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Wearable sensors offer newopportunities for the early detection and identification
of toxic chemicals in situations where medical evaluation is not immediately
possible. We previously found that continuously recorded physiology in guinea
pigs can be used for early detection of exposure to an opioid (fentanyl) or a nerve
agent (VX), as well as for differentiating between the two. Here, we investigated
how exposure to these different chemicals affects the interactions between ECG
and respiration parameters as determined by Granger causality (GC). Features
reflecting such interactions may provide additional information and improve
models differentiating between chemical agents. Traditional respiration and
ECG features, as well as GC features, were extracted from data of 120 guinea
pigs exposed to VX (n = 61) or fentanyl (n = 59). Data were divided in a training set
(n = 99) and a test set (n = 21). Minimum Redundancy Maximum Relevance
(mRMR) and Support Vector Machine (SVM) algorithms were used to, respectively,
perform feature selection and train a model to discriminate between the two
chemicals. We found that ECG and respiration parameters are Granger-related
under healthy conditions, and that exposure to fentanyl and VX affected these
relationships in different ways. SVMmodels discriminated between chemicals with
accuracy of 95% or higher on the test set. GC features did not improve the
classification compared to traditional features. Respiration features (i.e., peak
inspiratory and expiratory flow) were the most important to discriminate
between different chemical’s exposure. Our results indicate that it may be
feasible to discriminate between chemical exposure when using traditional
physiological respiration features from wearable sensors. Future research will
examine whether GC features can contribute to robust detection and
differentiation between chemicals when considering other factors, such as
generalizing results across species.
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1 Introduction

Wearable sensor technology is rapidly evolving, leading to higher
quality data and more physiological parameters that can be monitored
simultaneously. This development offers new opportunities to quickly
detect and identify toxic chemicals based on their effects on the human
body, enabling timely (self-administered) treatment when medical
evaluation is not immediately possible, such as in the military battle
field. Various specialized devices are under investigation for alcohol or
substance abuse or are already commercially available, such as the
Secure Continuous Remote Alcohol Monitor (SCRAM®) ankle
monitor, which electrochemically detects transdermal alcohol (Davis-
Martin et al., 2021). Even though direct chemical detection is the gold
standard, it only allows for the monitoring of a limited number of
compounds, making it unsuitable for ‘threat-agnostic’ monitoring.
Furthermore, chemical detection is difficult for compounds that are
toxic at extremely low systemic levels, such as is the case for novel
synthetic opioids as carfentanil (Uddayasankar et al., 2018). Also note
that differential diagnosis in the clinic is not always straightforward, as
exemplified in the 2018 Salisbury poisoning incident, in which a nerve
agent poisoning was mistaken for an opioid overdose (Eddleston &
Chowdhury, 2020; Haslam et al., 2022). Indirect detection bymeasuring
the compound’s (toxic) effects on the body (toxidrome) presents a
promising approach for continuous, non-invasive monitoring of
exposure to chemicals. Automatic algorithms may alert the
possibly exposed individual or their colleague that quick
countermeasures are required. In the battlefield such warnings
could be especially helpful given that military personal likely
ignore or suppress physical discomfort, and effects of chemicals
are initially hidden for others by protective clothing and gas masks.

The effects of chemical intoxication on the body can be complex
and multi-facetted. Machine learning models are suitable for complex
pattern recognition analyses with relatively large numbers of parameters
and previous studies showed that when applied to physiological data,
they could detect various chemical intoxications. A study by Mahmud
et al. (2018) employed variousmachine learningmethods (decision tree,
k-nearest neighbor, eXtreme Gradient Boosting) to detect opioid use
based on data from a wrist-band with 99% accuracy. A study by Chang
et al. (2021) showed that a neural network trained to recognize digoxin
toxicity from electrocardiography (ECG) performed similarly to
cardiologists and emergency room specialists, showing 84.6%
sensitivity and 96.6% specificity. We previously showed that a
machine learning model could accurately detect exposure to an
opioid (fentanyl) or a nerve agent (VX) and differentiate between
the two, based on continuously measured electroencephalography
(EEG), ECG and respiration (whole-body plethysmography) data in
guinea pigs (van Baardewijk et al., 2021).

