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Abstract
Microporosity is commonly assumed to be non-connected porosity and not commonly studied in
geoengineering industry. However, the presence of micropores plays a key role in connecting macropores
and it can contribute significantly to the overall flow performance. In this study, targeted CO2 storage
carbonate fields in Southeast Asia have significant amounts of microporosity ranging from 10 to 60%
of the total measured porosity. Microporosity can only be seen in high resolution images. To study
the unresolved and the resolved microporosity, Middle Miocene carbonate samples from CO2 storage
candidate fields were scanned using lower resolution micro-computed micro-tomography (micro-CT)
and higher resolution synchrotron light source to understand the pore scale structure of the carbonate
sample at different length scales. This paper proposes a proof-of-concept upscaling method that integrates
multiscale 3D imaging techniques and trendline analysis to establish porosity-permeability relationships
with microporosity insight. After image acquisition and processing, the images were divided into smaller
sub-volumes. Pore-scale modelling was conducted to predict the permeability using Darcy-Brinkman-
Stokes (DBS) model. Then, a nano-scale porosity-permeability transform is generated using natural log
trendline fitting based on simulation results. The porosity-permeability transform is further extended to
three cases to cover the low case, mid case, and high case of datapoint fittings and is further validated with
laboratory measured data. The established porosity-permeability transforms in this study have been applied
to compare with petrophysical derived porosity-permeability transforms with better performance (higher R2

value) for low permeability datapoint. The multiscale imaging upscaling workflow has integrated machine
learning during image segmentation with pore-scale modelling and trendline fitting during the upscaling
study. It emphasises the importance of seeing the unseen (unresolved microporous phase) to understand the
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internal texture and microstructure of a rock sample in order to understand the connectivity of the overall
flow performance in a carbonate rock.

Introduction
Carbonate rocks are complex with multiple length scales and multiple scales of heterogeneity. The
complexity is contributed to secondary porosity developed during diagenesis. These rocks have multiple
Representative Elementary Volumes (REV) for different sample sizes, and it is challenging to establish
porosity-permeability relationships that are valid at different measurement scales (submillimetre to
decametre scales) [1]. For example, porosity can be measured directly using gas expansion at centimeter-
scale in a core plug and indirectly at decimeter scale using subsurface wireline logs. The integration of these
measurements at different length scales is still uncertain.

During reservoir characterisation, porosity that stands for the pore spaces in reservoir system, and
permeability that stands for the ability of flow in porous media, are the main properties to govern CO2

storage and petroleum production field development. The interconnectivity in carbonate rocks is mainly
contributed by micropores and macropores. Micropores are important contributors to connect the pathway
between microporous grains and macropores [2]. These micropores refer to small pores that are present
inside carbonate grains, matrix and cement which normally appears as unresolved phase under thin section
and low-resolution micro-CT imaging tomograph. To solve the mystery of the unresolved phase, Middle
Miocene carbonate rock samples from potential CO2 storage depleting gas fields have been analysed using
high- and low-resolution 3D imaging tomography. The studied location is a carbonate play locating at
offshore Malaysia (Figure 1) and developed during Early to Middle Miocene.

Figure 1—The studied Middle Miocene carbonate play at offshore Malaysia [6]

Cantrell and Hagerty [2] studied Arab formation carbonates of Saudi Arabia and they observed the
microporosity forming process transforms different grain types into grains that have similar internal fabrics
using high resolution SEM (Scanning Electron Microscope) equipment. Janjuhah [6] and Habibur [7]
observed a significant amount of microporosity in the same carbonate play for this study. They compared the
visible porosity from 2D petrographic thin sections to the total porosity measured by routine core analysis
(RCA) to estimate the amount of microporosity in samples. Both literature studies quantified the amount
of microporosity based on 2D imaging technique with a thin slice of rock with only 30 microns thickness.
To enhance the microporosity study for complex carbonate rocks, we proposed a multiscale imaging study
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using 3D image analysis, pore-scale modelling, and multiscale upscaling study as more representative way
of quantifying microporosity under multiple length of scales (nano-scale, micro-scale, and core-scale).

