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Abstract — The cyber attacks in Ukraine in 2015 and 2016 

demonstrated the vulnerability of electrical power grids to cyber 

threats. They highlighted the significance of Operational 

Technology (OT) communication-based anomaly detection. 

Many anomaly detection methods are based on real-time traffic 

monitoring, i.e., Intrusion Detection Systems (IDS) that may 

produce false positives and degrade the OT communication 

performance. Security Operations Center (SOC) needs 

intelligent tools to conduct forensic analysis on generated IDS 

alarms and identify the attack locations. Therefore, in this 

paper, we propose a novel, graph-based forensic analysis 

method for anomaly detection in power systems using OT 

communication network traffic throughput. It employs a hybrid 

deep learning model involving Graph Convolutional Long 

Short-Term Memory and a Convolutional Neural Network. The 

proposed method aids SOC with continuous OT security 

monitoring and post-mortem investigations. Results indicate 

that the proposed method is able to pinpoint the locations of 

cyber attacks on power grid OT networks with an AUC score 

above 75%. 

Keywords— Anomaly Detection, Attack Graph, CNN, 

Cyber Security, Digital Forensics, Graph, GNN, LSTM, 

Operational Technology 

I. INTRODUCTION 

Cyber attacks on power systems are low-frequency, high-
impact disturbances that can have a wide range of adverse 
consequences. The potential implications include equipment 
damage, load shedding, and grid instability. In the worst-case 
scenario, cyber attacks have the potential to cause system-
wide cascading failures and a blackout. Consequently, cyber 
attacks on power grids pose a grave threat and have already 
been identified in the real world. For instance, on December 
23, 2015, a cyber attack on the power grid in Ukraine resulted 
in a blackout that affected 225,000 customers [1]. On 
December 17, 2016, a more sophisticated cyber attack caused 
a power outage in the distribution network, causing 200 MW 
of load to be left unsupplied [2]. In order to accomplish their 
goals, the adversaries used a variety of attack strategies. These 
can be correlated with the seven phases of the cyber kill chain, 
to conduct a comprehensive evaluation of it as an advanced 
persistent threat. These stages include reconnaissance, 
weaponization, delivery, exploitation, installation, command 
and control, and action on objectives [3]. The current 
techniques employed for identifying attacks on power grids 
are constrained in their effectiveness. The majority of these 
anomaly detection methods are based on power system 
measurements that arise after successful early attack stages of 
the cyber kill chain, e.g., false data injection [4]-[6]. 
Therefore, this points out the importance of promptly 

detecting attacks in their early stages by means of anomaly 
detection in Information Technology-Operational Technology 
(IT-OT) systems. 

Signature-based [7], sequence-based [8], rule-based [9]-
[11], and machine learning-based [12] are the four primary 
methods reported in the literature for detecting anomalies in 
power grid IT-OT communication traffic. According to recent 
research, there is a growing interest in machine learning-based 
approaches for anomaly detection, which have demonstrated 
superior performance [13]. Therefore, in our previous work, 
we proposed a near real-time anomaly detection method for 
OT systems using hybrid deep learning [14]. The hybrid deep 
learning approach incorporates Graph Neural Networks 
(GNN), Long Short-Term Memory (LSTM), and 
Convolutional Neural Networks (CNN). The deep learning 
model utilizes unsupervised learning techniques to acquire 
knowledge about the intricate patterns of OT network traffic 
throughput, and supervised learning methods to classify the 
OT traffic. This is implemented in the control center to detect 
cyber attacks at the early stages of the cyber kill chain by 
monitoring the power system OT networks using Software 
Defined Networking (SDN). Notwithstanding, our previous 
research [14] and other research on SDN in power systems is 
restricted by the limited adoption of SDN in the present power 
system [15]. However, SDN may be widely deployed in the 
near future. 

The state-of-the-art anomaly detection methods are based 
on real-time traffic monitoring, i.e., Intrusion Detection 
Systems (IDS), that may produce false positives [16] and 
degrade the OT communication performance [17]. Security 
Operations Center (SOC) needs intelligent tools to conduct 
forensic analysis on generated IDS alarms and identify the 
attack locations. The field of digital forensics within OT 
systems is currently in its nascent phase when compared to its 
IT counterpart. OT forensic analysis may help SOC 
investigate IDS alarms and reduce the number of false 
positives from real-time detection methods. Furthermore, it 
may be used for in-depth security investigations without 
disrupting the operation of industrial control systems [18], 
such as power grids.  