While these studies successfully demonstrated the detection of
chemical intoxication based on physiology, they all considered
physiological parameters independently. However, under normal
physiological conditions, the various biological systems of the body
exhibit oscillatory patterns due to underlying feedback and feedforward
mechanisms. For instance, heart rate is well-known to be regulated by
many such mechanisms. In healthy people, successive beats do not
occur at a constant rhythm, instead, (R-R) intervals show considerable
variability. The largest contributor to heart rate variability (HRV) is
respiratory sinus arrhythmia (RSA). The heart rate increases with
inspiration and decreases with expiration, a mechanism by which

the body optimizes pulmonary gas exchange (Hayano et al., 1996;
Goldberger et al., 2013) and which is thought to be regulated mainly by
central mechanisms (Gleb et al., 1936). These and other
cardiorespiratory interactions vary under different circumstances,
such as different breathing patterns (Stefanovska, 2002; Elstad et al.,
2018; Lukarski et al., 2022). Various pathological conditions have been
linked to changes inHRV, such as congestive heart failure, diabetes, and
depression (Musialik-Łydka et al., 2003;Wang&Wang, 2011; Young &
Benton, 2018; Hartmann et al., 2019). HRV has also been implicated as
a useful marker for substance abuse (Koenig et al., 2015), withdrawal
symptoms (Levin et al., 2019; Garland & Howard, 2021), and exposure
to fine particulate matter (Riediker et al., 2018).

Even though the precise mechanisms of HRV remain poorly
understood, these studies highlight the fact that the various
physiological systems of our body do not function in an isolated
manner. Instead, they coordinate and synchronize their functions to
maintain a given physiological state. This holistic view of physiology
is investigated in the field of Network Physiology (Bashan et al.,
2012; Bartsch et al., 2015). Quantifying the interactions of
physiological features under different (healthy and intoxicated)
circumstances may improve the detection of toxic chemicals as
well as increase our understanding of physiological mechanisms.

One method to quantify the (causal, i.e., time ordered) relationships
between physiological features is Granger causality (GC), named after the
econometrician who first described it in 1969 (Granger, 1969). This
technique has been frequently applied in the financial sector, among
others for investigating causal relationships between market factors,
economic changes, stock prices, and stock price predictions (Výrost
et al., 2015; Gao et al., 2018;Gherghina et al., 2020; Thakkar&Chaudhari,
2021). A variety of studies that usedmethods based onGC to quantify the
interactions between physiological signals, mainly focused on heart rate,
respiration, and arterial blood pressure. GC in these studies show how
well the future of a physiological signal (e.g., heart rate variability) can be
predicted from the present and the past of another signal (e.g.,
respiration) by means of linear vector autoregressive (VAR) models,
and result in directionality and strength of interaction (Seth et al., 2015).A
study by Faes et al. (2015) applied GC to map directional interactions in
brain-brain and brain-heart networks in different sleep states,
exemplifying the added value of GC in neuroscience (Porta & Faes,
2015; Seth et al., 2015). A study by Rozo et al. (2021) demonstrated that
different methods to quantify RSA, based on GC principles, captured the
cardiorespiratory changes expected during different non-REM sleep
stages. Interactions between respiration, blood pressure and heart rate
have been found to be influenced by factors such as body position (Mary
et al., 2019) and deep versus normal breathing (Mary et al., 2018). These
interactions have been used to make distinctions between healthy and
diseased conditions under conditions such as congestive heart failure
(Radovanović et al., 2018), and pre-eclampsia (Riedl et al., 2010). Recent
studies successfully used GC between brain and heart signals to
characterize epileptic seizures (Pernice et al., 2022) and GC between
activity in different brain areas to distinguish between patients with
cognitive impairment associatedwith epilepsy and healthy controls (Jiang
et al., 2021).

