
 
 

Delft University of Technology

Optimization in the Photolithography Bay
Scheduling and the Traveling Salesman Problem
Janssen, Teun

DOI
10.4233/uuid:12961f87-eeff-41b5-8688-df28e0ad9860
Publication date
2019
Document Version
Final published version
Citation (APA)
Janssen, T. (2019). Optimization in the Photolithography Bay: Scheduling and the Traveling Salesman
Problem. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:12961f87-
eeff-41b5-8688-df28e0ad9860

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:12961f87-eeff-41b5-8688-df28e0ad9860
https://doi.org/10.4233/uuid:12961f87-eeff-41b5-8688-df28e0ad9860
https://doi.org/10.4233/uuid:12961f87-eeff-41b5-8688-df28e0ad9860


Scheduling and the Traveling Salesman Problem

Teun Janssen

Optimization in the
Photolithography Bay



Propositions

accompanying the dissertation

OPTIMIZATION IN THE PHOTOLITHOGRAPHY BAY

SCHEDULING AND THE TRAVELING SALESMAN PROBLEM

by

Teun Michiel Louis JANSSEN

1. There is no o(logn)-approximation algorithm for the a priori traveling salesman
problem in the scenario model.

2. The problem P |partition|∑ j C j is NP-hard.

3. The SPT-available rule gives a 4
3 -approximation for P |partition|∑ j C j .

4. The machine capacity required for the continuously arriving work in progress can
be decreased by 1.67% in the semiconductor factory through the use of efficient
scheduling algorithms.

5. In lens design, the performance of continuous optimization algorithms, in finding
the optimum lens system for the application at hand, is increased by choosing the
right model to calculate the objective function.

6. The performance of an optimization algorithm depends in practice much more on
the actual application than theory suggests.

7. Applications increase the legitimacy1 of scientific mathematical research.

8. A child’s name should be researched before giving it to them.

9. Updates are not upgrades.

10. The quality of a board game is determined by the quality of its playtesting.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor prof. dr. ir. K. I. Aardal.

1As defined by M.C. Suchman. Managing legitimacy: Strategic and institutional approaches. Academy of man-
agement review 20(3): 571-610,1995.



Stellingen

behorende bij het proefschrift

OPTIMIZATION IN THE PHOTOLITHOGRAPHY BAY

SCHEDULING AND THE TRAVELING SALESMAN PROBLEM

door

Teun Michiel Louis JANSSEN

1. Er is geen o(logn)- approximatiealgoritme voor het a priori handelsreizigerspro-
bleem in het scenario model.

2. Het probleem P |partition|∑ j C j is NP-hard.

3. De SPT-available regel geeft een 4
3 -approximatie voor P |partition|∑ j C j .

4. Men kan de benodigde machinecapaciteit voor continu veranderende lopende
werkzaamheden in een halfgeleiderfabriek verlagen met 1.67% door het gebruik
van efficiënte scheduling-algoritmes.

5. Bij het ontwerpen van een lens kunnen de prestaties van het continue optimali-
satiealgoritme bij het vinden van een optimale lensconfiguratie worden vergroot
door het juiste model te kiezen waarmee de doelfunctie wordt berekend.

6. De prestaties van optimalisatiealgoritmes hangen in praktijk veel meer af van de
daadwerkelijke applicatie dan door de theorie wordt gesuggereerd.

7. Toepassingen verhogen de legitimiteit2 van wetenschappelijk wiskundig onder-
zoek.

8. Er moet eerst onderzoek gedaan worden naar de naam van een kind voor het aan
hem of haar te geven.

9. Updates zijn geen upgrades.

10. De kwaliteit van een bordspel wordt bepaald tijdens het testen van het spelont-
werp.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor prof. dr. ir. K. I. Aardal.

2Zoals gedefinieerd door M.C. Suchman. Managing legitimacy: Strategic and institutional approaches. Aca-
demy of management review 20(3): 571-610,1995.
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SUMMARY

In a semiconductor factory, integrated circuits (or chips) are constructed on top of slabs
of silicon, called wafers. The construction of these wafers is complicated and many
different processing steps are needed to gradually building the chip layer by layer. Of
these steps, photolithography uses the most expensive equipment. Therefore, the pho-
tolithography equipment is often the bottleneck of the factory.

Photolithography is used to transfer the geometric pattern of a chip on a wafer. First a
light-sensitive photoresist is put on the wafer. Then UV light is sent through a photomask
on the photoresist. The exposed parts of the photoresist will chemically react, creating
the pattern. After the exposure, chemical reactions and metal depositions make a layer
of circuits on the wafer.

In this thesis, we try to increase the production of the semiconductor factory by reducing
the time needed for the photolithography. In the first part, we look at the machine level.
The time to process a wafer on a lithography stepper machine is determined by different
elements of the process (Chapter 2). It turns out that the blade movement required in
the exposure step has a significant impact total time required to process a wafer. The
blade movement in turn depends on the order in which the different images are pro-
cessed. Hence we want to find an ordering of the images, such that the blade movement
is minimized. This problem turns out to be equivalent to the a priori traveling salesmen
problem in the scenario model. The practical problem instances found are solved a lim-
ited amount of time using an integer linear programming solver and the average blade
movement is reduced by approximately 20%, which reduces the average exposure time
1.6%.

The a priori traveling salesmen problem (a priori TSP) in the scenario model is hard to
solve in theory (Chapter 3). In a priori TSP in the scenario model, we are given a com-
plete weighted graph G = (V ,E) and a set of scenarios S with S1, . . . ,Sm ⊆V . Scenario S j

has probability p j of being the active set, where
∑

j p j = 1. We begin by finding an order-
ing on V , called the first-stage tour. When an active set is released, the second-stage tour
is obtained by shortcutting the first-stage tour on the vertices of the active set. The goal
is to find a first-stage tour that minimizes the expected length of the second-stage tour.
The best known approximation algorithm for a priori TSP has a ratio of O(logn). We
show that the problem is NP-hard even for scenarios with only four cities and there are
constant-factor approximation algorithms for instances with small, big or nested sce-
narios. Furthermore we show that there is no polynomial-time approximation scheme
for planar bipartite graphs.

We also look at a space filling curve heuristic for a priori TSP (Chapter 4). The Sierpiński
curve solves TSP problems in the plane, but it is not easily extended to higher dimen-

ix



x SUMMARY

sions. Therefore we use the Hilbert curve instead and test the algorithm performance
on the instances found when minimizing the blade movement in the photolithography
process. The algorithms is very fast and is on average less than 1% away from the optimal
solution.

In the second part, we look at the photolithography bay as a whole. We will improve the
scheduling of the work in progress (Chapter 5). Currently, this schedule does not take
processing times into account. Detailed timing data is now available for the components
of the machines with which we can accurately calculate the processing time of every
job. We propose a two stage algorithm that uses the newly available processing times
to improve the scheduling of photolithography (and metalization) bays. The algorithm
focuses on minimizing the average completion time of the jobs, but it also allows the
logistic manager to influence the schedule. We show that the new schedule reduces the
average completion time by 6.02% and the machine capacity by 1.97%.

Minimizing the average completion time in the photolithography bay is equal to the
problem of minimizing the total completion time while scheduling jobs that each use
exactly one resource, P |partition|∑ j C j (Chapter 6). We show that P |partition|∑ j C j

always has an optimal solution where jobs sharing the same resource are ordered by
the processing time. While the complexity of P |partition|∑ j C j remains an open prob-
lem, we show that similar problems such as P |partition,Mr |∑ j C j , P |partition(2), p j =
1|∑ j C j and P |partition,unmovable, p j = 1|∑ j C j are NP-hard. Furthermore, we ap-
proximate the problem using a list scheduling rule, denoted the shortest processing time
available rule. This rule gives a 2− 1

m -approximation.



SAMENVATTING

In een halfgeleiderfabriek worden geïntegreerde schakelingen (chips) bovenop schijven
silicium gemaakt. Deze schijven worden wafers genoemd. De constructie van deze wa-
fers is een gecompliceerd proces en er zijn veel verschillende verwerkingsstappen nodig
om de chip stapsgewijs op te bouwen. Fotolithografie is de duurste stap in dit proces en
daarom zijn de fotolithografie machines vaak de bottleneck van de fabriek.

Fotolithografie wordt gebruikt om het geometrische patroon van een chip op een wa-
fer over te brengen. Eerst wordt een lichtgevoelig materiaal (fotoresist) op de wafer ge-
plaatst. Vervolgens bestraalt men door een fotomasker de fotoresist met uv-licht. Op de
delen van de fotoresist die aan het licht worden blootgesteld vindt een chemische reac-
tie plaats, waardoor het geometrische patroon ontstaat. Met behulp van dit patroon kan
vervolgens een laag met schakelingen op de wafer gecreëerd worden door middel van
verdere chemische reacties en metaaldeposities.

In dit proefschrift proberen we de productie van de halfgeleiderfabriek te verhogen door
de tijd die nodig is voor het fotolithografieproces te verkorten. In het eerste deel van de
thesis doen we dit door te kijken naar het proces in de machines. De tijd om een wafer
op een lithografiestepmachine te verwerken, wordt bepaald door verschillende elemen-
ten van het proces (Hoofdstuk 2). Het blijkt dat de bewegingen van lichtafschermende
bladen, die vereist zijn in de belichtingsstap, een significante impact heeft op de totale
procestijd van een wafer. De beweging van zo’n blad hangt op zijn beurt weer af van
de volgorde waarin de verschillende afbeeldingen worden verwerkt. We zoeken daarom
naar een volgorde van deze afbeeldingen zodanig dat de totale beweging van de bladen
wordt geminimaliseerd. Dit probleem blijkt equivalent te zijn aan het a priori handels-
reiziger probleem in het scenariomodel. Dit probleem kunnen we in de praktijk in be-
perkte tijd oplossen met behulp van een algoritme dat geheeltallige lineaire problemen
oplost. De gemiddelde beweging van de bladen wordt hierdoor met ongeveer 20% gere-
duceerd, waardoor de gemiddelde belichtingstijd met 1,6% korter wordt.

