(k)
i W

(l)
i =

(Γ∗ − Γ̂)T { 1
n

n∑
i=1

ZiX
T
i W

(k)
i W

(l)
i }(Ψ∗ − Ψ̂)

P−→ 0

2.4.3. Standard error estimator π̂ based on Γ̂, γ̂

For the methods in the next part of the text, the following estimator for π∗
k is frequently

used:

For k, j ∈ S : π
[j]
k := Γ̂k − γ̂k

Γ̂j

γ̂j
=: Γ̂k − γ̂kβ̂

[j]

Observe that for j ∈ V : π
[j]
k

P−→ π∗
k. π

[j]
k also has asymptotic normality properties by theorem

2.4.3. Next we will consider the standard error1 (SE) of π
[j]
k . For j ∈ V and by asymptotic

normality: P(π∗
k ∈ (π

[j]
k − zα/2 SE, π

[j]
k + zα/2 SE)) → 1 − α. So using (an estimator of) SE,

we can obtain a confidence interval for π∗
k, where zα/2 is the α/2-th quantile of the standard

normal distribution. Before providing the expression for the standard error, some notation is
introduced.

1Given that
√
n(xn − x)

d−→ N (0, σ2), σ2 ∈ R, the standard error is defined as
√

1
n
σ2
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Notation 2.4.5. For j, k ∈ S, define:

β[j] :=
Γ∗
j

γ∗j

R[j] := V Γ + (β[j])2V γ − 2β[j]C

T 0
j,k :=

√√√√ 1

n
(
R

[j]
k,k

(γ∗k)
2
+

R
[j]
j,j

(γ∗j )
2
− 2

R
[j]
j,k

γ∗kγ
∗
j

)

Tj,k := min(T 0
j,k, T

0
k,j)

The interpretation of the T 0
j,k term is intertwined with the SE, as can be seen in the next

proposition. This result was first mentioned at [2, p.6 Section 3] (up to an absolute value). I
came up with the proof myself.

Proposition 2.4.6. For j ∈ S: |γ∗k |T 0
j,k is equal to the standard error of Γ̂k − γ̂kβ̂

[j]

Proof. Consider the following mapping from R2pZ to R:

ϕ : (a1, .., apZ
, b1, .., bpZ

) 7→ ak − bk
aj
bj

. Wlog assume that k < j. As j ∈ S, ϕ is differentiable at (Γ∗, γ∗)T , where ϕ′((Γ∗)T , (γ∗)T ) ∈
R1×2pZ has the following coordinates:

[ϕ′((Γ∗)T , (γ∗)T )]k = 1

[ϕ′((Γ∗)T , (γ∗)T )]j =
−γ∗k
γ∗j

,

[ϕ′((Γ∗)T , (γ∗)T )]pZ+k =
−Γ∗

j

γ∗j
,

[ϕ′((Γ∗)T , (γ∗)T )]pZ+j =
Γ∗
jγ

∗
k

(γ∗j )
2

For all the other coordinates, it is 0. By the Delta Rule, we obtain that:

√
n(π

[k]
k − (Γ∗

k − γ∗k
Γ∗
j

γ∗j
))

d−→ N (0, ϕ′((Γ∗)T , (γ∗)T )

(
V Γ C
C V γ

)
[ϕ′((Γ∗)T , (γ∗)T )]T )

=: N (0,Σ′)

Writing out Σ′ and re-arranging terms gives:

Σ′ = [V Γ
k,k − 2

Γ∗
j

γ∗j
Ck,k + (

Γ∗
j

γ∗j
)2V γ

k,k] + [−2
γ∗k
γ∗j

(V Γ
j,k − 2

Γ∗
j

γ∗j
Cj,k + (

Γ∗
j

γ∗j
)2V γ

k,j)]

+ [(
γ∗k
γ∗j

)2(V Γ
j,j − 2

Γ∗
j

γ∗j
Cj,j + (

Γ∗
j

γ∗j
)2V γ

j,j)]

=: [A1] + [A2] + [A3].

Per definition, we see that:

[A1] = R
[j]
k,k
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2.4. Data-dependent estimators for γ∗ and Γ∗

[A2] = −2
γ∗k
γ∗j
R

[j]
j,k

[A3] = (
γ∗k
γ∗j

)2R
[j]
j,j

Hence, the standard error is equivalent to:√
1

n
(R

[j]
j,j − 2

γ∗k
γ∗j
R

[j]
j,k + (

γ∗k
γ∗j

)2R
[j]
j,j) = |γ∗k |T 0

j,k

2.4.4. Locally invalid instrumental variables

Lastly, before introducing the proposed method (named Searching and Sampling), we will
briefly consider the concept of locally invalid IVs. In the previous section it was mentioned

that due to asymptotic normality: for j ∈ V, it holds that P(π∗
k ∈ (π

[j]
k − zα/2 SE, π

[j]
k +

zα/2 SE)) → 1 − α or equivalently: P(π[j]
k ∈ (π∗

k − zα/2|γ∗k |T 0
j,k, π

∗
k + zα/2|γ∗k |T 0

j,k)) → 1 − α.

Suppose that we want to determine whether π∗
k is 0 or not using the estimator π

[j]
k . In case

0 < |π∗
k| < zα/2|γ∗k |T 0

j,k for a large n, we will have 0 in our confidence interval above even for

a large n. This makes it hard to determine for any data-based method whether Z(k) is valid
or invalid. We call these small π∗

k locally invalid and it is formally defined below:

Definition 2.4.7. For j ∈ S, the j-th IV is locally invalid if:

0 < |
π∗
j

γ∗j
| < sj(n), sj(n) := 2

√
log(n)max

k∈V
|Tj,k|

Remark 2.4.8.

• Any locally invalid IV is also invalid.

• Later, it will be shown that if the j-th IV is invalid, then it can be separated from the

valid IVs, using data-based methods, if
π∗
j

γ∗
j
≥ sj(n). It turns out that we in the other case

don’t have any (asymptotic) guarantees to whether we can separate the invalid from the
valid IVs (see proposition 2.7.17 for exact details).

• As log(n)
n

n→∞−−−−→ 0, using continuous mapping and the fact that we can express max
k∈V

|Tj,k|

as a constant (wrt n) divided by square-root n: sj(n)
n→∞−−−−→ 0. Hence, the number of

locally invalid IVs will decrease to 0 as n→ ∞

Due to the difficulty in separating valid IVs from locally invalid IVs, it is a frequent occurrence
that estimated sets for V will contain locally invalid IVs. A key difference between the Search-
ing and Sampling method and other inference methods is that the Searching and Sampling
method can correctly recover β∗, even with the presence of locally invalid IVs. This means
that this method does not rely on 100 % correctly recovering V , but rather on recovering
it ”well enough” [2, p.2 1.Introduction]. In section 2.6, this procedure is explained in more
detail.
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

2.5. Searching and Sampling: robust inference methods
under majority rule

From the reduced-form equations, we know that the following identity holds:

Γ∗
j = β∗γ∗j + π∗

j , 1 ≤ j ≤ pZ

Our strategy to recover β∗ is to estimate Γ∗ and γ∗ and then check the majority or plurality
rule. Note that in case γ∗j = 0, we can’t recover β∗ even when Γ∗

j is known as well. As we want

to be able to exactly recover β∗ with the proposed methods in an asymptotic sense (Γ̂ and
γ̂ converge a.s. to Γ∗ and γ∗ respectively using the SLLNs), we want to exclude cases where
the estimator for γ∗j gives a non-zero value while the asymptotic value is 0 (because then we
know that for n → ∞ our inference is incorrect!). It would hence be nice if we beforehand
could have a guarantee that when |γ̂j | is ”large enough”, then γ∗j won’t be zero (with a high
probability).

2.5.1. Hard thresholding

Define the following two sets:

Ŝ := {1 ≤ j ≤ pZ : |γ̂j | ≥

√
log(n)

V̂ γ
j,j

n
}

Sstr := {1 ≤ j ≤ pZ : |γ∗j | ≥ 2

√
log(n)

V γ
j,j

n
} (set of strongly relevant IVs)

It will turn out that with high probability (for n large enough):

Sstr ⊆ Ŝ ⊆ S (2.5.1)

Hence, with high probability, Ŝ contains only relevant potential IVs and at least all the strongly
relevant potential IVs! This means that we (with high probability) don’t have to worry about
the scenario described at the start of the section.

As we established that we can have certain asymptotic guarantees with strongly relevant IVs,
we want to assume that we have at least a sufficient number of them as to be able to do β∗

inference. For this, I will now establish a finite sample adjusted majority rule:

Condition 2.5.1. The finite sample majority rule: More than half of the relevant IVs are

strongly relevant and valid i,e.: |V ∩ Sstr| > |S|
2

Observe that with condition 2.5.1 and (2.5.1), the majority of Ŝ is valid. Another property for
the finite sample majority rule is that as Sstr = S for n→ ∞, it is the same as the population
majority rule asymptotically.
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2.5. Searching and Sampling: robust inference methods under majority rule

2.5.2. Inference of the treatment effect

Define πj(β) := Γ∗
j − βγ∗j and π̂j(β) := Γ̂j − βγ̂j for β ∈ R. Note that for β = β∗: πj(β) = π∗

j

and π̂j(β)
P−→ π∗

j . Our goal will be to test for β ∈ R and j ∈ Ŝ whether β = β∗ and j ∈ V
both hold. For this, we consider the difference |πj(β) − π̂j(β)| which, under the hypothesis
that β = β∗ and j ∈ V , equals |π̂j(β)| (which is computable from the data). Due to the
asymptotic normality as seen in lemma 2.4.3, the next lemma shows an asymptotic normality
property used for the hypothesis testing. The outcome of this lemma was first stated in the
original paper [2, p.9 4.2 The searching confidence interval] and was there later proven under
stronger conditions than the ones presented here [2, p.18 6.Theoretical Justification Theorem
1]. I came up with the weaker conditions and the proof of the following lemma.

Lemma 2.5.2. Let β ∈ R. Under the same conditions as theorem 2.4.3 and the assumptions
that

(V̂ Γ
j,j , V̂

γ
j,j , Ĉj,j)

P−→ (V Γ
j,j , V

γ
j,j , Cj,j) (2.5.2)

together with

lim
n→∞

P(Sstr ⊆ Ŝ ⊆ S) = 1 (2.5.3)

we have that:

lim inf
n→∞

P(max
j∈Ŝ

|πj(β)− π̂j(β)|√
1
n (V̂

Γ
j,j + β2V̂ γ

j,j − 2βĈj,j)
≤ Φ−1(1− α

2|Ŝ|
)) ≥ 1− α

Proof. By theorem 2.4.3, in combination with multiplying by a linear mapping, we obtain that:

√
n(π̂j(β)− πj(β)) =

√
n(Γ̂j − Γ∗

j − β(γ̂j − γ∗j ))
d−→ N (0, V Γ

j,j + β2V γ
j,j − 2βCj,j)

Furthermore by assumption 2.5.2 and the continuous mapping theorem:

σn,j :=
√
V̂ Γ
j,j + β2V̂ γ

j,j − 2βĈj,j
P−→
√
V Γ
j,j + β2V γ

j,j − 2βCj,j =: σj

and so by Slutsky’s lemma (and the continuous mapping theorem):

√
nσ−1

n,j(π̂j(β)− πj(β))
d−→ N (0, 1) (2.5.4)

Observe that:

P(max
j∈Ŝ

√
nσ−1

n,j |πj(β)− π̂j(β)| ≤ Φ−1(1− α

2|Ŝ|
), Sstr ⊆ Ŝ ⊆ S) ≥

P(max
j∈S

√
nσ−1

n,j |πj(β)− π̂j(β)| ≤ Φ−1(1− α

2|Ŝ|
), Sstr ⊆ Ŝ ⊆ S) =

1− P(max
j∈S

√
nσ−1

n,j |πj(β)− π̂j(β)| > Φ−1(1− α

2|Ŝ|
) ∨ (Sstr ⊆ Ŝ ⊆ S)c) ≥

1− P(max
j∈S

√
nσ−1

n,j |πj(β)− π̂j(β)| > Φ−1(1− α

2|Ŝ|
))− P((Sstr ⊆ Ŝ ⊆ S)c) ≥

1−
∑
j∈S

P(
√
nσ−1

n,j |πj(β)− π̂j(β)| > Φ−1(1− α

2|Ŝ|
))− P((Sstr ⊆ Ŝ ⊆ S)c)
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Observe that:

− P(
√
nσ−1

n,j |πj(β)− π̂j(β)| > Φ−1(1− α

2|Ŝ|
), Sstr ⊆ Ŝ ⊆ S) ≥

− P(
√
nσ−1

n,j |πj(β)− π̂j(β)| > Φ−1(1− α

2|Sstr|
), Sstr ⊆ Ŝ ⊆ S)

Using that |Sstr| → |S| as n → ∞, Φ−1 being continuous, (2.5.4), |S| being a deterministic
finite set (independent of n) and assumption (2.5.3), we obtain the desired result.

Using the lemma 2.5.2 and the finite sample majority rule, we can search for β∗ by repeatedly
testing the hypothesis that β = β∗ and j ∈ V . The output of this method (described below)
is a set with potential β∗ values.

Method 2.5.3. (Searching algorithm,[2, p.9,10 Section 4.2])

1. For β ∈ R, j ∈ Ŝ compute:

p̂j(β) := Φ−1(1− α

2|Ŝ|
)

√
1

n
(V̂ Γ

j,j + β2V̂ γ
j,j − 2βĈj,j)

π̄j(β) := π̂j(β)1(|π̂j | ≥ p̂j(β))

2. CIsear := {β ∈ R :
∥∥π̄Ŝ(β)∥∥0 < |Ŝ|

2 }2

Remark 2.5.4.

• CIsear is not guaranteed to be an interval.

• For large n the probability will be high that π̄j(β
∗) = 0 for j ∈ V ∩ Sstr. In case all such

j are correctly classified, the majority rule applied to Ŝ is met (with high probability).
Hence (with high probability), it wouldn’t matter if it happens that for some j /∈ V (like
locally invalid IVs) we get π̄j(β

∗) = 0.

2.5.3. Efficient implementation of searching CI

For the method above, we need to consider every β ∈ R in order to construct CIsear. To
improve the computational efficienty of this method, we would prefer to have a (well-chosen)
grid of β′s. Preferably this would result in an interval rather than a range of values. For this
we can do the following [2, p.10,11 Section 4.3]:

• Our strategy is to first obtain an interval [L,U ] s.t. P (β∗ ∈ [L,U ])
n→∞−−−−→ 1 and from

there construct a grid set with step size n−a with a > 1
2 (i.e. smaller than the parametric

rate).

• Define B = {β1, .., βk} as the n−a-step sized grid for [L,U ].

• For j ∈ S, β∗ is estimated by the ratio
Γ̂j

γ̂j
under the hypothesis that π∗

j = 0. The

variance is estimated by:

V̂ar(
Γ̂j

γ̂j
) =

V̂ Γ
jj

γ̂2j
+
V̂ γ
j,jΓ̂

2
j

γ̂4j
− 2

Ĉj,jΓ̂j

γ̂3j
2Here: π̄Ŝ = (π̄j)j∈Ŝ and ∥.∥0 denotes the amount of non-zero elements in a vector
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2.5. Searching and Sampling: robust inference methods under majority rule

• Then we define L,U as follows:

L = min
j∈Ŝ

{ Γ̂j

γ̂j
−

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}

U = max
j∈Ŝ

{ Γ̂j

γ̂j
+

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}

• We obtain the (approximated) confidence interval as follows:

ĈI
sear

= [ min
β∈B:∥π̄Ŝ(β)∥

0
<

|Ŝ|
2

β, max
β∈B:∥π̄Ŝ(β)∥

0
<

|Ŝ|
2

β]

The next lemma shows that indeed (under some conditions) P(β∗ ∈ [L,U ]) → 1 for n → ∞.
The end result of this next lemma was first mentioned at [2, p.11 4.3 Efficient implementation of
the searching CI] and later proven under stronger conditions [2, p.18 6.Theoretical Justification
Theorem 1]. I came up with the conditions and proof myself:

Lemma 2.5.5. Under the same conditions as theorem 2.4.3 together with

(V̂ Γ
jj , V̂

γ
jj , Ĉjj)

T P−→ (V Γ
jj , V

γ
jj , Cjj)

T (2.5.5)

lim
n→∞

P(Sstr ⊆ S) = 1 (2.5.6)

and the finite sample majority rule we have that for

L = min
j∈Ŝ

{ Γ̂j

γ̂j
−

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}

U = max
j∈Ŝ

{ Γ̂j

γ̂j
+

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}

it holds that: lim
n→∞

P(β∗ ∈ [L,U ]) = 1

Proof. Let n ≥ 3. Then the following holds:

P(β∗ ∈ [L,U ]) ≥ P(β∗ ∈ [L,U ], Sstr ⊆ Ŝ) =: (■)

(■) ≥ P(β∗ ∈ [ min
j∈Sstr

{ Γ̂j

γ̂j
−

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}, max

j∈Sstr

{ Γ̂j

γ̂j
+

√
log(n)

n
V̂ar(

Γ̂j

γ̂j
)}], Sstr ⊆ Ŝ)

≥ P(β∗ ∈ [
Γ̂j1

γ̂j1
−

√
log(n)

n
V̂ar(

Γ̂j1

γ̂j1
),
Γ̂j1

γ̂j1
+

√
log(n)

n
V̂ar(

Γ̂j1

γ̂j1
)], Sstr ⊆ Ŝ) =: (▲)

In the last step, j1 denotes a valid and strongly relevant IV in Sstr for n = 3. We know j1
exists due to the finite sample majority rule and that j1 ∈ Sstr for n ≥ 3 because of log(n)

n
decreasing.
As

(▲) = P(
|β∗ − Γ̂j1

γ̂j1
|√

V̂ar(
Γ̂j1

γ̂j1
)

≤
√

log(n)

n
, Sstr ⊆ Ŝ)
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

with V̂ar(
Γ̂j1

γ̂j1
)

P−→ Var(
Γ̂j1

γ̂j1
) (by (2.5.5) and continuous mapping theorem) and

Γ̂j1

γ̂j1

P−→ β∗ (con-

sequence of theorem 2.4.3), we obtain that:

|β∗ − Γ̂j1

γ̂j1
|√

V̂ar(
Γ̂j1

γ̂j1
)

P−→ 0

and consequently for n→ ∞:

P(
|β∗ − Γ̂j1

γ̂j1
|√

V̂ar(
Γ̂j1

γ̂j1
)

≤
√

log(n)

n
) → 1

Together with (2.5.6), we can hence conclude that:

lim
n→∞

P(β∗ ∈ [L,U ]) = 1

Remark 2.5.6. When ∄β ∈ B :
∥∥π̄Ŝ(β)∥∥0 < |Ŝ|

2 , ĈI
sear

is empty. Then (with high likelihood
if we have enough data), the (sample) majority rule is violated.

2.5.4. Sampling CI

Next, we will consider an extension to the searching method above. It involves resampling
(Γ̂, γ̂)T and then applying the searching method multiple times. The definition of the resampled
coefficients is specified below.

Definition 2.5.7. The resampled coefficients {Γ̂, γ̂}1≤m≤M are defined as follows: conditioned
on the observed data: (

Γ̂[m]

γ̂[m]

)
∼ N(

(
Γ̂
γ̂

)
,

(
V̂ Γ

n , Ĉn
Ĉ
n ,

V̂ γ

n

)
)

1 ≤ m ≤M . M is called the resampling size.

The idea of obtaining a confidence interval via sampling is as follows:

• Compared to the inference method of the previous section, we use (Γ̂[m], γ̂[m]) instead of
(Γ̂, γ̂) to construct a searching CI. This new CI, that uses the m-th resampled coefficient,
will be referred to as the m-th sampled searching CI.

• Using the sampled gamma’s, we can decrease the hard thresholding level in the estimation
of π∗

j step (see section 2.7). This will lead to shorter resulting CIs for the β.

The method is summarised below [2, p.12 Section 4.4]:

• For each m between 1 and M , we estimate π∗
j for the m-th sample:

π̂
[m]
j = (Γ̂

[m]
j − βγ̂

[m]
j )1(|Γ̂[m]

j − βγ̂
[m]
j | ≥ λp̂j(β))

for j ∈ Ŝ. λ = c∗(
log(n)
M )

1
|Ŝ| , c∗ is chosen by the user.

28



2.5. Searching and Sampling: robust inference methods under majority rule

• Then for the m-th sample we define the following CI for β:

β
[m]
min(λ) = min

β∈B:
∥∥∥π̂[m]

Ŝ
(β,λ)

∥∥∥
0
<

|Ŝ|
2

β.

β[m]
max(λ) = max

β∈B:
∥∥∥π̂[m]

Ŝ
(β,λ)

∥∥∥
0
<

|Ŝ|
2

β.

• Then we set: CIsamp = [ min
m∈M

β
[m]
min(λ), max

m∈M
β
[m]
max(λ)] Here, M = {1 ≤ m ≤ M :

[β
[m]
min(λ), β

[m]
max(λ)] ̸= ∅}

From simulations, one can see that many of the M sampled searching CIs are empty and that
the non-empty ones are much shorter than the searching CI counterpart. As a result, the
CIsamp is in general shorter than CIsear. See section 2.8 for simulations.

If the value of λ is too small, very few of the resampled reduced-form estimators will pass
the majority rule and most of the M (=1000, f.e.) will be empty (the theorem on which the
thresholding relies states that that there exists an m∗ for which the high-thresholding assump-
tion is met under the assumption of β = β∗ and j being a valid IV. Hence, for small λ it
is likely to happen that outside of m∗ the intervals will be empty because the thresholding
becomes more strict, see section 2.8 for more). As it is desirable for the method to be robust to
errors, we wouldn’t want to rely on too few intervals. Hence, the proportion of the non-empty
intervals indicates whether λ is large enough. One could start with a small value of λ f.e.

λ = 1
6
log(n)
M

1
2|Ŝ| and increase the value of λ by a factor of 1.25 until more than f.e. 10% of

the M intervals are non-empty. One can then choose the smallest value of λ achieving this to
implement the algorithm. More on this, see section 2.8.

Remark 2.5.8.

• Instead of choosing the largest possible estimated interval of theM sample CIs, we could
also choose the union. However, this is not guaranteed to be an interval.

• It turns out that when we try to filter out boundary cases of the sampled (Γ̂[m], γ̂[m]),
the resulting CI will be nearly the same as CIsamp [2, p.14 Remark 4] (see section 2.8 for
such an example).
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

2.6. Uniform inference methods under plurality rule

Under the plurality rule, in order to estimate β∗, we want to determine whether
π∗
k

γ∗
k
and

π∗
j

γ∗
j

have the same validity level (are equal to each other) from the data. For this, we need a level

of separation based on the data i.e. if the difference |π
∗
k

γ∗
k
− π∗

j

γ∗
j
| is larger than that level, then

for large n, with high probability we can detect from the data that they don’t have the same
invalidity level.

The separation level used for the methods, is defined below:

Definition 2.6.1. The separation level is defined as:

sep(n) = 2
√
log(n) max

j,s∈Ŝ
Tj,k

See notation 2.4.5 for the definition of Tj,k

The sep(n) term can be interpreted as follows:

• Let j, k ∈ S. Then for β[j](=
Γ∗
j

γ∗
j
= β∗ +

π∗
j

γ∗
j
) we have that: β̂[j] =

Γ̂j

γ̂j
is an consistent

estimator for β[j] and consequently β̂[j] − β̂[k] is a consistent estimator for
π∗
j

γ∗
j
− π∗

k

γ∗
k
.

Consider the following 2 oracle (i.e. not-computable from the data) consistent estimators

for |π
∗
j

γ∗
j
− π∗

k

γ∗
k
|:

– Estimator 1: | γ̂k

γ∗
k
(β̂[k] − β̂[j])|

– Estimator 2: | γ̂j

γ∗
j
(β̂[j] − β̂[k])|

Both estimators take into account the rate of convergence for γ̂k and γ̂j respectively.

From proposition 2.4.6, it can be observed that γ̂k

γ∗
k
(β̂[k] − β̂[j]) has a standard error of

T 0
j,k and

γ̂j

γ∗
j
(β̂[j] − β̂[k]) of T 0

k,j . As Tj,k = min(T 0
j,k, T

0
k,j), max

j,k∈Ŝ
Tj,k can be seen as some

sort of maximum standard error of the validity difference when using estimator 1 and
estimator 2.

• The 2
√

log(n) term is introduced to adjust for the multiplicity for testing multiple hy-
pothesis in the coming tests. In case we test multiple hypothesis, we are increasing the
chance that at least one of them is wrongly rejecting the null-hypothesis. The 2

√
log(n)

term tries to combat these errors by making the bounds less strict for especially small
n. It doesn’t have asymptotic implications due to the fact that Tj,k is of order n−1 and

we have that log(n)
n → 0 for n→ ∞.

Again, as with the inference using the majority rule, we have to make sure we can do that

with enough data. Using the definition that I(v, τ) := {j ∈ S : |π
∗
j

γ∗
j
−v| ≤ τ}, the finite sample

plurality rule is defined as follows:

30



2.6. Uniform inference methods under plurality rule

Condition 2.6.2. (Finite sample plurality rule)
Under the finite sample plurality rule, the following holds for τn = 3sep(n):

|V ∩ Sstr| > max
v∈R

|I(v, τn)/V |

Remark 2.6.3.

• I(v, τn)/V consists of the invalid IVs with invalidity level around v. As n → ∞, the
latter becomes exact.

• The condition requires that there are more valid and strongly relevant IVs then invalid
IVs of approximately similar invalidity level

• Observe that the finite sample plurality rule is less restrictive then the requirement that:
|V ∩ Sstr| ≥ max

v ̸=0
|I(v, τn)|.

Under condition 2.6.2, I will now establish a 2 step inference procedure for β∗ as introduced
in [2, p.14-17 5.Uniform Inference methods under plurality rule]. It has the following general
idea:

• Step 1: Construct a set V̂ that satisfies (with high probability):

V ∩ Sstr ⊂ V̂ ⊂ I(0, τn)

• Step 2: Restrict our attention to V̂ and generalize the methods of the previous section.

The second step of the inference procedure will rely on the fact that (asymptotically), V ∩Sstr

will become the majority of V̂ if we manage to construct V̂ as outlined in the first step. Using
this fact, we can then apply the methods from the previous sections (which rely on a majority
rule). The notion that V ∩ Sstr becomes the majority of V̂ is proven below. This was not
proven in the original paper.

Lemma 2.6.4. Under condition 2.6.2, V ∩ Sstr will become the majority of V̂ (defined as in
the first step of the inference method above) for n large enough.

Proof. Under condition 2.6.2, we have that:

|V ∩ Sstr| > max
v∈R

|I(v, τn)/V | ≥ |I(0, τn)/V |

As V ⊆ I(0, τn) we hence have that:

|V ∩ Sstr| > |I(0, τn)/V | = |I(0, τn)| − |V |

So that:

|V ∩ Sstr|+ |V | > |I(0, τn)|

Hence, either |V ∩ Sstr| > |I(0,τn)|
2 or |V | > |I(0,τn)|

2 . In either case: |V | > |I(0,τn)|
2 . As

|V ∩ Sstr| → |V | for n → ∞, for n large enough V ∩ Sstr will become the majority of I(0, τn)
consequently, by the definition of V̂ , it will become the majority of V̂
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Now it will be shown how the V̂ is constructed:
Constructing V̂ :

• Set wlog Ŝ = {1, 2, .., |Ŝ|}. For any j, k ∈ Ŝ the following estimators for β∗ and π∗ are
defined:

β̂[j] = Γ̂j/γ̂j , π̂
[j]
k = Γ̂k − β̂[j]γ̂k

• R̂[j] = V̂ Γ + (β̂[j])2V̂ γ − 2β̂[j]Ĉ is defined and the standard error of π̂
[j]
k is estimated by:

ŜE(π̂
[j]
k ) = [(R̂

[j]
k,k + (γ̂k/γ̂j)

2R̂
[j]
j,j − 2(γ̂k/γ̂j)R̂

[j]
j,j)/n]

0.5

• For 1 ≤ k, j ≤ |Ŝ|, hard thresholding is applied and the corresponding (k, j)-th entry for

the voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| is defined as:

Π̂k,j = 1(|π̂[j]
k | ≤ ŜE(π̂

[j]
k )
√
log(n), |π̂[k]

j | ≤ ŜE(π̂
[k]
j )
√

log(n))

• Define Ŵ = arg max
1≤j≤|Ŝ|

∥∥∥Π̂j.

∥∥∥
0
i.e. the set of IVs to support the most number of IVs to

be valid. Construct the following initial set:

V̂ TSHT = {1 ≤ l ≤ |Ŝ| : ∃k ∈ Ŝ and j ∈ Ŵ s.t. Π̂j,kΠ̂k,l = 1}

Remark 2.6.5. In case π∗
k = 0 we expect (with high probability) that: |π̂[j]

k | = |π̂[j]
k − π∗

k| ≤
ŜE(π̂

[j]
k )

To get a feeling on how the proposed voting-matrix works, consider the case that the used

estimators in the voting matrix are perfect i.e. π̂
[j]
k = π∗

k − γ∗k
π∗
j

γ∗
j
and ŜE(π̂

[j]
k ) = SE(π̂

[j]
k ) =

|γ∗k |T 0
j,k. It then holds that:

|π̂[j]
k | ≤

√
log(n)ŜE ⇐⇒ |π

∗
k

γ∗k
−
π∗
j

γ∗j
| ≤ T 0

j,k

√
log(n)

From here, we see that Π̂k,j = 1 ⇐⇒ |π
∗
k

γ∗
k
− π∗

j

γ∗
j
| ≤ Tj,k

√
log(n). For this case, we see that if

the k-th and j-th IVs have the same invalidity levels, they will vote for each other. However, it
might also happen that a valid IV votes for a locally invalid IV. These observations also hold
true asymptotically for the general case, see Proposition 2.7.17.

After computing the voting matrix, Ŵ is computed. Under the finite plurality rule, we know
that:

|V ∩ Sstr| > max
v∈R

|I(v, τn)\V |

As V ∩ Sstr ⊆ I(0, τn) (with high probability), we obtain that:

|I(0, τn)| > max
v∈R

|I(v, τn)\V |
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2.7. Theoretical Justification

This motivates the definition of Ŵ : for n → ∞ it holds that τn → 0 and we see that the
number of locally invalid IVs (including valid IVs) is greater than the number of invalid IVs
around the same level, no matter the invalidity level.