Acknowledging the potential diagnostic value of
physiological interactions in the context of exposure to toxics,
and acknowledging GC as a way to quantify such interactions, we
here determine the GC interactions within and between both
respiration and ECG parameters under healthy and intoxicated
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(fentanyl or VX) conditions. RSA, that we already discussed
above, is the most studied form of cardiorespiratory GC
interactions, despite the identification of other forms
(cardiorespiratory phase synchronization: Bartsch et al. (2007),
and time delay stability; Bartsch et al., 2014). One of the reasons
for this is that RSA can be directly estimated using predictability
and casual measures based on GC, applied to the raw respiratory
signal and the tachogram, derived from the ECG. Such measures
are often used to estimate the information transferred from a
driver, often the respiration, to a target signal (e.g., the
tachogram). Here, however, we study the cardiorespiratory
interactions not by predicting one (close to) raw signal from
the other, but by looking at the effect that specific respiratory
higher order features have on the morphological and rhythm
features of the ECG, such as the effect of peak inspiratory flow on
the interval between successive heart beats, and vice versa.
Interactions between these features are also examined within
modality. Relying on higher order features is important from the
perspective of our envisioned ultimate application of using
wearables for diagnostics in the field, where the quality of the
raw physiological signals and their synchronization is likely
compromised. Since it is currently unknown how exposure to
fentanyl and VX affect GC interactions, we first provide an
overview of the interactions for each condition. Next, we
evaluate the contribution of traditional ECG and respiration
features as well as GC features in machine learning models
that aim to differentiate between exposure to fentanyl and VX
over 45 min following exposure as well as over the first 15 min of
exposure (which we considered as a cut-off for a timely treatment
in an exposure scenario). The study here is an updated and
extended version of a previous proceedings paper [van
Baardewijk et al. (2022)].

2 Materials and methods

2.1 Sample

Data comprised four existing physiological datasets of freely
moving guinea pigs, exposed to VX (n = 62) or fentanyl (n = 71). The

animal procedures were as described previously (Joosen et al., 2017).
Briefly, VXwas obtained from the in-house synthesized TNO stocks.
Purity upon issue was >98%. Fentanyl citrate (European
Pharmacopoea grade) was purchased from Spruyt-Hillen
(IJsselstein, Netherlands). Purity was >99%. VX was either
dissolved in 2-propanol (IPA) to the required concentration or
applied as neat agent. The VX doses applied were 1–2 mg/kg
dermally, corresponding to approximately 1.5–3 times the 24 h
LD50 values in guinea pigs (Rice et al., 2015). The fentanyl doses
ranged from 0.05 to 8 mg/kg (intravenous bolus) and 0.4–32 mg/kg
(subcutaneous), selected to elicit varying degrees of respiratory
depression. Fentanyl was dissolved in phosphate-buffered saline
(PBS) to the required concentration before administration. For
continuous measurements, animals were surgically equipped with
ECG leads. Two leads were sutured in the superficial muscles under
the skin right below the right collar bone and between the second
and third rib (configuration II). ECG data were transmitted
wirelessly to a hardware system (Data Sciences International
(DSI), St. Paul, MN, United States) using F40-EET (nominal
sampling rate 240 Hz) or HD-S02 (nominal sampling rate
375 Hz) telemetry devices. Unrestrained respiratory
plethysmography (URP) data were obtained using whole-body
plethysmography cages, connected to a Universal XE signal
conditioner (DSI). Telemetry and plethysmography data were
upsampled simultaneously at 1,000 Hz using the Ponemah
Physiology Platform (v5.41) software, in order to combine the
modalities into a single dataset. Under typical conditions, the
synchronization error of the two modalities was within
150 ms. For each animal, at least 30 min of data were acquired
before exposure. The final sample included 120 animals; nine
animals were excluded because they belonged to a placebo group,
four animals were excluded because they died during the
experiment.