Het a priori handelsreiziger probleem (a priori TSP) in het scenariomodel is in theorie
moeilijk op te lossen (Hoofdstuk 3). Bij het probleem hebben we een volledig gewogen
graaf G = (V ,E) en een reeks scenario’s S met S1, . . . ,Sm ⊆V . Ieder scenario S j heeft een
kans p j dat het de actieve set is, waarbij

∑
j p j = 1. We beginnen met het vinden van een

ordering van de knopen V . Deze ordering geeft de eerste fase toer. Wanneer een actieve
set wordt vrijgegeven, wordt een tweede fase toer verkregen op de knopen in S j door
dezelfde ordering te nemen op deze knopen als ze hadden in de eerste fase toer. Het doel
is om een toer in de eerste fase te vinden zodanig dat de verwachte lengte van de toer in
de tweede fase wordt geminimaliseerd. Het beste approximatie algoritme voor a priori
TSP heeft een ratio van O(logn). We laten zien dat het probleem NP-moeilijk is, zelfs
voor kleine scenario’s met maar vier steden en we laten zien dat er algoritmen zijn die

xi



xii SAMENVATTING

de oplossing benaderen binnen een constante factor voor instanties met kleine, grote of
geneste scenario’s. Verder laten we zien dat er geen polynoom-tijd-benaderingsschema
is voor planaire bipartiete grafen.

We kijken ook naar een heuristiek voor a priori TSP die gebruikt maakt van een ruim-
tevullende curve (Hoofdstuk 4). De Sierpiński-kromme lost TSP-problemen in het vlak
op, maar de uitbreiding naar meerdere dimensies is niet evident. We gebruiken daarom
de Hilbert-curve in plaats van de Sierpinski-curve. We testen het algoritme dat gebruik
maakt van de Hilbert-kromme door het te gebruiken om de beweging van de bladen in
het fotolithografieproces te minimaliseren. Het algoritme is snel en is gemiddeld maar
1% slechter dan de optimale oplossing.

In het tweede deel kijken we naar alle fotolithografiemachines als productiegroep in de
halfgeleiderfabriek. We verbeteren de planning van het lopende werk zodanig dat de
benodigde machinecapaciteit voor dit werk wordt geminimaliseerd (Hoofdstuk 5). Mo-
menteel houdt de productieplanning geen rekening met procestijden. Gedetailleerde
tijdgegevens zijn nu beschikbaar voor de verschillende componenten van de machines
waarmee we de procestijd van iedere taak nauwkeurig kunnen berekenen. Om de plan-
ning van fotolithografie (en metallisatie) te verbeteren, stellen we een tweetrapsalgo-
ritme voor dat wel gebruik maakt van nieuw beschikbare procestijden. Het algoritme
focust zich op het minimaliseren van de gemiddelde doorlooptijd van de taken, maar
stelt de logistiek manager ook in staat om de planning te beïnvloeden. We laten zien dat
met de nieuwe planning de producten gemiddeld 6,02% eerder klaar zijn en dat er 1,97%
minder machinecapaciteit nodig is.

Het minimaliseren van de gemiddelde doorlooptijd van de producten bij de fotolitho-
grafiemachines is gelijk aan het minimaliseren van de totale tijd benodigd voor taken
die exact één grondstof nodig hebben. We definiëren dit probleem als P |partition|∑ j C j

(Hoofdstuk 6). We laten zien dat P |partition|∑ j C j altijd een optimale oplossing heeft
waarbij taken die dezelfde grondstof gebruiken gerangschikt zijn op basis van hun pro-
cestijd. De complexiteit van P |partition|∑ j C j blijft een open probleem. We laten echter
wel zien dat vergelijkbare problemen zoals P |partition,Mr |∑ j C j , P |partition(2), p j =
1|∑ j C j en P |partition,unmovable, p j = 1|∑ j C j NP-hard zijn. We kunnen bovendien
de optimale oplossing benaderen met een planningsregel, die de taken met de kortste
procestijd als eerste plant (SPT-available rule). Deze SPT available rule geeft een 2− 1

m -
benadering ten opzichte van de optimale oplossing.



1
INTRODUCTION

Nowadays, integrated circuits can be found in many devices, ranging from the traditional
personal computers to home appliances and even airbags. An integrated circuit (IC or
chip) is a collection of electronic circuits, mainly composed of transistors, on a piece of
semiconductor material, normally silicon. One of the first integrated circuits was pre-
sented in 1958 by Jack Kilby. It was a small piece of germanium glued to a piece of glass
with wires hanging out. When switched on, it produced a continuous sine curve on an
oscilloscope screen. The transistors it used were cut from a square centimeter of germa-
nium that contained 25 devices [9]. In the past decades, technological advancements
enabled the further miniaturization of these circuits. Today, circuits can be made with
a precision of 10 nanometers containing over 45 million transistors on a single square
millimeter [14].

Chips are not produced individually, but multiple chips are made on a single disc of sil-
icon, called a wafer. A single wafer can contain thousands of chips. These wafers are
produced in a semiconductor factory (often called wafer fab). After the wafer is pro-
duced, electronic probing is performed to test the IC basic functionalities. The probed
wafers are then sent to assembly, where they are cut into the individual ICs. These are
then packaged such that they are protected and wired such that they can connect with
the other parts of the electronic device. Next, a final test is performed to see if the chip is
working, after which they are labelled and ready to be used. The wafer fab including the
probing step are often called the front end and the assembly with the final testing are re-
ferred to as the back end. The front end and back end steps are usually done in different
facilities. Of the four stages of chip production, the wafer production is by far the most
time consuming and the most expensive.

1



2 1. INTRODUCTION

1.1 THE SEMICONDUCTOR FAB

In the semiconductor fab the chips are manufactured on top of the wafer surface. The
construction of the chips is done layer-by-layer. The wafer visits various areas in the
fab (so-called bays) which contain different production equipment, thus building grad-
ually the intricate electronic circuits. The most advanced technologies have up to 40 pat-
terned layers and take up to 700 production steps to manufacture. The order in which
these bays are visited depends on the design of the chip. Figure 1.1 gives a schematic
representation of the production bays and the possible routes the wafer can follow.

Wafer start
(raw wafer)

Wafer finished
(wafer with ICs)

Oxidation/
Diffusion

Photo-
lithography

Etch

Film
Deposition

Planarization

Ion
implentation

Wafer fab

Figure 1.1: Process flow of a wafer through the different production bays of the
wafer fab as described by Mönch et al. [11].

In the film deposition area a material is transferred to the wafer. The two most used tech-
niques are physical and chemical vapor deposition. Physical vapor deposition is done
using a plasma where accelerated gas ions sputter particles from a target onto the wafer
in a low pressure plasma chamber. Chemical vapor deposition uses a chemical reac-
tion of a gas mixture on the wafer surface at high temperatures. The materials deposited
are quite diverse. The metallization tools put metals such as titanium, titanium-nitride
and aluminum on the wafer surface to create conductive layers. The dielectric machines
deposit a layer of silicon dioxide (glass) as an electrical insulator.

In the photolithography bay, a geometric pattern is transferred to the last deposited top
layer. This is done by applying a light-sensitive material (or photoresist) on the wafer.
Next, light is directed through a patterned photomask onto the wafer to create the geo-
metric pattern. Section 1.2 covers this process in more detail.

In implantation, ionized atoms or molecules are accelerated towards the wafer such that
they penetrate the wafer until they come to rest in the silicon layers. These atoms form



1.2 PHOTOLITHOGRAPHY 3

impurities in the crystalline structure of the silicon, which changes the electronic prop-
erties of the silicon. However, it also damages the crystalline structure. In order to restore
this, the wafer has to be heated in a furnace in a process called annealing.

Furnaces are also used for diffusion and oxidation. If silicon is heated while oxygen or
water is present, the silicon on the surface will react with oxygen to form silicon dioxide
(glass), which serves as an insulating material. This process can be made more effective
by increasing the amount of oxygen or water molecules in the atmosphere. Heating also
increases the diffusion or movement of impurities, such as those created by ion implan-
tation, in the silicon. These impurities will move out off the silicon as it tries to restore
its crystalline structure, making diffusion an effective way to remove impurities.

Etching removes material. This is done either through dry etch where surface material is
removed by bombarding it with ions using a plasma, or through wet etch where the wafer
is put in a bath of volatile chemicals that react with the material. Using a patterned
mask layer, typically created using a resist and photolithography, etching can be done
selectively and the pattern of the photoresist can be transferred onto the wafer.

The combination of deposition, patterning and etching leads to an uneven surface to-
pography. However, a flat and smooth surface is required for an optimal pattern trans-
fer in the photolithograpy step. This constraint becomes more critical for the small-
est miniaturizations. To achieve this one makes use of chemical mechanical polish-
ing/planarization which flattens the surface of the wafer out with the help of a chemical
slurry.

For economic reasons, i.e. the price of the processing equipment, a typical wafer fab
is organized such that the (expensive) photolithography equipment serves as the bot-
tleneck of the production line. Hence, the overall performance of the wafer fab can be
improved by raising the equipment throughput on these photolithography tools.