To see how the V̂ TSHT set works together with the finite sample plurality rule, consider a
model with pZ = 6 where {1, 2, 3} ∈ V ∩ Sstr, {4, 5} have the same locally invalid invalidity
level v and {6} with a much bigger invalidity level compared to {1, 2, 3, 4, 5}. For this model,
the population plurality rule is satisfied. For n large enough, the finite sample plurality rule
will also be satisfied as for n large enough 4,5 will sit in the same set I(v, τn) separated from
6. Due to the locally invalid nature of 4 and 5, it could be that (a subset of) {1, 2, 3} are thus
also in this I(v, τn). It would hence require more data points for |V ∩Sstr| > max

v ̸=0
|I(v, τn)| to

be satisfied.

Table 2.1 shows what a resulting Π̂ could look like. We would in this case end up with
Ŵ = {4}: a locally invalid IV! The second step firstly includes all IVs that Z(4) voted for, so
we have that: {2, 3, 5} ⊆ V̂ TSHT. It then also includes all Z(i)′s Z(2), Z(3) and Z(5) voted for,
so we end up with V̂ TSHT = {1, 2, 3, 4, 5}. In the end, all valid and locally invalid IVs have
been selected. Observe that the majority rule indeed applies to V̂ TSHT. See section 2.8 for
simulated examples of the choice of V̂ TSHT for different models.

Π̂ example 1 2 3 4 5 6
1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 ✓ ✓
6 ✓

Table 2.1.: An example of the voting matrix based on the model described above. A ✓ in
position (i, j) means that Z(i) and Z(j) voted for each other

2.7. Theoretical Justification

In this section, we will explore the theorems and some proofs regarding the searching and
sampling methods. We will first take a look into the assumptions made on the models for the
proofs and what kind of properties they establish (needed for the proofs). After that, the formal
(asymptotic) mathematical statements on the methods are explored and the implications they
have.

Hence, first the assumptions on the models are considered. In total two types of assumptions
are made: one regarding sub-Gaussian vectors and one regarding the covariance matrix of
random variables in the model. I will first give a brief introduction to sub-Gaussian vectors to
give a feeling as to what they entail.

2.7.1. Sub-Gaussian vectors

A sub-Gaussian assumption on random vectors ensure that tail probabilities and moments are
bounded in a controlled manner. Below, the definition of a sub-Gaussian random variable to
given:
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Definition 2.7.1. A random variable X : (Ω,F ,P) → (R,B(R)) is called sub-Gaussian if
there exists a constant K1 > 0 s.t. for all t ≥ 0:

P(|X| ≥ t) ≤ 2 exp(−t2/K2
1 )

It turns out that requiring a random variable to be sub-Gaussian is equivalent with putting
constraints on its moments. The following lemma provides a link between the definition of
sub-Gaussian and moments:

Lemma 2.7.2. [3, p.8 Exercise 1.2.3] For a random variable Y ≥ 0, it holds that ∀p ≥ 1:

E(Y p) =

∞∫
0

ptp−1P(Y ≥ t)dt

Proof. For any w ∈ Ω, we have that: Y p(w) =
Y (w)∫
0

ptp−1dt. Hence it holds that:

E(Y p) = E(
Y (w)∫
0

ptp−1dt) =

∫
Ω

Y (w)∫
0

ptp−1dtdP =: (1)

The domain of integration of (1) can be written as:

{(w, t) : w ∈ Ω, 0 ≤ t ≤ Y (w)} = {(w, t) : t ≥ 0, t ≤ Y (w)}

Hence by Tonelli’s theorem:

(1) =

∞∫
0

∫
Y (w)≥t

ptp−1dPdt

=

∞∫
0

ptp−1

∫
Y (w)≥t

1dPdt =
∞∫
0

ptp−1P(Y ≥ t)dt

Now, we can prove the connection to the moments. This proof is a slightly adapted version
compared the one found at [3, p.24 Prop. 2.5.2].

Theorem 2.7.3. [3, p.24 Prop. 2.5.2] For a random variable X, the following are equivalent:

1. ∃K1 ≥ 0: ∀t ≥ 0: P(|X| ≥ t) ≤ 2 exp(−t2/K2
1 )

2. ∃K2 ≥ 0: ∀p ≥ 1: ∥X∥p ≤ K2
√
p

3. ∃K3 > 0 : E(exp(X2/K2
3 )) ≤ 2
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Proof. (1 =⇒ 2) : Note that if we prove for the random variable Y := X
K1

that ∥Y ∥p ≤ K ′
2
√
p

for some K ′
2 > 0, then: ∥X∥p ≤ K1K

′
2
√
p. Hence, wlog assume that K1 = 1. Then we have

that:

∥X∥pp = E(|X|p)

=

∞∫
0

ptp−1P(|Y | ≥ t)dt (Lemma 2.7.2)

≤
∞∫
0

ptp−12 exp(−t2)dt (X is sub-Gaussian, K1 = 1)

= pΓ(p/2) (Γ(x) :=

∞∫
0

tx−1 exp(−x)dt)

≤ 3p(p/2)p/2 (Using that Γ(x) ≤ 3xx for x ≥ 1

2
)

Hence we end up with:

∥X∥p ≤ 31/pp1/pp1/22−1/2 ≤ 32√
2

√
p

In the last step it was used that 31/p ≤ 3 and p1/p ≤ 3.
(2 =⇒ 3) As before, wlog K2 = 1.

E(exp(X2/K2
4 ))

MCT
= 1 +

∞∑
p=1

E((
X2

K2
4

)p/p!)

≤ 1 +

∞∑
p=1

(2p)p/2

K2p
4 p!

(Using assumption (2))

≤ 1 +

∞∑
p=1

2p

K2p
4

(
pp

p!
)

≤ 1 +

∞∑
p=1

(
2e

K4
)p =

1

1− 2e
K4

≤ 2 (Using that
pp

p!
≤ exp(p))

In the last step holds provided that K4 is chosen in a proper manner.
(3 =⇒ 1) P(|X| ≥ t) = P(exp(X2/K2

3 )) ≥ exp(t2/K3). Now apply Markov’s inequality.

Now that we have some properties established for a sub-Gaussian random variable, we can
define a sub-Gaussian random vector:

Definition 2.7.4. A random vector Y : (Ω,F ,P) → (Rd,Bd(Rd), λ) is called sub-Gaussian if
∀x ∈ Rd : ⟨x, Y ⟩ = xTY is a sub-Gaussian random variable.

It turns out that one can always create sub-Gaussian vectors out of sub-Gaussian random
variables. I formulated and proved the following result myself:
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Corollary 2.7.5. Let ϵ1, ..., ϵn be sub-Gaussian random variables. Then (ϵ1, ..., ϵn)
T is a sub-

Gaussian vector.

Proof. Let a = (a1, ..., an)
T ∈ Rn and let p ≥ 1. Observe that any ϵi is an element of

Lp(Ω,F ,P) by theorem 2.7.3. Then it holds that (using theorem 2.7.3 (2)):∥∥∥∥∥
n∑

i=1

aiϵi

∥∥∥∥∥
p

≤
n∑

i=1

|ai| ∥ϵi∥p ≤ (

n∑
i=1

|ai|K(i)
2 )

√
p =: K ′

2

√
p

Hence by theorem 2.7.3 and the definition of a sub-Gaussian vector the result is proven.

Example 2.7.6. Some notable examples of sub-Gaussian random variables are normal dis-
tributed random variables and bounded random variables.

2.7.2. Assumptions on model and usage

The following conditions are put on model 2.2.7 for the proofs by the original paper [2]:
Assume that (Wi, ϵi, δi)

T are iid for 1 ≤ i ≤ n with Wi := (XT
i , Z

T
i )

T ∈ Rp

(C1) For i ≤ i ≤ n, Wi are sub-Gaussian random vectors with Σ := E(WiW
T
i ) satisfying

0 < c0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C0.

(C2) For 1 ≤ i ≤ n, the errors (ϵi, δi)
T from model 2.2.7 are sub-Gaussian random vectors

satisfying:
0 < c1 ≤ λmin(E((ϵi, δi)T (ϵi, δi)|Wi) ≤ λmax(E((ϵi, δi)T (ϵi, δi)|Wi) ≤ C1

Here, c0, C0, c1 and C1 are constants.

Remark 2.7.7.

• Note that (C1) implies that Σ is positive definite hence invertible. Without this (Γ̂, γ̂)T

as defined in definition 2.4.2 wouldn’t well-conditioned.

• As ei = ϵi − β∗δi, condition (C2) implies that ei is sub-Gaussian as well.

(C2) implies that CovA (see proof of theorem 2.4.3, it is the asymptotic variance of

(
√
n((Γ̂T , Ψ̂T , γ̂T , ψ̂T )T − (ΓT ,ΨT , γT , ψT )T )) is positive definite. Before I go about proving

that statement, I will first prove a lemma which will be used during the proof. I proved the
following lemma myself.

Lemma 2.7.8. For a real symmetric matrix S ∈ Rk×k with orthogonal decomposition S =
PDPT , where P has k columns p1, ..., pk, D = diag(λ1, ..., λk) it holds that for any x ∈ Rk:

λmin(S) ∥x∥22 ≤ xTSx ≤ λmax ∥x∥22

Proof.
xTSx = xTPDPTx

=

k∑
i=1

λkx
T pip

T
i x
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=

k∑
i=1

λi
∥∥pTi x∥∥2

≥ λmin(S)

k∑
i=1

xT pip
T
i x

= λmin(S)x
TPPTx

= λmin(S)
∥∥PTx

∥∥2
= λmin ∥x∥2

In the last step it’s used that P is orthogonal. The upper-bound follows analogously.

Using the lemma above we can prove positive definiteness for CovA. This following lemma was
stated at [2, p.9 C.Proofs] and I filled in the details of the corresponding proof. I also made
slight adjustments to the argument.

Lemma 2.7.9. Under (C1) and (C2), CovA is positive definite. In particular:

λmin(Cov
A) ≥ c1λmin(Σ

−1) ≥ c1
C0

λmax(Cov
A) ≤ C1λmax(Σ

−1) ≤ C1

c0

Proof. Recall that:

CovA =

(
Σ−1 E(ϵ2iWiW

T
i )Σ−1 Σ−1 E(ϵiδiWiW

T
i )Σ−1

Σ−1 E(ϵiδiWiW
T
i )Σ−1 Σ−1 E(δ2iWiW

T
i )Σ−1

)
Let u, v ∈ Rp, then (uT , vT ) CovA(uT , vT )T can be rewritten as:

uTΣ−1 E(ϵ2WiW
T
i )Σ−1u+ 2uTΣ−1 E(ϵiδiWiW

T
i )Σ−1v + vTΣ−1 E(δ2iWiW

T
i )Σ−1v =

E((uTΣ−1Wi, v
TΣ−1Wi)(ϵi, δi)

T (ϵi, δi)(u
TΣ−1Wi, v

TΣ−1Wi)
T ) =:

E((ui, vi)(ϵi, δi)
T (ϵi, δi)(ui, vi)

T ) =

E((ui, vi)E((ϵi, δi)T (ϵi, δi)|Wi)(ui, vi)
T ) =: (1)

Here, ui =WT
i Σ−1u, vi =WT

i Σ−1v(which are both Wi-measurable).
Since λmin(E((ϵi, δi)T (ϵi, δi)|Wi)) ≥ c1 > 0 and E(u2i ) = uTΣ−1u, E(v2i ) = vTΣ−1v, by (an
extension of) lemma 2.7.8:

(1) ≥ E(λmin((ϵi, δi)
T (ϵi, δi)|Wi)(ui, vi)(ui, vi)

T )

≥ c1(u
TΣ−1u+ vTΣ−1v)

≥ c1λmin(Σ
−1)(∥(u, v)∥22)

In the last step, I applied lemma 2.7.8 again by observing that:

uTΣ−1u+ vTΣ−1v = (uT vT )T
(
Σ−1 0
0 Σ−1

)(
u
v

)

37
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and that the matrix

(
Σ−1 0
0 Σ−1

)
is symmetric and, when we define the orthogonal diagonal-

isation of Σ−1 as Σ−1 = PDPT , has orthogonal diagonalisation:(
P 0
0 P

)(
D 0
0 D

)(
PT 0
0 PT

)
Thus we have established that:

(uT , vT ) CovA(uT , vT )T ≥ c1λmin(Σ
−1)(∥(u, v)∥22) (2.7.1)

which proves positive definiteness.
Choosing (uT , vT )T in the eigenspace of λmin(Cov

A) with length 1 we obtain using (2.7.1):

λmin(Cov
A) ≥ c1λmin(Σ

−1) ≥ c1/C0 > 0.

The argument for λmax(Cov
A) goes analogous.

I will now show how the sub-Gaussian assumption can be used to obtain finite sample results.
Define the following sets (Ω̂ := Σ̂−1 from notation 2.4.1):

G1 := {
∥∥∥∥ 1nWT δ

∥∥∥∥
∞

≤ C
(log(n))1/4√

n
}

G3 := {
∥∥∥Ω̂− Σ−1

∥∥∥
2
≤ C

√
log(n)√
n

}

G′
2 := { max

1≤j≤pZ

√
n
|γ̂j − γ∗j |√

V γ
j,j

≤ C̃(log(n))1/4}

For convenience, I will use the notation Ω := Σ−1 Here, C > 0 (does not depend on n and is

deterministic) and C̃ satisfies: C̃ > max
1≤j≤pZ

∥Ωj.∥1√
V γ
jj

C. (also deterministic and not dependent on

n)
Using the sub-Gaussian assumptions (C1) and (C2), one can prove that for all n ≥ 1 and some
constant c > 0 [2, p.27,28 D.Proofs of Lemma’s]:

P(G1) ≥ 1− exp(−c
√
log(n)) (2.7.2)

P(G3) ≥ 1− n−c (2.7.3)

The next result was obtained in the original paper to prove a larger lemma [2, p.27,28 D.Proofs
of Lemma’s]. I adapted the proof by specifying C̃ > 0 for the set G′

2 above (namely satisfies:

C̃ > max
1≤j≤pZ

∥Ωj.∥1√
V γ
jj

C.). In the original paper, this was unspecified. I filled in further details of

the proof provided by [2].

Lemma 2.7.10. Assume (C1) and (C2). Then P(G′
2) ≥ 1 − exp(−c1

√
log(n)) for n large

enough. c1 > 0 is some constant.

Proof. Observe that we can decompose γ̂j as follows:

γ̂j = Ω̂j.
1

n
WTD
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= Ω̂j.
1

n
WT (W

(
γ∗

ψ∗

)
+ δ)

= γ∗j + Ω̂j.
1

n
WT δ

so that we have:

γ̂j − γ∗j = Ωj.
1

n
WT δ + (Ω̂j. − Ωj.)

1

n
WT δ (2.7.4)

This is used to establish the following:

P(G′
2) ≥ P(G′

2 ∩ G1 ∩ G3)

≥ P({∀j :
|Ωj.

1
n
WT δ|+ |(Ω̂j. − Ωj.)

1
n
WT δ|√

V γ
j,j

≤ C̃
(log(n))1/4√

n
} ∩ G1 ∩ G3)

≥ P({∀j :
1√
V γ
j,j

(∥Ωj.∥1 +
∥∥∥Ω̂j. − Ωj.

∥∥∥
1
)

∥∥∥∥ 1

n
WT δ

∥∥∥∥
∞

≤ C̃
(log(n))1/4√

n
} ∩ G1 ∩ G3)

≥ P({∀j :
1√
V γ
j,j

(∥Ωj.∥1 +
∥∥∥Ω̂j. − Ωj.

∥∥∥
1
) ≤ C′} ∩ G1 ∩ G3) =: (1)

Here, C ′ = C̃
C and the last step uses the fact that we are intersecting with G1.

(1) = P({∀j :
∥∥∥Ω̂j. − Ωj.

∥∥∥
1
≤ (C ′

√
V γ
j,j − ∥Ωj.∥1)} ∩ G1 ∩ G3)

≥ P({∀j :
∥∥∥Ω̂j. − Ωj.

∥∥∥
2
≤ (

√
p)−1(C ′

√
V γ
j,j − ∥Ωj.∥1)} ∩ G1 ∩ G3) =: (2)

The last step uses that: ∥∥∥Ω̂j. − Ωj.

∥∥∥
1
≤ √

p
∥∥∥Ω̂j. − Ωj.

∥∥∥
2

which is an application of Cauchy-Schwarz.

Observe that (by the definition of C ′): C ′
√
V γ
jj −∥Ωj.∥1 > 0 and that this inequality does not

depend on n. Furthermore, as Ω̂ and Ω are both symmetric we obtain that for any j = 1, ..., p:∥∥∥Ω̂j. − Ωj.

∥∥∥
2
=
∥∥∥Ω̂.j − Ω.j

∥∥∥
2
=
∥∥∥(Ω̂− Ω)ej

∥∥∥
2
≤
∥∥∥Ω̂− Ω

∥∥∥
2

Above, ej denotes the j-th unit vector of Rp. Hence, for n large enough, we obtain that:

{
∥∥∥Ω̂− Ω

∥∥∥
2
≤ C

√
log(n)

n
} ⊆ {∀j :

∥∥∥Ω̂j. − Ωj.

∥∥∥
2
≤ (

√
p)−1(C ′

√
V γ
jj − ∥Ωj.∥1)}

And so, for n large enough:

(2) = P(G1 ∩ G3)

= 1− P(Gc
1 ∪ Gc

3)

≥ 1− (P(Gc
1) + P(Gc

3))

= P(G1) + P(G3)− 1

≥ 1− n−c − exp(−c
√
log(n))

The last step uses the results established at (2.7.2).
As exp(−c

√
log(n)) ≥ exp(−c log(n)) = n−c, there exists a constant c1 that satisfies: 0 < c1 <

c and n−c + exp(−c
√
log(n)) ≤ exp(−c1

√
log(n)).

In conclusion: P(G′
2) ≥ 1− exp(−c1

√
log(n)) for n large enough.
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2.7.3. Relaxation of sub-Gaussian assumptions

This section is my contribution to the original paper as found at [2].

We already know, without any sub-Gaussian assumptions on model 2.2.7 that:

( 1nW
TW )−1 P−→ Σ−1 by the law of large numbers (if we assume that Σ <∞ and invertibility)

and consequently
∥∥( 1nWTW )−1 − Σ−1

∥∥
2

P−→ 0. With the sub-Gaussian assumption, we fur-

thermore know that (Ω̂ := ( 1nW
TW )−1) [2, p.28 D.1.Proof of lemma 3] [4, p.25 Remark 5.40

(5.25)]

P(
∥∥∥Ω̂− Σ−1

∥∥∥
2
≤ C

√
log(n)

n
) ≥ 1− n−c

with C and c positive constants (independent of n). But why is this necessary to know if
we only consider asymptotic results n → ∞ for the theorems? After all, a consequence of
convergence in probability is that:

P(
∥∥∥Ω̂− Σ−1

∥∥∥
2
≤ C

√
log(n)

n
) → 1

In my view, sub-Gaussian assumptions are not necessary for the asymptotic results if we are
willing to assume some consistency properties. As seen in section 2.4.2, it does not directly

follow from the law of large numbers that for example V̂ γ P−→ V γ . This will follow as a conse-
quence of assuming (C1) and (C2) (this will be shown below). Lemma 2.5.2 and lemma 2.5.5
are examples of how asymptotic properties will work out if just assume consistency rather
than (the stronger) sub-Gaussian properties. A potential benefit of assuming sub-Gaussian
properties, rather than only consistency properties, is that with the sub-Gaussian assumptions,
we can establish data-dependent lower bounds for the probabilities for finite n. For example:

Ω̂
P−→ Σ−1 does not give clarity on from which n forwards Ω̂ is a good estimator for Σ−1. On

the other hand, P(
∥∥∥Ω̂− Σ−1

∥∥∥
2
≤ C

√
log(n)

n ) ≥ 1− n−c, we can choose the n for which we are

’close enough’.

In the original paper, it was conjectured that one might be able to relax the sub-Gaussian
assumptions to moment assumptions on (Wi, ϵi, δi)

T to prove its main theorems [2, p.18,
above theorem 1]. It is indeed the case that by assuming all the moment conditions of theorem
2.4.4, we obtain consistency which in turn gives us the main theoretical results. I will now
show that the sub-Gaussian conditions are indeed stronger than the moment conditions:

Theorem 2.7.11. If (C1) and (C2) hold, then all the conditions for consistency (and asymp-
totic normality) as seen in the statement of theorem 2.4.4 also hold.

Proof. I will show that E(ϵiZT
i W

(k)
i W

(l)
i ) is finite for k, l = 1, ..., p. All the others follow by a

similar argument:

Take a ∈ {1, ..., pZ}. We know that |E(ϵiZ(a)
i W

(k)
i W

(l)
i )| ≤ E(|ϵiZ(a)

i W
(k)
i W

(l)
i |) =: (1). By

Hölder’s (generalised) inequality, it holds that:

(1) ≤ ∥ϵi∥4
∥∥∥Z(a)

i

∥∥∥
4

∥∥∥W (k)
i

∥∥∥
4

∥∥∥W (l)
i

∥∥∥
4
≤ C24

for some C > 0. The last step follows from theorem 2.7.3 and corollary 2.7.5 . In conclusion:

E(ϵiZT
i W

(k)
i W

(l)
i ) is finite.
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As a consequence of the above lemma, in case we assume that (Wi, ϵi, δi) all have finite 4-th
moments (coordinate-wise): all the conditions of theorem 2.4.4 will hold.

In summary, once we prove the theorems provided in the text assuming consistency properties,
rather than the sub-Gaussian assumptions, the theorems will automatically hold for the sub-
Gaussian cases in my view. These consistency assumptions are sufficient for the theoretical
results to hold and will also reduce the length of proofs (for example consider the proof done
at [2, D.1 Proof of Lemma 3 p.28] which first establishes the data-dependent lower bounds
before doing n → ∞ to establish the asymptotic properties for the set G3 defined on page 10
of [2] in Lemma 2).

2.7.4. Asymptotic justification methods

In this section, I will consider the formal asymptotic results for searching and sampling meth-
ods previously described.

I start with the searching method:

Theorem 2.7.12. [2, p.18 6.Theoretical Justification Theorem 1] Consider the reduced form
model 2.2.7. Suppose that the finite sample majority rule (condition 2.6.2), (C1) and (C2) all

hold. Let α ∈ (0, 1/4), then CIsear and ĈI
sear

as seen at method 2.5.3 and subsection 2.5.3
satisfy:

lim inf
n→∞

P(β∗ ∈ CIsear) ≥ 1− α and lim inf
n→∞

P(β∗ ∈ ĈI
sear

) ≥ 1− α

Also, there exists a positive, deterministic C > 0 that satisfies:

lim inf
n→∞

P(max(L(CIsear),L(ĈI
sear

)) ≤ C

min
j∈Ŝ∩V

|γ∗j |
√
n
) ≥ 1− α

Here, L(.) denotes the length of a set (largest element - smallest element)

Remark 2.7.13.

• Theorem 2.7.12 does not rely on being able to perfectly separate valid and invalid IVs but
instead relies on the (finite sample) majority rule. This contrasts previous work in this
area [2, p.6 Section 3].

• In case P( min
j∈Ŝ∩V

|γ∗j | ≥ K) → 1 for some K > 0, we have that the length of the searching

CI is of the parametric length 1/
√
n. As P(Ŝ ⊆ S) → 1 under the same conditions as

theorem 2.7.12, this will indeed be the case for K = min
j∈S∩V

|γ∗j |.

For the sampling CI, its asymptotic results hold for a decreased threshold level compared to
what’s introduced in section 2.5.4. I will first introduce this decreased threshold:
For α0 ∈ (0, 1/4), define:

c∗(α0) =
1

[3πλmin(Cov)]|Ŝ|
exp(−|Ŝ|3λmax(Cov)

λmin(Cov)
[Φ−1(1− α0

4|Ŝ|
)]2)
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= exp(−|Ŝ|3λmax(Cov)

λmin(Cov)
[Φ−1(1− α0

4|Ŝ|
)]2 − |Ŝ| log(3πλmin(Cov)))

See theorem 2.4.3 for the definition of Cov above. Note that c∗(α0) does not directly depend
on n. It only depends on n through Ŝ. c∗(α0) also depends in a non-trivial way on |Ŝ| due to
the Φ−1 term which doesn’t have an analytical expression. If |Ŝ| is large, c∗(α0) will be small.
I will now introduce the theoretical threshold term for the testing of π∗

j = 0 in the sampling
case:

errn(M,α0) := [
2 log(n)

c∗(α0)M
]

1
2|Ŝ| .

Here, it can be noted that errn(M,α0) → 0 in case M → ∞ and M goes faster to ∞ then
log(n).

Proposition 2.7.14. [2, p.19 6.Theoretical Justification Proposition 1][2, p.13,17 C.3. Proof
of Prop 1] Suppose (C1) and (C2) hold and α0 ∈ (0, 1/4). Then there exists a deterministic
C > 0 for which if we have that:

errn(M,α0) < min{0.1min
j∈Ŝ

{V̂ Γ
j,j , V̂

γ
j,j}Φ

−1(1− α0

4|Ŝ|
),
1

2

c∗(α0)

C

√
2|Ŝ|

}

then:

lim inf
n→∞

P( min
1≤m≤M

max
β∈U(a)

max
j∈Ŝ

|Γ̂[m]
j − Γ∗

j − β(γ̂
[m]
j − γ∗j )|√

(V̂ Γ
j,j + β2V̂ γ

j,j − 2βĈj,j)/n
≤ Cerrn(M,α0)) ≥ 1− α0

with U(a) = {β ∈ R : |β − β∗| ≤ n−a} for any a > 1
2 .

Observe that, when fixing n, errn(M,α0) → 0 for M → ∞ and the required upper-bound for
it in proposition 2.7.14 does not depend on M . Hence, it holds that (when fixing n):

lim
M→∞

P(errn(M,α0) < min{0.1min
j∈Ŝ

{V Γ
j,j , V

γ
j,j}Φ

−1(1− α0

4|Ŝ|
),
1

2

c∗(α0)

C

√
2|Ŝ|

)} = 1

And so, translating the statement proposition 2.7.14 for large n and M (where M is much
larger than log(n)) gives that, with high probability, there exists an m between 1 and M for
which:

max
β∈U(a)

max
j∈Ŝ

|Γ̂[m]
j − Γ∗

j − β(γ̂
[m]
j − γ∗j )|√

(V̂ Γ
j,j + β2V̂ γ

j,j − 2βĈj,j)/n
≤ Cerrn(M,α0)

This means that for any β ∈ U(a) (which includes β∗), we have a high chance that it ends in
CIsamp.

The following theorem specifies the asymptotic probability that β∗ ∈ CIsamp
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Theorem 2.7.15. [2, p.19 6.Theoretical Justification Theorem 2] Suppose that the conditions
of proposition 2.7.14 hold, α0 ∈ (0, 1/4) and λ as seen in subsection 2.5.4 satisfies: λ ≥
2Cerrn(M,α0)/Φ

−1(1− α
2|Ŝ| ) and λ≫ n

1
2−a with a > 1

2 . Then CIsamp satisfies:

lim inf
n→∞

P(β∗ ∈ CIsamp) ≥ 1− α0

Furthermore there exists a deterministic C > 0 that satisfies:

lim inf
n→∞

P(
L(CIsamp)√
log(|M|)

≤ C

min
j∈Ŝ∩V

|γ∗j |
√
n
) ≥ 1− α0

Here, M is defined as in section 2.5.4.

Remark 2.7.16.

• In the sampling method as seen in subsection 2.5.4 λ of the form c∗(
log(n)
M )

1
|Ŝ| is used.

The requirement of theorem 2.7.15 can be written as λ ≥ ĉ( log(n)M )
1

2|Ŝ| with ĉ = [ 2
c∗(α0)

]
1

2|Ŝ|

• From theorem 2.7.15 one can not observe that the interval CIsamp is shorter than CIsear

(with high probability for a fixed, large enough n) due to the log(|M|) term. However,
simulation studies show that it is shorter most of the time, see section 2.8.

The next two results relate to the β∗ identification through the plurality rule. First the effect
of the voting matrix and constructed V̂ is displayed:

Proposition 2.7.17. [2, p.20 6.Theoretical Justification Proposition 2] Suppose that (C1),
(C2) and the finite sample plurality rule (condition 2.6.2) hold. Let j, k ∈ Ŝ. Then:

(a) If
π∗
k

γ∗
k
=

π∗
j

γ∗
j
, then lim inf

n→∞
P(Π̂k,j = Π̂j,k = 1) = 1.

(b) If |π
∗
k

γ∗
k
− π∗

j

γ∗
j
| ≥ 2

√
log(n)Tj,k, then lim inf

n→∞
P(Π̂k,j = Π̂j,k = 0) = 1.

In addition, V̂ satisfies:

lim inf
n→∞

P(V ∩ Sstr ⊆ V̂ ⊆ I(0, 3 sep(n)) = 1

Hence, if k and j have the same invalidity level, they are likely to vote for each other for
large n. In case their invalidity level is large enough, they will vote against each other. For

0 < |π
∗
k

γ∗
k
− π∗

j

γ∗
j
| < 2

√
log(n)Tj,k (f.e. if k is valid while j is locally invalid) we have no guarantees.

Thus, V̂ will likely contain some locally invalid IVs as well (even for large n).

The last result confirms that if we apply the methods designed for the majority rule to V̂ , we
will get the same asymptotic results:

Theorem 2.7.18. [2, p.20 6.Theoretical Justification Theorem 3] Assume the finite sample
plurality rule (instead of the finite sample majority rule). Then replacing Ŝ by V̂ will yield the
same previously established results for CIsear as for CIsamp.
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

2.8. Simulation studies

For the identification of β∗ under the finite sample plurality rule we have four steps: first
construct Ŝ, then construct Ŵ , construct V̂ and then apply the searching or sampling method
to V̂ (see section 2.5 and section 2.6). The argument for using these steps is that for n
large enough the valid instrumental variables will vote for each other and so if the finite
sample plurality rule is satisfied the valid instrumental variables will be contained in Ŵ . Then
V ∩ Sstr will be the majority of V̂ , hence making applying the searching or sampling method
from section 2.5 a valid strategy to identify β∗. In this section I will analyse how different
models perform for different n’s and what type of models the different methods will struggle
with (i.e. which models need a large number of data point to identify β∗ reliably with a small
interval length and the finite sample plurality rule satisfied?). I will analyse this by considering
models (who will all satisfy the plurality rule) with varying invalidity levels and see how they
perform for different n’s in comparison and why, if applicable, the method struggles with
particular models.

2.8.1. Set-up

I will use the same data distributions as seen in the original paper [2, p.20 7.Simulation Studies].
For 1 ≤ i ≤ n, for each model in the next section we will have that the outcome model and as-

sociation model (see definition 2.2.1 and definition 2.2.2) satisfy: (XT
i , Z

T
i )

T =:Wi
iid∼ Np(0,Σ)

with Σi,j = 2−|i−j| and (ei, δi)
T iid∼ N2(0,

(
1 0.8
0.8 1

)
). We also assume thatWi and (ei, δi) are

sampled independently. Furthermore, I fix β∗ = 1, pX = pZ = 10, ϕ∗ = (0.6, 0.7, ..., 1.4, 1.5)T

and ψ∗ = (1.1, 1.2, ..., 1.9, 2)T . Observe that using all this information Yi and Di can be
computed using the definitions of the outcome and association model. It can furthermore be
observed that this data satisfies the conditions from section 2.7.2.