Methods
In this study, the workflow consists of six main stages (Figure 2). Middle Miocene carbonate rock samples
from potential CO2 storage depleting gas fields were selected and plugged in core warehouse. A total
of seven cylindrical shape carbonate rocks with 38.1 mm diameter and 52.07-73.66 mm length were
selected based on different lithofacies, pore types, porosity, and permeability range (Figure 3). The sample
information is summarised in Table 1. Sample A was selected for multiscale imaging. During sample
preparation, sample A core was drilled for micro-scale imaging study and the subplug sample is laser-cut
for nano-scale imaging using Oxford Laser service.

Table 1—The information of selected carbonate samples

Sample ID Porosity, % Permeability, m2 Diameter (mm) Length (mm) Classification

Sample A 37.05 1.1547×10-14 38.1 73.66 Mouldic limestone

Sample B 30.72 2.1351×10-13 38.1 62.23 Framestone

Sample C 31.66 9.9211×10-14 38.1 52.07 Floatstone

Sample D 29.55 9.0747×10-14 38.1 60.96 Bindstone

Sample E 32.98 2.2631×10-13 38.1 60.96 Rudstone

Sample F 27.50 1.7402×10-13 38.1 53.34 Bafflestone

Sample G 31.93 1.1633×10-13 38.1 73.66 Packstone
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Figure 2—The workflow for this study
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Figure 3—Selected carbonate core samples (38.1mm diameter) in this study

Multiscale imaging study was conducted using Rx Solutions EasyTom micro-CT and Swiss Light Source
(SLS) Tomographic Microscopy Coherent rAdiology experimenTs (TOMCAT) beamline synchrotron
radiation facility at PSI (Paul Scherrer Institut), Villigen, Switzerland. The imaging study starts with core-
scale imaging using micro-CT equipment at 22.5 µm voxel size (38.1 mm cylindrical shape core sample),
followed by micro-scale imaging using micro-CT equipment at 5.5 µm voxel size (6 mm cylindrical shape
subplug sample), and finally nano-scale imaging using SLS TOMCAT at 0.165 µm voxel size (500 µm
cylindrical shape mini plug sample). Figure 4 shows the acquired images during multiscale imaging study.

Figure 4—Multiscale imaging data from 3D dataset

The image datasets were first processed by volume editing to remove the surrounding of sample; cropped
to remain the volume of interest; filtered to remove image noise and segmented to separate different phases
(pore, solid and/or microporous phase) in the sample. In this study, nano-scale image dataset was segmented
into pore and solid phases (binary image); micro-scale image dataset was segmented into three phases (pore,
solid and/or microporous phase) and core-scale was not segmented but converted to 255-phases greyscale
image dataset (Figure 5). Avizo software was used for most of the image processing steps except micro-
scale three phase segmentation that was performed using 3D Weka (Waikato Environment for Knowledge
Analysis) machine learning based segmentation using ImageJ software [8].
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Figure 5—Multiscale imaging data after image processing

After image processing, pore-scale simulation was conducted to find out the connected porosity and flow
streamlines (permeability). During the simulation, the image dataset was divided into smaller 300×300×300
voxel cubic size images to generate more datapoints and avoid simulation crash (Figure 6). For nano-scale
simulation, simpleFoam solver was used to compute the flow in the pore space using constant velocity
and fluid viscosity. For micro-scale simulation, simpleDBSFoam was used to solve DBS equation [9].
The porosity in microporous phase was calculated based on mean value of greyscale intensity divided by
total greyscale intensity while the permeability in microporous phase was calculated based on nano-scale
trendline fitting equation. For core-scale simulation, simpleDBSFoam was used as well and individual
porosity and permeability values were assigned to 255 phases of image dataset. GeoChemFoam software
was used for pore-scale simulation. This open source OpenFoam CFD (Computational Fluid Dynamics)
toolbox software is developed at the Institute of GeoEnergy Engineering, Heriot-Watt University [10].