1.2 PHOTOLITHOGRAPHY

Photolithography is a process step used in semiconductor manufacturing to transfer the
geometric pattern of a chip-design onto a wafer as depicted in Figure 1.2. First, a light-
sensitive photoresist is put on the wafer. Next, a light beam (visible or UV) is sent through
a patterned photomask (the so-called reticle) onto the photoresist. The portion of the
photoresist that is exposed to the light will be modified chemically. Additional steps are
performed to remove the photoresist material that has been exposed (in case of positive
photoresist) or not exposed (in case of negative photoresist). The pattern of the pho-
toresist is transferred to the wafer in subsequent processing steps, such as dry etch or
implantation.

In the semiconductor fab, of which the efficiency improvements are analyzed in this the-
sis, the photolithograpy process takes place inside a stepper. In the stepper, the reticle
image is focused and reduced by a lens to a local rectangular spot (see Figure 1.2). The
stepper gets its name from the fact that it moves or steps the wafer from one location to
another. The local exposure of the wafer is repeated in a grid pattern, resulting in the full
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patterning of the entire wafer.

light

reticle
(mask)

lens

wafer

wafer moves/steps from
one location to the next

Figure 1.2: Photolithography process

In actual manufacturing, it is quite common
that some areas of the wafer surface need
to be shielded from exposure. For example,
the alignment markers and wafer-ID infor-
mation should not be exposed. To achieve
this the reticle pattern is shielded partially.
Any rectangular shape within the full reti-
cle pattern can be selected by moving four
blades (top/bottom/left/right) to block un-
wanted light. Putting such constraints on the
full wafer exposure impacts the way in which
the wafer is processed and introduces addi-
tional images (partial reticle exposure) that
need to be transferred to the photoresist. The
total time to pattern the full wafer depends
critically on the order in which these images
are processed as it influences the time needed
for stepping, exposure and blading.

In this thesis, we will focus on the time needed for the photolithography process in the
wafer fab. We try to reduce the time needed by using techniques from the field of math-
ematical optimization. These techniques are analyzed using complexity theory. We will
give a brief overview of complexity theory and the two basic versions of the mathemati-
cal problems we study in order to optimize the photolithography process: the Traveling
Salesman Problem and Scheduling on unrelated parallel machines.

1.3 COMPLEXITY THEORY

Computational complexity theory is a field of mathematics that deals with the question
how hard it is to solve a certain computational problem. It studies the resources required
to solve a problem, i.e., the memory and time. In this thesis, we will consider optimiza-
tion problems. An optimization problem Π is given by a set of instances I . For each
instance I ∈ I , we have a set F of feasible solutions for I and a goal function c : F → R.
The problem is to find the best solution among all feasible solutions, i.e., find a feasible
solution F ∈ F , such that c(F ) is the minimized or maximized. Most theory however
deals with decision problems; problems for which a yes or no answer is required. Every
optimization problem can be written as a decision problem by taking a fixed optimiza-
tion goal k. In this decision problem, we want to determine given an instance I whether
or not there exist a feasible solution F ∈F , such that c(F ) ≤ k. If such a solution exist, we
will call I a yes-instance, if such a solution does not exist, we will call I a no-instance.

There are many and diverse types of decision problems. To cope with this variety of prob-
lems the problems are grouped in certain classes. These are called complexity classes.
The two main classes we will consider are the classes P and NP . Intuitively, class P
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consist of all problem that can be solved efficiently, while NP consist of all problems
where, if you are given a solution, you can verify it efficiently. More formally, the com-
plexity class P consists of all decision problems for which there exists an algorithm that
for every instance I ∈ I can determine whether I is a yes- or a no-instance in polynomial-
time, i.e., the time it takes to compute a solution to the decision problem, is polynomial
in the input size. The input size is number of symbols needed to describe the problem
input. It is often the number of nodes or vertices of a graph, the size of a matrix or the
number of variables. Note that this size can be dependent on the encoding scheme of a
problem. The complexity class NP consists of all decision problems where given a yes-
instance I ∈ I and a polynomial-size feasible solution F of this instance with c(F ) ≤ k,
called certificate, we can check in polynomial time, that I is a yes-instance. Note that ev-
ery problem that is in P is also in NP , but not the other way around. Although no proof
exists, it is generally assumed that P 6=NP , i.e., not all problems in NP can be solved in
polynomial time.

An important subclass of NP is the class NP-complete. NP-complete problems are
the most difficult problems inNP . A problemΠ isNP-complete if it is inNP and for all
other problems in Π′ ∈NP there is an algorithm that transforms Π′ to Π in polynomial
time. Such an algorithm is called a polynomial-time reduction.

Definition 1. A polynomial-time reduction from a decision problem Π1 to another deci-
sion problem Π2 is a function φ : I1 → I2 that maps every instance I1 ∈ I1 to an instance
I2 =φ(I1) ∈ I2 ofΠ2 such that

• the time required for the mapping is bounded by a polynomial of the input size of I1;

• I1 is a yes-instance ofΠ1 if and only if I2 =φ(I1) is a yes-instance ofΠ2.

The complexity class NP-hard consist of all problems for which the second property
of NP-complete problems holds, i.e., a problem is NP-hard if there is a polynomial-
time reduction form all problems in NP to the problem. We will often state that Π1

can be reduced to Π2 to indicate there is a polynomial time reduction from Π1 to Π2.
These reductions are often used to show that a problem isNP-hard, ifΠ1 can be reduced
to Π2 and a polynomial-time algorithm for Π2 is known then we can also solve Π1 in
polynomial-time. Furthermore if Π1 can be reduced to Π2 and Π2 can be reduced to
Π3, then also Π1 can be reduced to Π3. In other words polynomial-time reductions are
transitive. At first sight, proving that a problem is NP-hard might seem hard, however,
because of the transitivity of polynomial-time reductions, one can prove that a decision
problemΠ is NP-hard by showing a reduction from a single NP-hard problem.

Since it is generally assumed that P 6=NP , it is very unlikely that we can find efficient al-
gorithms for NP-hard problems. When considering these problems we therefore often
look at three types algorithms: exponential algorithms, approximation algorithms and
heuristics.
Exponential algorithms solve the problem, but are not efficient. Their running time can-
not be bounded by a polynomial in the input. Approximation algorithms compute a so-
lution efficiently (in time polynomial in the input size) and with a certain performance
guarantee. Heuristics are all algorithms that find a solution for the problem without any
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formal guarantee on the quality of the solution. All these algorithms might perform well
in practice depending on the problem. One of the most (in)famous ones is the simplex
algorithm for solving linear programming. In theory the simplex algorithm can run for
exponential time in the input size, but in most practical instances it solves a linear pro-
gram quite fast.

As mentioned, an approximation algorithm gives a certain performance guarantee. In
general, we will compare its performance against the optimal solution.

Definition 2. Let OPT(I ) and ALG(I ) be the objective value of the optimal and the algo-
rithm’s solution respectively. An algorithm for a maximization (or minimization) problem
Π is an α-approximation algorithm (α ≤ 1) if for every instance I it runs in polynomial
time and finds a feasible solution such that ALG(I ) ≥αOPT(I ) (or ALG(I ) ≤αOPT(I ) for
minimization problems).

The value of α is called the approximation ratio of the algorithm.

For some NP-hard problems, a lower bound (or upper bound) is known on how well
they can be approximated. For example, the Max Cut problem cannot be approximated
above a factor 16

17 , unless P = NP [6]. Such a result is called an inapproximability re-
sult. Thus, an inapproximability result states that for an optimization problem there is
function f (n), where n is the input size, such that for the approximation ratio α of the
problem, it must hold that α > f (n). More details on the dominant approaches for ap-
proximation algorithms can be found in the book by Vazirani [16].

One of the most general problems in P is linear programming. In linear programming,
we are given a number of variables (x1, . . . , xn) ∈ Rn+ and we want to optimize a linear
objective function

c(x) =
n∑

i=1
ci xi

subject to a set of m linear constraints

n∑
i=1

ai j xi ≤ b j , ∀ j ∈ {1, . . . ,m}.

A problem instance of linear programming is called a linear program or LP. A linear pro-
gram can be solved in polynomial time, for example, by the interior method proposed
by Karmarkar [7].

One of the most general NP-complete problems is integer linear programming. Its def-
inition is similar to linear programming except that the variables are integer instead of
real valued, i.e., (x1, . . . , xn) ∈ Zn+. It can be shown, due to this difference, the problem
becomes NP-hard and can therefore not be solved in polynomial time, unless P =NP .
Similar to linear programming, a problem instance of integer linear programming is
called an integer linear program or ILP. Depending on the ILP, different techniques are
used to solve it. For a detailed overview of (integer) linear programming and techniques
used see Bertsimas and Tsitsiklis [2].
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1.4 THE TRAVELING SALESMAN PROBLEM

The Taveling Salesman Problem (TSP) is a classical mathematical optimization prob-
lem. TSP states the problem faced by salesmen from the mid 19th until the early 20th
century. Salesman sold their wares traveling from city to city. They had a list of cities that
they visited on a regular basis. The travel time between cities often was long and hence
such a salesman wanted an efficient route to visit all cities before returning back to their
hometown. The problem is still relevant today for the delivery of for examples parcels or
food.

Figure 1.3: Artist impression of the TSP.

Mathematically, the problem is defined on a graph. The cities are defined as the vertices
of the graph. The edges in the graph represented the connections between the cities
and are assigned a value equal to the distance between two cities. More formally in the
Traveling Salesman Problem, we are given a weighted graph G = (V ,E) and we want to
find a minimum weight cycle (or tour) visiting every vertex exactly once. In the following,
we will assume that the edge weights satisfy the triangle inequality and that they are
symmetric. Furthermore, we will assume that if an edge between nodes u and v , i.e.
e = (u, v), is not contained in the graph its weight is equal to the shortest path in the
graph between u and v .