For the method from section 2.6, I use the corresponding R-studio implementation named
”SearchingSampling” as found at https://rdrr.io/cran/RobustIV/man/SearchingSampling.
html. Unless stated else, I have the following settings to resemble section 2.6 as much as pos-
sible: method=”OLS”, intercept=”False” and filtering=”False”. The settings ”Sampling”
(choosing searching or sampling in the second stage) and ”M” (resampling number) are varied
in this section. The unmentioned settings (such as the α value) are set to their default options.
These default options include: Robust=”True” (we don’t assume homoskedastic errors in the
model), α = 0.05, a = 0.6 (this a is from the grid size of [L,U ], see section 2.5.3) and prop=0.1
(prop refers to proportion of non-empty interval for the sampling method).
In case a model does not meet certain finite sample assumptions (like the finite sample plural-
ity rule), SearchingSampling has certain guardrails to come up with a result anyways. These
guardrails are specified below:

1. In case Ŝ = ∅, the method will continue with Ŝ = {i : 1 ≤ i ≤ pZ}, i.e. any potential
instrumental variable is relevant.

2. SearchingSampling works with the efficient implementation of the searching CI (as seen
in section 2.5.3). In case no β ∈ B satisfies the majority rule for the set V̂ , Search-
ingSampling will return the [L,U ] interval as its answer for the confidence interval of
β∗.

I will vary between 4 different models for the simulation studies:

44

https://rdrr.io/cran/RobustIV/man/SearchingSampling.html
https://rdrr.io/cran/RobustIV/man/SearchingSampling.html


2.8. Simulation studies

(S1) π∗ = (0 · 16, τ · γ0, τ · γ0,− 1
2 ,−1)

γ∗ = γ0 · 110
(S2) π∗ = (0, 0, 0, τ · γ0, τ · γ0 + 0.1, τ · γ0,− 1

2 ,−1,− 2
3 ,−

1
2 )

γ∗ = γ0 · 110
(S3) π∗ = (0, 0, 0, 0, τ · γ0, τ · γ0 + 0.1,− 1

6 ,−
1
3 ,−

1
2 ,−

2
3 )

γ∗ = γ0 · 110
(S4) π∗ = (0, 0, 0, 0, τ · γ0, τ · γ0, τ · γ0, τ · γ0 + 0.1,− 1

3 ,−
1
2 )

γ∗ = γ0 · 110
τ and γ0 will be varied. Each model is going to be evaluated on three points: firstly the coverage
(is β∗ in the resulting CI?), secondly the length of the resulting CI and thirdly whether the
finite sample plurality rule was satisfied in the V̂ step (for at least some β ∈ B). For each of
the (S1)-(S4) with corresponding n and (τ, γ0) values, 100 simulations are applied and the 100
corresponding results are averaged.

2.8.2. Fixing τ, γ0, varying n

I will first fix τ = 0.2 and γ0 = 1
2 and vary the number of data points generated for each model

(S1)-(S4). I first consider the SearchingSampling method with the searching algorithm (see
section 2.5.3) and then with the sampling algorithm (see section 2.5.4).
Searching algorithm: The results can be found in table 2.2.

Set n Cov Len Check
S1 50 0.95 47.30 1

100 0.98 2.37 1
500 1 0.61 1
1000 1 0.40 1
5000 1 0.17 1

S2 50 0.93 66.46 1
100 0.90 2.92 1
500 0.97 0.59 0.97
1000 0.89 0.33 0.99
5000 0.96 0.62 0.53

S3 50 0.95 49.77 1
100 0.97 2.61 1
500 0.95 0.68 1
1000 0.98 0.39 0.98
5000 1 0.17 1

S4 50 1 38.75 1
100 0.99 2.14 1
500 1 0.60 1
1000 1 0.36 1
5000 0.94 0.17 0.93

Table 2.2.: Results for Cov (coverage), Len (length) and Check (plurality rule) corresponding
to models (S1)-(S4) with τ = 0.2 and γ0 = 1

2 and n = 50, 100, 500, 1000, 5000 using
searching
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

(S1) and (S3) follow a largely ’predictable’ pattern of improvement across the categories as n
increases. What is noteworthy is the collapse of the Check from n = 1000 to n = 5000 for
(S2) with an increase in length and increase in coverage. A second noteworthy observation is
that (S4) starts to (slightly) undercover and have a decreased Check for n = 5000. For (S2)
with n = 5000, the most common V̂ ’s are V̂ = {1, 2, 3, 4, 5, 6, 7} and V̂ = {1, 2, 3, 4, 6} across
the 100 simulations. Observe that this first V̂ from the previous sentence does not satisfy the
majority rule we are testing, which explains a Check value around 50%. As in many cases
the finite sample plurality rule won’t be satisfied here, the algorithm will return the interval
[L,U ] as explained before. We know that it holds that: ĈI

sear
⊆ [L,U ] which explains the

increase in length from n = 1000 to n = 5000. The simulation study showed that once [L,U ]
is chosen by the algorithm, it (almost always) contains β∗ hence justifying the improvement
in the coverage level. This last observation is not surprising as we already established that
P(β∗ ∈ [L,U ]) → 1 for n→ ∞ (see section 2.5.3) and that [L,U ] is in general a larger interval.
Another thing that can be noticed is that the Cov and Check perform quite well for small
n across the board. In reality, the finite sample plurality rule is not satisfied most of the
time for these smaller n cases. For instance, (S4) with n = 1000, has as its most common V̂ :
{1, 2, 3, 4, 5, 6, 7, 8}, which does not satisfy the majority rule. However, π∗

1 to π∗
8 may be small

enough for Γ̂1 to Γ̂8 and γ̂1 to γ̂8 to be close to each other (for small n). Consequently Γ̂j−βγ̂j
will be close to each other for j = 1, ..., 8 and meet the majority rule for certain β ∈ B. The
difference between the chosen β’s also tends to be larger as seen from the interval length when
comparing it to interval lengths for larger n’s.

When we apply SearchingSampling to (S2) for n = 10000, 25000, 50000, 75000 and 100000, we
get the results as seen in table 2.3. Hence, only after n = 25000 we can see that the method
stabilizes and reaches its asymptotic properties for the Cov and Check. For n = 10000 the
most common V̂ ’s were V̂ = {1, 2, 3} and V̂ = {1, 2, 3, 7, 8, 9}. The latter V̂ does not satisfy
the majority rule which explains the still relatively low Check value. See section 2.8.3 for a
more in-depth analysis of the voting procedures that lead to these finite sample plurality rule
violations ”even” for n = 10000.

Set n Cov Len Check
S2 10 000 0.98 0.31 0.75

25 000 1 0.1 0.99
50 000 1 0.06 1
75 000 1 0.05 1
100 000 1 0.04 1

Table 2.3.: Results for Cov (coverage), Len (length) and Check (plurality rule) corresponding
to model (S2) with τ = 0.2 and γ0 = 1

2 and n = 10000, 25000, 50000, 75000, 100000

The second observation about the under coverage and decreased Check of (S4) as seen in table
2.3 at n = 5000 will be addressed in more detail in section 2.8.3.
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2.8. Simulation studies

Sampling algorithm: We will now apply the sampling method (as seen in section 2.5.4) to the

V̂ ’s which are constructed from the same datasets as in the searching section before. M = 100
is chosen here as the number of resamplings. The results can be found in table 2.4.

Set n Cov Len Check
S1 50 0.90 35.15 1

100 0.94 0.95 1
500 0.97 0.25 1
1000 0.98 0.18 1
5000 0.98 0.07 1

S2 50 0.73 81.96 1
100 0.72 1.50 0.99
500 0.83 0.33 0.98
1000 0.69 0.22 0.96
5000 0.91 0.44 0.59

S3 50 0.83 72.74 1
100 0.91 1.20 0.99
500 0.94 0.44 0.99
1000 0.91 0.22 0.98
5000 0.99 0.08 1

S4 50 0.87 66.72 1
100 0.92 0.85 1
500 0.85 0.29 1
1000 0.88 0.22 1
5000 0.95 0.09 0.94

Table 2.4.: Results for Cov (coverage), Len (length) and Check (plurality rule) corresponding
to models S1-S4 with τ = 0.2 and γ0 = 1

2 and n = 50, 100, 500, 1000, 5000 using the
sampling method.

Compared to the searching case, one can see a quite decisive improvement in the length of
the intervals as n increases. The other categories remain quite steady or even slightly worse
for smaller n’s. The latter is not surprising as the intervals are now smaller compared to the
searching case. Again, as for the searching case, (S2) has this decline in the Check category
from n = 1000 to n = 5000.
Again increasing the n’s as before leads to the conclusion that the method stabilizes at n =
25000, see table 2.5. So no improvement for (S2) compared to searching using these metrics.

Set n Cov Len Check
S2 10000 1 0.21 0.85

25000 1 0.06 1
50000 1 0.04 1
75000 1 0.03 1
100000 0.99 0.03 1

Table 2.5.: Results for Cov (coverage), Len (length) and Check (plurality rule) corresponding
to model (S2) with τ = 0.2 and γ0 = 1

2 and n = 10000, 25000, 50000, 75000, 100000
using sampling
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2. Causal inference with invalid instruments (CIII) using Searching & Sampling

Cov-(S2) γ0=0.05 0.075 0.1 0.5
τ=0.025 1 1 1 1
0.05 1 1 1 1
0.075 1 1 1 1
0.1 1 1 1 0.99
0.2 1 1 1 1
0.3 1 0.97 0.92 1
0.4 0.92 0.79 0.88 0.99
0.5 0.83 0.65 0.81 1

Table 2.7.: Results for Cov (coverage) corresponding to model (S2) with τ ∈
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with n =
25000 using sampling

Two alternative strategies to improve the performance of the method recommended by [2] are
to apply ”filtering” and to increase the M . Filtering essentially removes all the outliers from
theM samples, see [2, p.14 Remark 4] for the exact details. Applying both concepts to (S2) for
n ∈ {50, 100, 500, 1000, 5000} did not change any underlying dynamics. Though, M = 500 did
lead to quite a big improvement among smaller n’s regarding the Cov but has bigger average
interval lengths compared to M = 100. See table 2.6 for these results.

Set n Cov Len Check
S2 - filtering 50 0.73 81.94 1

100 0.73 1.53 0.99
500 0.84 0.34 0.98
1000 0.71 0.22 0.96
5000 0.92 0.44 0.59

S2- M=500 50 0.84 56.33 1
100 0.93 1.75 1
500 0.96 0.38 1
1000 0.90 0.27 0.98
5000 0.98 0.55 0.52

Table 2.6.: Results for Cov (coverage), Len (length) and Check (plurality rule) corresponding
to model (S2) with τ = 0.2 and γ0 = 1

2 and n = 10000, 25000, 50000, 75000, 100000
using sampling together with filtering and M = 500

2.8.3. Varying γ0,τ with searching

In this final part of the simulation studies section, I will fix the n and consider the results for
2 different models for different values of τ and γ0. I will consider
τ ∈ {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5}. The effect of these
different values will be investigated for (S2) and (S4), where the n is put to n = 25000 and
n = 5000 respectively. Only the searching algorithm will be considered here.

The results for (S2) can be found in tables 2.7-2.9
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Len-(S2) γ0=0.05 0.075 0.1 0.5
τ=0.025 1.23 0.64 0.47 0.09
0.05 1.24 0.62 0.46 0.09
0.075 1.23 0.64 0.46 0.08
0.1 1.01 0.62 0.45 0.08
0.2 0.99 0.69 0.42 0.09
0.3 1.31 0.67 0.85 0.09
0.4 1.49 2.23 3.63 0.08
0.5 4.15 5.25 4.77 0.09

Table 2.8.: Results for Len (length) corresponding to model (S2) with τ ∈
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with
n = 25000 using sampling

Check-(S2) γ0=0.05 0.075 0.1 0.5
τ=0.025 0.99 1 1 1
0.05 0.99 1 1 1
0.075 0.99 1 1 1
0.1 1 1 1 0.99
0.2 1 0.99 1 1
0.3 0.98 0.99 0.92 0.98
0.4 0.96 0.79 0.46 0.99
0.5 0.82 0.55 0.33 0.99

Table 2.9.: Results for Check (finite sample plurality rule) corresponding to model (S2) with
τ ∈ {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with n =
25000 using sampling

For this n, Ŝ = S across the board, so there is no difficulty here in the first stage (i.e. Ŝ
selection). What can be noted is that the length of the confidence intervals decreases as
γ0 increases. This displays that it is likely that less data is needed for larger values of γ0 to
accurately estimate it. Another observation from the table is that, unlike previous simulations,
the the lower Check cases, as seen for the rows of τ = 0.4 and τ = 0.5, don’t result into a
higher coverage rate. The simulation showed that this is (almost) purely due to the cases
where the Check was satisfied: the [L,U ] interval contained β∗ for virtually all cases for this
n. The reason that even though the Check was satisfied, the resulting interval did not contain
β∗ will be discussed next.
For this next discussion, I will pick out two cases which look similar on paper but produce
wildly different results. Two such instances are (τ, γ0) = (0.5, 0.075) and (τ, γ0) = (0.3, 0.075)
which result in the following invalidity levels:

M1: τ =
1

2
, γ0 = 0.075 : (

π∗
j

γ∗j
)1≤j≤10 = (0, 0, 0,

1

2
,
11

6
,
1

2
,−20

3
,−40

3
,−80

9
,−20

3
)

M2: τ =
3

10
, γ0 = 0.075 : (

π∗
j

γ∗j
)1≤j≤10 = (0, 0, 0,

3

10
,
11

6
,
3

10
,−20

3
,−40

3
,−80

9
,−20

3
)

For M1 above, the most common V̂ ’s were: {1, 2, 3, 4, 6, 7, 8, 9, 10}, {1, 2, 3, 4, 6} and {7, 8, 9, 10}.
For M2, by far, the most common V̂ was {1, 2, 3, 4, 6} and in rare instances it chose
{1, 2, 3, 4, 6, 7, 8, 9, 10}. The ongoing ’battle’ for both cases seems to be about the amount of
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internal voting within the group Z(1)−Z(3), Z(4), Z(6) versus Z(7)−Z(10). The only differences
between these two groups when comparing M1 with M2 with respect to invalidity levels are
for Z(4) and Z(6). Due to 0.3 being smaller than 0.5, there seems to be more interval voting
within Z(1) − Z(3), Z(4), Z(6) which leads to (a part of this group) being selected for Ŵ and
is in the following step expanded to Z(1) − Z(3), Z(4), Z(6). In the case that there is as much
internal voting within Z(1) − Z(3), Z(4), Z(6) as in Z(7) − Z(9): Z(1) − Z(10)/Z(5) is chosen as
Ŵ (or a subset of that which is then extended in the next step). For M1, it is likely that the
invalidity level of Z(4) is too different from the levels of Z(1)−Z(3) which leads to Z(7)−Z(10)

being chosen as a result of the Ŵ and V̂ step. M1 and M2 primarily show, in my view, that
even for a relatively large number of data points (n = 25000), large invalidity levels (even if
they are not particularly close) will vote for each other while smaller invalidity levels are more
selective in this sense.
An interesting final remark on M1 and M2 is on the effect of the chosen covariance matrix of
W on the above selection process. Repeating the same study above but then for Σ = Id shows
that the ’fight’ for the most interval voting is between Z(1)−Z(3) and Z(7), Z(8), Z(10). All the
most outlying invalidity levels from both groups have been removed compared to before. This
is not particularly shocking as we, in that case, have less standard error for the estimations of
the invalidity levels. The interesting part is that Z(8) is still supported by the quite different
Z(7) and Z(10). This is in-line the previously established notion that large invalidity levels
tend to vote for each other.

We lastly turn to the results for (S4) and n = 5000 for the different (τ, γ0) values, which can
be found in table 2.10-2.12

Cov-(S4) γ0=0.05 0.075 0.1 0.5
τ=0.025 0.95 1 1 1
0.05 0.97 1 1 1
0.075 0.98 1 1 1
0.1 0.99 1 1 0.97
0.2 0.93 1 1 0.96
0.3 0.97 1 1 1
0.4 0.96 1 1 1
0.5 0.92 0.99 0.99 1

Table 2.10.: Results for Cov (coverage) corresponding to model (S4) with
τ ∈ {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with
n = 5000 using sampling
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Len-(S4) γ0=0.05 0.075 0.1 0.5
τ=0.025 1.96 1.55 1.22 0.19
0.05 1.73 1.60 1.25 0.19
0.075 2.40 1.54 1.21 0.19
0.1 2.37 1.60 1.19 0.18
0.2 2.10 1.51 1.15 0.16
0.3 1.77 1.47 1.11 0.17
0.4 2.45 1.45 1.07 0.17
0.5 2.33 1.40 0.98 0.17

Table 2.11.: Results for Len (length) corresponding to model (S4) with τ ∈
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with
n = 5000 using sampling

Check-(S4) γ0=0.05 0.075 0.1 0.5
τ=0.025 0.99 1 1 1
0.05 0.99 1 1 1
0.075 0.94 1 1 1
0.1 0.96 1 1 1
0.2 0.93 1 1 0.97
0.3 0.97 1 1 1
0.4 0.93 1 1 0.99
0.5 0.94 1 1 0.98

Table 2.12.: Results for Check (finite plurality rule) corresponding to model (S4) with τ ∈
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and γ0 ∈ {0.05, 0.075, 0.1, 0.5} with n =
5000 using sampling

With the Len-table, one can see a decreasing trend as γ0 gets larger while there are no big
differences when fixing γ0 and varying τ . Related to this is the observation that γ0 = 0.05 gives
the worst results across the board, while in general τ does not seem to influence the results.
To understand why this might be happening, I will compare the case (τ, γ0) = (0.2, 0.05) with
(τ, γ0) = (0.2, 0.075). Which have the following invalidity levels:

M3: τ = 0.2, γ0 = 0.05 : (
π∗
j

γ∗j
)1≤j≤10 = (0, 0, 0, 0, 0.2, 0.2, 0.2, 2.2,−1

3
,−1

2
)

M4: τ = 0.3, γ0 = 0.075 : (
π∗
j

γ∗j
)1≤j≤10 = (0, 0, 0, 0, 0.2, 0.2, 0.2, 1

8

15
,−1

3
,−1

2
)

In this case, the main differences are due to different Ŝ’s: for M3 chosen Ŝ’s are for example
{1, 3, 5, 7, 8, 9} or {2, 5, 6, 9, 10} where the common pattern among the chosen Ŝ’s is that usually
Z(1) − Z(4) are not selected at the same time which can be seen in the corresponding Check
values. This results in V̂ ’s that don’t satisfy the majority rule like for instance {7, 8, 9} or
{2, 6, 9, 10}. For M4 Z(1) − Z(4) are, more often than for M3, selected at the same time (for
instance selecting Z(1) − Z(9)). The most common V̂ for M4 is Z(1) − Z(7), which satisfies
the majority rule. In short: for n = 5000 the models have some difficulty selecting relevant
instrumental variables for too small a value of γ0 which results into worse Check and Cov
values.
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3. Anchor Regression (AR)

3.1. General idea behind Anchor Regression

Just as in the previous section, we assume linear models. For the CIII-method, we assumed
a certain number of IVs present in our model. In case we don’t have enough information to
assume a majority/plurality rule or don’t think it’s reasonable to do so, CIII won’t be a good
option anymore to obtain an estimator for treatment effect and/or confidence interval for it.

Anchor Regression (AR) does not require prior information on the number of IVs or hid-
den confounders present. Instead of trying to obtain the exact treatment effect, AR tries to
mediate between different assumptions on the model. In particular, AR mediates between two
assumptions: the first one is that all covariates X and potential IVs Z are valid instrumental
variables and the second one is that there are no hidden confounders.

In case we would already know beforehand that either all (X,Z) are instrumental, we’ll see
that there is a method that (asymptotically) infers the treatment and that there is a different
method for the case there are no hidden confounders to obtain the treatment effect. AR com-
bines the objective functions of both of these methods above to obtain a mediated estimator
for the treatment effect. It will turn out that this mediated estimator will have properties such
as distributional robustness (how will this mediated parameter perform on perturbed/shifted
data?), replicability (if we try to obtain this parameter from a new dataset, will we get the
same parameter?) and stability (can we obtain the same parameter from perturbed as well
as unperturbed data?). This will all be further explained in this section. Anchor Regression
originates from 3.

3.2. General setting

In this subsection, the general setting for section 3 will be outlined.

Setting: Assume that the data are generated from the linear structural equation model (SEM)

as follows: (X,Y,H,A)T ∼ Ptrain satisfy (for every event):XY
H

 = B

XY
H

+ ϵ+MA

• X ∈ Rd, Y ∈ R are random and represent the covariates and outcome respectively.

• M and B are unknown deterministic matrices. M is also called the shift matrix.

• A ∈ Rq, H ∈ Rr and ϵ ∈ Rd+1+r are random and represent the anchor variables, hidden
variables and noise respectively.

• A ⊥⊥ ϵ, Etrain(X) = 0,Etrain(Y ) = 0,Etrain(ϵ) = 0, ϵ as well as A have finite second
moments and the components of ϵ are independent of each other.

• Id−B is invertible.
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3. Anchor Regression (AR)

Remark 3.2.1.

• Id−B being invertible guarantees that the distribution of (X,Y,H) under Ptrain can be
uniquely defined in terms of B, ϵ,M and A, namely:XY

H

 = (Id−B)−1(ϵ+MA)

• This model induces a directed graph G where in case Mk,l ̸= 0 an (directed) edge is drawn
from the l-th variable of A to the k-variable of (X,Y,H)T and in case Bk,l ̸= 0 an edge
is drawn from the l-th variable in (X,Y,H)T to the k-th variable in (X,Y,H)T . As,
with this construction, A is a source node A is also called the anchor (i.e. A influences
(X,H, Y ) (directly or indirectly) but is itself not influences by another random variable)
. Note that G is allowed to be cyclic in this context.

Remark 3.2.2 (Connection to setting CIII). The general setting of section 3 as defined above
also includes the general setting of section 2. Here, (X,Z)T from the CIII section should be
viewed as the anchor and D as the covariates in the sense of setting of Anchor Regression as
described before.

Under the setting as defined above, we can establish equivalent expressions for E(X|A), E(Y |A)
and E(H|A) due the models linearity in A. This linearity property was used throughout the
original paper but never explicitly mentioned (or proven therefore). I came up with the proof
myself and added a consequential property for M and B.

Lemma 3.2.3. Assume the setting of section 3.2 and that Etrain(AA
T ) is invertible. Then:

Etrain(X
T |A) = AT [Etrain(AA

T )]−1 Etrain(AX
T )

Etrain(Y |A) = AT [Etrain(AA
T )]−1 Etrain(AY )

Consequently:

MT ([(Id−B)−1]1:d,·)
T = [Etrain(AA

T )]−1 Etrain(AX
T )

MT ([(Id−B)−1]d+1,·)
T = [Etrain(AA

T )]−1 Etrain(AY )

Proof. From the model it can be observed that (using that ϵ ⊥⊥ A and Etrain(ϵ) = 0):

Etrain(X
T |A) = Etrain((A

TMT + ϵT )([(Id−B)−1]1:d,·)
T |A)

= ATMT ([(Id−B)−1]1:d,·)
T

Hence, Etrain(X
T |A) is of the form ATC, where C is a deterministic matrix. As Etrain(X

T |A)
is the orthogonal projection of XT onto the L2 space of σ(A)-measurable functions, we hence
know that: Etrain(X

T |A) = AT C̃, where:

C̃ = argmin
C∈Rq×d

Etrain(X
TX − 2ATCX +ATCCTA)

(1)
= argmin

C∈Rq×d

Etrain(X
TX − 2Tr(ATCX) + Tr(ATCCTA))

54



3.2. General setting

(2)
= argmin

C∈Rq×d

Etrain(X
TX − 2Tr(XATC) + Tr(CTAATC))

(3)
= argmin

C∈Rq×d

Etrain(X
TX)− 2Tr(Etrain(XA

T )C) + Tr(CT Etrain(AA
T )C)

=: argmin
C∈Rq×d

f(C)

∂Cf(C) = −2Etrain(XA
T )+CT (2Etrain(AA

T ))1. Hence, setting this equation to zero and see-
ing that the second derivative is positive definite we can conclude that C̃ = [Etrain(AA

T )]−1 Etrain(AX
T ).

We also know that:

AT C̃ = ATMT (([Id−B]−1)1:d,·)
T =⇒

AAT C̃ = AATMT (([Id−B]−1)1:d,·)
T =⇒

Etrain(AA
T )C̃ = Etrain(AA

T )MT (([Id−B]−1)1:d,·)
T =⇒

C̃ =MT (([Id−B]−1)1:d,·)
T

where in the last step Etrain(AA
T ) being invertible is used.

(1): For any real number x ∈ R: Tr(x) = x.
(2): Tr(B1B2) = Tr(B2B1) (where sizes of B1 and B2 are appropriate).
(3): Etrain(Tr(B1)) = Tr(Etrain(B1))

For the setting above, we assumed that Id−B is invertible. In case G is acyclic we automat-
ically have that Id−B is invertible. This property was mentioned at [9, p.6 Section 2.1] but
not proven.

Lemma 3.2.4. Let G be the graph as derived in remark 3.2.1 where we assume it to be acyclic.
Then Id−B is invertible with det(Id−B) = 1.

Proof. It suffices to show that the echelon-form of Id−B is a upper-triangular matrix with
one’s on the diagonal. As G is acyclic: Bi,i = 0 for all i, hence (Id−B)i,i = 1 for all i. Consider
the first column of (Id−B) and suppose that (Id−B)2,1 ̸= 0 Then we subtract the first row
from the second row and as (Id−B)2,1 ̸= 0 implies (Id−B)1,2 = 0 (G is acyclic), after the
row is subtracted the second diagonal element is still equal to 1. Continuing this process of
row-reducing, we end up with the echelon form which is an upper-triangular matrix with only
one’s on the diagonal: hence invertible with det(Id−B) = 1.

3.2.1. Partialling out and instrumental variable

As explained in the introduction, AR provides a trade-off between an instrumental variable
method and a so called ”partialling-out” method, who provides the causal effect under different
conditions. To make this more precise, I will now introduce the IV and partialling-out methods.
Below: PA(·) := Etrain(·|A).

Definition 3.2.5. Under the assumption of existence and uniqueness:

• Partialling out: bPA = argmin
b∈Rd

Etrain([(Id−PA)(Y −XT b)]2)

1https://en.wikipedia.org/wiki/Matrix_calculus
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3. Anchor Regression (AR)

• Instrumental variable: bIV = argmin
b∈Rd

Etrain([PA(Y −XT b)]2)

To illustrate the properties of bPA and bIV, I will show a series of examples of different models
according to section 3.2 and their resulting bPA and bIV.
For convenience, assume that X,A and Y ∈ R. In the linear structural equation setting, bPA
will be equal to the causal effect (under consistency) of X on Y in case A is a confounder to
X and Y with no other (hidden) confounders. In that sense, bPA computes the effect of other
on Y by removing the effect of A on Y and X. For example:

Y = β1X + α1A+ ϵ1

X = α2A+ ϵ2

results into:

bPA = argmin
b∈R

E([ϵ2β1 + ϵ1 − bϵ2]
2) = β1

bIV equals the causal effect if A is an instrumental variable. For example:

Y = β1X + ϵ1

X = α1A+ ϵ2

gives the result:

βIV = argmin
b∈R

E([α1β1A− bα1A]
2) = β1

I will now point out some strengths and weaknesses in both bIV and bPA through 2 examples.
Suppose that we have a confounding (hidden) variable H ∈ R but still have an instrumental
setting for A:

Y = β1X + β2H + ϵ1

X = α1H + α2A+ ϵ2

H = ϵ3

Then:

bIV = argmin
b∈R

E([A(β1α2 − α2b)]
2) = β1

bPA = argmax
b∈R

E([ϵ1 + β1ϵ2 + (β1α1 + β2)ϵ3 − bα1ϵ3 − bϵ2]
2)

Here, bPA takes β2 (effect of confounder H on Y ) into account. Hence, bIV is more robust, for
obtaining the causal effect, to confounders if the instrumental setting is achieved.
In case the instrumental setting is not achieved and there are no hidden confounders, the roles
switch. For for example:

Y = β1X + β2A+ ϵ1

X = α1A+ ϵ2

it holds that:

bPA = argmin
b∈R

E([β1ϵ2 − bϵ2]
2) = β1
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3.3. Population Anchor Regression

bIV = argmin
b∈R

E([(β1α1 + β2 − bα1]
2)

Hence β2 is taken into account for bIV.

To summarise this discussion about bIV and bPA above, the main challenge for bPA in ob-
taining the causal effect are hidden confounders while for bIV it is achieving the instrumental
variable setting. In practise, for the multivariate A = (A1, .., Aq)

T we don’t know beforehand
which coordinates are confounders and which are instrumental and what role H plays. Hence
usually a trade-off between bIV and bPA is considered. Later, it is shown that this trade-off is
connected to certain predictive stability guarantees (i.e. how well will the model perform on
particular data with a different distribution than the training data?)

3.3. Population Anchor Regression

Combining the objective functions for bIV and bPA, we obtain the objective function for Anchor
Regression:

Definition 3.3.1. In the same setting as section 3.2, the parameter of the population version
of Anchor Regression is defined as follows (assuming that it exists and is unique) for γ ≥ 0:

bγ = argmin
b

Etrain([(Id−PA)(Y −XT b)]2) + γ Etrain([PA(Y −XT b)]2)

Here, PA(·) = Etrain(·|A)

We will first consider conditions for which bγ indeed exists and is unique. Existence and
uniqueness properties were unmentioned in the original paper. Instead, existence and unique-
ness was assumed throughout the paper.
The following lemma shows that bγ is the OLS-estimator on perturbed data of (X,Y ).

Lemma 3.3.2. For γ ≥ 0: bγ = argmin
b∈Rd

Etrain([Ỹ − X̃b]2)

Where:

Ỹ = (Id−PA)Y +
√
γPAY, X̃ = (Id−PA)X

T +
√
γPAX

T

The proof is analogous to the proof shown for the estimated Anchor Regression in lemma
3.4.3. The only differences are that we now use that for any random variable Z ∈ R:
Etrain([([Id−PA])Z](PAZ)]) = 0 and Etrain(X

T b|A) = Etrain(X
T |A)b (where the conditional

expectation over a vector given some σ-algebra is defined coordinate-wise.).
The next lemma gives a sufficient condition for an existing and unique bγ .