Therefore, in this paper, we propose a novel, graph-based 
forensic analysis method for anomaly detection in power 
system OT networks by utilizing the communication network 
traffic throughput. It employs a hybrid deep learning model 
involving Graph Convolutional Long Short-Term Memory 
(GC-LSTM) and a CNN. The proposed method aids SOC with 
continuous OT security monitoring and post-mortem 
investigations. Results indicate that the proposed method is 
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able to accurately pinpoint the locations of cyber attacks in the 
power grid OT network.  

Compared to our previous research in [14], forensic OT 
traffic analysis also provides more flexibility. The 
implementation of SDN is not a prerequisite for it and can be 
applied to a broad range of OT communication networks, 
including, but not limited to, substations, control centers, and 
wide area networks. The forensic method allows SOC to 
perform in-depth post-mortem forensic investigations to avoid 
false positive results and minimize performance degradation 
of the OT communication. To summarize, the scientific 
contributions of this paper are as follows: 

1) We propose a novel method for forensic graph-based 
analysis of OT traffic throughput based on packet 
historical data, i.e., FGraph. It is purpose-built for the 
detection of anomalies in OT networks by utilizing 
communication traffic throughput in the earlier stages of 
the cyber kill chain. It aids SOC in locating and 
identifying system-wide cyber attacks on OT networks 
using Traffic Dispersion Graph (TDG) and conducting 
post-mortem investigations through the implementation 
of graph-based deep learning. 

2) A novel approach utilizing a hybrid deep learning model 
for the purpose of classifying OT network traffic 
throughput as either anomalous or normal. The proposed 
model integrates GC-LSTM and a CNN. 

3) We propose FGraph Traffic Pre-Processing (TPP) with 
TDG to generate a forensic graph model. The graph 
model is used to analyze historical communication 
throughput between nodes. Furthermore, the time-series 
throughputs are classified using a hybrid deep-learning 
model. The classification results are used to identify 
anomalous nodes, which are represented in a forensic 
graph. 

The rest of this paper is organized as follows. Section II 
explains the forensic graph model and anomaly detection. 
Section III describes the simulation result and analysis, and 
Section IV presents the conclusions and future work. 

II. FORENSIC GRAPH MODEL AND ANOMALY DETECTION 

This section presents the cyber attack threat model, 
proposed techniques for detecting anomalies, and the forensic 
graph model. Fig. 1 provides an overview of the methodology 
employed in the detection of anomalies and the subsequent 

creation of forensic graphs. The data collected from the 
network in the form of historical packets serves as input for 
the model. There are two processes performed using the 
packets, i.e., TPP and TDG. Following the pre-processing 
stage, GC-LSTM training takes place to produce a GC-LSTM 
model based on normal traffic data. This base model is 
subsequently utilized to predict traffic flows based on 
temporal and topological characteristics. The predicted traffic 
output is then subjected to a CNN time series classifier, which 
identifies the traffic flow as either normal or anomalous. As a 
result, the FGraph model generates a graph visualization that 
is predicated upon nodal classification. The following 
subsections provide a more thorough discussion of each stage 
of the method.  

A. Cyber Attack Threat Model 

A threat model is a systematic and organized 
representation of various factors and elements that have an 
impact on the security of an application. It helps to identify, 
communicate, and comprehend potential threats. An example 
of a power grid OT network is represented in Fig. 2. In this 
study, we assume that an adversary has already compromised 
a host located in the OT network of a substation. The 
adversary conducts a cyber attack on the OT network from 
the compromised host. This research employs the STRIDE 
threat model for CPS [19]. STRIDE consists of spoofing, 
tampering, repudiation, information disclosure, Denial of 
Service (DoS), and privilege elevation. In this work, we focus 
primarily on spoofing and DoS. A constrained threat model 
is used to analyze the OT communication of the power grid. 
The IT and OT network traffic characteristics exhibit notable 
distinctions. The network traffic in OT systems originates 
from automated processes with deterministic and 
homogeneous behavior [20]. In contrast, the traffic in IT 
systems primarily comprises of user-generated data that has 
a stochastic behavior. Therefore, the implementation of 
traffic-based anomaly detection for OT systems 
fundamentally differs from that of IT systems. 