The decision version of TSP is NP-complete. This can be shown by a fairly straightfor-
ward reduction from the Hamiltonian cycle problem. The Hamiltonian cycle problem is
one of the classic 21 problems shown by Karp to be NP-complete [8]. A graph G = (V ,E)
contains a Hamiltonian cycle if there is a tour visiting all vertices V exactly once using
only edges of the graph. Given a graph G = (V ,E) the Hamiltonian cycle problem asks if
such a tour exists.

The best known approximation algorithm for TSP is the algorithm which is proposed
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by Christofides [4]. It gives a 3
2 -approximation. A detailed overview of the history and

mathematical results about TSP can be found in the book by Applegate et al. [1].

1.5 SCHEDULING

Scheduling is a decision-making process that deals with the assignment of tasks (or jobs)
to certain resources. The assignment is done in such a way that certain objectives are
optimized. In our case, the resources are the machines (and possibly the reticles) in the
fab and the tasks are the wafers waiting to be processed.

The goal of a scheduling problem is to find a schedule such that the objective is opti-
mized. A schedule is an assignment of the jobs to the machines including an order in
which the jobs are processed on the machines. In some schedules (such as a schedule
for a problem with precedence constraints) a machine might become idle for some time.
If this is the case, a schedule also contains the start and/or completion times of the jobs.

Scheduling problems have been studied in the field of mathematical optimization for
over 50 years and many different problems have been considered. To identify these dif-
ferent problems, a framework has been created to name the different layouts, resources,
constraints and objective function considered [5]. For each scheduling problem, we are
given a set of m machines M and a set of n jobs J . For each job j ∈ J , we are given some
data. This may include:

Processing time (pi j ) This represents time required to process job j on machine i . We
omit the subscript i if the processing time does not depend on the machine.

Release date (r j ) Sometimes a job j is not available when we begin scheduling (t = 0).
The job will then have a release date r j assigned to it, representing the time at which
the job becomes available.

Due date (d j ) Sometimes a job j is needed to be finished at a certain point in time. A
due date is then introduced for that job. The objective function is chosen such that it
penalizes jobs that are late.

Weight (w j ) Some jobs might be more important than others. When this is the case a
priority or weight (w j ) is assigned to every job and taken into account in the objective
function.

The scheduling problem itself is described by the triplet α|β|γ. The α-field describes the
machine environment. Theβ-field describes the environment further and gives the con-
straints imposed on the jobs and machines. The γ-field contains the objective function
that should be optimized.

The α-field can describe very complicated machine configurations where a job might
need to be processed more than once and with a specific route. However, in this thesis
we will only consider the following machine environments where every job has to be
processed once on one of the machines:
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Single machine (denoted by a 1 in the α-field This is the simplest type of machine
environment; there is a single machine on which jobs can be processed.

Parallel machines (Pm) In this environment we have m machines working in parallel.
Each machine has the same speed at which a job is processed, i.e. p j = pi j .

Unrelated parallel machines (Rm) In this environment we have m machines working
in parallel, but the speed at which a job is processed depends both on the job and the
machine. There might also be machines on which a job cannot be processed. When
this is the case, pi j =∞.

If the number of machines is part of the input, we will omit the m from theα-field, i.e., P
instead of Pm for parallel machines. The β-field can contain many entries. It describes
restrictions on the jobs such as restrictions on the processing time (e.g. pi j = 1) or re-
lease dates r j . But there are many more constraints that can be described in this field.
The following classic constraints are considered in this thesis:

Preemptions
(
prmp

)
If prmp is in the β-field of a scheduling problem, jobs are allowed

to be interrupted when processing. The processing is not lost when the proces is in-
terrupted. The jobs can be processed in job parts one after the other on different ma-
chines, but not at the same time. If prmp is not in theβ-field, jobs have to be processed
from start to finish on the same machine and cannot be interrupted.

Precedence constraints
(
prec

)
When a precedence constraint is put on a job one or

more jobs need to be completed before the job can start processing. Precedence con-
straints are often described in the form of a directed graph G = (V , A). The nodes of
this graph are the jobs. If there is an arc from node j to j ′, job j has to be processed
before job j ′.

Sequence dependent setup times (s j j ′ ) A sequence dependent setup time (s j j ′ ) de-
scribes the extra time that may be incurred when job j ′ is processed directly after job
j . This happens for example in a furnace when two jobs need different temperatures
for processing.

Machine 1

Machine 2

job 1 job 2

job 3
job 4

job 5

d5

T5

p24

C2 =Cmax

C3

Figure 1.4: The most common variables and objective functions of a scheduling problem

The γ-field contains the objective function of the optimization problem. These objec-
tive functions are dependent on the completion time of job j , denoted by C j . We will
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consider the following objective functions which are visualized in Figure 1.4:

Total completion time
(∑

C j
)

The total completion time (TCT) objective minimizes the
sum of completion of the jobs. It is equivalent to minimizing the average completion
time and sometimes also called the mean flow time.

Total weighted completion time
(∑

w j C j
)

The total weighted completion time (TWCT)
objective function uses the weights of the jobs to prioritize the completion time of
more important jobs.

Makespan (Cmax) The makespan of a schedule is equal to the completion time of the
last job finishing in the schedule, i.e., Cmax = max j∈J C j . This objective will try to
schedule the jobs on the machines as evenly as possible.

Total weighted tardiness
(∑

w j T j
)

The tardiness T j of a job j measures the ‘lateness’
of a job compared to their due date. It is defined as T j = max{C j −d j ,0}. The total
weighted tardiness minimizes weighted sum of the tardinesses of the jobs.

The complexity of a scheduling problem depends on all three fields. For example, the
single machine problems 1| |∑w j C j and 1| |∑Cmax are polynomially solvable, while
1| |∑w j T j and 1|r j |∑C j are NP-complete [10, 15].
In the parallel machines case, P | |∑Cmax and P | |∑w j C j are NP-complete. R| |∑C j is
polynomially solvable [3]. The book by Pinedo [12] gives a more thorough overview of
the different scheduling problems, their complexity and algorithms used to solve them.

1.6 OUTLINE

In this thesis, we will show how to speed up the wafer fab using the current infrastruc-
ture. Since the photolithography machines are the bottleneck in the wafer fab, we will
focus on those tools. We will do this both at the machine level as well as consider the
photolithography bay as a whole.

In the first part of the thesis, we will reduce the time needed to process a wafer inside
the photolithography machine. In Chapter 2, we consider the exposure chamber of the
photolithography machine and find that we can reduce the time needed, by reducing the
time needed for the blade movements. This problem can be formulated as an adjusted
for of the Traveling Salesman Problem; a priori TSP in the scenario model. We construct
and implement a smart IT-solution in the fab, that uses an ILP to solve the problem.
In Chapter 3, we analyze the mathematical properties of a priori TSP. We look at it com-
plexity and consider variants and subproblems. We construct approximation algorithms
and derive inapproximability results for these.
In Chapter 4, we focus on a specific approximation algorithm for a priori TSP; the space-
filling curve algorithm, which was first proposed by Platzman and Bartholdi III [13]. We
adjust this algorithm such that we can use it to solve real life instances and compare it
against the results found by the ILP solver.

In the second part of the thesis, we focus on the entire photolithograpy and metallization
bays in the wafer fab. We will show that it is possible to increase the throughput by im-
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proving the schedule of the work in progress. Currently, this schedule is constructed by
using the priorities assigned by the logistic manager. Due to a recent effort in upgrading
the IT-infrastructure, detailed timing data is now available for the components of these
two types of machines. Chapter 5 describes how this data is obtained and used to ac-
curately predict the processing time for a job on a specific machine. We will use these
processing times to construct a two-stage scheduling algorithm that uses these process-
ing times to find a schedule aimed at minimizing the total completion time, while taking
into account the job priorities and the reticles needed for processing.
The scheduling problem found in the photolithography is modeled as P |partition|∑ j C j

or R|partition|∑ j C j , depending on the fab considered. Theβ-field entry partition stands
for the constraints posed by the reticles. In Chapter 6, we derive complexity and approx-
imation results for these and related problems.
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2
MINIMIZING THE BLADE

MOVEMENT IN

PHOTOLITHOGRAPHY EQUIPMENT

The production process in a semiconductor factory (often called wafer fab) is complex.
The wafer, which contains the chips, will visit different production bays multiple times
during its production cycle. As described in Section 1.1 the (expensive) photolithogra-
phy equipment serve as the bottleneck of the production line. Hence, the overall per-
formance of the fab can be improved by raising the throughput on these litho tools. In
this chapter, we investigate the time consumption of the lithography process. It is found
that a significant part of the process time is needed for the blade movement to shield
a selected part of the reticle image. This blading time depends critically on the order
in which different images are processed. As such, this blading time can be modified by
changing this order. Minimizing the blade movement can be seen as a new variant of
the well-known optimization problem; the traveling salesman problem. We will use an
integer linear programming formulation and solver to tackle this problem and investi-
gate its real-time performance when implemented into the Fab Information and Control
Systems (FICS) of an existing wafer fab.

2.1 DETAILED BREAKDOWN OF THE WAFER PROCESSING TIME

As described in Section 1.2, photolithography is used in semiconductor manufacturing
to transfer the geometric pattern of a chip design onto a wafer. This process is often done
by a stepper. The stepper exposes the wafer on rectangular spot a time. If certain parts of

This chapter contains joined work with Jan Driessen

13
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the wafer should not be patterned four blades move in to block the unwanted light. This
introduces additional images (partial reticle exposure) that need to be transferred to the
photoresist and the total duration to pattern the whole wafer depends critically on the
order in which these images are processed.