Lemma 3.3.3. Let γ ∈ [0,∞). Using the same notation as in lemma 3.3.2, in case Etrain(X̃X̃
T )

is positive definite, then bγ exists and is unique with the form:

bγ = (Etrain(X̃
T X̃))−1 Etrain(Ỹ X̃)
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3. Anchor Regression (AR)

Proof. Define f(b) = Etrain((Ỹ − X̃b)2). Then it holds that:

f(b) = Etrain(Ỹ
2)− 2Etrain(Ỹ X̃

T ))b+ bT Etrain(X̃
T X̃)b.

Hence:

∂bf(b) = −2Etrain(Ỹ X̃
T ) + 2bT Etrain(X̃

T X̃)

So, solving ∂bf(b) = 0 gives the unique solution (as Etrain(X̃
T X̃) positive definite implies

invertibility):

b = (Etrain(X̃
T X̃))−1 Etrain(Ỹ X̃)

As:

∂2b f(b) = 2Etrain(X̃
T X̃)

which is positive definite, the b found is the unique global minimizer.

Remark 3.3.4. In case we don’t assume Etrain(X̃
T X̃) is invertible, we might get into the

situation that there are infinite minimizers. Without the condition it might still be that we
have 1 unique global minimizer and infinite local minimizers.

Due to E(X|A) being the projection of the random variable X onto a closed subspace of L2

(namely onto the L2 with respect to the sigma algebra generated by A), we have that:

Etrain([Y −XT b]2) = Etrain([(PA + (Id−PA))(Y −XT b)]2)

= Etrain([PA(Y −XT b)]2) + Etrain([(Id−PA)(Y −XT b)]2)

From this (under some assumptions), one can observe:

b1 = bOLS, b
0 = bPA (3.3.1)

I also want to define: b∞ := lim
γ→∞

bγ . The lemma below gives conditions for existence and dif-

ferent characterisations of this b∞. This was not mentioned in the original paper (as existence
and uniqueness was directly assumed when needed).

Lemma 3.3.5. Define FPA(b) := Etrain([(Id−PA)(Y −XT b)]2) and FIV(b) := Etrain([PA(Y −
XT b)]2). Then:

• In case bIV exists and is unique: b∞ = bIV.

• In case all b ∈ B ⊆ Rd minimize FIV(b) where |B| ≥ 2: b∞ = argmin
b∈B

FPA(b) (assuming

that this minimum exists and is unique).

Proof.

58



3.3. Population Anchor Regression

• ∀b ∈ Rd/{bIV} we know that: γFIV(bIV) < γFIV(b). It suffices to establish that for γ
large enough:

FPA(bIV) + γFIV(bIV) < FPA(b) + γFIV(b)

This turns out to be the case for:

FPA(bIV)− FPA(b)

FIV(b)− FIV(bIV)
< γ

which is a well-defined notion: nominator can either be any number in R and the de-
nominator is strictly greater than zero by assumption.

• By the reasoning above and the fact that γFIV(b̃) is equal for any b̃ ∈ B and for all γ > 0,
the overall minimization problem reduces to:

argmin
b∈B

FPA(b)

(which exists and is unique by assumption).

Hence by (3.3.1) and the lemma above: Anchor Regression interpolates between bPA and bOLS

for γ ∈ [0, 1] and between bOLS and bIV for γ ∈ [1,∞]. As mentioned in the introduction, with
Anchor Regression we aim for distributional robustness and distributional replicability. In the
next sections these properties will be established with respect to ”interventions” on A.

Remark 3.3.6. In lemma 3.3.3, the condition that Etrain(X̃X̃
T ) is invertible is shown to be

sufficient for a unique global minimizer to exist. This shows that for partialling out (γ = 0)
Etrain(XX

T ) − 2Etrain(X Etrain(X
T |A)) being positive definite is sufficient for existence, for

OLS (γ = 1) Etrain(XX
T ) should be positive definite and for IV (γ = ∞)

Etrain(X Etrain(X
T |A)|A).

3.3.1. Perturbations

We will now study the distribution of (X,Y,H)T under perturbations (i.e. ”interventions” on
MA) and its connection to Anchor Regression.

Definition 3.3.7. The new perturbed (”intervened on MA”) distribution with respect to v is
denoted by Pv. The distribution of the variables (X,Y,H)T under Pv is defined as the solution
of: XY

H

 = B

XY
H

+ ϵ+ v

Here, v ∈ Rd+1+q is a random vector for which v ⊥⊥ ϵ. We assume that the distribution of ϵ
is the same under Pv as under Ptrain. v is also called a shift.
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3. Anchor Regression (AR)

3.3.2. Distributional robustness under perturbations

In this section, the connection between the population version of Anchor Regression and the
worst-case risk over a class of shift perturbations will be established. This property displays
the distributional robustness property of Anchor Regression. This result was mentioned at [9,
p.11 Section 2.4 Theorem 1]. Here, I present a shorter proof than the originally proposed one
[9, p.31 Section 8.6]:

Theorem 3.3.8. Let the assumptions of 3.2 hold. Then ∀b ∈ Rd:

Etrain([(Id−PA)(Y −XT b)]2) + γ Etrain([PA(Y −XT b)]2) = sup
v∈Cγ

Ev([Y −XT b]2)

Here: Cγ = {v ∈ Rd+1+r random variable : Ev(vv
T ) ≼ γM Etrain(AA

T )MT }

Proof. Under Pv, it holds that:

Y −XT b = ([(Id−B)−1]d+1,· − bT [(Id−B)−1]1:d,·)(ϵ+ v) =: wT
b (ϵ+ v)

Similarly under Ptrain: Y −XT b = wT
b (ϵ+MA). Hence, it also holds that:

Ev([Y −XT b]2) = Ev([w
T
b (ϵ+ v)]2)

= Ev([w
T
b ϵ]

2) + Ev([w
T
b v]

2)

= Etrain([w
T
b ϵ]

2) + Ev([w
T
b v]

2)

In the second line above it was used that v ⊥⊥ ϵ and Ev(ϵ) = Etrain(ϵ) = 0 because ϵ has the
same distribution under Pv as under Ptrain. This last fact was also used in the last step.
Observe that under Ptrain: w

T
b ϵ = (Id−PA)(Y −XT b), and consequently:

Etrain([w
T
b ϵ]

2) = Etrain([(Id−PA)(Y −XT b)]2)

So it now just suffices to show that:

sup
v∈Cγ

Ev([w
T
b v]

2) = γ Etrain([PA(Y −XT b)]2)

Write: Ev([w
T
b v]

2) = wT
b Ev(vv

T )wb. For the optimal v ∈ Cγ (if existent), it has to hold
that C := γM Etrain(AA

T )MT − Ev(vv
T ) is positive semi-definite and that wT

b Ev(vv
T )wb is

maximized. Rewriting the expression of C and multiplying by wT
b and wb gives:

wT
b Ev(vv

T )wb = γwT
b Etrain(AA

T )MTwb − wT
b Cwb

As the first term on the right hand side does not depend on v and C is positive semi definite,
the left hand side is optimized in case C = 0, which corresponds to the choice of v =

√
γMA

(∼ Ptrain).
As PA(Y −XT b) = wT

b MA, we obtain that: sup
v∈Cγ

Ev([w
T
b v]

2) = γ Etrain([PA(Y −XT b)]2)

Suppose that we would only allow for deterministic perturbations v ∈ Rd+r+1 in the general
setting of this section. Then the analogous theorem would hold where now:

Cγ = {v ∈ Rd+1+r deterministic : vvT ≼ γM Etrain(AA
T )MT }

In this setting, we can make statements on other (more digestible) expressions for Cγ . The
following result was mentioned at [9, p.11 Section 2.4] but was not proven. I want to credit
my thesis supervisor Aad v/d Vaart here as he helped me construct the argument.
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Lemma 3.3.9. Suppose that we only allow for deterministic perturbations in definition 3.3.7.

• For γ > 0: Cγ ⊆ span(M)

• Under the assumptions that Etrain(AA
T ) is positive definite, M has full rank and γ → ∞:

Cγ = span(M)

Proof.

• Define C := γM Etrain(AA
T )MT . Note that since span(C) ⊆ span(M), it is sufficient to

prove:

{v : vvT ≼ C} ⊆ span(C)

As C is symmetric we can write:

C =

d+r+1∑
i=1

λiqiq
T
i

where qi are orthogonal eigenvectors that span Rd+r+1. Hence, we can also write:

v =
d+r+1∑
i=1

xiqi

which gives

vvT =

d+r+1∑
i=1

x2i qiq
T
i .

As C − vvT is positive semi-definite (by assumption), we can write:

C − vvT =

d+r+1∑
i=1

(λi − x2i )qiq
T
i = Qdiag(λj − x2j : j = 1, .., d+ r + 1)QT .

where Q.i = qi. This implies that (by assumption): λi−x2i ≥ 0 ∀i so λi = 0 =⇒ xi = 0.
Hence, we can rewrite v and C as follows:

v =

N∑
j=1

x′jq
′
j

C =

N∑
j=1

λ′jq
′
jq

′T
j

here, λ′j ̸= 0 ∀j and q′j is the eigenvector corresponding to λ′j . To finish the proof, we
would hence have to show that there exists a vector a for which: Ca = v. This equation
we can rewrite to:

N∑
j=1

λ′jq
′
j⟨q′j , a⟩ = v
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3. Anchor Regression (AR)

Which would be solved by find a for which:

⟨q′j , a⟩ =
x′j
λ′j
, j = 1, ..., N

Which is equivalent to: q
′T
1
...
q′TN

 a =

 x′1/λ
′
1

...
x′N/λ

′
N


We know that the dimension of the row space of matrix in front of a above is N (eigenvec-
tors form eigenbasis for symmetric matrices), hence the dimension of the column space
is also N . This means that the matrix equation above has a solution (as d+ r+1 ≥ N),
which finishes the proof.

• Consider Mx (an element from the column space of M). Then for a ∈ Rd+r+1:

aT (γ[M Etrain(AAT )MT ]−MxxTMT )a = aTMγ Etrain(AAT )MT a− aTMxxTMT a

As M Etrain(AA
T )MT positive definite (M has full rank and Etrain(AA

T ) is positive
definite), aTM Etrain(AA

T )MTa > 0 for a ̸= 0. Multiplying this term by γ: it will be
larger for γ, large enough than the non-negative term aTMxxTMTa.

The most important take-away from theorem 3.3.8 is that Anchor regression minimizes the
worst-case MSE (Mean Squared Error) under shift perturbations up to a given strength in
certain directions.

For different values of γ ≥ 0, we have that theorem 3.3.8 gives us that:

• For γ = 0, b0 is not guaranteed to work well on shifted data as C0 = {0}.

• For ∞ > γ > 0 we obtain predictive guarantees for bγ on both shifted and unshifted
data

• bγ for γ → ∞ works increasingly well under strong perturbations while it can increas-
ingly perform worse on unshifted or moderately shifted data. After all, we minimize
with respect to the worst case of the perturbations and for this case (under some other
assumptions) Cγ consists all possible ”interventions” on MA (see lemma 3.3.9).

For lemma 3.3.9, we assumed that v is deterministic. In case we allow for Cγ to have random
vectors, by following the same steps as in the proof (with now the coefficients xj of v being
random), we find that for any v ∈ Cγ there exists a random vector a ∈ Rq for which holds:
v = Ma a.s. It will also hold, that under the conditions of the second statement of lemma
3.3.9, {a : a

a.s.
= Mx for some x} ⊆ Cγ .
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3.3.3. Simulated examples performance bγ on perturbed model

In this section, 2 examples on how bγ for γ = 5 performs on b 7→ Ev([Y −XT b]2) (the Mean
Squared Error (MSE) with respect to Pv) for different perturbations v compared to bIV(= b∞),
bOLS(= b1) and bPA(= b0) are displayed.

Example 3.3.10. [9, p.11 Section 2.3] Let vt = (t, 0, 0)T , where t ≥ 0. Under Ptrain, we have
the following linear structural equation:

A ∼ Ptrain(A = 1) = Ptrain(A = −1) =
1

2

ϵH , ϵX , ϵY
⊥⊥∼ N (0, 1)

H = ϵH

X = A+H + ϵX

Y = X + 2H + ϵY

So, under Pvt (the intervention A = vt):

ϵH , ϵX , ϵY
⊥⊥∼ N (0, 1)

H = ϵH

X = t+H + ϵX

Y = X + 2H + ϵY

From the examples in section 3.2.1, one can directly observe that bIV = 1 (and equals the causal
effect of X on Y with consistency). Hence we obtain that ∀t ≥ 0:

Evt([Y −XbIV]
2) = Evt([2ϵH + ϵY ]

2) = 4Evt([ϵH ]2) + Evt([ϵY ]
2) = 5

The other MSE’s as a function of t are seen in figure 3.1. From this figure, it can be seen that
for large perturbation strengths, bIV out performs b5. An interesting observation is that bPA
performs very well for small interventions and performs very poorly for larger interventions
compared to the others. This is not particularly surprising in the light of section 3.2.1: setting
A = 0 gives us the setting of only confounding effects by H (on X and Y ) and no other
variables affecting X and Y (besides independent errors). Computing bPA, we obtain that:

bPA = argmax
b∈R

{(3− b)2 Etrain(ϵ
2
H) + (1− b)2 Etrain(ϵ

2
X) + Etrain(ϵ

2
Y )} = 2

From this, it follows that:

Evt([Y −XbPA]
2) = Evt([ϵY − ϵX + ϵH − t]2) = 3 + t2

b5 has, compared to bIV, bPA and bOLS a mediated performance.
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Figure 3.1.: Plot corresponding to example 3.3.10 which computes Evt([Y − Xb]2) for b =
bIV, bPA, bOLS and b5 for increasing |t|

In example 3.3.10, we were in a instrumental variable setting for A with respect to the effect
of X on Y . In case we are not in a instrumental variable setting nor a confounding A setting
(as described in section 3.2.1), we can see the strength of bγ for large perturbations. This is
shown in the next example:

Example 3.3.11. [9, p.11 Section 2.5] Consider vt = (0, 0, t)T with the following model:

A ∼ P(A = −1) = P(A = 1) =
1

2

ϵH , ϵX , ϵY
⊥⊥∼ N (0, 1)

H = A+ ϵH

X = H + ϵX

Y = X + 2H + ϵY

See figure 3.2 for the results for intervention vt as |t| increases. In figure 3.2 ”direct causal
effect” refers to bIV, however it is important to note that bIV is not equal to the causal effect
of X on Y (i.e. 1) but rather bIV = 3. As |t| grows, b5 starts to outperform the others quite
considerably.

Figure 3.2.: Plot corresponding to example 3.3.11 which computes Evt([Y − Xb]2) for b =
bIV, bPA, bOLS and b5 for increasing |t|
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3.3.4. Interpretation of Anchor Regression via quantiles

In this subsection, a quantile interpretation of Anchor Regression is provided without the use
of the linear assumptions from section 3.2. For the remainder, it is assumed that the anchors
are continuous (similar results hold for discrete random variables [9, p.32 Section 8.8]). The
linearity assumptions of section 3.2 are dropped and instead it is assumed that (X,Y,A)T is
distributed as a centered multivariate normal.

First, some notation and a recall to the definition of the quantile of E((Y − XT b)2|A) are
written below:

Definition 3.3.12. Q(α) is defined as the α-th quantile of E((Y −XT b)2|A) i.e.:

Q(α) = inf
x∈R

[α ≤ P(E([Y −XT b]2|A) ≤ x)]

The following lemma connects the quantile of E((Y −XT b)2|A) with Anchor Regression. This
result was first stated at [9, p.13 Section 2.6 Lemma 1] and I worked out the details of the
corresponding proof given at [9, p.32 Section 8.2]:

Lemma 3.3.13. Assume (X,Y,A)T is centered normally distributed under P. Then for α ∈
[0, 1]:

Q(α) = E([(Id−PA)(Y −XT b)]2) + γα E((PA(Y −XT b))2)

Here, γα is the α-th quantile of χ2
1

Proof. We can write:

E([Y −XT b]2|A) = E([Y −XT b− E(Y −XT b|A) + E(Y −XT b|A)]2|A)
= E([Y −XT b− E(Y −XT b|A)]2|A) + [E(Y −XT b|A)]2 =: (∗)

As (X,Y,A)T is a centered multivariate normal:

E(Y −XT b|A) ∼ N(0,E([E(Y −XT b|A)]2))

and: E([Y −XT b− E(Y −XT b|A)]2|A) (1)
= E([Y −XT b− E(Y −XT b|A)]2)

Hence by (∗), we obtain that the α-th quantile of E([Y −XT b]2|A) has the form:

E([Y −XT b− E(Y −XT b|A)]2) + χ2
1(α)E([E(Y −XT b|A)]2)

Here, χ2
1(α) is the α-th quantile of the chi-squared distribution with 1 degree of freedom.

(1) : As (X,Y,A)T is a centered multivariate normal, so is (Y −XT b, A)T (linear transformation
of (X,Y,A)T ). Consequently, we have that E(Y − XT b|A) = M1A for some deterministic
matrix M1 (due to it also being a centered normal) which establishes that: (Y −XT b−E(Y −
XT b|A), A)T is also multivariate normal. As:

Cov(Y −XT b− E(Y −XT b|A), A) = E([Y −XT b− E(Y −XT b|A)][A])
= E(A[Y −XT b]− E(A[Y −XT b]|A) = 0

We can conclude that:

Y −XT b− E(Y −XT b|A) ⊥⊥ A.
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3. Anchor Regression (AR)

Remark 3.3.14. This shows that Anchor Regression can be used to optimize quantiles of
E((Y −XT b)2|A) (optimize with respect to b, where α is chosen beforehand).

3.3.5. Replicability

From here on, I again assume the setting of section 3.2. We will now consider the question of
replicability. This question is as follows: Suppose that we have training and test data where
the training and test data are from different distributions. Under what conditions can bγ

perform well on the training data as well as the test data?

We will need the following property for later to ensure that the instrumental variable loss part
of the Anchor Regression equation (the ”penalty”-term) is set to zero by bIV.

Definition 3.3.15. The projectability condition is fulfilled if:

rank(Covtrain(A,X)) = rank(Covtrain(A,X)|Covtrain(A, Y ))

Here, Covtrain(A,X)|Covtrain(A, Y ) is a q × (d + 1) matrix (it is Covtrain(A,X) extended by
a column consisting of Covtrain(A, Y )

Remark 3.3.16. In imprecise language, the projectability condition states that once we have
information on the correlation (covariance) between A and X, information on the correla-
tion (covariance) between A and Y is already contained in the information we have on the
correlation (covariance) between A and X.

Now I will show that it’s indeed the case that bIV sets its objective function to 0 in case the
projectability condition holds. The next lemma is an extension from the mentioned result in
the original paper [9, p.13 Section Section 3 Lemma 2]. All the extensions followed from the
proof as found at [9, p.32 Section 8.9]. I worked out its details in the proof below:

Lemma 3.3.17. The following are equivalent:

1. min
b∈Rd

Etrain([PA(Y −XT b)]2) = 0

2. ∃b̃ ∈ Rd with Etrain(Y −XT b̃|A) a.s.
= 0

3. ∃b̃ ∈ Rd with Covtrain(A, Y ) = Covtrain(A,X)b̃

4. rank(Covtrain(A,X)) = rank(Covtrain(A,X)|Covtrain(A, Y ))

Proof. (1) ⇐⇒ (2): Follows directly.
(2) ⇐⇒ (3): By lemma 3.2.3 we have that:

Etrain(Y |A) = AT (Etrain(AA
T ))−1 Etrain(AY )

Etrain(X
T |b) = AT (Etrain(AA

T ))−1 Etrain(AX
T )

This means that we write:

Etrain(Y −XT b̃|A) = AT (Etrain(AA
T ))−1[Etrain(AY )− Etrain(AX

T )b̃] (3.3.2)

Assuming (2), we can hence write (above equation multiplied by A):

AAT (Etrain(AA
T ))−1[Etrain(AY )− Etrain(AX

T )b̃]
a.s.
= 0
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Which implies :

Etrain(AA
T )(Etrain(AA

T ))−1[Etrain(AY )− Etrain(AX
T )b̃] = 0

So that:

Etrain(AY ) = Etrain(AX
T )b̃

As, by model assumption X and Y are centered around 0, we thus obtain:

Covtrain(A,X)b̃ = Covtrain(A, Y )

(3) implies (2) follows from expression 3.3.2 and using again that Etrain(X) and Etrain(Y ) are
both zero.
(3) ⇐⇒ (4): Is a straight-forward property of the column space of a matrix.

Remark 3.3.18. This lemma also fits in the (imprecise) logic of remark 3.3.16: when we look
at Etrain(X

T |A) it should (by the projectability property) already contain all the information
about Etrain(Y |A): hence we can find a b that fits perfectly.

I will first make an analysis for the γ = ∞ case regarding replicability. For this we will assume
the following setting below.

Setting 3.3.19. We consider two different data-generating distributions. The training data
(under Ptrain) is distributed as follows:XY

H

 = B

XY
H

+ ϵ+ v

v =Mδ, δ = κA+ ξ

Here: Etrain(ξ) = 0,Etrain(X) = 0,Etrain(Y ) = 0, ξ ⊥⊥ ϵ, κ ̸= 0 and A ⊥⊥ (ϵ, ξ)
The test data (under Ptrain) is distributed as follows:X ′

Y ′

H ′

 = B

X ′

Y ′

H ′

+ ϵ′ + v′

v′ =Mδ′, δ′ = κ′A′ + ξ′

Here: Etest(ξ
′) = 0,Etest(X

′) = 0,Etest(Y
′) = 0, ξ′ ⊥⊥ ϵ′, κ′ ̸= 0 and A′ ⊥⊥ (ϵ′, ξ′)

• v′ and A′ can have arbitrarily different distributions from v and A but we do assume that
the dimensions remain the same.

• Note that B and M (deterministic) are the same in both models and we furthermore
assume:

Covtest(ϵ
′) = LCovtrain(ϵ), L > 0

Etest(ϵ
′) = Etrain(ϵ) = 0

• Assume Id−B is invertible.
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3. Anchor Regression (AR)

Remark 3.3.20. Roughly speaking, the models in the training and test data differ by arbitrary
shifts in span(M) and a scalar factor in the noise distribution as (X,Y,H)T = (Id−B)−1(ϵ+
v).

Observe that setting 3.3.19 both the training as well as the test data can be written in the
form of setting 3.2 (the general setting for Anchor Regression as described at the start). Hence
every (previous) result for setting 3.2 proven before also holds for setting 3.3.19.

In this setting we will consider the notion of replicability with respect to the training and test
data specifically for the cases γ = ∞ and γ = 0.
The next lemma will come in handy for proving a statement on replicability later.

Lemma 3.3.21. Assume the projectability condition. Then

b∞ = argmin
b∈I

Etrain([Y −XT b]2).

Here, I = {b ∈ Rd : Etrain(Y −XT b|A) a.s.
= 0}

Proof. By lemma 3.3.17, J = {b ∈ Rd : Etrain([PA(Y −XT b)]2) = 0} is non-empty. Hence, as
I = J , I is also non-empty (I defined as in the statement of the current lemma). By lemma
3.3.5 we thus obtain:

b∞ = argmin
b∈J

Etrain([(Id−PA)(Y −XT b)]2)

(1)
= argmin

b∈J
Etrain([Y −XT b]2)

= argmin
b∈I

Etrain([Y −XT b]2)

(1): ∀b ∈ J it holds that Etrain([PA(Y −XT b)]2) = 0. Hence:
Etrain([(Id−PA)(Y − XT b]2) = Etrain([(Id−PA)(Y − XT b)]2) + Etrain([PA(Y − XT b)]2) =
Etrain([Y −XT b]2)

The following result was first mentioned at [9, p.14 Section 3.1]. I present here my own proof
which is shorter than the one in the original paper [9, p.33 Section 8.10]

Theorem 3.3.22. Assume the setting as established above, Etrain(AA
T ),Etest(A

′(A′)T ) are
both invertible and the projectability condition holds (on the training data). In that case:

b∞ = b′∞

Proof. This proof will consist of 3 steps:

1. Show that the projectability property holds for the test data

2. From lemma 3.3.21, show that I = {b ∈ Rd : Etest(Y
′ −X ′T b|A′)

a.s.
= 0} =: I ′

3. In the context of lemma 3.3.21, show that we are optimizing over the same objective
function for b∞ and for b′∞.
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3.3. Population Anchor Regression

As the projectability condition holds for the training data, we know that lemma 3.3.21 holds
with I ̸= ∅. In case I show that I = I ′: I ′ ̸= ∅ which means that the projectability condition
also holds for the test data by lemma 3.3.17. To that end, showing (2) implies (1) as well.
Proof of (2): Let b ∈ I. Then following remark 3.3.20, we have:

0
a.s.
= E(Y −XT b|A) = wbκMA

Here: wb = [(Id−B)−1]d+1,· − bT [(Id−B)−1]1:d,·. From this we obtain:

wbκMA
a.s.
= 0 =⇒

wbκMAAT a.s.
= 0 =⇒

wbκM Etrain(AA
T ) = 0 ⇐⇒

wbM = 0

The last step above uses the assumption that Etrain(AA
T ) is invertible and κ ̸= 0. Hence it

holds that wbMA′ = 0, which implies that b ∈ I ′. The reverse direction is analogous.
Proof of (3): By lemma 3.3.21, it suffices to show that:

argmin
b∈I

Etrain([Y −XT b]2) = argmin
b∈I

Etest([Y
′ −X ′T b]2)

We know that:

Y −XT b = wb((ϵ+Mξ) + κMA)

Y ′ −X ′T b = wb((ϵ
′ +Mξ) + κMA′)

As wbM = 0 for any b ∈ I, we see that:

argmin
b∈I

Etrain([Y −XT b]2) = argmin
b∈I

Etrain([wbϵ]
2) = argmin

b∈I
wb Covtrain(ϵ)w

T
b

In a similar fashion:

argmin
b∈I

Etest([Y
′ −X ′T b]2) = argmin

b∈I
Etest([wbϵ

′]2) = argmin
b∈I

wbLCovtrain(ϵ)w
T
b

In the last step above, it was used that Covtest(ϵ
′) = LCovtrain(ϵ).

A similar result can be established for b0 with fewer extra restrictions on the training and test
data. This is result was not stated in the original paper and serves as an addition.

Theorem 3.3.23. Under the assumption that Covtrain(ξ) = LCovtest(ξ), (where L > 0 is the
same L as seen in the setting 3.3.19), it holds that:

b0 = b′0

Proof. As seen in the proof of theorem 3.3.22: Y −XT b = wb(ϵ+Mξ + κMA). From this it
follows that:

(Id−PA)(Y −XT b) = wb(ϵ+Mξ)
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3. Anchor Regression (AR)

And so it holds that:

Etrain([(Id−PA)(Y −XT b)]2) = wb(Covtrain(ϵ) +M Covtrain(ξ)M
T )

Above, it was used that Etrain(ϵ) = 0, Etrain(ξ) and ϵ ⊥⊥ ξ. Similarly:

Etest([(Id−PA′)(Y ′ −X ′T b)]2) = wb(Covtest(ϵ
′) +M Covtest(ξ

′)MT )

= Lwb(Covtrain(ϵ) +M Covtrain(ξ)M
T )

As L > 0, we can conclude (using the definition of b0): b0 = b′0

3.3.6. Anchor stability

For the remainder of this subsection, we use setting 3.2 and assume existence and uniqueness
for bγ , γ ∈ [0,∞]. See section 3.2 for sufficient conditions.

We will now consider the notion of anchor stability. This is defined below

Definition 3.3.24. We will call the data (X,Y,A,H)T (under Ptrain) anchor stable in case
b∞ = bγ ∀γ ∈ [0,∞)

Anchor stability will give us certain predictive stability and replicability properties. More
specifically, it will turn out that, under certain conditions, we can use perturbed data instead
of the training data to compute bγ .

The first result shows that we have anchor stability if the two endpoints of (bγ)γ∈[0,∞] agree.
This result (including proof) originates from [9, p.15 Section 3.2][9, p.34 Section 8.11]

Proposition 3.3.25. If b0 = b∞, then b0 = bγ ∀γ ∈ (0,∞).

Proof. Define f(b) = Etrain([PA(Y − XT b)]2) and g(b) = Etrain([(Id−PA)(Y − XT b)]2). By
the assumption of b∞ existing and b∞ = b0 we have that:

∂bf(b
∞) = ∂bf(b

0) = ∂bg(b
0) = ∂bg(b

∞) = 0

The objective function for Anchor Regression for γ ≥ 0 can be expressed as:

g(b) + γf(b)

hence, it has a zero derivative at b0. As we assumed that bγ is the unique global minimum
and the objective function is convex in b: bγ = b0.

In the case we have anchor stability, and some other conditions such as projectability, it turns
out that optimizing over the training data (OLS-estimator) is equivalent to optimizing over
certain shifted data. This next result can also be found at [9, p.15 Section 3.2]. Below, I
present my own proof.

Theorem 3.3.26. (Anchor stability implies predictive stability and replicability)
Assume the setting as described in section 3.2, the projectability condition and Etrain(AA

T ) is
invertible. If b0 = b∞, then for all random vectors v for which it holds that: v = Mx (where
x is random) and Ev(ϵv

T ) = 0, we have that:
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1. (Predictive stability) Etrain((Y −XT b0)2) = Ev((Y −XT b0)2)

2. (Replicability) b0 = argmin
b∈Rd

Ev((Y −XT b)2)

Proof. From the projectability condition and Etrain(AA
T ) being invertible, we have in pre-

vious results established that from lemma 3.3.21, it follows that: wb∞M = 0 (where wb =
[(Id−B)−1]d+1,· − bT [(Id−B)−1]1:d,·). Hence, as b0 = b∞: wb0M = 0. It follows that under
Ptrain:

Y −XT b0 = wb0(ϵ+MA) = wb0ϵ

and that under Ptest:

Y −XT b0 = wb0(ϵ+ v) = wb0(ϵ+Mx) = wb0ϵ

As, by assumption, ϵ has the same distribution under Ptrain as under Ptest, which establishes
the (Predictive stability) result.
The (Replicability) result can be seen as follows:

Ev([Y −XT b]2) = Ev([wb(ϵ+ v)]2)

= Ev([wbϵ]
2) + Ev([wbv]

2)

≥ Ev([wbϵ]
2)

= Etrain([(Id−PA)(Y −XT b)]2)

≥ Etrain([(Id−PA)(Y −XT b0)]2)

= Etrain([wb0ϵ]
2)

= Ev([wb0ϵ]
2)

= Ev([wb0(ϵ+ v)]2) = Ev([Y −XT b0]2)

Above, it was used that ϵ ⊥⊥ v, Etrain(ϵ) = 0, ϵ has the same distribution under Ptrain as under
Pv, (Id−PA)(Y −XT b) = wbϵ and that wb0v = 0 (as v =Mx).