2.2 Preprocessing: From raw data to the
extraction of ECG and respiratory features

Physiological data were preprocessed using Ponemah® Software. The
signals were inspected visually to identify and exclude artifacts related to

FIGURE 1
ECG (A) and respiration (B) features illustrated in schematic raw ECG and respiratory signals. In the current study, we used R-R interval (RR-I), ST
elevation (ST-E), R height (R-H) and QRS duration (QRS) as traditional ECG features. For respiration, the traditional features that were used were tidal
volume (TV), peak inspiratory flow (PIF), peak expiratory flow (PEF), inspiratory time (IT), expiratory time (ET), and total time (TT).
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movements and sudden ambient pressure changes. All derived features
were subsequently exported in a beat-to-beat format for further
processing. The following four traditional ECG features were extracted

from ECG data: R-R interval (RR-I), ST elevation (ST-E), R height (R-H)
and QRS duration (QRS). For respiration, the six traditional features that
were extracted from URP data were: tidal volume (TV), peak inspiratory

FIGURE 2
Percentage of 5-minute windows with significant GC per condition and feature combination for ECG causing ECG (A), ECG causing respiration (B),
respiration causing ECG (C), and respiration causing respiration (D).
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flow (PIF), peak expiratory flow (PEF), inspiratory time (IT), expiratory
time (ET), and total time (TT; TT= IT+ET). These ECG and respiratory
features are illustrated in Figures 1A, B, respectively.

To identify and remove signal artifacts, z-scores were
determined for 20 s moving windows (shifted in steps of 1 s).
Datapoints with a z-score higher than 3 or lower than −3 were
removed.

Data around the moment of exposure (from 5 min before to
5 min after) were excluded to prevent any handling effects related to
administering the chemical potentially influencing the data.

2.3 Traditional ECG and respiratory features

Extracted features were aggregated over successive 5-min
windows for data from 30 min before exposure to 45 min after
exposure. Within-animal centering of features was done by
subtracting the baseline, which was defined as the average feature
value as recorded during the first 15 min (i.e., from 45 min until
30 min before exposure). Missing data were linearly interpolated.
Such features were used as input for Support Vector Machine (SVM)
classification analysis (Cortes & Vapnik, 1995) as described later.

2.4 Granger causality (GC) features

In this study, a bivariate formulation of GC was used. In such a
formulation a system consists of two variables X and Y. Y causes X,
in the Granger sense, if the past of Y (Yl

n) provides information
about the future of variable X, given the past of X (Xk

n), whereYn and
Xn denote the present value of Y and X respectively and:

Xk
n � Xn−1, X, . . . , Xn−k+1[ ], (1)

Yl
n � Yn−1, Yn−2, . . . , Yn−l+1[ ], (2)

where k and l represent the time lags.
For extracting GC features between each pair of features, the

different time series (i.e., extracted features) were resampled at

aligned points in time. For subsequent windows of 100 ms, data
points in a specific window were averaged. Average data points were
linearly interpolated and data were resampled at 10 Hz. The time
series were then detrended by means of differencing.

GC features were determined for each animal, each 5-min
window, and each of the 90 combinations of traditional ECG
and respiratory features (four ECG and six respiratory features
as described in 2.2 gives a total of 10 features; leading to
10*10–10 = 90 unique combinations). To determine the
optimal GC lag, the Vector Autoregression (VAR) on the
healthy data of all animals was calculated by varying the lag
from 1 to 50 100 ms-windows. The optimal lag value was the one
with the lowest average Akaike information criterion (AIC)
(Akaike, 1974). In this case, the optimal lag was found to be
35 100 ms-windows, i.e. 3.5 s.

Statistical significance of GC was determined with an SSR
F-test, resulting in a p-value (α = 0.05) for each combination in
each 5-min window. F-statistic values were used as GC features
in the prediction models. Percentages of statistically significant
GC features were plotted to give an impression of which
interactions between ECG and respiratory features were more
present than others in the current sample.