In a real wafer fab, the stepper is combined with a photoresist line in which multiple
wafer operations are integrated to obtain a total wafer operation. This is done in three
steps: coating (spinning & baking), exposure and development (resist removal & hard-
bake). This is visualized in the schematic representation of Figure 2.1 showing a com-
plete wafer operation, which is a series of 13 processing steps. Some steps are executed
on a single component (e.g. stepper), while others can be performed in parallel on mul-
tiple components (e.g. developer).

loadlock (IN) coating exposure development loadlock (IN)

ST = Stepper; COAT = spin coater; DEV = developer;
VP = Primer; VB = soft/hardbake; CP = cool plate;
SR/LL = load station INTF = buffer cassette

Figure 2.1: Schematic representation of the complete photolithography process (includ-
ing the coating and development of the photoresist)

In this section, we investigate which variables influence the production speed in such a
lithography machine. A batch of (at most) 25 wafers is placed on a loadlock (LL) and the
wafers start their operation sequentially. Because the machine has multiple entry com-
ponents, a new batch of wafers can start its operation in the slipstream of the previous
batch. As such, the overall processing time of subsequent lots can overlap in time.

As depicted in Figure 2.1, different wafer operations are performed at different compo-
nents. Because the exposure step is carried out on the most expensive piece of equip-
ment (the stepper ST), it is essential to maximize its production rate (i.e. wafers-per-
hour) in order to keep the production costs at its lowest level. To guarantee that the
exposure step remains the bottleneck of the complete wafer operation, the coating and
development of the photoresist can be done on multiple components. Therefore, when
the tool layout is optimized the machine speed will be determined by the exposure step.

The time needed to perform a complete wafer exposure on the stepper depends on the
stepper hardware and the actual patterning of the job that needs to be processed (which
we call reticle job). The most important machine constants that influence the produc-
tion time are the light intensity and the speed settings of the stepper components which
need to move. Furthermore, the exposure time also depends on the reticle job. Fore-
most, it depends on the total number of flashes in the grid pattern. But, on top of that,
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time is also needed to move the four blades to create the partial reticle exposures. These
are needed to shield the wafer-ID information and the alignment markers. As visualized
in Figure 2.2, the total blade movement depends critically on the order in which these
partial exposures are processed.

Figure 2.2: The litho wafer patterning of a wafer consists of a series of reticles exposures.
Partial exposures around wafer-ID and alignment markers are obtained by moving blades.

The total blade movement depends on the order of the images.

In an extensive study by Driessen [3], the observed lithography processing times ob-
tained from the actual wafer fab have been analyzed in combination with the param-
eters which characterize the reticle job. This resulted in a simple model to express the
total process time (TP ) to pattern the wafer

TP = c0 + c1(N D/I )+ c2N + c3(M −1)+ c4B (2.1)

where the coefficients c0, c1, c2, c3 and c4 are equipment constants which represent the
stepper hardware. The reticle-job is described by the other parameters: N is the total
number of flashes, D is the required energy dose, I is the light intensity at the wafer, M is
the number of different images, and B is the total blade movement needed to create the
series of partial exposures. Figure 2.2 shows a job with N = 70 and M = 6.

In the expression of Equation (2.1), we can identify five distinct contributions to the to-
tal process time. The first term c0 is a machine-dependent overhead time. The second
part c1(N D/I ) represents the actual time that the wafer is being exposed to the light.
The third item c2N signifies the stepping time to move the wafer to the N positions in
the exposure strategy. The fourth contribution c3(M − 1) deals with overhead time of
the stepper to change its machine settings to another partial reticle exposure (image).
The final term c4B stands for the total time to move the blades to obtain the different
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partial images. The coefficients c0, . . . ,c4 have been determined by a least-squares ap-
proximation using Equation (2.1). We found that the 26 steppers in the actual fab can be
separated in two hardware groups with different coefficients as listed in Table 2.1.

16 ‘fast’ tools 10 ‘slow’ tools

97466 lot-runs 47016 lot-runs
7479 reticles 4042 reticles
617 products 607 products

Coef. Description ASML PAS5500/250 ASML PAS5500/100
ASML PAS5500/80

c0 Overhead (varies per tool) Ranges from 3 to 11 sec Ranges from 4 to 14 sec

c1 Light exposure 1.119 (I = 2000 Watt) 1.303 (I = 1000 Watt)

c2 Stepping speed 0.303 sec 0.284 sec

c3 Image transition 0.850 sec 1.426 sec

c4 Blading speed 0.99 sec / 100 mm 3.78 sec / 100 mm

Table 2.1: Data has been analyzed per hardware class over a period of 168 days (Aug 25,
2014 - Feb 09, 2015), resulting in two groups with distinct coefficients.

2.2 BLADING AND THE TRAVELING SALESMEN PROBLEM

As discussed earlier, depending on the reticle job certain parts of the wafer should not be
exposed, e.g. wafer-ID and/or alignment markers. Partial reticle exposures are required
which are obtained by moving blades to block the light. For each individual image tran-
sition (i , j ), moving from image i to image j , the blade movement bi j is determined by
the blade which needs to move the longest distance. To process a complete wafer a series
of images is selected resulting in a total blade movement of Bwfr =

∑
bi j .

The blading time c4Bwfr of Equation (2.1) depends strongly on the order in which the ret-
icle images are processed. By changing the order in which the partial exposures are pro-
cessed the total blade movement can be reduced. This is exemplified in Figure 2.3 where
we have used the previous hypothetical reticle job with N = 70 and M = 6. In the top
graph (a), the original image-order of Figure 2.2 is used resulting in a total blade move-
ment of Bwfr(act) = 300 mm. By shuffling the image-order one can reduce the total blade
movement resulting in an optimized value Bwfr(opt) = 240 mm. Using Equation (2.1) this
means that the associated reduction in process time ∆tB = c4[Bwfr(act) − Bwfr(opt)] de-
pends on the coefficient c4 which represents the mechanical speed at which the blades
can be moved. We find that the process time in this example is reduced by 0.6 seconds
on the ‘fast’ tools and by 2.3 seconds on the ‘slow’ tools using the c4 value from Table 2.1.

Because of the high-mix character of the fab with more than 600 products, there are more
than 7000 different reticle jobs. The number of flashes (N ) and images (M) for a typical
reticle job are N ∼ 90 and M ∼ 6. However, these parameters are distributed over quite
wide ranges; N ∈ {70, . . . ,140} and M ∈ {2, . . . ,14}. All different reticle jobs are stored in a
structured manner at the level of a complete product. In other words, all reticle jobs that
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(a) The actual image-order results in a total blade movement Bwfr(act) =∑
bi j = 300mm.

(b) With an optimized image-order, one finds a total blade movement Bwfr(opt) =∑
bi j = 240mm.

Figure 2.3: Changing the order of the images, results in a reduction of ∆Bwfr = 60 mm in
blade movement.

are needed to manufacture a specific chip are managed in a single database. As such, the
reticle jobs cannot be optimized on an individual basis, but rather on a product basis.

This is illustrated in Table 2.2 with an example of a reticle job matrix to make a certain
product. All images are specified including their blading positions. The reticle jobs
Rk for each technical stage are specified in the columns on the right. In this exam-
ple there are 19 technical stages, each with its own reticle job. The number of images
per job varies from 2 (ALIGNMENT MARK) to 8 (METAL1/2/3). The order in which these
images are processed is defined by their index in the table. For example, the techni-
cal stage ‘CONTACT’ has 5 images which are processed in the following order: FIELD,
HALF-FIELD-1, HALF-FIELD-2, HALF-FIELD-3, and HALF-FIELD-WN. One can derive
the required displacements from the blade positions of each image, resulting in a total
blade movement of Bwfr = 9.6+9.6+82.1+17.7 = 119.0 mm. The blade movement is cal-
culated in a similar manner for all other technical stages as listed at the bottom of Table
2.2.

The minimization of the total blade movement for each individual reticle job can be re-
garded as a variant of the traveling salesman problem. The optimization of the total
blade movement at product level, BPROD, comes down to calculating an order for the im-
age superset such that the sum of all blade transitions over all reticle jobs Bwfr(k) is min-
imized. The positions of the four blades can be regarded as points in a four-dimensional
space. For a single reticle Bwfr(k), the problem is to find a path between the points such
that we visit every point exactly once and minimize the distance traveled. This prob-
lem is well known in literature and is called the Metric Traveling Salesman Path Problem
(metric TSP path).