Remark 3.3.27.

• Part 1 of theorem 3.3.26 implies that the risk of bγ is constant across various Pv distri-
butions as long as v ∈ span(M). This can be seen as a form of predictive stability across
a range of distributions.

• Part 2 of theorem 3.3.26 together with proposition 3.3.25 imply that running a regression
on perturbed data sets in the population case returns the same coefficients as the ones
computed in the training data as long as v lies in span(M). This can be seen as a form
of replicability.

• At surface level, the first part is not enough to prove the second part. There could namely
still exist b in Rd where the risk over the perturbed data is unequal to the risk over the
training data and could hence outperform bγ . By the second statement it doesn’t turn out
to be the case.

We will now consider a special case of setting 3.2 where we can establish that the anchor
coefficients are equal to the causal effect per unit intervention on X in case we have anchor
stability. For this, the following linear structural equation model is considered:
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Setting 3.3.28.

X1 = ϵ1 +

q∑
j=1

M1,jAj

X2 = B2,1X1 + ϵ2 +

q∑
j=1

M2,jAj

...

Xd =

d−1∑
j=1

Bd,iXi + ϵd +

q∑
j=1

Md,jAj

Y =

d∑
j=1

Bd+1,iXi + ϵd+1

Here, Bi,j and Mi,j are constants in R, A := (A1, ..., Aq)
T ∈ Rq, ϵ := (ϵ1, ..., ϵd+1)

T ∈ Rd+1

with A ⊥⊥ ϵ and ϵi ⊥⊥ ϵj ∀i ̸= j. E(ϵ) = 0, Y ∈ R. Also assume consistency, i.e. Y = Y X .

Corollary 3.3.29. Under the setting as established above, for x := (x1, ..., xd):

b0 = b∞ =⇒ b0 = b∞ = ∂x E(Y x)

Proof. As the setting assumed for this corollary is a special case of the one seen in section
3.2, all previously established theorems also hold for this setting. Hence by proposition 3.3.25,
b0 = b∞ gives that b0 = b∞ = b1 where b1 is equivalent to the population OLS estimator of
the effect of X on Y . Hence it suffices to show: b1 = ∂x E(Y x).
For the current setting it holds that:

Y x =

d∑
i=1

Bd+1,ixi + ϵd+1

which gives:

E(Y x) =

d∑
i=1

Bd+1,ixi =: xTβ

Hence: ∂x E(Y x) = β. From lemma 3.3.3 we know that:

b1 = [E(XXT )]−1 E(XY )

= [E(XXT )]−1 E(X(XTβ + ϵd+1))

= β + [E(XXT )]−1 E(Xϵd+1)

(1)
= β

Hence in conclusion: ∂x E(Y x) = β = b1.
(1): Using repeated substitution of Xi in Xi+1, one can see that X can be written as a function
of A plus a function of (ϵ1, ..., ϵd). Hence by independence: [E(Xϵd+1)]i = E(Xiϵd+1) = 0.
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3.4. Anchor regression estimators

Thus far we have only considered the population version of Anchor Regression. In this section,
we will consider a finite sample estimator for bγ .

Notation: In this section we will consider n observations iid with respect to (X,Y,A)T =
(X(1), ..., X(d), Y, A(1), ..., A(q))T . X : n × d, Y : n × 1, A : n × q denote the n observations
stored as rows. We will also assume in this section that bγ is exists and is unique (as established
in lemma 3.3.3) and that A is continuous unless indicated otherwise.

We will use the following estimator for bγ (where I assume that d < n):

Definition 3.4.1. b̂γ = argmin
b∈Rd

(∥(Id−ΠA)(Y −Xb)∥22 + γ ∥ΠA(Y −Xb)∥22).

Here, ΠA = Pcol(A)

Remark 3.4.2. When pre-processing the data, it is recommended to center X and Y as we
have previously assumed X and Y to have mean 0 in the population version.

It turns out that one can solve for b̂γ via a substitution and then application of OLS. This
result was first mentioned at [9, p.15 Section 4.1] without proof.

Lemma 3.4.3. Define X̃ := (Id−ΠA)X+
√
γΠAX and Ỹ := (Id−ΠA)Y+

√
γΠAY. Then:

b̂γ = argmin
b∈Rd

∥∥∥Ỹ − X̃b
∥∥∥2
2

Proof.
∥(Id−ΠA)(Y −Xb)∥22 = ∥(Id−ΠA)Y − (Id−ΠA)Xb∥22 =

∥(Id−ΠA)Y +
√
γΠAY −√

γΠAY − [(Id−ΠA)X+
√
γΠAX−√

γΠAXb]∥22 =∥∥∥Ỹ − X̃b+
√
γΠA(Xb−Y)

∥∥∥2
2
=

Hence:

b̂γ = argmin
b∈Rd

(
∥∥∥Ỹ − X̃b−√

γΠA(Y −Xb)
∥∥∥2
2
+ ∥√γΠA(Y −Xb)∥22)

Using that ∥·∥22 = ⟨·, ·⟩ :

b̂γ = argmin
b∈Rd

(
∥∥∥Ỹ − X̃b

∥∥∥2
2
− 2⟨Ỹ − X̃b,

√
γΠA(Y −Xb)⟩+ 2 ∥√γΠA(Y −Xb)∥22)

Now using that for any x: ⟨ΠAx, (Id−ΠA)x⟩ = 0 together with the Ỹ and X̃ expressed in
terms of Y and X respectively, we obtain the identity as stated in the lemma.

Remark 3.4.4.

• In this sense Anchor Regression can be seen as a two-step procedure:

1. Generate perturbed data (X̃, Ỹ )T given perturbation strength γ.
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2. Run OLS on perturbed data set

As for population Anchor Regression, we can impose conditions as to ensure existence and
uniqueness of b̂γ . The proof of the lemma below is analogous to the one seen in lemma 3.3.3.

Lemma 3.4.5. In case X̃T X̃ (as defined in lemma 3.4.3) is positive definite: b̂γ exists and is
unique with

b̂γ = (X̃T X̃)−1X̃T Ỹ

The following lemma shows consistency for b̂γ . This result was first mentioned at [9, p.16
Section 4.1] but was not proven there.

Lemma 3.4.6. Assume that Etrain(AA
T ) is invertible. Then, for any γ ∈ [0,∞):

b̂γ
P−→ bγ

Proof. As (Xi, Yi, Ai)
T iid∼ (X,Y,A)T for 1 ≤ i ≤ n by assumption and X, Y and A all have

finite second moments as a consequence of setting 3.2, the law of large numbers gives:

1

n

n∑
i=1

XiYi
P−→ Etrain(XiYi)

1

n

n∑
i=1

XiA
T
i

P−→ Etrain(XiA
T
i )

1

n

n∑
i=1

AiA
T
i

P−→ Etrain(AiA
T
i )

1

n

n∑
i=1

AiYi
P−→ Etrain(AiYi)

1

n

n∑
i=1

XiX
T
i

P−→ Etrain(XiX
T
i )

And as

X̃T Ỹ =

n∑
i=1

XiYi − 2(1−√
γ)(

n∑
i=1

XiA
T
i )(

n∑
i=1

AiA
T
i )

−1
n∑

i=1

AiYi

+ (1−√
γ)2(

n∑
i=1

XiA
T
i )(

n∑
i=1

AiA
T
i )

−1
n∑

i=1

AiYi

It holds that (using continuous mapping):

1

n
X̃T Ỹ

P−→ Etrain(XiYi)− 2(1−√
γ)Etrain(XiA

T
i )(Etrain(AiA

T
i ))

−1 Etrain(AiYi)

+ (1−√
γ)2 Etrain(XiA

T
i )(Etrain(AiA

T
i ))

−1 Etrain(AiYi)
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Similarly, we can establish:

1

n
X̃T X̃

P−→ Etrain(XiX
T
i )− 2(1−√

γ)Etrain(XiA
T
i )(Etrain(AiA

T
i ))

−1 Etrain(AiX
T
i )

+ (1−√
γ)2 Etrain(XiA

T
i )(Etrain(AiA

T
i ))

−1 Etrain(AiX
T
i )

By lemma 3.2.3 and then lemma 3.3.3 it follows that: b̂γ
P−→ bγ

Remark 3.4.7. The original paper warns that confounding effects may result in no asymptotic
normality properties for b̂γ [9, p.16 Section 4.1].

Remark 3.4.8. In case d > n (high-dimensional Anchor Regression), b̂γ will not have an

unique solution. To obtain an unique solution and obtain a solution for b̂γ that sets coefficients
to 0 if they have too little impact on the data, one might add a LASSO penalty term to the
objective function as seen in definition 3.4.1.

3.5. Finite sample bound for discrete anchors

In the previous section we assumed that A is a continuous random variable. We will now
consider Anchor Regression in case A is discrete and can only take a finite number of values.
Let A be the levels of the A (the possible values A can take). Assume that all levels are given
equal weight (i.e. ∀a1, a2 ∈ A : P(A = a1) = P(A = a2) =

1
|A| ). We still assume setting 3.2.

Lemma 3.5.1. The objective function for the discrete population Anchor Regression can be
expressed as follows:

R(b) := Etrain([Y −XT b− Etrain(Y −XT |A)]2) + γ

|A|
∑
a∈A

(Etrain(Y −XT b|A = a))2

Proof. For the expression of R(b) only the final term differs from the population Anchor
Regression expression as defined in 3.3.1.

Etrain([PA(Y −XT b)]2) =

Etrain([E(Y −XT b|A)]2) =∑
a∈A

(Etrain(Y −XT b|A = a))2P(A = a) =

1

|A|
∑
a∈A

(Etrain(Y −XT b|A = a))2

Here, the last equality is due to the fact that all levels are given equal weight.

Remark 3.5.2.

• It still holds that by theorem 3.3.8: R(b) = sup
v∈Cγ

Ev((Y − XT b)2), where now Cγ can

be reduced to v’s with a discrete and uniform distribution [9, p.17 Section 4.3][9, p.32
Section 8.8].

• Anchor regression for A discrete has a quantiles interpretation under again some nor-
mality assumptions [9, p.32 Section 8.8].
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3. Anchor Regression (AR)

It will turn out that we have theoretical guarantees for the performance of the Anchor Regres-
sion estimator in comparison to the population Anchor Regression coefficients counterpart.
For this, I will first introduce some notation and then define the Anchor Regression estimator
for the A being discrete case.
Notation:

• na=number of observations at level A = a

• nmin=min
a∈A

na

• X(a) : Rna × d denotes the observations at level A = a (in rows).

• X̄(a) = 1
na

na∑
i=0

X
(a)
i

• Y(a) and Ȳ(a) are similarly defined as above.

With this notation we can define the Anchor Regression estimator, b̂γ,λ, as follows:2:

argmin
b∈Rd

(
1

|A|
∑
a∈A

1

na

na∑
i=1

(Y
(a)
i − Ȳ

(a)
i − (X

(a)
i. − X̄

(a)
i )b)2 +

γ

|A|
∑
a∈A

(Ȳ(a) − X̄(a)b)2 + 2λ ∥b∥1

We will now define the anchor compatibility constant. In the next theorem, it will become
clear that it plays the role of a threshold for which, if met with large enough probability, we
can (with a certain probability) guarantee properties for the Anchor Regression estimator in
connection with population Anchor Regression.

Definition 3.5.3. Let S ⊂ {1, .., d} and L > 0. Then the anchor compatibility constant with
respect to S and L is defined as:

ϕ̂2(L, S) = min
∥bS∥1=1,∥b−S∥1≤L

(|S|
∑
a∈A

1

na

na∑
i=1

((X
(a)
i. − X̄(a))b)2 +

γ

|A|
∑
a∈A

(X̄(a)b)2)

For the following result we allow for d = dn > n → ∞, A = An, M = Mn and bγ = bγn (i.e.
they can have dependence on n, and so the model distribution from section 3.2 now depends
on n).

Theorem 3.5.4. [9, p.18 Section 4.3 Theorem 5](Connection finite sample estimator with
population Anchor Regression)
Assume the setting from section 3.2 and ϵ is centered multivariate normal. Moreover, assume

that (X
(a)
i,. ,Y

(a)
i )

iid∼ (X,Y )|A = a under Ptrain. Fix γ > 0 and assume that ϕ̂2(8, S∗) ≥ C
for some constant C > 0 with probability 1 − δ and that S∗ ̸= ∅. Choose t ≥ 0 such that:

|S∗|2 t+log(d)+log(|A|)
nmin

≤ C ′ for some C ′ > 0. Then for λ ≥ C
√

t+log(d)+log(|A))
nmin

with probability

exceeding 1− 10 exp(−t)− δ:,

R(b̂γ,λ) ≤ R(bγ) + C ′λ2|S∗|

Here, R(b) is as defined in lemma 3.5.1 (i.e. the population Anchor Regression objective
function). Furthermore, the constants C,C ′ <∞ depend on: max

k∈{1,..d}
Vartrain(X

(k)),

Vartrain(Y −XT bγ),max
a∈A

∥Etrain(X|A = a)∥∞, max
a∈A

|Etrain(Y −XT bγ |A = a) and γ.

2Note that we are now in the case that A is discrete. As we can’t work with ΠA (which was initially defined
as the projection onto the column space of A), instead of this projection, we average over all observations
on a certain level A = a.
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3.5. Finite sample bound for discrete anchors

Remark 3.5.5.

• The 8 has no theoretical value: just chosen to simplify result [9, p.17 Section 4.3 below
Theorem 5].

• For γ = 1, bλ,γ coincides with LASSO. The result of theorem 3.5.4 is comparable to
established risk bounds for LASSO (under similar settings) in case n

nmin
is bounded [9,

p.17 Section 4.3 below Theorem 5].
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4. Two Stage Curvature Identification
(TSCI)

4.1. General idea behind TSCI

We again reconsider the very first example from this paper (see figure 1.1) where we now ig-

nore the effect of X (magnesium) for simplicity. As in section 2, we have (Yi, Z
(1)
i , Z

(2)
i , Di)

n
i=1

sampled and assume a linear effect of the treatment. This time, we don’t want to assume a
linear model in (Z(1), Z(2)) and/or a certain number of present valid IVs. It turns out that if
we have prior information about the functional forms of the effect of (Z(1), Z(2) on Y and D
(so the blue and red arrows respectively), we can still infer the treatment effect exactly (in an
asymptotic sense).

For instance, suppose Yi and Di satisfy the following expressions:

Yi = βDi + Z
(2)
i + ei =: βDi + g1(Z

(1)
i , Z

(2)
i ) + ei E(ei|Z(1)

i , Z
(2)
i ) = 0

Di = (Z
(1)
i )5 + Z

(2)
i + δi =: f1(Z

(1)
i , Z

(2)
i ) + δi E(δi|Z(1)

i , Z
(2)
i ) = 0

which implies that:

E(Yi|Z(1)
i , Z

(2)
i ) = β((Z

(1)
i )5 + Z

(2)
i ) + Z

(2)
i (4.1.1)

Suppose that we already had a suspicion beforehand (through for example expert knowledge)

that the effect of (Z
(1)
i , Z

(2)
i ) on Y (i.e. the effect of sugar and genetics on various cancer types),

which are represented by the blue arrows in figure 1.1, might be a second degree polynomial
or lower i.e. g1(z1, z2) ∈ span(z1, z2, z1z2, z

2
1 , z

2
2) =: span(V) and that f1(z1, z2) is a higher

degree polynomial than degree 2. Then by applying the projection onto span⊥(V)to (4.1.1)
gives us:

P⊥
V E(Yi|Z(1)

i , Z
(2)
i ) = βP⊥

V f1(Z
(1), Z(2))

which uses that P⊥
V g1 = 0. As f1 /∈ span(V), it follows from (4.1.1) that:

β =
⟨P⊥

V E(Yi|Z(1)
i , Z

(2)
i ),P⊥

V f1(Z
(1)
i , Z

(2)
i )⟩

⟨P⊥
V f1(Z

(1)
i , Z

(2)
i ),P⊥

V f1(Z
(1)
i , Z

(2)
i )⟩

Above, we can estimate f1 by applying a machine learning (ML) method to the treatment
equation.

Observe that the argument above would also have worked if we had suspected a first de-
gree polynomial or lower for g1. For finite sample estimations of the above process, there is
a faster convergence (in probability) to β the more precise our suspicions are. Hence, along
with an identification method for β, there is also a test introduced that provides us with the
basis (which is a subset of our initial set provided by the user) that gives the most efficient
estimation of g1. This test will, by design, also give us an idea about which Z(j)’s could be
instrumental variables, by means of showing us which Z(j)’s are in the most efficient basis for
g1.
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4. Two Stage Curvature Identification (TSCI)

4.2. General setting

Consider (Yi, Di, Zi, Xi)
iid∼ (Y,D,Z,X) for i = 1, ..., n where:

• Yi ∈ R , outcome

• Di ∈ R, treatment

• Zi = (Z
(j)
i )j=1,...,pZ

∈ RpZ , (possibly invalid) instrumental variables.

• Xi = (X
(j)
i )j=1,...,pX

∈ RpX , measured covariates.

(ei, δi)
n
i=1 (the errors) are sampled independently.

Definition 4.2.1.

• The outcome model is defined as follows:

Yi = βDi + g(Zi, Xi) + ϵi, E(ϵi|Xi, Zi) = 0

β ∈ R is the constant treatment effect on the outcome.

• Define h(Zi, Xi) = g(Zi, Xi) − ϕ(Xi) with ϕ(Xi) = E(g(Zi, Xi)|Xi). h is called the
violation function.

Observe that we can write the outcome model in terms of the violation function:

Yi = βDi + h(Zi, Xi) + ϕ(Xi) + ϵi, E(ϵi|Xi, Zi) = 0.

Definition 4.2.2. The treatment model is defined as follows:

Di = f(Zi, Xi) + δi, E(δi|Zi, Xi) = 0

Remark 4.2.3. Note that the treatment model is not a condition on the treatment as Di can
always be written as: Di = E(Di|Zi, Xi) + (Di − E(Di|Zi, Xi)).

Definition 4.2.4. In this context, Z(j) is called an instrumental variable if it is present in
the expression of f(Zi, Xi) and not present in the expression of g(Zi, Xi).

Remark 4.2.5. When all Z(j) for j = 1, ..., pZ are valid IVs (i.e. f(Z,X) depends on Z(j)

while g(Z,X) does not depend on Z(j) for all j = 1, ..., pZ), we have that h(Z,X) = 0 i.e. no
violation.

Substituting the treatment model into the outcome model gives us the reduced form model as
can be seen below:

Lemma 4.2.6 (Reduced form model).
Yi = F (Zi, Xi) + ϵi + βδi, F (Zi, Xi) = βf(Zi, Xi) + g(Zi, Xi)
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4.3. Identification

4.3. Identification

The TSCI-method will not rely on which Z(j)′s are valid instrumental variables but rather
on the difference in functional form between g(z, x) and f(z, x). This will be explained in the
next bit.
Let (Ω,F ,P) be a probability space and the domain for (Y,D,Z,X) which satisfies the outcome
and treatment model. Define the Hilbert Space S := {w(Z,X) : w : Ω → R under some conditions}
with (real) inner product ⟨·, ·⟩ : Ω × Ω → R. Define V := span(v1(Z,X), ..., vL(Z,X)) ⊆ S.
Assume that g(Z,X) ∈ V while f ∈ S\V. From the outcome model it follows that:

F (X,Z) = E(Y |X,Z) = βf(X,Z) + g(X,Z).

Let PV be the projection matrix onto V. Then it holds that:1

P⊥
V E(Y |X,Z) = βP⊥

V f(X,Z)

As f /∈ V:
∥∥∥P⊥

V f(X,Z)
∥∥∥ > 0, it holds that:

β =
⟨P⊥

VF (X,Z),P
⊥
V f(X,Z)⟩

⟨P⊥
V f(X,Z),P

⊥
V f(X,Z)⟩

Observe that in case that f ∈ V as well as g ∈ V, β becomes unidentifiable as we would
now need information on the exact form of g. Hence, this identification method relies on the
difference in functional form between f and g.

4.4. TSCI with random forests

A key component of TSCI is to estimate f(Xi, Zi) = E(Di|Xi, Zi). In this section, we will
estimate the conditional mean function using random forests. Other approaches to estimate
conditional mean function will be referenced in section 4.5.

We will first split the data {(Xi, Zi, Di)}1≤i≤n into two disjoint sets A1 and A2 with |A1| =
n1 = ⌊ 2n

3 ⌋ and |A2| = n − n1. Wlog write: A1 = {1, ..., n1}. To estimate f(z, x) for the
prediction of the conditional mean, we first use data from A2 to construct partitions of the
covariate space RpX+pZ using random forests. Using these partitions, we will make a prediction
of f(z, x) based on the data-points from A1 in the same partition as (z, x) by taking averages
over the corresponding Di observations in that partition. This is specified below:

Method 4.4.1. [5, p.9 Section 3.1][Estimation f(z, x), (z, x) ∈ RpZ+pX using random forests]

1. Take S bootstrap samples of A2.

2. To each bootstrap sample 1,...,S fit a tree (to predict D based on (X,Z) using the A2 data
through f.e. taking averages over all observations in each subspace of the partition) for
which for each leaf only m covariates (out of (X(1), ..., X(pX), Z(1), ..., Z(pZ))) at random
are considered for the split. Denote the randomness by which each tree is grown by θs.

3. Each decision tree can be viewed as a partition of the whole covariate space RpX+pZ into
disjoint subspaces {Rs

l }1≤l≤Js
. For any given (zT , xT )T ∈ RpX+pZ and given a tree s

there exists an unique leaf l(z, x, θs) with 1 ≤ l(z, x, θs) ≤ Js such that Rs
l(z,x,θs)

contains

(zT , xT )T .

1P⊥
V = Id−PV
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4. Two Stage Curvature Identification (TSCI)

4. For each decision tree, we predict f(z, x) by:

f̂θs(z, x) =
∑
j∈A1

wj(z, x, θs)Dj ,

wj(z, x, θs) =
1((ZT

j , X
T
j )

T ∈ Rs
l(x,z,θs)

)∑
k∈A1

1((ZT
k , X

T
k )

T ∈ Rs
l(x,z,θs)

)

5. For the whole random forest, we obtain:

f̂(z, x) =
1

S

S∑
s=1

f̂θs(z, x) =:
∑
j∈A1

wj(z, x)Dj

wj(z, x) :=
1

S

S∑
s=1

wj(z, x, θs)

Remark 4.4.2. [6, p.587-603 Section 15 Random Forests] The random forests can, for ex-
ample, use recursive binary splitting for tree building. The decorrelation of the trees will lead
to an overall lower variance than when fitting a single tree or using out-of-bag sample. One
downside to using random forests is that they will not perform well if the number of relevant
covariates is small, hence the user should be aware of that. One potential way to select only
relevant covariates is through a variable importance measure.

The weights (wj(z, x))j∈A1
as defined in method 4.4.1 have the following properties:

Lemma 4.4.3. {wj(z, x)}j∈A1
satisfies:

• wj(z, x) ≥ 0

•
∑

j∈A1

wj(z, x) = 1

Proof.

• Clear from the definition.

• ∑
j∈A1

wj(z, x) =
∑
j∈A1

1

S

S∑
s=1

wj(z, x, θs)

=
1

S

S∑
s=1

∑
j∈A1

wj(z, x, θs)

=
1

S

S∑
s=1

∑
j∈A1

1((ZT
j , X

T
j )

T ∈ Rl(z,x,θs))∑
j∈A1

1((ZT
j , X

T
j )

T ∈ Rl(z,x,θs))

= 1
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4.4. TSCI with random forests

Remark 4.4.4. The second bullet point from lemma 4.4.3 suggests that if Dj = 1 for all
j ∈ A1, the random forests will always predict 1 no matter the input of (z, x).

The TSCI method will try to predict β using f̂ . First, some new notation is introduced for
f,D and f̂ evaluated on A1 :

Notation 4.4.5.

• fA1
:= (f(Z1, X1), ..., f(Zn1

, Xn1
))T , DA1

= (D1, ..., Dn1
)T

• f̂A1
= ΩDA1

, Ωi,j = wj(Zi, Xi) with i, j ∈ A1.

The second main objective of this method, after identifying β, is to give an invalidity test
for the potential instrumental variables (IVs) Z. The test will provide an answer as to which
Z = (Z(1), ..., Z(pZ))T are (potentially) instrumental. To be able to do this, we will now split
g, from the outcome model, into g = h + ϕ (as defined in section 4.2). Then we proceed to
estimate h and ϕ separately as follows:

ϕ(Xi) = ϕ(X
(1)
i , ..., X

(pX)
i ) is estimated by a linear combination of (b1,1(X

(1)
i ), ..., b1,m1

(X
(1)
i ),

b2,1(X
(2)
i ), ..., bpX ,mpX

(X
(pX)
i ))T =:WT

i (the functions bi,j are chosen by the user).

Next, h(Zi, Xi) is estimated by a linear combination of (v1(Zi, Xi), ..., vL(Zi, Xi))
T =: Vi

(where again the v′is are chosen by the user). Hence, we end up with the following uncom-
putable (as g is generally unknown) least squares estimate of g: ĝ(Zi, Xi) = V T

i π +WT
i ψ for

i = 1, ..., n.

Based on the above approximation of g, the following definitions are introduced:

Definition 4.4.6.

• The violation matrix V ∈ Rn×L is defined as:

V =

V
T
1
...
V T
n


• The approximation error vector R(V ) = (R1(V ), ..., Rn(V ))T ∈ Rn is defined as:

Ri(V ) = g(Zi, Xi)− V T
i π −WT

i ψ, 1 ≤ i ≤ n.

With the above basis approximation for g, we can write the outcome model as:

Yi = Diβ + V T
i π +WT

i ψ +Ri + ϵi

Multiplying both sides with the transformation matrix Ω with data in A1 we obtain:

ŶA1 := f̂A1β + V̂A1π + ŴA1ψ + R̂A1 + ϵ̂A1 (4.4.1)

Here, ŶA1 = ΩYA1 etc.
As π and ψ can in no way be derived from the data, like in the identification section, we want
to remove them by multiplying with a projection matrix and then isolate β. This procedure
is shown in the following lemma, which was not mentioned in the original paper [5]:
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4. Two Stage Curvature Identification (TSCI)

Lemma 4.4.7. Assuming that f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1
̸= 0 2:

β =
Ŷ T
A1

P⊥
V̂A1

,ŴA1

f̂A1

f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1

−
f̂TA1

P⊥
V̂A1

,ŴA1

R̂A1

f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1

−
f̂TA1

P⊥
V̂A1

,ŴA1

ϵ̂A1

f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1

Proof. Multiply equation 4.4.1 by f̂TP⊥
V̂A1

,ŴA1

and use that for a ∈ R: a = aT to get the

order of the first term of the right-hand side of β as alleged in the lemma.

Observe that from the expression of β in lemma 4.4.7 only the first term from the right of
the ”=” is computable from the data. In the identification section, β was identified through

two main assumptions: first that g ∈ span(V) and secondly that
∥∥∥P⊥

V f
∥∥∥ > 0. Compared

to the expression of β in section 4.3, we now have R̂A1
and ϵ̂A1

involved. In an asymptotic
sense, we want to get rid of those terms to have consistency for the computable term. Observe

that f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1
=
∥∥∥P⊥

V̂A1
,ŴA1

f̂A1

∥∥∥2 . Building on the idea that f shouldn’t be well-

estimated by V, a natural translation would be to require that:
∥∥∥P⊥

V̂ ,Ŵ
f̂A1

∥∥∥2 → ∞. This

would also have to mean that R̂′
A1
s growth rate should be slower than that of f̂TA1

P⊥
V̂ ,Ŵ

f̂A1
.

In the perfect case that
∥∥∥R̂A1

∥∥∥ = 0 (∀n ≥ 1) this is satisfied. Observe that it not required

that span(Vi,Wi) suddenly perfectly estimates g(Zi, Xi) for n→ ∞ (which would also be not
viable as the amount of basis functions is generally fixed and does not increase with n), but
rather is requires that the approximation is well enough. These ideas are used for the first
estimator of β defined below:

Definition 4.4.8.

β̂init(V ) :=
Ŷ T
A1

P⊥
V̂A1

,ŴA1

f̂A1

f̂TA1
P⊥
V̂A1

,ŴA1

f̂A1

:=
Y T
A1

MRF(V )DA1

DT
A1

MRF(V )DA1

MRF(V ) := ΩTP⊥
V̂A1

,ŴA1

Ω

As seen from lemma 4.4.7, β̂init suffers from a bias for finite n. In order to correct for that
error for finite n the following bias-corrected estimator is introduced:

Definition 4.4.9.

β̂RF(V ) = β̂init(V )−

n1∑
i=1

[MRF(V )]i,iδ̂i[ϵ̂(V )]i

DT
A1

MRF(V )DA1

with δ̂A1
= DA1

− f̂A1
, ϵ̂(V ) = P⊥

VA1
,WA1

[YA1
−DA1

β̂init(V )].

Then the following estimated confidence interval and standard error can be constructed for
β̂RF(V ):

2Here, PA,B(·) := Pcol(A,B)(·)
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4.4. TSCI with random forests

Definition 4.4.10.
CIRF(V ) = (β̂RF(V )− zα/2ŜE(V ), β̂RF(V ) + zα/2ŜE(V ))

ŜE(V ) =

√
n1∑
i=1

[ϵ̂(V )]2i [MRF(V )DA1 ]
2
i

DT
A1

MRF(V )DA1

ϵ̂(V ) = P⊥
VA1

,WA1
[YA1

−DA1
β̂init(V )]

See section 4.6.1 for further technical details on β̂RF and the corresponding confidence inter-
val.

4.4.1. Generalized IV strength

As mentioned in the previous section, the identification of β relies upon that
∥∥∥P⊥

V f
∥∥∥ > 0 i.e.

there is enough difference in the functional form of f and g. In the formal theorems (see section

4.6.1) that provide properties such as asymptotic normality and consistency for β̂RF(V ), this

notion of
∥∥∥P⊥

V f
∥∥∥ > 0 is translated to fTA1

MRF(V )fA1 → ∞ (for n → ∞ a.s.), which is

equivalent to requiring that
∥∥∥P⊥

V̂A1
,ŴA1

ΩfA1

∥∥∥ → ∞ (for n → ∞ a.s.). Another imposed

assumption is that fTA1
MRF(V )fA1 ≫ Tr(MRF(V )) (see section 4.6.1 for further details on

these conditions). To check whether these two conditions are reasonable to assume for our
data and choice of V , a test is introduced which checks whether a standardized estimator of
fTA1

MRF(V )fA1
is big enough. If the test is passed, we say that the generalised IV strength is

strong enough. This notion is introduced below:

Definition 4.4.11. Given a set of basis functions V, the generalised IV strength is defined as:

µ(V ) =
fTA1

MRF(V )fA1∑
i∈A1

Var(δi|Xi, Zi)(|A1|)−1

Remark 4.4.12. If Var(δi|Xi, Zi) = σ2
δ , then:

µ(V ) =
fTA1

MRF(V )fA1

σ2
δ

Here, we see directly that if fTA1
MRF(V )fA1

→ ∞ that then µ(V ) → ∞.