To extract Granger causality features and to identify the
optimal lag as just described, we used Python and the
statsmodels module version 0.12.2. Specifically, the “VAR”
class from the statsmodels module was used to calculate the
VAR. For each lag a fit was done and from the result the AIC
value was used. The function “grangercausalitytests” from the
statsmodels module was used for calculation of the Granger
Causality. GC for each pair of features was calculated by putting
the values of the two features in a two-column dataframe and
using that as the first input for this function. A list of one
element was used for the “maxlag” parameter, with the optimal
lag as the only element, so only this lag was used as parameter
for the test. From the output of this function, the p-value from
“ssr_ftest” was used for statistical significance as described
above.

2.5 Feature selection, classification of
exposure and classification evaluation

Using classification analysis we explored whether GC could
support classification of respiration and ECG data into either
exposure to VX or fentanyl. Twenty percent of the data (21 of
the animals) was set aside as a test set to evaluate the final model
after the training phase (using data of 99 animals). The proportion of
animals exposed to either VX and fentanyl was held constant
between the training and the test set.

A standard scaler was used to standardize the data before using
the SVM. After that, feature selection, classification and evaluation
of the classification was performed in the dataset stratified by time
from the exposure (i.e., 5–45 min and 5–15 min from exposure).

Because the final training set was composed of 100 features
(4 traditional ECG features, 6 traditional respiratory features, and
90 GC features), feature selection was performed. The minimum
Redundancy Maximum Relevance (mRMR) algorithm was used to
rank features by their importance. mRMR ranks features high if they

FIGURE 3
SVM accuracy as a function of number of selected features.
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are mutually far away from each other (i.e., minimum redundancy) while
still correlating strongly with the to be classified variable (i.e., maximum
relevance) (Peng et al., 2005). After that, an SVMwas used to classify the
exposure to the type of chemical based on varying numbers of features.
Specifically, an SVM (with standard hyperparameters) was trained by
adding one of the ranked features at the time, following their rank and
starting with the first. Leave-one-group-out (LOGO) cross validation was
applied to evaluate the accuracy of the classificationmodel by leaving one
animal out at each iteration on the training set. The average accuracy
varying by the number of ranked features was plotted to qualitatively
select the optimal number of features. A similar approach has been used
before (Peng et al., 2005). The top traditional as well as GC features were
selected.

A grid-search was then used for tuning the SVM and optimize
the following hyperparameters: kernel, C or “regularization
parameter”, and gamma. The kernel defines whether the decision
boundary is linear or not. Here, a linear and a radial basis function
were used as candidate kernels. The constant C represents the
tradeoff between minimizing the training set error and
maximizing the margin. Gamma is a parameter for nonlinear
kernels; gamma controls the influence of each feature on the
decision boundary. C and gamma were initialized on different
scales ranging from 0.0001 to 100. LOGO was used in this step
to optimize the SVM as well as performing internal validation for the
best set of parameters. Finally, the tuned SVM was evaluated on the
test set (i.e., external validation).

FIGURE 4
Boxplots for VX (blue) and fentanyl (orange) exposure in the most important features in the first 45 min from exposure: top 3 traditional features on
the left, top 3 GC features on the right. For reference, values for the not exposed condition are shown as well (green).
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Python 3.9 was used to perform the analyses. The pymrmr
library was used to rank features and the sklearn library was used to
build the classification model.

3 Results

Figure 2 shows the percentage of 5-min windows with significant
GC. Not exposed conditions are shown on the left, exposure to
fentanyl in the middle and exposure to VX on the right. Results are
shown separately for ECG causing ECG features a), ECG causing
respiration features b), respiration causing ECG features c) and
respiration causing respiration features d). All feature combinations
were GC related for more than 25% of the 5-min windows within
modality (ECG causing ECG and respiration causing respiration
features). Most feature combinations were GC related for more than
20% of the cases between modalities (ECG causing respiration and

respiration causing ECG features). Patterns appear to differ between
the three exposure conditions.