This research focuses on OT traffic throughput-based 
anomaly detection, which is capable of detecting cyber 
attacks that alter OT throughput relative to normal throughput 
levels, e.g., DoS, network reconnaissance, and spoofing 
attacks. In our previous work [14], a method is proposed for 
SDN-based real-time throughput anomaly detection. In this 
paper, however, we propose a method for forensic analysis of 
OT traffic, which does not require SDN deployment in power 

 
Fig. 1.  Forensic graph (FGraph) model. 
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grid OT networks. The forensic analysis of traffic uses 
historical OT traffic data to acquire a comprehensive 
understanding of OT network operations, security breaches, 
and performance issues. 

B. Traffic Pre-Processing and Traffic Dispersion Graph 

Network forensics pertains to the acquisition, 
preservation, and scrutiny of network data with the aim of 
identifying unauthorized access and conducting subsequent 
inquiries [21]. It is a crucial component of network security, 
as it enables organizations to quickly detect and respond to 
cyber threats. Network administrators typically employ 
network traffic analysis tools to perform network traffic 
forensics, which involves capturing and analyzing traffic data 
in real-time or from historical traffic logs. These tools aid in 
detecting network anomalies, such as abnormal traffic patterns 
or unauthorized access attempts, that may suggest security 
breaches or malware infections. Wireshark, Tshark, Snort, and 
tcpdump are well-known software tools for network traffic 
analysis. These tools can capture network traffic data and 
provide a comprehensive analysis of the data, including the 
source and destination of the traffic, traffic type, and any 
detected anomalies or suspicious activities. 

One of the methods to perform a deeper forensic analysis 
is through network forensic data visualization [22]. A matrix-
based visualization from network forensic data was presented 
in [23]. The authors show the visualization summary of 
network data, e.g., IP addresses, ports, NetFlow payloads, 
entropy of source and destination IP, etc. The visualizations 
help to facilitate network traffic analysis and pinpoint 
anomalies within the network. An alternative method to 
visualize the network traffic data is using a TDG. The TDG is 
an analytical framework utilized for the purpose of observing 
and evaluating communication traffic. The fundamental 
concept behind TDG is interactions between hosts within a 
network [24]. Moreover, TDG employs graph structures to 
represent nodal information. Each individual node in a graph 
represents an individual host within a network. Conversely, 
the transmission of information among hosts is denoted by the 
interconnectivity of nodes, i.e., graph edges. Previously, the 
TDG was utilized to analyze communication network 
patterns. For instance, studies in [25] proposed an application 
of TDG for anomaly detection, based on graph information 
from network traffic. As shown in Fig. 1, in this research, we 
use TDG to generate a network graph topological 
representation from recorded OT traffic data. 

Besides the aforementioned TDG, we also implement TPP 
in the model for the historical packets. This extracts 
information from the packets, i.e., nodes, edges, and time 
series traffic throughput. Algorithm 1 summarizes the 
pseudocode of both TDG and TPP. The input for the proposed 
algorithm is historical traffic packets (P) captured using 
Wireshark or Tshark. TDG processes the OT traffic to extract 
Graph information (G) from the packets, including 
vertices/nodes (V), edges (E), and the adjacency matrix (A). 
Meanwhile, TPP aims to convert the packets into time series 
throughput data for each node (X). The extracted graph (G) 
and time series throughput (X) serve as input for the 
subsequent forensic graph stages. 