As hinted at before, a sufficiently large µ(V ) will give us hope that β̂(V ) and CIRF(V ) are
good estimators for β. As f is generally unknown beforehand, we’ll have to estimate µ(V ):

Definition 4.4.13.

µ̂(V ) =
DT

A1
MRF(V )DA1∥∥∥DA1 − f̂A1

∥∥∥2 /n1
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4. Two Stage Curvature Identification (TSCI)

Now I will describe a test to check whether µ̂(V ) is large enough. Of course, for the theoretical
properties the restrictions are put on µ(V ) and not on µ̂(V ). Hence, this test will also try to
capture the error between µ(V ) and µ̂(V ) by using that DA1

= fA1
+ δA1

with:

DT
A1

MRF(V )DA1 − fTA1
MRF(V )fA1 = 2fTA1

MRF(V )δA1 + δTA1
MRF(V )δA1 .

Method 4.4.14 (Testing IV strength V). [5, p.13,14 Section 3.3]

• For 1 ≤ i ≤ n1, we define δ̂i = Di − f̂i and compute δ̃i = δ̂i − µ̄δ, where µ̄δ = 1
n1

n1∑
i=1

δ̂i.

Hence, we are considering a centered error.

• For 1 ≤ l ≤ L, we generate δ
[l]
i = U

[l]
i δ̃i, for 1 ≤ i ≤ n1, where {U [l]

i }1≤i≤n1 are iid
standard normal.

• For 1 ≤ l ≤ L, we compute:

S[l] =
2f̂TA1

MRF(V )δ[l] + (δ[l])T MRF(V )δ[l]∥∥∥DA1
− f̂A1

∥∥∥2 /n1
and we use Sα0

(V ) to denote the upper α0 empirical quantile of {|S[l]|}1≤l≤L
3

• We conduct the generalized IV strength test:

µ̂(V ) ≥ max(2Tr(MRF(V )), 10) + Sα0(V )

Here, Sα0
captures the estimation error of µ̂(V )− µ(V )

In case V passes the test, we have hope for that there is enough difference in functional form
between f and g to obtain consistency (among other properties) for our estimators.

4.4.2. Data dependent selection of V and IV validity test

Suppose that we have a model with, in theory, enough functional difference between f and g to
obtain a good estimator of β from the data (with the methods described before). We need some
prior knowledge beforehand on the basis functions V. There are two important considerations
when choosing V: firstly, if we choose V with too little basis functions the difference between
the estimated g from the basis and f might be large enough, but the difference between g and
the estimated ĝ will be too big. Secondly, if we choose V too large, the difference between g
and the estimated g will be small enough but now f is likely to be well-estimated by the basis
functions in V. To strike a balance between these two considerations, we’ll consider a nested
set of basis functions:

{0} =: V0 ⊂ ... ⊂ VQ, Q ∈ N>0

and devise a data dependent way to choose the best among {Vq}0≤q≤Q.

To choose between these different bases we first want to know up until which m ∈ N f is not
well-approximated by the basis Vm. Qmax, as defined below, represents the largest basis for
which this still holds.

3z is the upper α0 empirical quantile of Z1, ..., ZN if: z = min{z ∈ R : 1
N

N∑
i=1

1(Zi ≤ z) ≥ 1− α0}
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4.4. TSCI with random forests

Definition 4.4.15. Qmax = argmax
q≥0

{µ̂(Vq) ≥ max(2Tr(MRF(Vq)), 10) + Sα0(Vq)}

With Qmax, we shall now choose among {Vq}0≤q≤Qmax . Though Qmax will give the smallest
R vector (i.e. difference between ĝ and g, see definition 4.4.6) that also has enough difference
between f and ĝ, it could be that a smaller 0 ≤ q ≤ Qmax will also give a small enough R vector
and even more difference between f and ĝ. That choice Vq would lead to less conservative CI’s
for finite n [5, p.26 5.Theoretical Justification Remark 4].

The main idea behind the test for choosing among {Vq}0≤q≤Qmax
is that if both Vq and Vq′

are good basis choices, then for n→ ∞:

β̂RF(Vq)− β̂RF(Vq′)√
H(Vq, Vq′)

d−→ N (0, 1)

where H(Vq, Vq′) represent a variance term (see section 4.6.1 for more technical details). The
test is described below:

Method 4.4.16 (Choosing among {Vq}0≤q≤Qmax
). [5, p.15,16 Section 3.4]

1. For any given 0 ≤ q ≤ Qmax, compute:

β̂RF(Vq) = β̂init(Vq)−

n1∑
i=1

[MRF(Vq)]iiδ̂i[ϵ̂(VQmax
)]i

DT
A1

MRF(Vq)DA1

2. We estimate the (asymptotic) variance of β̂RF(Vq)− β̂RF(Vq′) by:

Ĥ(Vq, Vq′) =

n1∑
i=1

[ϵ̂(VQmax
)]2i [MRF(Vq′)DA1

]2i

[DT
A1

MRF(Vq′)DA1 ]
2

+

n1∑
i=1

[ϵ̂(VQmax
)]2i [MRF(Vq)DA1

]2i

[DT
A1

MRF(Vq)DA1
]2

− 2

n1∑
i=1

[ϵ̂(VQmax)]
2
i [MRF(Vq′)DA1 ]i[MRF(Vq)DA1 ]i

[DT
A1

MRF(Vq′)DA1
][DT

A1
MRF(Vq)DA1

]

and define the following data-dependent test statistic for choosing between Vq and Vq′ :

CRF (Vq, Vq′) = 1(|β̂RF(Vq)− β̂RF(Vq′)|/
√
Ĥ(Vq, Vq′) ≥ zα0)

where zα0
is the α0 upper quantile of the standard normal (i.e. P (N(0, 1) ≤ zα0

) = 1−α0)

3. For Qmax ≥ 2, we generalize pairwise comparisons to the following:

CRF (Vq) = 1( max
q+1≤q′≤Qmax

[|β̂RF(Vq)− β̂RF(Vq′)|/
√
Ĥ(Vq, Vq′)] ≥ ϕ̂)

where ϕ̂ > 0 is to be decided. We define CRF (VQmax
) = 0.
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4. Two Stage Curvature Identification (TSCI)

4. We choose the smallest q for which holds that CRF (Vq) = 0.

Besides choosing among {Vq}0≤q≤Qmax , it also tests which Z = (Z(1), ..., Z(pZ))T are (poten-
tially) valid instrumental variables depending on our choice of (Vi)1≤i≤Qmax . This is done as
follows: in case V0 comes out as the best basis choice, it would mean that the violation function
h is best approximated by 0, so no violation function. Then we conclude that all Z(j) (involved
in (Vi)1≤i≤Qmax

) are (candidate) valid instrumental variables.

We now consider a choice for ϕ̂ > 0 as seen in method 4.4.16. For this, we use a bootstrap
sample of β̂RF(Vq)− β̂RF(Vq′). Here we use that if ∥Rq∥ and ∥Rq′∥ are small it holds that (see
section 4.6.1 for the technical details):

β̂RF(Vq′)− β̂RF(Vq) ≈
fTA1

MRF(Vq′)ϵA1

fTA1
MRF(Vq′)fA1

−
fTA1

MRF(Vq)ϵA1

fTA1
MRF(Vq)fA1

Method 4.4.17 (Choosing ϕ̂ > 0 using bootstrap). [5, p.15,16 Section 3.4]

1. For 1 ≤ i ≤ n1, we compute ϵ̃i = [ϵ̂(VQmax
)]i − µ̄ϵ, µ̄ϵ =

1
n1

n1∑
i=1

[ϵ̂(VQmax
)]i

2. For 1 ≤ l ≤ L, we generate: ϵ
[l]
i = U

[l]
i ϵ̃i with for 1 ≤ i ≤ n1, {U [l]

i }1≤i≤n1

iid∼ N(0, 1).

3. For 1 ≤ l ≤ L, we compute:

T [l] = max
0≤q<q′≤Qmax

1√
Ĥ(Vq, Vq′)

[
DT

A1
MRF(Vq′)ϵ

[l]

DT
A1

MRF(Vq′)DA1

−
DT

A1
MRF(Vq)ϵ

[l]

DT
A1

MRF(Vq)DA1

]

4. We set ϕ̂ = ϕ̂(α0) to be the α0 upper empirical quantile of {|T [l]|}1≤l≤L

We can now establish a choice of 0 ≤ q ≤ Qmax using method 4.4.16 and method 4.4.17:

Definition 4.4.18. q̂c = argmin
0≤q≤Qmax

{CRF (Vq) = 0}

Observe that as, per definition, CRF (VQmax
) = 0, q̂c always exists.

Remark 4.4.19. The c of q̂c stands for comparison, as we choose among the best violation
matrices.

For small sample sizes, a more robust choice for the best violation matrix is proposed (in order
to counter that certain too small violations can’t be detected): q̂r = min(q̂c + 1, Qmax)
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4.5. TSCI with general machine learning methods

4.4.3. Finite-sample adjustment of uncertainty from data splitting

Even though the asymptotic theory is valid for any random sample splitting, the constructed
point estimators and confidence intervals do vary with different sample splittings in finite
samples. In the following: a confidence interval that aggregates multiple intervals due to
different sample splittings is introduced.

Definition 4.4.20. (Aggregate multiple splittings)

• Consider S random sample splittings and for the s-th splitting, we use β̂s and ŜE
s

• Define the median estimators:

β̂Med := Med{β̂s}1≤s≤S

ŜE
Med

:= Med{
√

(ŜE
s
)2 + (β̂s − β̂Med)2}1≤s≤S

• We then obtain the following median CI:

(β̂Med − zα/2ŜE
Med

, β̂Med + zα/2ŜE
Med

)

Observe that aggregation is especially important when dealing with imbalanced data. The
implementation of the TSCI method (with random forests) provided by the original paper
(https://github.com/zijguo/TSCI-Replication) does not do aggregation.

4.5. TSCI with general machine learning methods

In the previous section, we have seen that random forests were used to construct an estimator
for f . We can generalize this to general machine learning methods as follows:

1. First, we write the first stage machine learning estimator of fA1 as a linear transformation

of DA1
: f̂A1

= ΩDA1
, where Ω ∈ Rn1×n1 is allowed to be stochastic.

2. We define a generalized transform matrix:

M(V ) = ΩTP⊥
V̂A1

,ŴA1

Ω, V̂A1
= ΩVA1

, ŴA1
= ΩWA1

3. Compared to TSCI with random forests: replace MRF(·) with M(·)

4. Notation wise: β̂RF(V ) becomes β̂(V ).

Alternatives to random forests include boosting, deep neural networks and basis approxima-
tion, see [5, p.20,21 4.TSCI with general machine learning methods].

89

https://github.com/zijguo/TSCI-Replication


4. Two Stage Curvature Identification (TSCI)

4.6. Theoretical justification

4.6.1. Main results

We start with a first set of required conditions on the models for the proofs. For the rest of
this section, if there is an inequality or convergence of a stochastic identity, without the mode
specified, it will be used in a sure sense (so it will hold for any event). This can be extended
to almost sure conditions which would use analogous arguments.

Define O := {(Xi, Zi)
n
i=1, (Di)i∈A2}. For the remainder of this section, assume that (Xi, Zi)

iid∼
(X,Z) for i = 1, ..., n and (ϵi, δi) are independent for i = 1, ..., n with (Xi, Zi) ⊥⊥ (ϵj , δj) for
i ̸= j. The data satisfies model 4.2.1.

Conditions 4.6.1 (R1).

1. For i = 1, ..., n, conditioning on Zi, Xi: ϵi and δi are sub-Gaussian random random
variables i.e.:

sup
Xi,Zi

max(P(|ϵi| > t|Zi, Xi),P(|δi| > t|Zi, Xi)) ≤ exp(−K2t2/2)

Here, sup
Xi,Zi

denotes the sup taken over the support of the density of (Xi, Zi) and K > 0

is deterministic.

2. The random vectors {Ψi, fi}1≤i≤n1 with Ψi := (V T
i ,W

T
i )T and fi := f(Zi, Xi) satisfy

∀n1 ∈ N:

a) λmin(
n1∑
i=1

(ΨiΨ
T
i )/n1) ≥ c

b)

∥∥∥∥ n1∑
i=1

Ψifi/n1

∥∥∥∥
2

≤ C

c) max
1≤i≤n1

{|fi|, ∥Ψi∥2} ≤ C
√

log(n1)

d)

∥∥∥∥ n1∑
i=1

Ψi[R(V )]i/n1

∥∥∥∥
2

≤ C ∥R(V )∥∞

3. For Ω from f̂A1
= ΩDA1

we have: λmax(Ω) ≤ C

Here, c, C > 0 are deterministic constants which don’t depend on n, pX , pZ .

A few observations regarding (R1):

• Observe that we assume that ϵi and δi are sub-Gaussian conditioning on Zi and Xi which
is different (and weaker) from what is assumed in section 2.7.2. This is due to the fact that
for the TSCI model we assume a weaker condition on the errors, namely: E(ϵi|Xi, Zi) =
E(δi|Xi, Zi) = 0 which implies E(ϵiXi) = E(δiXi) = 0,E(ϵiZi) = E(δiZi) = 0, the
conditions as seen in model 2.2.1.

• Secondly, note that condition 2a implies that E(ΨiΨ
T
i ) is positive definite (if it is finite)

see lemma 4.6.2 below.
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4.6. Theoretical justification

• Conditions 2b and 2c denote assumptions on the basis functions of the approximation
of g and f . 2c shows that both f and the basis functions should have a growth rate
with order less or equal to

√
log(n1) when evaluated on the data. This does put some

restrictions on the form of f , vi and bi,j . For instance, f(z, x) = exp(zx) would not be
allowed if (Zi, Xi) takes too large values and n1 is not large enough to compensate for
that.

• 2d indicates that 1
n1

n1∑
i=1

Ψi[R(V )]i its growth rate is dominated by the error between g

and its basis approximation.

• It will be shown that for Random Forests: λmax(ΩRF) ≤ 1 (see section 4.6.2), hence
satisfying the condition (R1) (3).

• Observe that all conditions of (R1) (2a) and (2c) are put on the dataset A1 with no
mention of A2. Ω is the only stochastic expression in of (R1) (2a) to (2c) that depends
on A2. So putting restrictions on Ω, we are indirectly putting restrictions on A2.

Lemma 4.6.2. Assume that E(ΨiΨ
T
i ) <∞ and ∀n1 ∈ N:

P(λmin(
1

n1

n1∑
i=1

ΨiΨ
T
i ) ≥ c > 0) = 1 (4.6.1)

Then E(ΨiΨ
T
i ) is positive definite.

Proof. Let x ∈ RL+m1+...+mpX be a vector of length 1. Then by lemma 2.7.8 together with
assumption (4.6.1):

P(xT (
1

n1

n1∑
i=1

ΨiΨ
T
i )x ≥ c) = 1

Consider two cases:

1. xT E(ΨiΨ
T
i )x = c. In that case we can conclude that E(ΨiΨ

T
i ) is positive definite.

2. In case xT E(ΨiΨ
T
i )x ̸= c, c is a continuity point of R ∋ a 7→ P(xT E(ΨiΨ

T
i )x ≤ a) and

so by the law of large numbers:

P(xT (
1

n1

n1∑
i=1

ΨiΨ
T
i )x ≥ c)

n→∞→ P(xT E(ΨiΨ
T
i )x ≥ c) = 1(xT E(ΨiΨ

T
i )x ≥ c)

As P(xT ( 1
n1

n1∑
i=1

ΨiΨ
T
i )x ≥ c) = 1 for any n1, we hence obtain that: 1(xT E(ΨiΨ

T
i )x ≥

c) = 1. In conclusion: E(ΨiΨ
T
i ) is positive definite.

The second set of conditions is imposed on the generalised IV strength (i.e. µ(V )). Throughout
the next text, the asymptotics are taken n→ ∞.

Conditions 4.6.3 (R2). fTA1
M(V )fA1

satisfies:

• fTA1
M(V )fA1

→ ∞
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4. Two Stage Curvature Identification (TSCI)

• fTA1
M(V )fA1 ≫ Tr(M(V ))

Remark 4.6.4. Per definition, in case c ≤ Var(δi|Xi, Zi) ≤ C for some c, C > 0: µ(V ) is
proportional to fTA1

M(V )fA1
.

The following proposition establishes that β̂init is consistent if (R1) and (R2) are satisfied
together with the assumption that {Ri(V )}1≤i≤n are small enough:

Proposition 4.6.5. [2, p.22 Section 5 Proposition 2](Consistency βinit(V ))

Suppose that (R1) and (R2) are satisfied together with fTA1
M(V )fA1

≫ ∥RA1
∥22. Then:

β̂init(V )
P→ β

Remark 4.6.6. The condition fTA1
M(V )fA1 ≫ ∥RA1∥

2
2 will be satisfied in case g is well-

approximated enough by the column space of (V,W ). In the extreme case, R(V ) = 0, this
condition is automatically satisfied.

Next, we will consider the steps the original paper takes to prove proposition 4.6.5. To prove
proposition 4.6.5, lemma 4.4.7 in combination with the fact that DA1

= fA1
+ δA1

is used to
obtain the following decomposition:

β̂init(V )− β =
ϵTA1

M(V )δA1
+ ϵTA1

M(V )fA1
+RT

A1
M(V )DA1

DT
A1

M(V )DA1

(4.6.2)

Next, we want to ”take control” over the terms in the numerator above and connect them to
condition (R2) to be able to prove consistency for n→ ∞. How this is done, will be displayed
in the following part. It will make use of a lemma about the concentration of quadratic forms
of sub-Gaussian random vectors, which is stated below:

Lemma 4.6.7. (Hanson-Wright inequality)[7, p.2 Theorem 1.1]
Let ϵ ∈ Rn be a sub-Gaussian vector with independent components ϵi with mean 0. Then there
exists a constant K > 0 such that for any A : n× n deterministic matrix it holds that ∀t ≥ 0:

P(|ϵTAϵ− E(ϵTAϵ)| > t) ≤ 2 exp(−cmin(
t2

K4 ∥A∥2F
,

t

K2 ∥A∥22
))

Here, c does not depend on ϵ, A or t while K does depend on ϵ (but not on A or t).

As a consequence, we also have a concentration inequality for ϵTAδ. This result was established
in the original paper [5, p.35 Section 9 below Lemma 1] and I worked out the details of the
provided proof.

Corollary 4.6.8. Let ϵ ∈ Rn and δ ∈ Rn both be sub-Gaussian vectors with independent
components and mean 0 (as in lemma 4.6.7). Then ∃K ′ > 0 (constant) such that ∀A : n× n
deterministic and t ≥ 0:

P(|ϵTAδ − E(ϵTAδ)| > t) ≤ 6 exp(−cmin(
t2

K ′4 ∥A∥2F
,

t

K ′2 ∥A∥22
))

Here, c does not depend on ϵ, δ, A or t while K ′ does depend on ϵ and δ (but not on A or t)
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4.6. Theoretical justification

Proof. Observe that ϵTAδ = 1
2 [(ϵ + δ)TA(ϵ + δ) − ϵTAϵ − δTAδ]. Consequently, it also holds

that P(|ϵTAδ − E(ϵTAδ)| > t) can be written as:

P(|(ϵ+ δ)TA(ϵ+ δ)− ϵTAϵ− δTAδ − E[(ϵ+ δ)TA(ϵ+ δ)− ϵTAϵ− δTAδ]| > 2t) ≤

P(|(ϵ+ δ)TA(ϵ+ δ)− E[(ϵ+ δ)TA(ϵ+ δ)]|+ |ϵTAϵ− E(ϵTAϵ)|+ |δTAδ − E(δTAδ)| > 2t)

This last expression can in turn be upper-bounded by:

P(|(ϵ + δ)
T
A(ϵ + δ) − E[(ϵ + δ)

T
A(ϵ + δ)]| >

2

3
t ∨ |ϵTAϵ − E(ϵTAϵ)| >

2

3
t ∨ |δTAδ − E(δTAδ)| >

2

3
t)

which, in turn, can be upper-bounded by:

P(|(ϵ+ δ)TA(ϵ+ δ)− E[(ϵ+ δ)TA(ϵ+ δ)]| >
2

3
t) + P(|ϵTAϵ− E(ϵTAϵ)| >

2

3
t) + P(|δTAδ − E(δTAδ)| >

2

3
t)

Which, as a last step, can be upper-bounded by:

6 exp(−cmin(
t2

K ′4 ∥A∥2F
,

t

K ′2 ∥A∥22
))

In the last step the Hanson-Wright inequality was applied to the 3 terms and then upper-
bounded.

Remark 4.6.9. For the current setting where ϵA1
and δA1

are conditional sub-Gaussian ran-
dom errors, the corollary above can be extended to A and t being non-deterministic but O-
measurable. In that case:

P(|ϵTAδ − E(ϵTAδ|O)| > t|O) ≤ 6 exp(−cmin(
t2

K ′4 ∥A∥2F
,

t

K ′2 ∥A∥22
))

The following lemma and subsequent corollary show how the first term from the error decom-
position 4.6.2 can be controlled. The other terms follow a similar reasoning. Here, I worked
out the proof as seen at [5, p.35 9.Proofs Lemma 2]

Lemma 4.6.10. Assuming condition (R1), for t0 > 0 (which is allowed to be an O-measurable
random variable):

P(|ϵTA1
M(V )δA1

− Tr(M(V )Λ)| ≤ t0K
2
√

Tr([M(V )]2)|O) ≥ 1− 6 exp(−cmin(t20, t0))

where Λ = E(δA1
ϵTA1

|XA1
, ZA1

)

Proof. Observe that:

E(ϵTA1
M(V )δA1

|O) = E(Tr(ϵTA1
M(V )δA1

)|O) = E(Tr(M(V )δA1
ϵTA1

)|O) = Tr(M(V )Λ)

where it is used that Tr(AB) = Tr(BA), M(V ) is O− measurable and
(ϵi, δi) ⊥⊥ (Xj , Zj) for i ̸= j. Let t0 > 0. Then apply corollary 4.6.8 (in combination with
remark 4.6.9) to ϵA1

and δA1
with A = M(V ) and t = t0K

2 ∥M(V )∥F to see that:

P(|ϵTA1
M(V )δA1 − Tr(M(V )Λ)| ≥ t0K

2 ∥M(V )∥F |O) ≤ 6 exp(−cmin(t20, t0
∥M(V )∥F
∥M(V )∥2

))

≤ 6 exp(−cmin(t0, t
2
0))

where in the last step it is used that ∥M(V )∥F ≥ ∥M(V )∥2
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4. Two Stage Curvature Identification (TSCI)

Consider Λ = E(δA1ϵ
T
A1

|XA1 , ZA1). By independence of (ϵi, δi) and (Xj , Zj) for i ̸= j, it holds
that for i ̸= j : Λij = E(δiϵj |XA1

, ZA1
) = Eδi(δi E(ϵj |Xj , Zj , δi)) = Eδi(δi E(ϵj |Xj , Zj)) = 0.

It also holds that by the sub-Gaussian assumption of (R1), we have that [5, p.35 5.Theoretical
Justification]:

max
1≤j≤n1

|Λjj | ≤ K2 (4.6.3)

Using all the tools above we can now prove that the first error term from (4.6.2) will vanish
in probability assuming (R1) and (R2). This will be established in the next corollary, which
was not mentioned in the original paper. I came up with the proof myself.

Corollary 4.6.11. Under condition (R1) and (R2) together with
DT

A1
M(V )DA1

fT
A1

M(V )fA1

P−→ 1 and

Tr([M(V )]2) ≤ Tr([M(V )]), it holds that:

ϵTA1
M(V )δA1

DT
A1

M(V )DA1

P−→ 0

Proof. From lemma 4.6.10, together with the assumption of this corollary on Tr([M(V )]2),
it follows that the established upper bound can be written as (using the reverse triangle
inequality):

|ϵTA1
M(V )δA1

| ≤ t0K
2
√
Tr([M(V )]2) + |Tr(M(V )Λ)|

≤ t0K
2
√
Tr(M(V )) + |Tr(M(V )Λ)|

with probability larger than 1−exp(−cmin(t20, t0)) conditional onO. Choosing t0 = (fTA1
M(V )fA1)

1/4

and using (4.6.3), one yields:

P(|
ϵTA1

M(V )δA1

fT
A1

M(V )fA1

| ≤
K2

√
Tr(M(V ))

(fT
A1

M(V )fA1
)3/4

+
K2|Tr(M(V ))|
fT
A1

M(V )fA1

|O) ≥ 1− 6 exp(−cmin(t0, t
2
0))

Hence by condition (R2):
ϵTA1

M(V )δA1

fT
A1

M(V )fA1

|O P−→ 0 and consequently (application of Dominated

Convergence Theorem):
ϵTA1

M(V )δA1

fT
A1

M(V )fA1

P−→ 0. The argument is finished by applying Slutsky’s

lemma using that
DT

A1
M(V )DA1

fT
A1

M(V )fA1

P−→ 1.

Remark 4.6.12.

• Tr([M(V )]2) ≤ Tr([M(V )]) holds for Random Forests, see section 4.6.2.

•
DT

A1
M(V )DA1

fT
A1

M(V )fA1

P−→ 1 will hold under (R1) and (R2) (see [5, p.36 9.1 Proof of Proposition

2]). So it’s not necessary to make it an extra assumption.

Observe that for proving consistency, no explicit assumption is made on how good of an esti-
mator f̂A1

should be of fA1
. Where fA1

is linked to f̂A1
in the proof of corollary 4.6.11 is in

the result that assuming (R1) and (R2), it holds that
DT

A1
M(V )DA1

fT
A1

M(V )fA1

P−→ 1, which is equivalent
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to:

∥∥∥P⊥
V̂ ,Ŵ

f̂A1

∥∥∥2∥∥∥P⊥
V̂ ,Ŵ

ΩfA1

∥∥∥2

P−→ 1. Hence, the comparison here is with respect to lengths which should be

the same asymptotically speaking. This would be satisfied if f̂A1 is a ”good enough” fit for
ΩfA1 .

The next condition is used to establish asymptotic normality of β̂(V ) (as seen in definition
4.4.9):

Conditions 4.6.13 (R2-Inf). fTA1
[M(V )]2fA1 satisfies:

• fTA1
[M(V )]2fA1 → ∞

• fTA1
[M(V )]2fA1

≫ ∥R(V )∥22
• fTA1

[M(V )]2fA1
≫ max{(Tr(M(V )))c, log(n)η2n(V )[Tr(M(V ))]2} where c > 1 is some

constant.

Here:

ηn(V ) =
∥∥∥fA1 − f̂A1

∥∥∥
∞

+ (|β − β̂init(V )|+ ∥R(V )∥∞ +
log(n)
√
n

)(
√

log(n) +
∥∥∥fA1 − f̂A1

∥∥∥
∞
)

Compared to (R2), it will turn out that for random forests this is a slightly stronger condition
due to the fact that fTA1

[MRF(V )]2fA1
≤ fTA1

[MRF(V )]fA1
(see section 4.6.2). Also observe

that in case:
∥∥∥fA1

− f̂A1

∥∥∥
∞

P−→ 0, |β − β̂init|
P−→ 0 and ∥R(V )∥∞

P−→ 0 (at a fast enough rate),

then ηn(V )
P−→ 0. This last condition of (R2-inf) essentially requires that all previously men-

tioned terms of ηn(V ) are ”small enough”.

(R2-Inf) is used to prove the following result on asymptotic normality of β̂(V ):

Theorem 4.6.14. [5, p.25 Section 5 Theorem 2](Asymptotic normality β̂(V ))
Suppose that (R1),(R2-Inf) holds. Furthermore assume that:

max
1≤i≤n1

σ2
i [M(V )fA1

]2i

n1∑
i=1

σ2
i [M(V )fA1

]2i

→ 0, σ2
i = E(ϵ2i |Zi, Xi) (4.6.4)

Then:

1

SE(V )
(β̂(V )− β)

d→ N (0, 1)

with

SE(V ) =

√
n1∑
i=1

σ2
i [M(V )fA1

]2i

fTA1
M(V )fA1
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and β̂(V ) defined as in definition 4.4.9.
Furthermore, if ŜE(V ) as in definition 4.4.10 satisfies:

ŜE(V )

SE(V )

P−→ 1

then:

lim inf
n→∞

P (β ∈ CI(V )) = 1− α

Remark 4.6.15. Conditions for which ŜE(V ) is a consistent estimator for SE(V ) can be
found at [5, p.3 A.4 Consistency of variance estimators].

To prove theorem 4.6.14, the original paper used the following error decomposition of β̂(V )−
β:

Lemma 4.6.16. [5, p.36 Section 9.2] β̂(V )− β = G(V ) + E(V ) with:

G(V ) =
1

SE(V )

ϵTA1
M(V )fA1

DT
A1

M(V )DA1

E(V ) =
1

SE(V )

RT
A1

M(V )DA1
− Err1(V )− Err2(V )

DT
A1

M(V )DA1

and with Err1 and Err2 defined as:

Err1(V ) =

n1∑
i,j=1

[M(V )]ijδiϵj

Err2(V ) =

n1∑
i=1

[M(V )]ii(fi − f̂i)ϵ̂i(V ) +

n1∑
i=1

[M(V )]iiδi(ϵi − ϵ̂i(V ))

Proof. Using lemma 4.4.7, observe that:

β̂(V )− β =

DT
A1

M(V )RA1
+DT

A1
M(V )ϵA1

−
n1∑
i=1

[M(V )]iiδ̂iϵ̂i

DT
A1

M(V )DA1

It holds that:

DT
A1

M(V )ϵA1 = fTA1
M(V )ϵA1 − δTA1

M(V )ϵA1

Now consider:

δTA1
M(V )ϵA1

+

n1∑
i=1

[M(V )]iiδ̂iϵ̂i =

δTA1
M(V )ϵA1

+

n1∑
i=1

[M(V )]ii(fi − f̂i)ϵ̂i −
n1∑
i=1

[M(V )]iiδiϵ̂i =

δTA1
M(V )ϵA1 +

n1∑
i=1

[M(V )]ii(fi − f̂i)ϵi −
n1∑
i=1

[M(V )]iiδi(ϵ̂i − ϵi)−
n1∑
i=1

[M(V )]iiδiϵi
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Lastly, using that δTA1
M(V )ϵA1

=
n1∑

i,j=1

δi[M(V )]ijϵj , the established identities above and some

reordering we obtain the desired decomposition.