The feature selection step showed that with only the top three
features (ranked PEF, TT, PIF for the first 45 min; ranked PEF, PIF,
ET for the first 15 min) the accuracy of the SVM on the training
set already reached a high accuracy for both the 45 and the 15 min
case (Figure 3). The following top three features in the feature
selection step were all GC features. For the first 45 min from
exposure, these were (ranked) IT causes ET, RR-I causes R-H,
PIF causes TV. For the first 15 min from exposure, these were
(ranked) RR-I causes R-H, TT causes PEF, PIF causes TV.

Figures 4, 5 provide insight into how the features that came
out as the most relevant features for differentiating between
fentanyl and VX differed between these chemical exposure
conditions. The left panels in Figure 4 show how the top three
(traditional) variables differed for the first 45 min after exposure.
TT, PEF and PIF were all lower for fentanyl than for VX. The left

FIGURE 5
Boxplots for VX (blue) and fentanyl (orange) exposure in the most important features in the first 15 min from exposure: top 3 traditional features on
the left, top 3 GC features on the right. For reference, values for the not exposed condition are shown as well (green).
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panels in Figure 5 show how the three highest ranked features
(PEF, PIF and ET) differed between the chemical exposure
conditions when only the first 15 min from exposure were
considered. As for the 45 min, PEF and PIF were lower for
fentanyl than for VX. ET was higher for fentanyl than for VX.
The right panels in Figures 4, 5 indicate how the top GC features
differed between conditions. The GC for ECG features (RR-I
causes R-H in both the 45- and 15 min case) was low in VX
compared to fentanyl. In contrast, the GC for respiration features
(with slightly different GC combination popping up for the 45-
and 15-min case) was low in fentanyl compared to VX. To
provide insight as to how the exposure conditions compare to
the not exposed condition, Figures 4, 5 include these data as well.

Table 1 shows optimal hyper parameter settings used in the
SVM. Table 2 shows internal validation and external validation
results. Accuracy of the SVM using traditional features alone was
high for both the first 45 min and the first 15 min (respectively 95%
and 97% for the test sets). Results were comparable when using
traditional features alone versus traditional and GC features in both
the 45 and 15 min time frames, indicating that GC features did not
add to traditional features. Still, models using only GC features had
an accuracy of 79%, confirming the impression from Figure 2 that
relations between physiological features differed between exposure
to VX and fentanyl.

4 Discussion

We explored the relation between different ECG and respiration
parameters under healthy conditions, after exposure to fentanyl, and
after exposure to VX using Granger causality. We were especially
interested in whether the interactions between physiological signals,
quantified using Granger’s method, could be used to improve
discrimination by machine learning models between exposure to
VX and fentanyl relative to using traditional features alone.
Quantification of (cardiorespiratory) interactions may be useful
in improving machine learning models designed to detect acute
chemical intoxication and discriminate between chemicals based on
non-invasive physiological data, as well as improve our
understanding of chemicals’ toxic effects.

SVM classification showed that it was already possible to
discriminate between VX and fentanyl with high accuracy (95%)
after 15 min, using traditional features. While models using GC
features alone showed that these features contained information,
adding them did not result in improved classification of the already
high accuracy reached by using only traditional features. Respiration
features were the most important to discriminate between the two
types of exposure. This is consistent with the different
pharmacological mechanisms by which both compound classes
exert their toxic effects and the used administration routes.
Opioids, such as fentanyl, directly bind to the mu opioid receptor
(MOR), disrupting the central respiratory drive, controlled by
various respiratory centers in the brainstem (Pattinson, 2008; van
der Schier et al., 2014). In the current data sets, fentanyl poisoning
occurred via intravenous and subcutaneous exposure, leading to
rapid intoxication. Nerve agents, such as VX, cause a cholinergic
crisis, leading to a wide palette of signs and symptoms typical for
nicotinic and muscarinic overstimulation. In the current data sets,
VX poisoning occurred via dermal exposure, resulting in a steady
progression of toxicity, where bradycardia and hypothermia are
typically observed first and respiratory distress at a more severe state
(Hamilton et al., 2004; Mumford et al., 2008). Our finding that it was
already possible to discriminate between the chemicals in the first
15 min from the exposure with good accuracy demonstrate the
feasibility to discriminate between chemical exposure when using
respiration data that may be measured using wearable sensors. This

TABLE 2 Internal and external validation of SVM prediction of chemical exposure.