Figure 6—Cubes extraction into 300 × 300 × 300 voxel sizes

Multiscale upscaling study started from nano-scale pore-scale simulation results. It is important to have
nano-scale imaging dataset to allow a clear identification between pore and solid phases in the internal
fabrics and microstructure or resolved features. Nano-scale permeability and porosity results were plotted
and regressed for trendline analysis. In this study, three nano-scale trendline fitting equations were generated
to represent low case, mid case, and high case. These equations were then used to define the permeability
in microporous phase during micro-scale simulation study.

For micro-scale image dataset, the lower resolution consists of microporous phase with unresolved
porosity which cannot be visualised in lower resolution images and requires image segmentation into three
or more phases. During image segmentation, it is not straightforward to segment the studied phases using
conventional thresholding segmentation method because it is less accurate or misses details in segmentation
result. Therefore, machine learning based 3D Weka segmentation method based on pixel-based was applied
using a set of selected image features from machine learning algorithms. A freehand selection tool of 1
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pixel width was used to draw out the identified phases separately before training the classifier for the whole
image. Figure 7 compares the segmentation results based on thresholding segmentation (Figure 7b) and
machine learning (Figure 7c). It is observed that thresholding segmentation result produces less pore spaces
(black colour phase) compared to machine learning segmentation, which are highlighted in blue circles.

Figure 7—Image segmentation results, (a) greyscale image; (b)
thresholding segmentation and (c) machine learning basis segmentation

Subplug laboratory measurement from flow experiment was used to validate the performance of
trendline fitting equation. Micro-scale permeability and porosity results were then plotted and micro-scale
trendline fitting analysis might need to be performed if the laboratory data and simulation results did not
match the trendline fitting. Core sample laboratory measurement from Coreval 700 porosity permeability
measurement equipment was used to validate the performance of trendline fitting equation. In this study,
MATLAB software curve fitting tool was used to perform trendline fittings and graph plotting. The final
generated trendline fitting equations were used to predict the permeability at core scale and compared with
petrophysical derived porosity-permeability equations.

Results and Discussion
Nano-scale simulation results (connected porosity and permeability) were plotted in graph for trendline
fitting analysis using curve fitting method. In this study, 1542 porosity and permeability data points from
three directions were combined and trendlines were fitted using different equation types (linear, exponential,
polynomial, power law and natural log). Among the fitting types, exponential, polynomial, power law, and
natural log trendline fittings showed better fitting performance with R2 value greater than 0.75. Those fittings
were plotted in Figure 8. It is observed that most of the trendline fittings overpredicted the permeability
especially porosity value beyond 0.3 except natural log fitting. Therefore, natural log fitting type was
selected for the next simulation scale.
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8 OTC-34892-MS

Figure 8—Nano-scale trendline fitting analysis

There are a wide range of porosity (0.05 - 0.48) and permeability (5.11×10-18 - 2.32×10-13) values from
nano-scale simulation. In order to have more representative trendline fitting trend, two additional natural
log fitting trendlines were added to cover the upper range and lower range of permeability data. The new
fittings were generated using high permeability and low permeability datapoints separately. Figure 9 shows
the three natural log fitting equations or porosity-permeability transforms from nano-scale imaging study.
The natural log fitting trendlines are expressed as,

Low case: Permeability (m2) = 8.106×10-13 × porosity (fraction)4.3575

Mid case: Permeability (m2) = 1.048×10-12 × porosity (fraction)3.645

High case: Permeability (m2) = 3.013×10-12 × porosity (fraction)3.226

Figure 9—Natural log trendline fittings for nano-scale data

Micro-scale simulations were conducted based on natural log trendline fitting and validated with subplug
laboratory measurements. In this case, the mid case natural log fitting equation was applied to calculate
the permeability in microporous phase because the subplug lab data has the closest matching with mid
case fitting (green points in Figure 10). Figure 10 shows the matching of simulation results and laboratory
measurement with respect to natural log trendline fitting. Mid case natural log trendline can fit lab measured
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data very well. At the same time, mid case natural log fitting can match the micro-scale simulation results
quite well with less than one order of magnitude difference and R2 value equals to 0.7962.