Algorithm 1: TDG and TPP Algorithm 

Inputs: P: Historical communication traffic packets 

Outputs: 
� = �� �, �, 	
�: Graph with nodes, edges and adjacency 

{
�, 
�, … , 
�}� ∈ �: Time series throughput data 

1 TDG iteration for each packet p in P 

for p in P do 

2  if v not in G{V} 

3   add v to V 

4  if e not in G{E} 

5   add e to E 

6 end for 

  

7 TPP throughput extraction iteration for each time t in T 

for t in T do 

8  for v in G{V} 

9   
�� =  � 
� 

10  end for 

11 end for 

12 return � = �� �, �, 	
� and {
�, 
�, … , 
�}� ∈ � 

C. Graph Convolutional Long Short-Term Memory 

Graph Convolutional Long Short-Term Memory (GC-
LSTM) is adopted to acquire knowledge about the OT 
network traffic patterns. GC-LSTM employs two machine 
learning models, i.e., Graph Convolutional Network (GCN) 

 

Fig. 2.  OT network of a power grid 
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and LSTM. The GCN utilizes graph-based representations of 
the OT network's topological information, in conjunction with 
localized features derived from neighbouring communication 
nodes in the spatial domain. Subsequently, LSTM is employed 
for temporal learning by utilizing time-series data of observed 
OT network traffic. The integration of GCN and LSTM 
confers the benefit of acquiring knowledge from both, the 
spatial and temporal domains. 

The primary input for the GC-LSTM approach is the graph 
structure of the OT network topology. TDG is used to derive 
this particular graph structure, as previously described. The 
Graph (G) elements are vertices/nodes (V), edges/links (E), 
and adjacency matrix (A). The adjacency matrix is a 
representation of elements denoted by Ai,j, where i and j are 
node index numbers. Ai,j equals 1 when two nodes are 
connected and 0 when they are not. 

ˆ( )k k

t gcn t
GCN W A X← •      (1) 

1(( ) ( ) )k

t f t f t ff W GCN U h bσ
−

= + +     (2) 

1(( ) ( ) )k

t i t i t ii WGCN U h bσ
−

= + +     (3) 

1(( ) ( ) )k

t o t o t oo W GCN U h bσ
−

= + +     (4) 

'

1 'tanh(( ) ( ) )k

t c t c t cc W GCN U h b
−

= + +     (5) 

'

1( ) ( )t t t t tc f c i c
−

= • + •      (6) 

tanh( )
t t t

h o c= •       (7) 

In (1), the GCN model is predicated on the Hadamard 
product multiplication ( • ) of the weight matrix (Wgcn), 
adjacency matrix (A), and node features derived from the 
historical traffic data (Xt). The adjacency matrix is a 
mathematical representation that encapsulates pertinent 
details concerning the topology of the OT network. The 

modified adjacency matrix ( Â ) is obtained by adding the 
identity matrix (I) to the original adjacency matrix (A). The 
time series data set (Xt) is modelled by an equation that 
accounts for a specific time point (t) and the overall number 
of time observations (T). The node feature matrix (X) contains 
information about each node (xi), where n represents the total 
number of nodes. The equation takes into account the 
exponent k, which represents the number of hops from a 
communication node to its neighbouring nodes, as described 
in [26] and [27]. Following the acquisition of spatial features 
through the GCN, the LSTM model is subsequently employed 
to examine the temporal or time-series characteristics. The 
functions and processes that occur within an LSTM cell are 
described in (2–7). The LSTM process comprises six primary 
sub-equations, namely the forget gate (ft), input gate (it), 
output gate (ot), internal cell state (c't), transferable cell state 
(ct), and hidden state (ht). 

D. Time Series Classification and Forensic Graph Model  

Time Series Classification (TSC) was implemented in [28] 
for anomaly detection. In this study, we propose a method for 
detecting anomalies in OT communication network traffic 
using TSC. The method employs a hybrid approach that 
combines both supervised and unsupervised methods for 
detecting anomalies in OT traffic. The utilization of 
unsupervised learning for time series data was implemented in 
[29]. Hence, an unsupervised GC-LSTM model is employed 

to acquire knowledge of the intricate patterns exhibited by OT 
network data and topology. Following this, the GC-LSTM 
model produces traffic predictions which serve as inputs for 
the TSCs. 

TSC is implemented using a CNN algorithm with a multi-
layer convolutional and ReLU activation function, as 
described by (8). The variables under consideration in (8) are 
the number of layers (l), filter size (m), weight (w), and bias 
(b). The CNN algorithm performs binary classification of each 
node as normal and anomalous. The classification is 
performed based on TSC from time series throughput data for 
each node (X). The result from the classification is then used 
to construct a forensic graph in the following stages.  