Internal validation External validation

Accuracy, mean (SD) Accuracy

5 to 45 min from exposure

Traditional featuresa 0.954 (0.215) 0.950

GC featuresb 0.754 (0.425) 0.790

Traditional + GC featuresa+b 0.953 (0.203) 0.940

5 to 15 min from exposure

Traditional featuresc 0.970 (0.260) 0.970

GC featuresd 0.767 (0.614) 0.790

Traditional + GC featuresc+d 0.958 (0.256) 0.970

aFeatures = TT, PEF, PIF.
bFeatures = IT causes ET, RR-I causes RH, TV causes PIF.
cFeatures = ET, PEF, PIF.
dFeatures = RR-I causes R-H, ET causes PEF, IT causes PEF.

TABLE 1 SVM hyperparameters tuning.

Kernel C ɣ

5 to 45 min from exposure

Traditional featuresa rbf 90 0.02

GC featuresb linear 0.09 5

Traditional + GC featuresa+b rbf 90 0.01

5 to 15 min from exposure

Traditional featuresc rbf 100 0.10

GC featuresd rbf 1.50 0.50

Traditional + GC featuresc+d rbf 100 0.10

aFeatures = TT, PEF, PIF.
bFeatures = IT causes ET, RR-I causes RH, TV causes PIF.
cFeatures = ET, PEF, PIF.
dFeatures = RR-I causes R-H, ET causes PEF, IT causes PEF.
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is important to provide timely interventions to reverse the effects of
chemicals’ exposure. It remains to be seen how the accuracy of models
such as these varies with other compounds and other dosages.

The fact that classification accuracy was already high when using
traditional features alone made it difficult for GC features to further
improve that. Models based on GC features alone showed that these
features contained information, but they performed poorly compared to
models based on traditional features alone. This may be explained by two
main limitations of this work. Firstly, the GC features were computed
under the assumptions of stationarity and joint Gaussian distribution. As
a result, only the linear interactions could be captured, thereby ignoring
possible nonlinearities that could be strongly affected by the exposure.
Therefore, future work should focus on the quantification of these
possibly nonlinear interactions (Rozo et al., 2021). Secondly, the
interactions between the features were assumed to be constant
throughout the 15 or 45min after the exposure. It is, however, still
unknown whether such interactions change towards the general health
deterioration caused by the exposure. Future studies will investigate if
such dynamic changes are stronger and occur faster in the cross-modality
features when compared to traditional ECG and respiratory features.

While the current work did not demonstrate a large contribution of
Granger causality features for the purpose of distinguishing between
exposure to different toxic chemicals, these features may add value for
the purpose of generalizing results across species and across movement
conditions. Automatic and early detection of exposure to toxic chemicals
can save human lives, but studying the physiological effects of these
chemicals can only be done in animals where it is questionable how
well these models generalize to humans. Also, large variations in body
movement and posture may make it hard to automatically detect and
exposure to chemicals. In future work we hope to examine how traditional
as well as interaction features vary across species, movement and exposure
conditions in order to select the features that are insensitive to variations in
species and movement. As mentioned before, the cardiorespiratory
interactions can be analyzed from the GC perspective using the raw
respiratory signal and the tachogram. This study, instead, highlights that
the GC relations between respiration and ECG are also prominent when
higher order variables are used, which are derived from the raw signal (e.g.,
RR-I, TT), suggesting that exact synchronization and high-quality raw
signals may not be essential. This is an advantage since such high-quality
signals are known to be difficult to record using wearables and under
ambulatory conditions. Future work will examine how traditional GC
relations between respiration and ECG compare for these different
approaches, and for data fromwearables compared tohigh-end equipment.
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