Figure 10—Micro-scale trendline fitting analysis

Core-scale simulations were conducted based on nano-scale trendline fitting since the micro-scale fitting
was good. Low case natural log trendline fitting was applied to define the permeability in 253 phases
of microporous phase (excluding pore phase and solid phase) because the core sample lab data has the
closest matching with low case fitting (blue point in Figure 11). During core-scale simulation, 255-phase
segmentation instead of 3-phase segmentation was applied due to the presence of high microporous phase
volume (as high as 0.9 volume fraction) in core-scale images. The simulation results were validated with
core sample laboratory measurement. Figure 11 shows the comparison of simulation results and laboratory
measurement with respect to natural log trendline fitting. Low case natural log trendline can fit lab measured
data very well and it can match the core-scale simulation results quite well with less than one order of
magnitude difference and R2 value equals to 0.8901.

Figure 11—Core-scale trendline fitting analysis

There is a good matching between the natural log trendline fittings with micro-scale and core-scale
simulation results. To prove the performance of the newly developed porosity-permeability transforms,
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a comparison study was made between petrophysical derived and imaging derived porosity-permeability
transforms in this study. Porosity-permeability transforms were normally derived based on different
petrophysical rock typing methods such as porosity range, zone location, lithofacies, depositional
environment, rock texture and combination of different facies. In this study, Dunham's carbonate rock
texture classification was applied to classify the studied samples. Each rock type has its own power law
derived porosity-permeability equation and it is common that one field will have more than three rock typing
equations.

On the other hand, our imaging derived equations consist of only three equations. During comparison
study, laboratory porosity and permeability measurements from the selected samples were first plotted
together with natural log trendline fittings to select the nearest fitting to be applied. Among the samples,
Sample A is different from the other carbonate samples because the sample was selected from different field
and it has high porosity and low permeability properties. Based on the plot in Figure 12, low case natural
log trendline fitting was applied to sample A while high case natural log trendline fitting was applied for
the rest of the studied carbonate samples.

Figure 12—Trendline fitting selection for studied carbonate samples

Table 2 shows the permeability prediction results for petrophysical derived method and imaging derived
method. Based on error analysis, the petrophysical derived method has a low R2 value (0.0465). The method
cannot handle high porosity sample with low permeability value (Sample A) accurately. On the other hand,
our imaging derived method is better than petrophysical derived method with higher R2 value (0.4479).
The above study shows a 3D imaging workflow which integrates multiscale (nano-scale, micro-scale and
core-scale) imaging information to study the porosity-permeability relationship. It highlights the importance
of capturing microstructure details at nano-scale using high resolution imaging tool to understand the
unresolved microporous phase in micro-scale and core-scale.
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Table 2—Comparison study between petrophysical derived and imaging derived permeability

Sample ID Core-scale
lab measured

porosity (fraction)

Core-scale
lab measured

permeability (m2)

Petrophysical derived
permeability (m2)

Imaging derived
permeability (m2)

Petrophysical
derived method

Sample A 0.37 1.1547×10-14 3.2626×10-13 1.0710×10-14 Porosity range

Sample B 0.31 2.1351×10-13 4.2919×10-13 6.6937×10-14 Framestone

Sample C 0.32 9.9211×10-14 9.9687×10-14 7.3764×10-14 Floatstone

Sample D 0.30 9.0747×10-14 1.8341×10-13 5.9031×10-14 Bindstone

Sample E 0.33 2.2631×10-13 2.9203×10-13 8.4186×10-14 Rudstone

Sample F 0.28 1.7402×10-13 9.3753×10-14 4.6811×10-14 Bafflestone

Sample G 0.32 1.1633×10-13 8.0554×10-14 7.5828×10-14 Packstone

Conclusion
Measuring porosity and permeability at one scale (core-scale) is insufficient to derive representative and
robust porosity-permeability relationships for carbonate rocks. This study investigated the microporosity
in carbonate samples at multiple length scales. A multiscale upscaling workflow was developed
based on multiscale imaging, multiscale upscaling, and pore-scale simulation. Porosity-permeability
transforms based on microporosity insight were derived and compared with petrophysical derived porosity-
permeability equations. The imaging method has the capability of predicting high porosity carbonate
samples with low permeability value. Further work is needed to improve the study. It is recommended to add
more imaging datasets and improve the trendline fittings using random upscaling or multiplication factor
in upcoming study.
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