The difference lies in that any reordering of the superset of images will affect all reticle
jobs Rk simultaneously. As such, the blade movement cannot be optimized for indi-
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1 PM 0.8 -0.8 52.0 53.6 1 X
2 PF -8.5 -16.5 62.0 70.0 1 X X X
3 FIELD 54.4 -54.4 -48.5 48.5 82 X X X X X X X
4 CONV-PF -8.5 -16.5 62.0 70.0 2 X
5 HALF-FIELD-1 44.8 -54.4 -48.5 48.5 1 X X X X X X X X X X X X X X X
6 HALF-FIELD-2 54.4 -44.8 -48.5 48.5 1 X X X X X X X X X X X X X X X
7 HALF-FIELD-3 54.4 -54.4 33.6 48.5 1 X X X X X X X X X X X X X X X
8 KLA-SMALL 38.8 36.8 64.9 66.9 2 X
9 HALF-FIELD-WN 54.4 -54.4 15.9 48.5 1 X X X X X X X X X X X X X X X

10 FIELD-IMP 54.4 -54.4 -48.5 48.5 77 X X X X X X
11 FIELD-MIN4 54.4 -54.4 -48.5 48.5 77 X X
12 KLA-BIG 10.8 9.2 52 53.6 2 X
13 NR-CL1 27.8 -27.8 -70 -62 1 X X X
14 NR-CL2 27.8 -27.8 -70 -62 1 X X X
15 NR-CL3 27.8 -27.8 -70 -62 1 X X X
16 FIELDMET 54.4 -54.4 -48.5 48.5 87 X X
17 FIELDMET3 54.4 -54.4 -48.5 48.5 82 X
18 NR-CL4 27.8 -27.8 -70 -62 1 X X X
19 NR-CL5 27.8 -27.8 -70 -62 1 X X X
20 NR-CL6 27.8 -27.8 -70 -62 1 X X X

BLADE MOVEMENT Bwfr(k) (mm) 010 119 119 119 119 119 174 174 174 174 174 174 174 174 330 284 353 353 353

PRODUCT BLADE MOVEMENT BPROD (original) =∑
k Bwfr(k) = 3670 mm

Table 2.2: Reticle jobs are managed collectively for each product in a single database. In this
product-example the required images are listed vertically. The columns on the right specify
which images are used for each technical stage. The order in which the images are processed

is defined by their index in this table.

vidual reticles. Therefore, the optimization problem is re-defined to minimize the to-
tal blade movement at product level BPROD, which is the sum over all reticle jobs k,
BPROD =∑m

k=1 Bwfr(k). In the analogy with the traveling salesman problem, one can think
of the list of images as a list of cities. Each reticle job Rk can be regarded as an individual
salesman who has to visit a subset of cities. In this manner, the total blade movement
BPROD is equal to the total distance traveled by multiple salesmen.

More formally, we are given a set V of n points, nodes or cities and the distance between
all cities di j is according to the maximum metric (i.e. L∞-norm or ‖·‖∞) and given i , j ∈
V . We have m salesmen. Every salesman k has to visit a subset Sk ⊆V of the cities where
it visits every city exactly once. We will call these subsets scenarios. Let

xki j =
{

1 , if salesman k visits city j directly after city i
0 , otherwise

(2.2)

Now, We want to find an ordering of the cities such that

m∑
k=1

∑
i∈Jk

∑
j∈Jk , j 6=i

di j xki j
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is minimized.

If we divide the objective function by m, we are minimizing the expected value of the
tour, where each scenario has probability 1

m . The problem then transforms to a variant of
the a priori traveling salesman problem (a priori TSP), where the salesman has a discrete
distribution over the scenarios S1 . . .Sm .

The traveling salesman problem has been studied in the context of photolithography on
other occasions: A reticle is created using a plotter. This plotter can draw dots and lines.
Minimizing the distance traveled by the plotter to create the dots can modelled as the
symmetric TSP[5]. Furhtemore, solution strategies for the generalized asymmetric TSP
problem are used by Kuijpers et al. [6] to find an optimal movement strategy for scanning
the wafer when processing a single image. More recently, the geometric TSP is also use
for finding a route for maskless photolithography without a dedicated microfabrication
facility [7].

2.3 OPTIMIZATION ALGORITHM

In this section, an integer linear program (ILP) formulation is discussed for the scenario
a priori TSP path problem. Next, this formulation is used as input for an ILP solver to
find the optimized image order giving the minimized total blade movement Btotal for
each product that is manufactured in the semiconductor fab. Given an instance I of the
scenario TSP path problem, we want to write it as an integer linear program (ILP). In
order to do this, we introduce a dummy node p0. This dummy node has d0i = di 0 =
0,∀i ∈ V . It will act as the begin and end point of all our TSP paths essentially turning
them in tours. Let S̄k = Sk ∪p0,∀k ∈ {1, . . .m}. We consider the following ILP.

min
m∑

k=1

∑
i∈S̄k

∑
j∈S̄k ,i 6= j

di j xki j

s.t.
∑

i∈S̄k ,i 6= j

xki j = 1, ∀ j ∈ S̄k ,∀k ∈ {1, . . . ,m}, (2.3)

∑
j∈S̄k ,i 6= j

xki j = 1, ∀i ∈ S̄k ,∀k ∈ {1, . . . ,m}, (2.4)

ui −u j +nxki j ≤ n −1,∀i ∈ Sk ,∀ j ∈ Sk \ {i },∀k ∈ {1, . . . ,m}, (2.5)

xki j ∈ {0,1}, ∀i ∈ Sk ,∀ j ∈ Sk \ {i },∀k ∈ {1, . . . ,m},

1 ≤ ui ≤ n −1, ∀i ∈ Sk . (2.6)

Constraints (2.3) and (2.4) make sure that salesman k visits every node exactly once and
leaves that node exactly once. Constraints (2.5) and (2.6) were first stated by Miller et al.
[8]. They make sure that the nodes can be ordered in an ascending order (by the values
of ui ). This order is identical for every salesman because the values of the ui can only be
set once.

The formulation by Miller et al. imposes an ordering of the cities, to which all salesmen
have to comply. We use this formulation because most other classic formulations use
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constraints on subsets to make sure the solution has no subcycles. These cycle cancel-
ing constraints do not impose that two salesmen follow the same ordering of the cities
and thus need additional constraints to impose such an ordering. Hence, we use the
formulation by Miller et al. [8], because it is one of the few that can be easily extended.

In the literature, there are formulations that incorporate the Miller-Tucker-Zemlin con-
straints found in Equation (2.5) and are stronger in the sense that their LP relaxation
gives a better lower bound on the ILP. Desrochers and Laporte [2] use the relation of the
MTZ formulation to vehicle routing problems to strengthen the formulation. Gouveia
and Pires [4] introduce variables vi j ,∀i , j ∈ J . Given an arbitrary but fixed begin node 1,
vi j = 1 if i lies on the path between 1 and j and is zero otherwise. Thus u j =∑

i∈J vi j . Us-
ing the variables vi j , the ILP is reformulated and the formulation is further strengthened
with additional constraints.

When the above ILP formulation is applied to a real life instance such as the example of
Table 2.2, the algorithm splits the problem in subproblems, when the images have no
overlap. The algorithm can be made even more efficient by taking into account images
with identical blade settings, e.g. grouping all NR-CLx images and/or grouping the set
FIELD, FIELD-IMP, FIELD-MIN4, FIELDMET and FIELDMET3. Furthermore, we recognize
several reticle jobs Rk (or technical stages) which use the same subset of images. Thus,
the optimization problem can be further reduced by replacing M similar reticle jobs with
only one, and give it a weighting factor wk . We find that these replacements can often
reduce the size of a large optimization problem (e.g. 30 images + 50 reticles) to a smaller
problem (e.g. 10 images + 10 reticles). Next, the scaled-down problem is optimized with
the ILP solver SCIP [1]. Afterwards, the optimized solution is scaled up to the original
database size by duplicating the identical images and technical stages.

The example product of Table 2.2 has been optimized using the ILP. This results in a
modified database which is given in Table 2.3. Using the above reduction mechanism,
the original problem (20 images + 19 reticles) has been reduced to a smaller issue (11
images + 5 reticles) and optimized. The results have been expanded into the full problem
resulting in 13 reticle jobs with a blade movement Bwfr(k) = 101mm and 3 reticle jobs
with Bwfr(k) = 221mm.

The total blade movement has been reduced by −36% from BPROD = 3670 mm (Table
2.2) to BPROD = 2342 mm (Table 2.3) . For individual reticle-jobs Rk the improvement
varies from ∆Bwfr(k) = 0 mm (ALIGNMENT MARKER), 18 mm (e.g. CONTACT), 73 mm (e.g.
N PLUS), 120 mm (TRENCH ISOLATION), 122 mm (e.g. METAL1) up to 166 mm (POLY
PATTERNING).

Without the knowledge of the time-consumption associated with the image transitions,
the litho reticle-jobs have been modified regularly over time to accommodate product
changes, e.g. ‘more-dies-per-wafer’, ‘critical dimension (CD) control’ or ‘solving process-
integration issues’. When more images were needed, they were added to the bottom
of the image list. This can be recognized from Table 2.2, where the images FIELDMET
and FIELDMET3 are copies of the full field image FIELD. In a similar manner, the images
NR-CLR4/5/6 have been added as repeats of NR-CLR1/2/3. As a result, the original list
of images is not necessarily the optimized order to minimize the total blading distance.
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1 PM 0.8 -0.8 52.0 53.6 1 X
2 PF -8.5 -16.5 62.0 70.0 1 X X X
3 HALF-FIELD-1 44.8 -54.4 -48.5 48.5 1 X X X X X X X X X X X X X X X
4 HALF-FIELD-2 54.4 -44.8 -48.5 48.5 1 X X X X X X X X X X X X X X X
5 FIELD 54.4 -54.4 -48.5 48.5 82 X X X X X X X
6 FIELD-IMP 54.4 -54.4 -48.5 48.5 77 X X X X X X
7 FIELD-MIN4 54.4 -54.4 -48.5 48.5 77 X X
8 FIELDMET 54.4 -54.4 -48.5 48.5 87 X X
9 FIELDMET3 54.4 -54.4 -48.5 48.5 82 X

10 HALF-FIELD-WN 54.4 -54.4 15.9 48.5 1 X X X X X X X X X X X X X X X
11 HALF-FIELD-3 54.4 -54.4 33.6 48.5 1 X X X X X X X X X X X X X X X
12 KLA-BIG 10.8 9.2 52 53.6 2 X
13 KLA-SMALL 38.8 36.8 64.9 66.9 2 X
14 CONV-PF -8.5 -16.5 62.0 70.0 2 X
15 NR-CL1 27.8 -27.8 -70 -62 1 X X X
16 NR-CL2 27.8 -27.8 -70 -62 1 X X X
17 NR-CL3 27.8 -27.8 -70 -62 1 X X X
18 NR-CL4 27.8 -27.8 -70 -62 1 X X X
19 NR-CL5 27.8 -27.8 -70 -62 1 X X X
20 NR-CL6 27.8 -27.8 -70 -62 1 X X X

BLADE MOVEMENT Bwfr(k) (mm) 010 101 101 101 101 101 101 101 101 101 101 101 101 101 164 192 221 221 221

PRODUCT BLADE MOVEMENT BPROD (optimized) =∑
k Bwfr(k) = 2342 mm

Table 2.3: The reticle jobs of Table 2.2 are expressed with an optimized image-order. The blade
movement Bwfr(k) per reticle has been modified. At the product level the blade movement
BPROD has been minimized, resulting in significant reductions for the 5 reticles on the right

(POLY, TI, METALx).