Remark 4.6.17. Observe that the (fi − f̂i) term (which can be observed in the Err2 term

above) comes back in assumption (R2-Inf), namely as
∥∥∥fi − f̂i

∥∥∥
∞

in the ηn(V ) term.

Next, it is shown that G(V ) is asymptotically normal. The statement is slightly different from
the one presented in [5] (which is discussed after the proof). I constructed the proof myself.

Lemma 4.6.18. Assuming (R1), (R2-inf) and

1
n∑

k=1
[M(V )fA1 ]

2
kσ

2
k

n∑
k=1

E(ϵ2k[M(V )fA1
]2k1(|ϵ

2
k[M(V )fA1

]2k| > ϵ

√√√√ n∑
k=1

[M(V )fA1
]2kσ

2
k)|O) → 0

where σ2
k = E(ϵ2k|Xk, Zk) together with

DT
A1

M(V )DA1

fT
A1

M(V )fA1

P−→ 1, we obtain that:

G(V )
d−→ N (0, 1)

Proof. Observe that:

ϵTA1
M(V )fA1

=

n1∑
i=1

n1∑
j=1

ϵi M(V )ijfj =

n1∑
i=1

ϵi[M(V )fA1
]i

Define X̃i := ϵi[M(V )fA1
]i for i = 1, ..., n1. Then it holds that X̃i|O are independent to-

gether with: E(X̃i|O) = 0 and Var(X̃i|O) = [M(V )fA1
]2iσ

2
i . As (the conditional) Lindeberg’s

condition holds by assumption, we get:

ϵTA1
M(V )fA1√

n1∑
i=1

[M(V )fA1
]2iσ

2
i

|O d−→ N (0, 1)

Hence, also:

ϵTA1
M(V )fA1√

n1∑
i=1

[M(V )fA1 ]
2
iσ

2
i

d−→ N (0, 1)

The argument is finished by applying Slutsky’s lemma.

When comparing the conditions of lemma 4.6.18 with the conditions of theorem 4.6.14, it
can be readily noticed that I directly assumed Lindeberg’s condition in lemma 4.6.18 while in
theorem 4.6.14 (4.6.4) is assumed. In remark A.0.2 it can be seen that Lindeberg’s condition
implies (4.6.4). The original paper (which mistakenly refers to ”Linderberg’s condition” rather
than ”Lindeberg’s condition) states that (4.6.4) implies Lindeberg’s condition without further
detail [5, p.36 Proof of Theorems 1 and 2]. In general, this is not the case and I don’t see
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4. Two Stage Curvature Identification (TSCI)

evidence that (R1) and (R2-Inf) together with (4.6.4) imply Lindeberg’s condition. Regard-
less, directly assuming Lindeberg’s condition will give the desired end-result of asymptotic
normality of G(V ).

Thus far, we have assumed that V is a proper basis. In method 4.4.16, we choose among
(Vq)0≤q≤Qmax

and in the next bit we will consider results relating to method 4.4.16.

When considering β̂(Vq)− β̂(Vq′) for q ̸= q′, one can observe that:

ST ϵA1
:= (

fTA1
M(Vq)

fTA1
M(Vq)fA1

−
fTA1

M(Vq′)

fTA1
M(Vq′)fA1

)ϵA1

is a dominating term (for large n1) using the second part of remark 4.6.12, proposition
4.6.5 and assuming that ∥R(Vq)∥ and ∥R(Vq′)∥ are small enough. For ST ϵA1

it holds that
Var(ST ϵA1 |O) = H(Vq, Vq′), where H(Vq, Vq′) is defined as:

H(Vq, Vq′) :=

n1∑
i=1

σ2
i [M(Vq′)fA1 ]

2
i

[fT
A1

M(Vq′)fA1 ]
2

+

n1∑
i=1

σ2
i [M(Vq)fA1 ]

2
i

[fT
A1

M(Vq)fA1 ]
2

− 2

n1∑
i=1

σ2
i [M(Vq′)fA1 ]i[M(Vq)fA1 ]i

[fT
A1

M(Vq)fA1 ][f
T
A1

M(Vq)fA1 ]

The following condition requires that that this variance H(Vq, Vq′) dominates the approxima-

tion errors of estimating f by f̂ and gA1
by the column space of (VQmax

,W ):

Conditions 4.6.19 (R3). The variance H(Vq, Vq′) satisfies:

•
√
H(Vq, Vq′) ≫ max

V ∈{Vq,Vq′}
{ 1
µ(V ) [1 + (1 +

√
log(n)ηn(VQmax

) Tr(M(V ))}

• ∃C > 0 : Var(δi|Zi, Xi) ≥ C

Remark 4.6.20. With the second bullet point of (R3), we have that µ(V ) is proportional to
fTA1

M(V )fA1
.

The following theorem is the basis as for why method 4.4.16 works (asymptotically):

Theorem 4.6.21. [5, p.25 Section 5 Theorem 3](Asymptotic normality β̂(Vq)− β̂(Vq′))
Suppose (R1) and (R2) hold for V ∈ {Vq, Vq′}, (R3) holds and S satisfies:

max
i∈A1

S2
i∑

i∈A1

S2
i

→ 0

If √
H(Vq, Vq′) ≫ max

V ∈{Vq,Vq′}
∥R(V )∥2 /

√
µ(V ) (4.6.5)

then we have:

β̂(Vq)− β̂(Vq′)√
H(Vq, Vq′)

d−→ N (0, 1)
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4.6. Theoretical justification

To see that Vq and Vq′ from theorem 4.6.21 above are indeed ”good” basis choices, one might

wonder whether β̂init(Vq) and β̂init(Vq′) are consistent estimators of β. In case H(Vq, Vq′)
is bounded, this will be indeed the case (see proposition 4.6.5). When we compare theo-
rem 4.6.21 to theorem 4.6.14, one can see that Si looks at differences between individual
components (related to the asymptotic variance H(Vq, Vq′)) rather than just the individual
components. So there is no obvious guarantee that under the setting of theorem 4.6.21, for

example, 1
SE(Vq)

( ˆβ(Vq)− β) is asymptotically normal.

4.6.2. Properties of MRF(V )

In this section, some of the (R1)-(R3) conditions from the previous section are proved for
random forests in specific.

The following lemma summarises some (well-known) identities used in this section for the
proofs:

Lemma 4.6.22. For a (real) matrix A : m×m and x : m× 1, the following identities hold:

1. ∥Ax∥2 ≤ ∥A∥2 ∥x∥2
2. ∥A∥22 ≤ ∥A∥1 ∥A∥∞

3. λk(A) = max
U⊆Rm,dim(U)=k

min
u∈U

uTAu
∥u∥2

2

, U is a linear subspace of Rm.

4. ∥ΩRF∥1 = ∥ΩRF∥∞ = 1

Proof. (4): ∥ΩRF∥∞ = 1 is a direct consequence of lemma 4.4.3. ∥ΩRF∥1 = 1 follows from the
fact that: wj(Xi, Zi, θs) = wi(Xj , Zj , θs)∀i, j ∈ {1, ..., n1}, s ∈ {1, ..., S}

The resulting properties for MRF(V ), as found in the next lemma, were first stated in [5, p.3
A.3 Lemma 5] where I filled in the details of the proof as seen at [5, p.13 C.4].

Lemma 4.6.23. The transformation matrix MRF(V ) satisfies

λmax(MRF(V )) ≤ 1, bT [MRF(V )]2b ≤ bT MRF(V )b ∀b ∈ Rn1

Consequently: Tr([MRF(V )]2) ≤ Tr(MRF(V )).

Proof. In the next bit, ”L.4.6.23” refers to lemma 4.6.23.

1. Showing: bT [MRF(V )]2b ≤ bT MRF(V )b

• bT [MRF(V )]2b =
∥∥∥ΩT

RFP
⊥
V̂A1

,ŴA1
ΩRFb

∥∥∥2

2

L.4.6.23(1)

≤
∥∥ΩT

RF

∥∥2

2

∥∥∥P⊥
V̂A1

,ŴA1
ΩRFb

∥∥∥2

2

•
∥∥∥P⊥

V̂ ,Ŵ
Ωb

∥∥∥2

2
= bT MRF(V )b and ∥ΩRF∥22

L.4.6.23(2)

≤ ∥ΩRF∥1 ∥ΩRF∥∞
L.4.6.23(4)

= 1

• As ΩT
RF = ΩRF, the argument is finished.

2. Showing: λmax(MRF(V )) ≤ 1:

• bT MRF(V )b = bTΩT
RFP

⊥
V̂A1

,ŴA1

ΩRFb =
∥∥∥P⊥

V̂A1
,ŴA1

ΩRFb
∥∥∥2
2
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•
∥∥∥P⊥

V̂A1
,ŴA1

ΩRFb
∥∥∥2
2

(∗)
≤ ∥ΩRFb∥22

L.4.6.23(1)

≤ ∥ΩRF∥22 ∥b∥
2
2

L.4.6.23(2),(4)

≤ ∥b∥22

where in (*) above it is used that for any vector a ∈ Rm and any projection matrix
Q ∈ Rm×m: ∥a∥2 = ∥Qa∥2 +

∥∥Q⊥a
∥∥
2
.

Hence by the max-min theorem we obtain that ∀k :

λk(MRF(V )) ≤ 1

3. Showing: Tr([MRF(V )]2) ≤ Tr(MRF(V ))

• As the trace is the sum of the eigenvalues, it suffices to show
λk([MRF(V )]2) ≤ λk(MRF(V )) for any k.

• As we already established before that uT [MRF(V )]2u ≤ uT MRF(V )u for any u ∈
Rn1 : the max-min theorem give the desired result.
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4.7. Simulation studies

4.7.1. Set-up

In the context of definition 4.2.1 and definition 4.2.2, the following data (which is a reflection
of the data used in the original paper [5]) will be used :
Set β = 1, pX = 5 and pZ = 1. Define p = pX + pZ . Generate X∗

i ∼ Np(0,Σ) with
Σij = 2−|i−j|. Then define Xi = (Φ(X∗

i1), ...,Φ(X
∗
i(p−1))

T and Zi = 4(Φ(X∗
ip) − 1

2 ). Indepen-

dently from (Xi, Zi), sample: (δi, ϵi)
iid∼ N2(0,

(
1 1

2
1
2 1

)
).

As Xi and Zi are bounded and (δi, ϵi) a sub-Gaussian vector (independent of (Xi, Zi)), most
conditions of (R1) from section 4.6.1 will be satisfied for the (V,W ) and f considered in the
next part.

I will be using that implementation of the TSCI method with Random Forests as found at:
https://github.com/zijguo/TSCI-Replication. This implementation will output TSCI
(with Random Forests by default) for two estimators used in the first stage: β̂init defined as
in definition 4.4.9 and β̃RF. β̃RF has not been previously defined in this text. It is also a bias-
correcting estimator (just as β̂RF as seen at definition 4.4.9) but for the asymptotic properties
(such as asymptotic normality) it requires the extra assumption that Cov(ϵi, δi|Zi, Xi) =
Cov(ϵi, δi) (see [5, p.1 A. Additional Discussions A.1] for more details). It is therefore more

restrictive then β̂RF. β̃RF is defined as follows:

Definition 4.7.1.

β̃RF(V ) = β̂init(V )−
ˆCov(ϵi, δi) Tr(MRF(V ))

DT
A1

MRF(V )DA1

ˆCov(δi, ϵi) =
1

n1 − r
(DA1

− f̂A1
)P⊥

VA1
,WA1

[YA1
−DA1

β̂init(V )], r = rank((V,W ))

For the simulations, I kept the method mostly to its default options as this is the direct
translation from how the method was introduced in section 4.4. The one setting that was not
put to the default mode was that number of trees per random forest which I put to 50. One

other remark on the implementation is that by default Wi = (X
(1)
i , X

(2)
i , ..., X

(pX)
i )T and it

does not allow for other inputs of Wi. The user can specify the input for Vi.
In this simulation study, 3 topics are considered: Firstly 2 cases where g could be perfectly
estimated by (V,W ) (where then the main question is whether the method indeed perfectly
estimates them), secondly the IV-invalidity test is checked for a quadratic case and lastly a
case of a more involved f term is considered. These models will mostly be evaluated based on
the bias of β̂init, bias of β̃RF, coverage based on β̃RF(Vq̂c), CI-length based on β̃RF(Vq̂c) and
which q̂c is chosen for different n. Every study is repeated 100 times and the corresponding
outcomes are averaged (and rounded in the case of q̂c).

4.7.2. Models with possible perfect estimation g

Here, two models will be considered:
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(M1) g1(Zi, Xi) = 1 +
pX∑
j=1

X
(j)
i

f1(Zi, Xi) = 1 +
pX∑
j=1

X
(j)
i + b(cos(2πZi) + Zi

pX∑
j=1

X
(j)
i ), b ∈ {0, 12 , 1, 5}

(M2) g2(Zi, Xi) =
10∑
q=0

Zq
i + aZ11

i +
pX∑
j=1

X
(j)
i , a ∈ { 1

2 , 1}

f2(Zi, Xi) =
1
2Z

5
i + b(cos(2πZi) + Zi

pX∑
j=1

X
(j)
i ), b ∈ { 1

2 , 1}

For (M1), V = {1, z, z2} is chosen as its largest possible basis. In tables 4.1 to 4.4 the
corresponding results can be found.

Bias βinit (M1) n = 100 300 500 1000
b = 0 0.49 0.47 0.48 0.51
1
2 0.20 0.05 0.05 0.03
1 0.08 0.03 0.02 0.01
5 0.01 0.005 0.004 0.002

Table 4.1.: Results for the bias of βinit(Vq̂c) corresponding to model (M1) with n ∈
{100, 300, 500, 1000} and b ∈ {0, 12 , 1, 5} using V = {1, z, z2}

Bias β̃RF (M1) n = 100 300 500 1000
b = 0 0.49 0.47 0.49 0.52
1
2 0.23 0.06 0.05 0.03
1 0.1 0.03 0.02 0.01
5 0.01 0.005 0.004 0.003

Table 4.2.: Results for the bias of β̃RF(Vq̂c) corresponding to model (M1) with n ∈
{100, 300, 500, 1000} and b ∈ {0, 12 , 1, 5} using V = {1, z, z2}

Cov β̃RF(Vq̂c) (M1) n = 100 300 500 1000
b = 0 0.24 0.28 0.19 0.1
1
2 0.68 0.91 0.85 0.92
1 0.78 0.96 0.95 0.93
5 0.86 0.94 0.96 0.94

Table 4.3.: Results for the coverage of β̃RF(Vq̂c) corresponding to model (M1) with n ∈
{100, 300, 500, 1000} and b ∈ {0, 12 , 1, 5} using V = {1, z, z2}

CI β̂RF(Vq̂c) (M1) n = 100 300 500 1000
b = 0 0.62 0.62 0.56 0.46
1
2 0.45 0.23 0.18 0.12
1 0.23 0.12 0.08 0.06
5 0.05 0.02 0.02 0.01

Table 4.4.: Results for the CI-length of β̃RF(Vq̂c) corresponding to model (M1) with n ∈
{100, 300, 500, 1000} and b ∈ {0, 12 , 1, 5} using V = {1, z, z2}
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For all n and b, the most frequently chosen basis for the violation function h was {1}. For
all n: b = 0 has, by far, the worst performance across the board. This is not surprising as
there is no functional differences between g1 and f1 in this case and the chosen basis (namely
(1, x(1), ..., x(pX))) can perfectly represent f as well as g. So, from the identification section
we already expected the algorithm to perform poorly here. From a theoretical point of view
this translates to fTA1

M(V )fA1 = 0, hence (R2) is not satisfied. For the other b’s: there is in
general an improvement as n increases.
For a fixed n: the performance improves as b increases. This means that the TSCI-algorithm
here performs better in case g1 and f1 are more distinguishable. The performance at b = 5 is
of a different order than the others across the categories (expect for the b = 1 coverage where
it’s the same order). This is not surprising as the algorithm is built on the idea that there are
functional differences between f and g which are exploited as n→ ∞.
In section 4.7.5, I will have a generalised discussion on the results of the bias of β̂init versus
that of β̃RF.

The results of model M2 can be found in tables 4.5 to 4.9. Here, n = 300 is used for all cases
with V = {1, z, ..., z12}.

Bias βinit(Vq̂c) (M2) a = 1
2 1

b = 1
2 84.49 144.61

1 27.88 58.47

Table 4.5.: Results for the bias of βinit(Vq̂c) corresponding to model (M2) with a ∈ { 1
2 , 1} and

b ∈ { 1
2 , 1} using V = {1, z, ..., z12} and n = 300

Bias β̃(Vq̂c) (M2) a = 1
2 1

b = 1
2 90.13 152.23

1 29.55 61.55

Table 4.6.: Results for the bias of β̃RF(Vq̂c) corresponding to model (M2) with a ∈ { 1
2 , 1} and

b ∈ { 1
2 , 1} using V = {1, z, ..., z12} and n = 300

Cov β̃(Vq̂c) (M2) a = 1
2 1

b = 1
2 0 0

1 0.32 0.29

Table 4.7.: Results for the coverage of β̃RF(Vq̂c) corresponding to model (M2) with a ∈ { 1
2 , 1}

and b ∈ { 1
2 , 1} using V = {1, z, ..., z12} and n = 300

CI β̃(Vq̂c) (M2) a = 1
2 1

b = 1
2 33.27 47.33

1 12.62 23.16

Table 4.8.: Results for the CI-length of β̃RF(Vq̂c) corresponding to model (M2) with a ∈ { 1
2 , 1}

and b ∈ { 1
2 , 1} using V = {1, z, ..., z12} and n = 300
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q̂c (M2) a = 1
2 1

b = 1
2 3 3

1 7 6

Table 4.9.: Results for the q̂c choice using β̃RF corresponding to model (M2) with a ∈ { 1
2 , 1}

and b ∈ { 1
2 , 1} using V = {1, z, ..., z12} and n = 300

For a fixed a: as b increases so does the performance. Increasing b will lead to more functional
difference between g2 and f2, hence a better performance.
For a fixed b and as a increases the performance gets gradually worse. When we also consider
that q̂c does not choose the basis to perfectly estimate the violation function: increasing a
exaggerates the error due to the ”wrong” basis choice.
Compared to (M1), model (M2) is much more involved and thus needs more data to perform
well. One of the difficulties of this model is the concern of underfitting f2. In general, if
we choose a large basis to fit the violation function the chance increases that this basis also
approximates the estimated f̂ well. This would result in a smaller fTA1

M(V )fA1
and hence a

slower convergence. This under fitting concern leads to the ”wrong” choice being made for q̂c.
As the number of data points grows and f̂ gets closer to f , the q̂c likely become larger.
One last remark on this model is that its running time was very slow: it took multiple hours
to run this for ”just” n = 300. In general, this method takes a lot longer to run than the
method used for causal inference for linear models in section 2. This has multiple reasons, but
the notable ones are:

1. For each simulation we have to fit 50 decision trees (for each random forest) and it has an
automatic parameter tuning process for the random forest. So not only do we compute
one random forest: there is first parameter tuning where multiple random forests are
computed beforehand.

2. For each possible basis, it has to fit a random forest in order to compute the generalised
IV strength and then to compute different bases. So in the case of (M2), it has to test
(at most) 13 different bases.

3. The whole process (with all the slowing factors above) is repeated 100 times for each
model of which there are 4 for (M2).

4.7.3. IV-invalidity test

For this, the following model will be used:

(M3) g3(Zi, Xi) = 1 + a(Zi + Z2
i ) +

pX∑
j=1

X
(j)
i , a ∈ { 1

8 ,
1
4 ,

1
2}

f3(Zi, Xi) = − 1
2 + 0.2

pX∑
j=1

X
(j)
i + b(cos(2πZi) + Zi

pX∑
j=1

X
(j)
i ), b ∈ {0, 1, 5}

Its results can be found in tables 4.15 to 4.20. Here, n = 500 with V = {1, z, z2} are used.
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Bias βinit(Vq̂c) (M3) a = 1
8

1
4

1
2

b = 0 0.49 0.49 0.59
1 0.06 0.09 0.05
5 0.01 0.02 0.01

Table 4.10.: Results for the Bias of β̂init(Vq̂c) using corresponding to model (M3) with a ∈
{ 1
8 ,

1
4 ,

1
2} and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

Bias β̃RF(Vq̂c) (M3) a = 1
8

1
4

1
2

b = 0 0.51 0.57 0.89
1 0.05 0.09 0.05
5 0.01 0.02 0.01

Table 4.11.: Results for the Bias of β̃RF(Vq̂c) corresponding to model (M3) with a ∈ { 1
8 ,

1
4 ,

1
2}

and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

Cov β̃RF(Vq̂c) (M3) a = 1
8

1
4

1
2

b = 0 0.28 0.32 0.28
1 0.37 0.33 0.89
5 0.37 0.32 0.91

Table 4.12.: Results for the coverage of β̃RF(Vq̂c) corresponding to model (M3) with a ∈
{ 1
8 ,

1
4 ,

1
2} and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

q̂c β̃RF (M3) a = 1
8

1
4

1
2

b = 0 1 1 1
1 0 1 2
5 0 1 2

Table 4.13.: Results for choice of q̂c using β̃RF corresponding to model (M3) with a ∈ { 1
8 ,

1
4 ,

1
2}

and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

IV-invalidity β̃RF (M3) a = 1
8

1
4

1
2

b = 0 0.51 0.89 0.98
1 0.10 0.36 0.98
5 0.08 0.37 0.94

Table 4.14.: Results of the IV-invalidity test (i.e. if q̂c ̸= 0 test is satisfied and conclude that Z
is an invalid IV) using β̃RF corresponding to model (M3) with a ∈ { 1

8 ,
1
4 ,

1
2} and

b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

One can readily observe that there is a drastic improvement in the invalid IV recognition as
a becomes larger. Before a = 1

2 , there is too little data to notice the quadratic nature of the
a(Zi +Z2

i ) term. For a = 1
8 ,the most often chosen q̂c is 0 (i.e. no IV in the model), for a = 1

4 ,
q̂c = 1 (i.e. there is an IV but it is linear) and then finally for a = 1

2 q̂c = 2. Even for b = 0,
the IV-invalidity test gives almost always the correct result for a = 1

2 and a = 1
4 even though

it most often chose q̂c = 1. The coverage for b = 1, 5 and a = 1
2 is, by far, the best. Here, the
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term a(Zi +Z2
i ) is sufficiently large to be noticed by the test and b(cos(2πZi)+Zi

n∑
j=1

X
(j)
i ) is

also sufficiently large for the test to distinguish the functional forms of g3 and f3.

4.7.4. More complex form for f

For this part, I will involve a more complex term in the f function. The following model is
used:

(M4) g4(Zi, Xi) = Zi +
1
2

pX∑
j=1

X
(j)
i

f4(Zi, Xi) = cos(2πZi) + a sin(2πZi)(
pX∑
j=1

X
(j)
i ) exp(Zi) + b(Zi +

1
2Z

2
i )

a, b ∈ {0, 1, 5}

Its results for the coverage, CI length and q̂c choice can be found in tables 4.17 to ??.

Bias βinit(q̂c) (M4) a = 0 1 5
b = 0 0.18 0.006 0.001
1 0.06 0.007 0.002
5 0.02 0.008 0.001

Table 4.15.: Results of the bias using βinit(q̂c) corresponding to model (M4) with a ∈ {0, 1, 5}
and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

Bias β̃RF(q̂c) (M4) a = 0 1 5
b = 0 0.14 0.006 0.001
1 0.06 0.007 0.002
5 0.02 0.009 0.001

Table 4.16.: Results of the bias using β̃RF(q̂c) corresponding to model (M4) with a ∈ {0, 1, 5}
and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

Cov β̃RF(q̂c) (M4) a = 0 1 5
b = 0 0.75 0.94 0.94
1 0.93 0.94 0.88
5 0.92 0.93 0.93

Table 4.17.: Results of the coverage using β̃RF(q̂c) corresponding to model (M4) with a ∈
{0, 1, 5} and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500

CI-length β̃RF(q̂c) (M4) a = 0 1 5
b = 0 0.40 0.03 0.006
1 0.30 0.03 0.006
5 0.08 0.04 0.006

Table 4.18.: Results of the coverage using β̃RF(q̂c) corresponding to model (M4) with a ∈
{0, 1, 5} and b ∈ {0, 1, 5} using V = {1, z, z2} and n = 500
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q̂c (M4) a = 0 1 5
b = 0 1 2 2
1 1 2 2
5 1 2 2

Table 4.19.: Results of q̂c corresponding to model (M4) with a ∈ {0, 1, 5} and b ∈ {0, 1, 5}
using V = {1, z, z2} and n = 500

IV-invalidity (M4) a = 0 1 5
b = 0 1 1 1
1 1 1 1
5 1 1 1

Table 4.20.: Results of the IV-invalidity test (1 if there are invalid IVs present) using β̃q̂c
corresponding to model (M4) with a ∈ {0, 1, 5} and b ∈ {0, 1, 5} using V =
{1, z, z2} and n = 500

It is noticeable that as a and b increase, the results across the board improve. One exception
to this are the coverage levels which stay quite steady once either a or b are not 0 anymore. In
the other categories, one can see the most drastic improvement when fixing b and increasing a.
This is not unsurprising as with a larger a, the differences in functional form between g4 and
f4 will become more exaggerated. This, in turn, will then result into more precise estimators
and smaller confidence intervals for β while using the same number of data points.
One interesting observation is that once a ̸= 0, {1, z, z2} is chosen for q̂c as the best basis for
the violation function, Though, it is true that {1, z} is the most efficient basis to estimate the
violation function of g4, due to the a ̸= 0 adding extra functional difference between g4 and f4
there is likely more leeway to choose bigger bases. There is less concern now for not noticing
enough difference between g4 and f4 if q̂c is chosen too big.

4.7.5. Bias β̂init vs bias β̃RF

For (M1)-(M4), it can be observed that the bias of β̃RF does not, in general, outperform the
bias βinit. This could be due to the number of data points used being too small. Hence, doing
simulations with more data is likely to lead to β̃RF outperforming βinit with respect to the
bias. These observations about the bias do not by itself contradict the simulation studies of
the original paper ([5, p.26 6.Simulation studies]). In the original paper they consider models
for n ≥ 1000 and do not directly compare the biases (rather they compare the biases when
prior knowledge is given to the method about the bases that represents g best).
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5. Future research

In this final section, I will give some possible directions and ideas I would consider if I were to
expand upon my thesis.

5.1. CIII with non-linear models

I had the following idea on how to expand CIII to include (some) non-linear functions: Consider
the setting of section 4 where f and g can be split in a linear and non-linear part. The linear
parts of f and g satisfy the majority/plurality rule as required in section 2. If we already
have some idea of the functional form of the non-linear parts of f and g, we may multiply
the outcome and association model with a projection to get rid of the non-linear parts (like
in the TSCI method from section 4). Now apply CIII to the remaining part (where we are
now working with the baseline covariates and potential instrumental variables multiplied by a
projection as the new baseline covariates and potential IVs). Here, we might consider different

bases for the non-linear parts of f and g and compute ĈI
sear

for each specific basis. In the
end, we combine all resulting ĈI

sear
’s to end up with a confidence interval for β∗

5.2. Resolving voting issues CIII

In section 2.8, model (S2) for n = 25000 (see table 2.8-2.10) showed a low coverage rate for
certain cases. A further analysis then showed that higher invalidity levels tended to vote for
each other compared to lower invalidity levels, leading to choices for V̂ which wouldn’t sat-
isfy the majority rule. As mentioned in section 2.8, the most common V̂ ′s for (M1) were
{1, 2, 3, 4, 6, 7, 8, 9, 10}, {1, 2, 3, 4, 6} and {7, 8, 9} where only {1, 2, 3} were valid. One idea to
resolve this, is to first apply sampling to the plurality rule method as mentioned in section 2.6,

rather than just computing the estimators from the given data. So, we sample (

(
Γ̂[k]

γ̂[k]

)
)1≤k≤K

as seen in definition 2.5.7 and then apply the method from section 2.6 to each of the K estima-
tors. Each of these will output their own V̂k. Consider all (V̂k)1≤k≤K together and substitute

each V̂k for the most conservative subset option available for these K sets. For instance, for
K = 2 if V̂1 = {1, 2, 3, 5, 7} and V̂2 = {1, 2, 3}, then set V̂1 = V̂2. After this selection procedure,
let all K proceed to the second stage and combine all resulting K confidence intervals like in
the sampling algorithm.

5.3. AR with non-linear data

In the original paper, it was mentioned that there was hope for non-linear extensions to Anchor
Regression. By now, there are new papers out that address this topic [8, p.415-422 5.Nonlinear
Anchor Regression] and these would be interesting to study.

5.4. Adding simulation studies

The following is a list of extra simulation studies I would consider to expand upon this current
work.

109



5. Future research

1. In the simulation study for CIII (section 2.8), I only considered the low-dimensional
setting of pX and pZ being smaller than n. The high-dimensional setting is also (for
practical purposes) useful to study. For the high-dimensional setting, the OLS-estimation
can for example be combined with LASSO. There is a discussion on this in the appendix
of the original paper [2, p.2 A.3. High Dimensional IVs and covariates].

2. In my thesis, I only studied the population setting for Anchor Regression and not the
finite sample estimator. For this, one could for example, compare the performance of
b̂γ on different perturbed data samplings by computing the finite sample mean squared
error (MSE) rather than the population MSE as seen in section 3.3.3.

3. For section 4.7 (TSCI simulation studies) one could study more cases and higher n’s: in
particular higher dimensional covariates and IVs, different bases than just linear combi-
nations of (X,Z)T and more involved f and g’s.

5.5. Comparing CIII, AR and TSCI

In case the assumptions of CIII, AR and TSCI are not met (assumptions like linear models
for CIII and AR or that we have a good initial idea for the basis for g for TSCI), we are in
a grey-area where it is not clear which one method would outperform the other. This calls
for an extensive simulation study that uses a wide-range of models (for instance, a non-linear
setting for the treatment and association model where a majority/plurality rule is still met).
It is almost guaranteed that such a simulation study has no one answer what to do in case a
model does not clearly fall under the setting of either CIII, AR or TSCI. Hence, this would
require us to test a lot of different models and study the value of each method regarding that
model in detail and expand the study from there. This could be the topic of an entire paper.
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A. Lindeberg’s central limit theorem

The standard central limit theorem (CLT) requires iid random variables with a finite second
moment. Lindeberg’s CLT gives conditions for which we have asymptotic normality for in-
dependent random variables with a finite second moment (i.e. we can drop the ’identically
distributed’ condition here).