1
1

( )Re ( )
m

l l

i iy LU wy b
−

−

= +        (8) 

{{ , , }}G i if f V= ∈F       (9) 

The forensic graph equation is described in (9). The 
FGraph is constructed based on prior knowledge regarding the 
topology of the OT network as well as the results of the node 

classifications. The FGraph (
G

F ) comprises two distinct 

components, i.e., normal nodes (fi) and anomalous nodes (��̅). 
The node classifications, alongside with the graph structural 
information, are then used to visualize the FGraph with 
different node colors. The node color variations help the user 
to pinpoint anomalous locations within the OT network 
topology. 

III. SIMULATION RESULTS AND ANALYSIS 

A. Experimental Hardware-in-the-Loop Setting 

Fig. 3 depicts the Hardware-in-the-Loop (HIL) 
configuration utilized for performing the FGraph 
implementation. A Real-Time Digital Simulator (RTDS) is 
used to model the physical power system, while IEC 61850 
communication is realized between the RTDS and Intelligent 
Electronic Devices (IEDs) through a network switch. The 
IEDs comply with the IEC 61850 standard, enabling Generic 
Object Oriented Substation Event (GOOSE) messaging and 
Sampled Values (SV) for measurements. During normal 
operation, the RTDS sends packets to IEDs periodically. 
However, under cyber attack scenarios, the packet rate varies. 
More details on the cyber attack vector are provided in [30], 
[31]. Based on the co-simulation setup and cyber attack 
scenarios, we collect OT network traffic data for later analysis 
using FGraph. 

 
Fig. 3.  Digital substation experimental setup for OT traffic generation. 
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B. Comparison With Open Datasets 

Other than the aforementioned experimental set up, in this 
work, we also analyze multiple open datasets, i.e., IEC 61850 
[32] and DAPT 2020 [33]. In [32], the authors provide 
communication data from a digital substation based on IEC 
61850 standard. The dataset provides OT communication 
traffic data under normal, disturbance, and cyber attack 
scenarios. Normal data is derived from normal traffic with and 
without variable loading. The disturbance scenarios include 
busbar protection, breaker failure protection, and Under 
Frequency Load-Shedding (UFLS). The cyber attack 
scenarios cover Denial of Service, GOOSE spoofing, merging 
unit measurement spoofing, circuit breaker Boolean value 
injection, and replay attack. 

In [33], the authors generate data based on normal and 
Advance Persistent Threat (APT) traffic for a duration of 5 
days. The scenarios implement various stages of cyber attack 
kill chain, including vulnerability scanning, exploitation, 
establishing a foothold, privilege escalation, etc. The 
experiments incorporate red team and blue team tools, e.g., 
Metasploit and Snort. The NetFlow data collected from the 
experiment within 5 days includes source, destination, flow 
duration, flow bytes, etc. However, the provided NetFlow 
CSV data is not suitable for our proposed method of TDG and 
TCC. Therefore, in this work, we use the provided raw 
original source of packet data in .pcap format. 

C. Network Traffic Analysis 

 Table 1 summarizes the network traffic data from the 
experimental HIL (A), IEC 61850 dataset (B) [32], and APT 
dataset (C) [33]. Data A and B originate from the substation 
models within a local network, which primarily transmits 
layer 2 broadcast messages using MAC addresses. 
Meanwhile, data C is dominated by layer 3 communication 
using IP addresses. Data C also indicates that the network is 
segregated into private and public networks. Additionally, this 
data has the most accumulated packet history of 5 days, with 
a total size of 17 GB.  

Table 1: Summary of Network Traffic Data 

Parameters A B  C  

No of Nodes 85 103 786 

No of Edges 198 246 821 

Traffic duration 30 minutes 150 minutes 5 days 

Total packet size 50 MB 100 MB 17 GB 

 
Fig. 4.  Statistical comparison between normal, predicted, and attack or 
anomalous traffic for data A, B, and C. 