To estimate the potential efficiency improvement in the actual high-mix fab with more
than 500 products, we analyzed in a preliminary study the impact of the blade move-
ment reductions for the 46 products, that make up 45.54% of the total ‘work-in-progress’
(WIP). The optimization algorithm using the ILP solver was tested on a laptop using the
MATLAB application. The results of the optimization can be found in Appendix A.2. For
37 of the 46 products the total blading distance was reduced. On average, the blading
distance reductions are about 20%. In terms of total exposure time (see Equation (2.1)),
this results in a time reduction of 1.5% on ‘fast’ tools and 1.7% on the ‘slow’ tools for the
analyzed WIP. On average, the optimization takes 1.23 seconds and at most 15 seconds
using the MATLAB application. Since the optimization only has to be done once and can
be done before the product goes into production, 15 seconds (or even 10 minutes) is not
an issue.

2.4 IMPLEMENTATION

Based on the preliminary analysis, there is a significant reduction in processing time by
reducing when the blade movement is reduced. Therefore, it has been decided to con-
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struct a smart manufacturing solution into FICS of the ICN8 fab. Figure 2.4 visualizes
the optimization. The optimization algorithm has been integrated into the existing IT-
architecture where the reticle-jobs are managed. On four stand-alone workstations the
lithography information of more than 600 products is stored and maintained, including
the historic information. It contains all the particular job-data for more than 40000 ret-
icles. A new IT-solution has been added to this IT-architecture, the so-called LJM (Litho
Job Manager). Through an intuitive GUI-interface, it has become easier for the engineer
to create and/or modify the litho reticle jobs. Each time when a product library has been
modified, the optimization algorithm is invoked to optimize the image order such that
the total blade movement is minimized.

TOOL
1

TOOL
2

TOOL
3

TOOL
N

network

JRM (Job Reticle
Management)

existing IT-architecture

LJM (Litho Job Manager)

new smart IT-solution
added to existing IT-architecture

tr
an

sf
o

rm

editor
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algorithm
(JDS)
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export photolihography jobs from JRM to LJM

transform file into readable format

user-friendly editor to change job (GUI = Graphical User Interface)

algorithm to optimize image order (JDS = Job Definition Shuffle)

send photolihography jobs back to JRM computer in correct format
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4

5

Figure 2.4: A new smart IT-solution has been integrated into the existing IT-architecture.
Products are created and/or modified with a user-friendly GUI. The optimization algorithm

is executed before the litho job information is stored on the JRM servers.

Next, the optimized litho job information is sent back to the JRM-computer. When a
specific reticle will be processed on the production equipment, the reticle-job is sent to
the tool. As explained earlier, when a reticle-job is dispatched on the tool the images are
processed in the list-order stored in the database (see Tables 2.2 and 2.3).

In 2014Q3 this new smart solution has been implemented. Over the course of a two-
month period all products stored on the four stand-alone workstations have been pro-
cessed and optimized with the Litho Job Manager. The calculated reductions of the blade
movement for each reticle job Rk (∆Bwfr(k)) can be transformed in a process time reduc-
tion∆T k

p = c4∆Bwfr(k) using the coefficient c4 from Table 2.1. The predicted gains in pro-
cess time have been compared to observed expose durations for the period 2014Q3. In
total, 79000 lots have been processed using 8845 different reticles on the 16 tools listed in
Table 2.1. On average each reticle has been used only 9 times in this three-month period,
i.e. less than once per photolithography tool. Therefore, in this high-mix production en-
vironment the process time reduction cannot be recognized immediately from the raw
equipment data.

To validate the predicted time gains ∆T k
p we have analyzed the observed expose dura-
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tions for large runners where reticle timing data on a specific photolithography tool is
available both before and after the photolithography job optimization. An example of
the gain in process time is shown in Figure 2.5, where the actual expose durations on
five ‘slow’ tools of Table 2.1 are shown for two reticles. For the first reticle N WELL no
blade movement reduction is found, which results in the same process time over the
whole 3-month period. For the second reticle METAL5 the blade movement reduction is
∆Bwfr(k) = 233 mm, which gives a time reduction of 8.8 sec on photolithography tools
with a slow blading speed c4 = 3.78 sec/100 mm. This predicted value agrees with the
observed process times as is shown in the bottom graph of Figure 2.5.
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MARKER (1×) 2 2 13 13 0 0.0 0.0
TRANSISTOR (8×) 90 2 57 57 0 0.0 0.0

POLY (2×) 90 4 86 86 0 0.0 0.0
ACTIVE (1×) 92 5 202 172 31 0.3 1.2
VIA1-4 (4×) 96 7 285 171 115 1.1 4.3

SILICIDE (1×) 98 8 361 228 133 1.3 5.0
CONTACT (1×) 96 7 200 171 29 0.3 1.1

CONTROL GATE (1×) 98 10 359 227 132 1.3 5.0
METAL1-5 (5×) 100 12 517 285 232 2.3 8.8

Figure 2.5: For each product, the Litho Job Manager optimizes the image order resulting in
different blade movement reductions for each reticle job. Depending on the litho hardware
(c4) this translates in possible process time reductions. These predictions have been con-
firmed by measured durations. For large runners with many observations, the time changes

can be evidenced easily from the raw data as shown here for N WELL and METAL5.

To estimate the photolithography capacity gain that has been achieved by implement-
ing the LJM smart solution, we analyzed the impact of the blade movement reduction
on all lot-runs in the period listed in Table 2.1 (Aug 25, 2014 - Feb 09, 2015). On aver-
age, the blade movement has been reduced by 21.0%. On the 16 fast tools the average
exposure time has been reduced from 43.3 sec to 42.6 sec (−1.6%), and on the 10 slow
tools the mean litho process time was lowered from 70.5 sec to 69.2 sec (−1.8%). In the
same study we can compare the takt time of the litho equipment (takt time is equal to
the process time plus the handling time) and the takt time of the photoresist line, and
identify which lot-runs benefited from the LJM-optimization. From this analysis, we es-
timate that we have gained approximately 1.2% capacity on the 26 litho tools of Table
2.1. In other words, the equipment throughput has been raised and less machine time is
needed to process a certain amount of WIP in comparison to the old situation without
the LJM smart solution.
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2.5 CONCLUSION

The time to process a wafer on a lithography stepper machine can be decomposed in
non-overlapping time elements for light exposure, wafer movement (stepping), blade
movement and machine overhead. The blading time makes up a significant fraction of
the total time and depends crucially on the order in which the different images are pro-
cessed. An ILP formulation has been used to optimize the image order. Minimizing the
blading boils down to solving a priori TSP problem in the scenario model. Although this
problem is very hard to solve in theory (see Chapter 3), the instances resulting from the
blading inside the lithography machines are structured enough that they can be solved
in a limited amount of time using an ILP solver. In this manner the average blading dis-
tance (and blading time) have been minimized. We estimate that per product the total
blading movement has been reduced by approximately 20%, which results in a reduc-
tion of the average exposure time of around 1.6%. As a result, the overall throughput of
the litho steppers (26 machines) has been raised by about 1.2%. Since the lithography
machines are often the bottleneck of the semiconductor fab, this new smart solution
including the ILP solver can be regarded as one of the key enablers to transform a man-
ufacturing plant into a smart factory.
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3
A priori TSP IN THE SCENARIO

MODEL

In Chapter 2, we came across the problem of minimizing the distance blades have to
travel during the expose step in the photolithography processes. This process is used in
semiconductor manufacturing to transfer the geometric pattern of a chip onto a wafer.
Since the expose step often influences the total processing time of a wafer in the lithog-
raphy machine, minimizing the distance reduces the processing time. We showed that
it can be formulated in such a way that it is precisely a form of the a priori TSP in the
scenario model.
In this Chapter, we will look at the a priori TSP in the scenario model. In the classical
traveling salesman problem as described in Section 1.4, we are given a set of cities and
the distances between them and we want to find the shortest tour that visits all cities
exactly once. We extend this classical routing problem to the case that the set of cities
is uncertain. This uncertainty might be in the problem itself, such as in the case of the
blades in the photolithography machines. It also might be that the city set changes reg-
ularly and that reoptimizing over and over again might be inconvenient or impossible.
In the A priori TSP, we want to find a single tour for all cities. Given this tour and a set of
cities, the active set, we shortcut the tour to the active set. In universal routing, the goal
is to minimize the worst-case ratio of the value of the obtained solution and the deter-
ministic optimal value of a tour on the active set. In a priori routing, we want to be good
on average. The problem we consider in this chapter is formally defined as follows.