Theorem A.0.1. [10, p.359 Theorem 27.2.] Let (Ωk,Fk,Pk) be a probability space for Xk :
Ω → (R,B(R), λ) (i.e. probability space is allowed to change with k), k ∈ N be independent

random variables. Assume that E(Xk) = µk <∞, Var(Xk) = σ2
k <∞ and define S2

n =
n∑

k=1

σ2
k.

Then, in case (Xk)k≥1 satisfies Lindeberg’s condition i.e.:

lim
n→∞

1

S2
n

n∑
k=1

E((Xk − µk)
21(|Xk − µk| > ϵSn)) = 0 ∀ϵ > 0

We have:

Zn :=

n∑
k=1

(Xk − µk)

Sn

d−→ N(0, 1)

Remark A.0.2. Note that:

1

S2
n

n∑
k=1

E((Xk − µk)
21(|Xk − µk| > ϵSn)) ≥

1

S2
n

max
k=1,...,n

{E((Xk − µk)
21(|Xk − µk| > ϵSn))} =

1

S2
n

max
k=1,...,n

{σ2
k − E((Xk − µk)

21(|Xk − µk| ≤ ϵSn))} ≥

1

S2
n

max
k=1,...,n

{σ2
k − ϵ2S2

n} =
1

S2
n

max
k=1,...,n

σ2
k − ϵ2

Hence, in case Lindeberg’s condition is satisfied, it holds that:

lim
n→∞

max
k=1,...,n

σ2
k

S2
n

= 0

Example A.0.3. Consider the following independent random variables:

P(Xk = k) =
1

2
= P(Xk = −k)

Now we check Lindeberg’s condition:

Observe that as

√
n∑

i=1

i2 = O(n1.5), for n large enough (say n ≥ Nϵ):

n ≤ ϵ

√√√√ n∑
i=1

i2
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and so for n ≥ Nϵ : P(|Xk| > ϵ

√
n∑

i=1

i2) = 0 for all k = 1, ..., n. As X2
k = k2 for any event, we

hence obtain:

lim
n→∞

1
n∑

i=1

i2

n∑
k=1

E(X2
k1(|Xk| > ϵ

√√√√ n∑
i=1

i2)) = lim
n→∞

1
n∑

i=1

i2

n∑
k=1

k2P(|Xk| > ϵ

√√√√ n∑
i=1

i2) = 0

And so by Lindeberg’s CLT:

n∑
k=1

Xk

n∑
k=1

k2

d−→ N(0, 1)
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B. Simulation studies code

All the code in this section is implemented in R-studio.

B.1. CIII

##Author: Daniël Cohen

##Aim: Simulation study for searching and sampling method for master thesis

##First: Compare search and samp for 4 different settings, gamma_0, tau fixed

library(MASS)

library(RobustIV)

library(xtable)

set.seed(2024)

gamma0 = 0.5

tau = 0.2

nsim = 500

betastar = 1

px = 10

pz = 10

p = px+pz

#Simulate with normal data

simul_norm_W <- function(n){

W_Cov_norm=matrix(0,nrow=p,ncol=p)

for(i in 1:p) for(j in 1:p) W_Cov_norm[i,j]=2^(-abs(i-j))

W_norm=mvrnorm(n,mu=matrix(0,nrow=1,ncol=p),Sigma=W_Cov_norm)

return(W_norm)} #returning W (obsv in rows)

simul_normI_W <- function(n){

W_Cov_norm=diag(1,nrow=p,ncol=p)

W_norm=mvrnorm(n,mu=matrix(0,nrow=1,ncol=p),Sigma=W_Cov_norm)

return(W_norm)} #returning W (obsv in rows)

simul_norm_e <- function(n){

e_norm=mvrnorm(n,mu=matrix(0,nrow=1,ncol=2),Sigma=matrix(c(1,0.8,0.8,1)

,nrow=2, ncol=2,

byrow = TRUE))

return(e_norm)}

#Specify S1-S4

phistar = seq(0.6,1.5,by=0.1)

psistar = seq(1.1,2,by=0.1)

##S1##

S1_DYW <- function(n,tau,gamma0){
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gammastar=gamma0*matrix(1,1,pz)

pistar=c(matrix(0,1,6),tau*gamma0,tau*gamma0,-0.5,-1)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(2+p))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)} #Returns nx(p+2) matrix: First column=D, Second=Y, rest: W

##S2##

S2_DYW <- function(n,tau,gamma0){

gammastar=gamma0*matrix(1,1,pz)

pistar=c(matrix(0,1,3),tau*gamma0,(tau*gamma0)+0.1,tau*gamma0,-0.5,-1,-2/3,

-0.5)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(2+p))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

S2I_DYW <- function(n,tau,gamma0){

gammastar=gamma0*matrix(1,1,pz)

pistar=c(matrix(0,1,3),tau*gamma0,(tau*gamma0)+0.1,tau*gamma0,-0.5,-1,-2/3,

-0.5)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_normI_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(2+p))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

##S3##
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S3_DYW <- function(n,tau,gamma0){

gammastar=gamma0*matrix(1,1,pz)

pistar=c(matrix(0,1,4),tau*gamma0,tau*gamma0+0.1,-1/6,-1/3,-1/2,-2/3)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(2+p))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

##S4##

S4_DYW <- function(n,tau,gamma0){

gammastar=gamma0*matrix(1,1,pz)

pistar=c(matrix(0,1,4),tau*gamma0,tau*gamma0,tau*gamma0,tau*gamma0 + 0.1,

-1/3,-1/2)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(p+2))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

##S5##

S5_DYW <- function(n,tau,gamma0){

gammastar=c(gamma0,gamma0,1/2,gamma0,matrix(1/2,1,6))

pistar=c(matrix(0,1,3),tau/2,tau/2,tau,-1/2,-1,-2/3,-1/2)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(p+2))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

##S6##

S6_DYW <- function(n,tau,gamma0){

gammastar=c(gamma0,gamma0,1/2,gamma0,matrix(1/2,1,6))
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pistar=c(matrix(0,1,6),tau/2,tau/2,-1/2,-1)

D=matrix(0,n,1)

Y=matrix(0,n,1)

W=simul_norm_W(n)

e=simul_norm_e(n)

for(i in 1:n) D[i]=c(gammastar,psistar) %*% W[i,]+e[i,2]

for(i in 1:n) Y[i]=betastar * D[i] + c(pistar,phistar) %*% W[i,] + e[i,1]

DY=matrix(0,n,(p+2))

DY[,1]=D

DY[,2]=Y

DY[,3:(p+2)]=W

return(DY)}

## Compare searching with sampling for different n ##

set.seed(2024)

##S1##

n_vec=c(50,100,500,1000,5000)

Cov_sear_S1=matrix(0,5,1)

Len_sear_S1=matrix(0,5,1)

Check_sear_S1=matrix(0,5,1)

#Searching

for(i in 1:5){

Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){

Data=S1_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE, filtering=FALSE

,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]}

Check_sear_100[j,]=SS$check

Cov_sear_S1[i,]=mean(Cov_sear_100)

Len_sear_S1[i,]=mean(Len_sear_100)

Check_sear_S1[i,]=mean(SS$check)}

set.seed(2024)

tau=0.2

gamma0=0.5

##S2##

n_vec=c(50,100,500,1000,5000)

Cov_sear_S2=matrix(0,5,1)

Len_sear_S2=matrix(0,5,1)

Check_sear_S2=matrix(0,5,1)

#Searching

for(i in 1:5){
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Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE, filtering=FALSE

,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_sear_100[j,]=SS$check}

Cov_sear_S2[i,]=mean(Cov_sear_100)

Len_sear_S2[i,]=mean(Len_sear_100)

Check_sear_S2[i,]=mean(Check_sear_100)}

#S2, Increased n’s

set.seed(2024)

n_vec=c(10000,25000,50000,75000,100000)

Cov_sear_S2_n=matrix(0,5,1)

Len_sear_S2_n=matrix(0,5,1)

Check_sear_S2_n=matrix(0,5,1)

#Searching

for(i in 1:5){

Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE, filtering=FALSE

,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

print(SS$VHat)

Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_sear_100[j,]=SS$check}

Cov_sear_S2_n[i,]=mean(Cov_sear_100)

Len_sear_S2_n[i,]=mean(Len_sear_100)

Check_sear_S2_n[i,]=mean(Check_sear_100)}

set.seed(2024)

##S3##

n_vec=c(50,100,500,1000,5000)

Cov_sear_S3=matrix(0,5,1)

Len_sear_S3=matrix(0,5,1)

Check_sear_S3=matrix(0,5,1)

#Searching

for(i in 1:5){

Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){
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Data=S3_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE, filtering=FALSE

,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_sear_100[j,]=SS$check}

Cov_sear_S3[i,]=mean(Cov_sear_100)

Len_sear_S3[i,]=mean(Len_sear_100)

Check_sear_S3[i,]=mean(Check_sear_100)}

set.seed(2024)

##S4##

n_vec=c(50,100,500,1000,5000)

Cov_sear_S4=matrix(0,5,1)

Len_sear_S4=matrix(0,5,1)

Check_sear_S4=matrix(0,5,1)

for(i in 1:5){

Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){

Data=S4_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,

filtering=FALSE,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]

print(SS$VHat)

Check_sear_100[j,]=SS$check}

Cov_sear_S4[i,]=mean(Cov_sear_100)

Len_sear_S4[i,]=mean(Len_sear_100)

Check_sear_S4[i,]=mean(Check_sear_100)}

set.seed(2024)

##S4##

n_vec=c(10000,25000,50000,75000,100000)

Cov_sear_S4_n=matrix(0,5,1)

Len_sear_S4_n=matrix(0,5,1)

Check_sear_S4_n=matrix(0,5,1)

for(i in 1:5){

Cov_sear_100=matrix(0,100,1)

Len_sear_100=matrix(0,100,1)

Check_sear_100=matrix(0,100,1)

for(j in 1:100){

Data=S4_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE, filtering=FALSE

,intercept=FALSE)

Cov_sear_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])
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Len_sear_100[j,]=SS$ci[,2]-SS$ci[,1]

print(SS$VHat)

Check_sear_100[j,]=SS$check}

Cov_sear_S4_n[i,]=mean(Cov_sear_100)

Len_sear_S4_n[i,]=mean(Len_sear_100)

Check_sear_S4_n[i,]=mean(Check_sear_100)}

#Sampling

set.seed(2024)

##S1##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S1=matrix(0,5,1)

Len_samp_S1=matrix(0,5,1)

Check_samp_S1=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S1_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,M=100,method="OLS",filtering=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S1[i,]=mean(Cov_samp_100)

Len_samp_S1[i,]=mean(Len_samp_100)

Check_samp_S1[i,]=mean(Check_samp_100)}

set.seed(2024)

tau=0.2

gamma0=0.5

##S2##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S2=matrix(0,5,1)

Len_samp_S2=matrix(0,5,1)

Check_samp_S2=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=100,filtering=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S2[i,]=mean(Cov_samp_100)

Len_samp_S2[i,]=mean(Len_samp_100)
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Check_samp_S2[i,]=mean(Check_samp_100)}

set.seed(2024)

##S3##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S3=matrix(0,5,1)

Len_samp_S3=matrix(0,5,1)

Check_samp_S3=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S3_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=100,filtering=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S3[i,]=mean(Cov_samp_100)

Len_samp_S3[i,]=mean(Len_samp_100)

Check_samp_S3[i,]=mean(Check_samp_100)}

set.seed(2024)

##S4##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S4=matrix(0,5,1)

Len_samp_S4=matrix(0,5,1)

Check_samp_S4=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

matrix_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S4_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=100, filtering=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S4[i,]=mean(Cov_samp_100)

Len_samp_S4[i,]=mean(Len_samp_100)

Check_samp_S4[i,]=mean(Check_samp_100)}

set.seed(2024)

##S2 incr n##

n_vec=c(10000,25000,50000,75000,100000)

Cov_samp_S2_n=matrix(0,5,1)

Len_samp_S2_n=matrix(0,5,1)

Check_samp_S2_n=matrix(0,5,1)
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for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=100,filtering=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

print(SS$VHat)

Check_samp_100[j,]=SS$check}

Cov_samp_S2_n[i,]=mean(Cov_samp_100)

Len_samp_S2_n[i,]=mean(Len_samp_100)

Check_samp_S2_n[i,]=mean(Check_samp_100)}

set.seed(2024)

##S2, incl filtering##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S2_f=matrix(0,5,1)

Len_samp_S2_f=matrix(0,5,1)

Check_samp_S2_f=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=100,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S2_f[i,]=mean(Cov_samp_100)

Len_samp_S2_f[i,]=mean(Len_samp_100)

Check_samp_S2_f[i,]=mean(Check_samp_100)}

set.seed(2024)

##S2, M=500##

n_vec=c(50,100,500,1000,5000)

Cov_samp_S2_500=matrix(0,5,1)

Len_samp_S2_500=matrix(0,5,1)

Check_samp_S2_500=matrix(0,5,1)

for(i in 1:5){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)
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Check_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(n_vec[i],tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",M=500,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S2_500[i,]=mean(Cov_samp_100)

Len_samp_S2_500[i,]=mean(Len_samp_100)

Check_samp_S2_500[i,]=mean(Check_samp_100)}

set.seed(2024)

### Different gamma0, tau for S5, n=5000 searching ##

Cov_samp_S5_gamma0tau=matrix(0,8,3)

Len_samp_S5_gamma0tau=matrix(0,8,3)

Check_samp_S5_gamma0tau=matrix(0,8,3)

gamma0=c(0.05,0.075,0.1)

tau=c(0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5)

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(i in 1:3){

for(k in 1:8){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S5_DYW(5000,tau[k],gamma0[i])

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S5_gamma0tau[k,i]=mean(Cov_samp_100)

Len_samp_S5_gamma0tau[k,i]=mean(Len_samp_100)

Check_samp_S5_gamma0tau[k,i]=mean(Check_samp_100)}}

set.seed(2024)

### Different gamma0, tau for S4, n=5000 searching ##

Cov_samp_S4_gamma0tau=matrix(0,8,4)

Len_samp_S4_gamma0tau=matrix(0,8,4)

Check_samp_S4_gamma0tau=matrix(0,8,4)

gamma0=c(0.05,0.075,0.1,0.5)

tau=c(0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5)

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(i in 1:4){

for(k in 1:8){

Cov_samp_100=matrix(0,100,1)
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Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,10)

for(j in 1:100){

Data=S4_DYW(5000,tau[k],gamma0[i])

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,filtering=FALSE

,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S4_gamma0tau[k,i]=mean(Cov_samp_100)

Len_samp_S4_gamma0tau[k,i]=mean(Len_samp_100)

Check_samp_S4_gamma0tau[k,i]=mean(Check_samp_100)}}

set.seed(2024)

##S4 tau=0.2, gamma0=0.05 case Vhat

tau=0.5

gamma0=0.075

for(j in 1:100){

Data=S4_DYW(25000,tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

print("Shat")

print(SS$SHat)}

set.seed(2024)

##S4 tau=0.2, gamma0=0.075 case Vhat

tau=0.3

gamma0=0.075

for(j in 1:100){

Data=S4_DYW(5000,tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

print("Shat")

print(SS$SHat)}

set.seed(2024)

### Different gamma0, tau for S2, n=5000 searching ##

Cov_samp_S2_gamma0tau=matrix(0,8,4)

Len_samp_S2_gamma0tau=matrix(0,8,4)

Check_samp_S2_gamma0tau=matrix(0,8,4)

gamma0=c(0.05,0.075,0.1,0.5)
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tau=c(0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5)

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(i in 1:4){

for(k in 1:8){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(5000,tau[k],gamma0[i])

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S2_gamma0tau[k,i]=mean(Cov_samp_100)

Len_samp_S2_gamma0tau[k,i]=mean(Len_samp_100)

Check_samp_S2_gamma0tau[k,i]=mean(Check_samp_100)}}

set.seed(2024)

##S2 tau=0.5, gamma0=0.075

c=0

tau=0.5

gamma0=0.075

for(j in 1:100){

Data=S2_DYW(5000,tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

print(SS$check)

print(SS$VHat)

print((SS$ci[,1]<=1)&(1<=SS$ci[,2]))}

set.seed(2024)

##S4 tau=0.2 gamma0=0.05 n=5000

tau=0.2

gamma0=0.05

for(j in 1:100){

Data=S2_DYW(5000,tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

print("Shat")

print(SS$SHat)

print("Vhat")

print(SS$VHat)}

set.seed(2024)

##S2_I tau=0.4, gamma0=0.075 case Vhat n=25000

tau=0.5

gamma0=0.075
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for(j in 1:100){

Data=S2I_DYW(25000,tau,gamma0)

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

print("Vhat")

print(SS$VHat)}

set.seed(2024)

### Different gamma0, tau for S2, n=25 000 searching ##

Cov_samp_S2_gamma0tau=matrix(0,8,4)

Len_samp_S2_gamma0tau=matrix(0,8,4)

Check_samp_S2_gamma0tau=matrix(0,8,4)

gamma0=c(0.05,0.075,0.1,0.5)

tau=c(0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5)

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

Check_samp_100=matrix(0,100,1)

for(i in 1:4){

for(k in 1:8){

Cov_samp_100=matrix(0,100,1)

Len_samp_100=matrix(0,100,1)

for(j in 1:100){

Data=S2_DYW(25000,tau[k],gamma0[i])

SS=SearchingSampling(Data[,2],Data[,1],Data[,3:(2+pz)],Data[,(3+pz):(2+p)]

,method="OLS",Sampling=FALSE,intercept=FALSE)

Cov_samp_100[j,]=(SS$ci[,1]<=1)&(1<=SS$ci[,2])

Len_samp_100[j,]=SS$ci[,2]-SS$ci[,1]

Check_samp_100[j,]=SS$check}

Cov_samp_S2_gamma0tau[k,i]=mean(Cov_samp_100)

Len_samp_S2_gamma0tau[k,i]=mean(Len_samp_100)

Check_samp_S2_gamma0tau[k,i]=mean(Check_samp_100)}}

B.2. TSCI

##Author: Daniël Cohen

##Aim: Simulation study TSCI implementation

library(MASS)

library(RobustIV)

library(xtable)

source("C:/Users/Daniël Cohen/Desktop/TU Delft/Thesis/TSCI_code.R")

#see https://github.com/zijguo/TSCI/blob/main/R/Source-Random-Forest.R for

#source

125



B. Simulation studies code

library(Rcpp)

set.seed(2024)

beta=1

p_X=5

p_Z=1

p=p_X+p_Z

#Simulate with normal data Xstar

simul_norm_Xstar <- function(n){

Xstar_Cov_norm=matrix(0,nrow=p,ncol=p)

for(i in 1:p) for(j in 1:p) Xstar_Cov_norm[i,j]=2^(-abs(i-j))

Xstar_norm=mvrnorm(n,mu=matrix(0,nrow=1,ncol=p),Sigma=Xstar_Cov_norm)

return(Xstar_norm)} #returning W (obsv in rows)

#Simulate X and Z

simul_norm_XZ<- function(n){

XZ=matrix(0,n,p)

X_star=simul_norm_Xstar(n)

for(i in 1:n){for(j in 1:p-1){XZ[i,j]=pnorm(X_star[i,j])}

}

for(i in 1:n){XZ[i,p]=4*(pnorm(X_star[i,p])-0.5)}

return(XZ)

} #X=XZ[,1:p-1],Z=XZ[,p]

#Simulate errors

simul_norm_e <- function(n){

e_norm=mvrnorm(n,mu=matrix(0,nrow=1,ncol=2),Sigma=matrix(c(1,0.5,0.5,1)

, nrow=2,

ncol=2,

byrow = TRUE))

return(e_norm)}

M_1 <- function(n,Z,X,e,b){

g=matrix(0,n,1)

f=matrix(0,n,1)

DY=matrix(0,n,2)

for(i in 1:n){

g[i]=1+sum(X[i,])

f[i]=-0.5+0.2*sum(X[i,])+b*(cos(2*pi*Z[i])+Z[i]*sum(X[i,]))

DY[i,1]=f[i]+e[i,1] #D expr

DY[i,2]=beta*DY[i,1]+g[i]+e[i,2] #Y expr

}

return(DY) #D=DY[,1], Y=DY[,2]

}

M_2 <- function(n,Z,X,e,a,b){

g=matrix(0,n,1)
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f=matrix(0,n,1)

DY=matrix(0,n,2)

for(i in 1:n){

S=0

for(q in 0:10){S=+Z[i]^q}

g[i]=S+a*Z[i]^{11}+sum(X[i,])

f[i]=0.5*Z[i]^{5} + b*(cos(2*pi*Z[i])+Z[i]*sum(X[i,]))

DY[i,1]=f[i]+e[i,1] #D expr

DY[i,2]=beta*DY[i,1]+g[i]+e[i,2] #Y expr

}

return(DY) #D=DY[,1], Y=DY[,2]

}

M_3 <- function(n,Z,X,e,a,b){

g=matrix(0,n,1)

f=matrix(0,n,1)

DY=matrix(0,n,2)

for(i in 1:n){

g[i]=1+a*(Z[i]+Z[i]^2)+sum(X[i,])

f[i]=-0.5 + 0.2*sum(X[i,]) + b*(cos(2*pi*Z[i])+Z[i]*sum(X[i,]))

DY[i,1]=f[i]+e[i,1] #D expr

DY[i,2]=beta*DY[i,1]+g[i]+e[i,2] #Y expr

}

return(DY) #D=DY[,1], Y=DY[,2]

}

M_4 <- function(n,Z,X,e,a,b){

g=matrix(0,n,1)

f=matrix(0,n,1)

DY=matrix(0,n,2)

for(i in 1:n){

g[i]=Z[i]+0.5*sum(X[i,])

f[i]=cos(2*pi*Z[i])+a*sin(2*pi*Z[i])*Z[i]*sum(X[i,])*exp(Z[i])+

b*(Z[i]+0.5*Z[i]^2)

DY[i,1]=f[i]+e[i,1] #D expr

DY[i,2]=beta*DY[i,1]+g[i]+e[i,2] #Y expr

}

return(DY) #D=DY[,1], Y=DY[,2]

}

n=c(100,300,500)

b=c(0,0.5,1,5)

betainit_res=matrix(0,4,3)

betatilde_res=matrix(0,4,3)

Cov_res=matrix(0,4,3)

CIlen_res=matrix(0,4,3)

qcomp_res=matrix(0,4,3)

qrob_res=matrix(0,4,3)

#M_1 results

set.seed(2024)
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for(i in 1:4){

for(j in 1:3){

M_data_biasinit=matrix(0,100,1)

M_data_biastilde=matrix(0,100,1)

M_data_Cov=matrix(0,100,1)

M_data_qcomp=matrix(0,100,1)

M_data_qrob=matrix(0,100,1)

M_data_CIlen=matrix(0,100,1)

for(M in 1:100){

XZ=simul_norm_XZ(n[j])

X=XZ[,1:p-1]

Z=XZ[,p]

e=simul_norm_e(n[j])

DY=M_1(n[j],Z,X,e,b[i])

D=DY[,1]

Y=DY[,2]

vio.space1 <- matrix(NA,n[j],0)

for (q in 1:2) {

vio.space1 <- cbind(Z^q,vio.space1)}

TSCI=TSCI.RF(Y,D,Z,X,vio.space=vio.space1,num.trees=50)

betainit=TSCI$Coef.robust[1] #comp

betatilde=TSCI$Coef.robust[2] #comp

CI=TSCI$CI.robust

qcomp=TSCI$q.comp

qrob=TSCI$q.robust

M_data_biasinit[M]=abs(betainit - beta)

M_data_biastilde[M]=abs(betatilde -beta)

M_data_Cov[M]=(CI[1,2]<=beta)&(beta<=CI[2,2]) #tilde,comp

M_data_CIlen[M]=CI[2,2]-CI[1,2]

M_data_qcomp[M]=qcomp

M_data_qrob[M]=qrob

}

betainit_res[i,j]=mean(M_data_biasinit)

betatilde_res[i,j]=mean(M_data_biastilde)

Cov_res[i,j]=mean(M_data_Cov)

CIlen_res[i,j]=mean(M_data_CIlen)

qcomp_res[i,j]=round(mean(M_data_qcomp))

qrob_res[i,j]=round(mean(M_data_qrob))

}

}

#M_2

a=c(0.5,1)

b=c(0.5,1)

betainit_resM2=matrix(0,3,2)

betatilde_resM2=matrix(0,3,2)

128



B.2. TSCI

Cov_resM2=matrix(0,3,2)

CIlen_resM2=matrix(0,3,2)

qcomp_resM2=matrix(0,3,2)

qrob_resM2=matrix(0,3,2)

set.seed(2024)

for(i in 1:3){

for(j in 1:2){

M_data_biasinit=matrix(0,100,1)

M_data_biastilde=matrix(0,100,1)

M_data_Cov=matrix(0,100,1)

M_data_qcomp=matrix(0,100,1)

M_data_qrob=matrix(0,100,1)

M_data_CIlen=matrix(0,100,1)

for(M in 1:100){

print(M)

XZ=simul_norm_XZ(300)

X=XZ[,1:p-1]

Z=XZ[,p]

e=simul_norm_e(300)

DY=M_2(300,Z,X,e,a[j],b[i])

D=DY[,1]

Y=DY[,2]

vio.space1 <- matrix(NA,300,0)

for (q in 1:12) {

vio.space1 <- cbind(Z^q,vio.space1)}

TSCI=TSCI.RF(Y,D,Z,X,vio.space=vio.space1,num.trees = 50)

betainit=TSCI$Coef.robust[1] #comp

betatilde=TSCI$Coef.robust[2] #comp

CI=TSCI$CI.robust

qcomp=TSCI$q.comp

qrob=TSCI$q.robust

M_data_biasinit[M]=abs(betainit - beta)

M_data_biastilde[M]=abs(betatilde -beta)

M_data_Cov[M]=(CI[1,2]<=beta)&(beta<=CI[2,2]) #tilde,comp

M_data_CIlen[M]=CI[2,2]-CI[1,2]

M_data_qcomp[M]=qcomp

M_data_qrob[M]=qrob

}

betainit_resM2[i,j]=mean(M_data_biasinit)

betatilde_resM2[i,j]=mean(M_data_biastilde)

Cov_resM2[i,j]=mean(M_data_Cov)

CIlen_resM2[i,j]=mean(M_data_CIlen)

qcomp_resM2[i,j]=round(mean(M_data_qcomp))

qrob_resM2[i,j]=round(mean(M_data_qrob))

}

}
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#M_3

a=c(1/8,1/4,1/2)

b=c(0,1,5)

betainit_resIV1=matrix(0,3,3)

betatilde_resIV1=matrix(0,3,3)

Cov_resIV1=matrix(0,3,3)

CIlen_resIV1=matrix(0,3,3)

qcomp_resIV1=matrix(0,3,3)

qrob_resIV1=matrix(0,3,3)

IV_resIV1=matrix(0,3,3)

set.seed(2024)

for(i in 1:3){

for(j in 1:3){

M_data_biasinit=matrix(0,100,1)

M_data_biastilde=matrix(0,100,1)

M_data_Cov=matrix(0,100,1)

M_data_qcomp=matrix(0,100,1)

M_data_qrob=matrix(0,100,1)

M_data_CIlen=matrix(0,100,1)

M_data_IV=matrix(0,100,1)

for(M in 1:100){

XZ=simul_norm_XZ(500)

X=XZ[,1:p-1]

Z=XZ[,p]

e=simul_norm_e(500)

DY=M_3(500,Z,X,e,a[j],b[i])

D=DY[,1]

Y=DY[,2]

vio.space1 <- matrix(NA,500,0)

TSCI=TSCI.RF(Y,D,Z,X,num.trees = 50)

betainit=TSCI$Coef.robust[1] #comp

betatilde=TSCI$Coef.robust[2] #comp

CI=TSCI$CI.robust

qcomp=TSCI$q.comp

qrob=TSCI$q.robust

M_data_biasinit[M]=abs(betainit - beta)

M_data_biastilde[M]=abs(betatilde -beta)

M_data_Cov[M]=(CI[1,2]<=beta)&(beta<=CI[2,2]) #tilde,comp

M_data_CIlen[M]=CI[2,2]-CI[1,2]

M_data_qcomp[M]=qcomp

M_data_qrob[M]=qrob

M_data_IV[M]=TSCI$invalidity

}

betainit_resIV1[i,j]=mean(M_data_biasinit)

betatilde_resIV1[i,j]=mean(M_data_biastilde)

Cov_resIV1[i,j]=mean(M_data_Cov)
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CIlen_resIV1[i,j]=mean(M_data_CIlen)

qcomp_resIV1[i,j]=round(mean(M_data_qcomp))

qrob_resIV1[i,j]=round(mean(M_data_qrob))

IV_resIV1[i,j]=mean(M_data_IV)

}

}

#M_4

a=c(0,1,5)

b=c(0,1,5)

betainit_resf=matrix(0,3,3)

betatilde_resf=matrix(0,3,3)

Cov_resf=matrix(0,3,3)

CIlen_resf=matrix(0,3,3)

qcomp_resf=matrix(0,3,3)

qrob_resf=matrix(0,3,3)

IV_resf=matrix(0,3,3)

set.seed(2024)

for(i in 1:3){

for(j in 1:3){

M_data_biasinit=matrix(0,100,1)

M_data_biastilde=matrix(0,100,1)

M_data_Cov=matrix(0,100,1)

M_data_qcomp=matrix(0,100,1)

M_data_qrob=matrix(0,100,1)

M_data_CIlen=matrix(0,100,1)

M_data_IV=matrix(0,100,1)

for(M in 1:100){

XZ=simul_norm_XZ(500)

X=XZ[,1:p-1]

Z=XZ[,p]

e=simul_norm_e(500)

DY=M_4(500,Z,X,e,a[j],b[i])

D=DY[,1]

Y=DY[,2]

TSCI=TSCI.RF(Y,D,Z,X,num.trees = 50)

betainit=TSCI$Coef.robust[1] #comp

betatilde=TSCI$Coef.robust[2] #comp

CI=TSCI$CI.robust

qcomp=TSCI$q.comp

qrob=TSCI$q.robust

M_data_biasinit[M]=abs(betainit - beta)

M_data_biastilde[M]=abs(betatilde -beta)

M_data_Cov[M]=(CI[1,2]<=beta)&(beta<=CI[2,2]) #tilde,comp

M_data_CIlen[M]=CI[2,2]-CI[1,2]

M_data_qcomp[M]=qcomp

M_data_qrob[M]=qrob

M_data_IV[M]=TSCI$invalidity
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}

betainit_resf[i,j]=mean(M_data_biasinit)

betatilde_resf[i,j]=mean(M_data_biastilde)

Cov_resf[i,j]=mean(M_data_Cov)

CIlen_resf[i,j]=mean(M_data_CIlen)

qcomp_resf[i,j]=round(mean(M_data_qcomp))

qrob_resf[i,j]=round(mean(M_data_qrob))

IV_resf[i,j]=mean(M_data_IV)

}

}
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