All the aforementioned data is then processed using the 
forensic graph generation model. The GC-LSTM generates 
traffic predictions that serve as a normalization filter. Fig. 4 
depicts a statistical comparison as box plots between normal, 
predicted, and attack traffic for all 3 cases. As shown in Fig. 
4, normal traffic also contains outliers, indicated by red dots. 
These outliers can affect classification performance and result 
in increased false positives. Meanwhile, in the predicted 
traffic, the outliers are significantly reduced. Therefore, GC-
LSTM helps to improve the classification accuracy of the 
CNN time series classifier.  

D. Anomaly Detection and Forensic Graph 

 The anomaly detection is performed based on TSC using 

CNN. TSC classifies the traffic throughput as normal or 

anomalous. Fig. 5 shows the performance comparison for 

each dataset using the Receiver Operating Characteristic 

(ROC) curve. Dataset A provides the best result with an AUC 

score 0.819, followed by datasets B and C. Results for dataset 

C show the worst performance as the data contains more 

noise compared to the other two datasets. Comprehensive 

performance comparisons of the proposed method with the 

state-of-the-art methods are provided in our previous work 

[14]. 

 
Fig. 5. ROC comparison for data A, B, and C. 

Fig. 6 shows the forensic graph plot for normal and 

anomalous traffic. The blue node represents normal traffic, 

while the red one represents anomalous traffic. Fig 4. a, b, 

and c show the graph representation from normal traffic, 

while the others show the graph under attack scenarios. The 

cyber attack scenarios include GOOSE replay attack, 

reconnaissance, data manipulation, and foothold 

establishment. The graph comprises nodes that store data 

pertaining to the source and destination IP addresses or MAC 

addresses, as outlined in the TDG references [14], [24], and 

[25]. Results from the TDG show the ability to identify 

anomalous nodes within the network by tracing them back to 

their respective IP or MAC address. The operator utilizes 

these particular IP or MAC addresses to identify the root 

causes of the traffic anomaly. These IP and MAC addresses 

can potentially be associated with a compromised host or a 

host that has been targeted by an attack.  
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E. Result Analysis 

Based on the conducted experiments, datasets A and B 

provide better anomaly detection performance, in comparison 

to dataset C. This is because the first two datasets contain 

homogenous OT traffic. Meanwhile, dataset C is IT traffic 

that has more heterogeneous characteristics. This 

characteristic is also shown in Fig. 4. Therefore, FGraph is 

more suitable for throughput anomaly detection in OT 

networks.  

Compared to our previous research in [14], the 

performance of FGraph is lower because the FGraph input 

consists of packets captured with Wireshark. Other research 

has already identified problems related to Wireshark time 

inaccuracies [34], [35]. The Wireshark packet timestamp is 

inaccurate because it does not reflect the actual packet arrival 

or departure time. In particular, it is dependent on the time 

necessary for the kernel to process the arriving packets and 

access the clock. Regardless of this limitation, FGraph can 

serve as an alternative solution for graph-based forensic 

analysis in power grid OT communication networks. 

Although the performance is lower than [14], FGraph has 

more advantages due to its flexible implementation, as it does 

not require the deployment of SDN in the OT network. In 

addition, FGraph aims to avoid the degradation of the OT 

communication performance. Furthermore, with the recorded 

historical OT traffic, SOC can perform thorough analyses of 

the packet payloads to avoid false positives.  

IV. CONCLUSIONS AND FUTURE WORK 

The increasing risk of cyber attacks on power grids has 
prompted the need for enhanced attack detection capabilities 
in OT systems. In this work, we proposed FGraph, a hybrid 
model of GC-LSTM and CNN for anomaly detection in OT 
communication networks for power grids. Forensic analysis 
on OT network traffic data aids SOC in localizing and 
identifying cyber attacks. GC-LSTM creates OT traffic 
predictions based on the spatial and temporal features of the 
input data. Through its predictions, the data variability and 
outliers are reduced. GC-LSTM enhances the anomaly 
detection performance of the CNN classifier. In this 
implementation, the detection performance is limited due to 
the scarcity of data for training and testing. Hence in future 
work, more experiments using various other datasets will be 
performed to improve the performance of FGraph. 
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