In the a priori traveling salesman problem (a priori TSP) in the scenario model, we are
given a complete weighted graph G = (V ,E) and a set of scenarios S with S1, . . . ,Sm ⊆V .
Scenario S j has probability p j of being the active set, where

∑
j p j = 1. We begin by

finding an ordering on V , called the first-stage tour. When an active set is released, the

This chapter is based on the paper that appeared in the journal of Discrete Applied Mathematics[27]
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second-stage tour is obtained by shortcutting the first-stage tour on the vertices of the
active set. The goal is to find a first-stage tour that minimizes the expected length of the
second-stage tour. Throughout this chapter, we assume that the edge weights obey the
triangle inequality.

A priori TSP has already been considered in the independent decision and black-box
model. In the independent decision model, vertex i is active with probability pi , in-
dependent of the other vertices. Shmoys and Talwar [26] showed that a sample-and-
augment approach gives a randomized 4-approximation, which can be derandomized to
an 8-approximation algorithm. This factor was improved by Van Zuylen [28] to 6.5. In the
black-box model, we have no knowledge on the probability distribution over the vertices,
but we are able to sample from it, i.e. to query the probability of any subset of the ver-
tices. Schalekamp and Shmoys [25] showed that one can obtain a randomized O(logn)-
approximation even without sampling. A deterministic O(log2 n)-approximation can be
obtained by using the result for universal TSP [14]. It was shown by Gorodezky et al. [13]
that there is anΩ(logn) lower bound for deterministic algorithms on general metrics. By
using the result of [16] and Theorem 3 in [13], there is no deterministic algorithm with
guarantee o

(
6
√

logn/loglogn
)

for planar metrics. For randomized algorithms, no lower
bound is known for the black-box model.

The above mentioned results give us the first results for a priori TSP in the scenario
model. Firstly, we inherit the randomized O(logn)-approximation. Secondly, we know
that a deterministic algorithm that does not use the information given in the scenarios
will not achieve an approximation guarantee better than O(logn). The main question is
whether we can use the scenarios to improve upon the O(logn) upper bound and which
restrictions we can put on the scenarios in order to obtain constant-factor approxima-
bility. This question will be considered in this chapter.

The scenario model has not been studied extensively for other optimization problems.
Immorlica et al. [18] investigated scenario versions of Vertex Cover and Shortest Path.
Ravi and Sinha [23] also looked at these problems and also defined scenario versions of
Bin Packing, Facility Location and Set Cover. The problems in [23] differ from our set-
ting in the sense that the weights used in the instance differ between scenarios. Further,
the authors of [6] investigate a two-stage stochastic scheduling problem, where the set
of jobs to be processed is uncertain. Finally, in [10], the classical scheduling problem of
minimizing the makespan on two machines is considered in the a priori model with sce-
narios. It would be interesting to consider other stochastic combinatorial optimization
problems in the a priori framework.

A priori TSP can be considered as a stochastic version of TSP. Alternatively, one could
consider a robust version where we want to minimize the maximum length over all sce-
narios. We will refer to this problem as Min-Max TSP. When applicable, we will state to
which extend the theorems for a priori TSP also hold for the Min-Max TSP. An easy obser-
vation is that the approximation ratios for universal TSP carry over directly to Min-Max
TSP. Hence, we have an O(log2 n)-approximation algorithm.

We will first examine the most natural lower bound that we call the master tour lower
bound. We use this lower bound to show that there exists a constant-factor approxima-



3.1 MASTER TOUR LOWER BOUND 27

tion algorithm for the problem if the number of scenarios is fixed. However, we also show
that this lower bound cannot be used to improve upon the O(logn)-approximation. We
then look at several natural restrictions on the scenarios, namely small, big and nested
scenarios. For small scenarios, we give strong inapproximability results. After that, we
analyze the performance of the optimal tour on V for big scenarios. For nested scenar-
ios, we show that there exists a 9-approximation algorithm. Finally, we show that there
exists an elegant connection to an a priori minimum spanning tree problem. We end
with a discussion on some open problems.

3.1 MASTER TOUR LOWER BOUND

In this section, we explore the master tour lower bound. An instance of TSP has the
master tour property if there is an optimum TSP tour on all vertices in the set S such that
the optimal TSP tour of any subset of the vertices can be obtained by simply shortcutting
the optimal TSP tour on the vertices that are not in the subset. A natural question one
can ask is whether an optimal tour on all vertices performs well compared to the actual
optimal tour for a priori TSP in the scenario model.

Here, we use that the contribution of scenario S j to the objective value of an optimal
solution, denoted by OPT, is at least p j T ∗

j , where T ∗
j is the length of the optimal tour

on S j , so OPT ≥∑
j p j T ∗

j . Two natural algorithms for a priori TSP in the scenario model

are the following. For each scenario, find an α-approximate tour, where α is the best ap-
proximation ratio available for TSP, and sort the scenarios on their resulting tour lengths
T j . Rename the scenarios such that T1 ≤ T2 ≤ . . . ≤ Tm . Now traverse the tours 1,2, . . . ,m,
skipping already visited vertices, resulting in tour τ1. Alternatively, rename the scenarios
such that p1 ≥ p2 ≥ . . . ≥ pm and traverse the tours 1,2, . . . ,m, skipping already visited
vertices, resulting in tour τ2. We get the following result.

Theorem 3.1. Tours τ1 and τ2 are (2m−1)-approximations for a priori TSP in the scenario
model, where m ≥ 2 is the number of scenarios.

Proof. Let us analyze tour τ1. Consider an arbitrary scenario S j . Let D j be the diameter
of G restricted to S j , so we have T ∗

j ≥ 2D j . Note that when analyzing the contribution of

scenario S j , we only have to consider tours that contain vertices in S j . Further, it might
happen that two tours, say Tx and Ty , with x, y < j , Sx ∩S j 6= ; and Sy ∩S j 6= ;, belong
to disjoint scenarios. In this case, we have to go from Tx to Ty . If d(A,B) denotes the
maximum distance between a vertex in A and a vertex in B , then this move costs us at
most an extra d(Sx ∩S j ,Sy ∩S j ). In the worst case, all scenarios before S j have a non-
empty intersection with S j . For j = 1, the contribution is just p1T1 ≤ αp1T ∗

1 . For j ≥ 2,
the contribution of S j to the objective value of our solution is at most

p j (T1 +d(S1 ∩S j ,S2 ∩S j )+T2 + . . .+d(S j−2 ∩S j ,S j−1 ∩S j )+T j−1 +T j )

≤p j ( j T j + ( j −2)D j ) ≤ p j

(
α j T ∗

j + ( j −2)
1

2
T ∗

j

)
=

((
α+ 1

2

)
j −1

)
p j T ∗

j .
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Note that you do not have to incur an extra distance from S j−1 to S j , since they have a
non-empty intersection. In general, this holds for the last scenario that intersects with
S j . The objective value is at most

αp1T ∗
1 +

m∑
j=2

((
α+ 1

2

)
j −1

)
p j T ∗

j ≤
((
α+ 1

2

)
m −1

)
OPT.

Since α = 1.5, see [7], we get a (2m −1)-approximation algorithm. The analysis for τ2 is
similar and the proof is omitted here.

Since in the proof of Theorem 3.1 we bound the length of each tour by 2m −1 times the
optimal tour for that scenario, it is obvious that τ1 and τ2 are also (2m −1)-approxima-
tions for Min-Max TSP.

It turns out that the master tour lower bound will not give a constant-factor approxima-
tion for a priori TSP on general metrics. This can be deduced from Theorem 2 in [13],
which roughly states the following. Suppose you are given a d-regular Ramanujan graph
G on n vertices with girth g ≥ 2

3 logd−1 n. Take a random walk of length 70g in G and
let S be the vertices visited in this walk. Now, consider a TSP-tour on the vertices of G .
Theorem 2 in [13] states that for each of the first g /2 steps of the tour restricted to S, the
probability that the edge has lengthΩ(logn) is bounded from below by a constant.

Theorem 3.2. There is an instance of a priori TSP in the scenario model such that OPT =
Ω(logn)

∑
j p j T ∗

j and OPT =Ω(logm)
∑

j p j T ∗
j .

Proof. We use Theorem 2 from [13] as discussed above. Let G be a d-regular Ramanujan
graph on n vertices with girth g ≥ 2

3 logd−1 n. The set of scenarios is the set of all vertex
sets of walks of length 70g . The probability p j of scenario S j is equal to the probability
that S j is the vertex set of a random walk of length 70g . For a fixed first-stage tour, The-
orem 2 in [13] states that in each of the first g /2 steps of the second-stage tour, there is
a constant probability that the second-stage tour uses an edge of length Ω(logn). This
implies that the expected length of the first g /2 steps of the tour have expected length
Ω(logn). Since T ∗

j = O(g ), the first g /2 steps are a constant fraction of all the steps and

so the lower bound also holds for the entire tour. Hence, we have an instance such that
OPT = Ω(logn)

∑
j p j T ∗

j . The number of scenarios is equal to the number of possible

walks of length 70g . This is equal to n ·d 70g = O(nd logn) = O(nlogd+1). Since d is a con-
stant, this number is polynomially bounded. Hence, we haveΘ(logm) =Θ(logn), which
gives us the second lower bound.

Another natural question one can ask is whether a given instance has an optimal value
that is equal to the master tour lower bound. Stated differently, is there a tour such that
if we shortcut on the vertices of a scenario, we get the optimal solution for that sce-
nario? Deineko et al. [8] studied this problem for the case where every possible subset is
a scenario. They called this the master tour problem and showed that it is polynomially



3.2 SMALL SCENARIOS 29

solvable. We can reformulate the problem to the case where we are given a set of scenar-
ios and we only have to be optimal for these scenarios. It turns out that this problem is
∆

p
2 -complete [9].

3.2 SMALL SCENARIOS

We will continue by considering a priori TSP in the scenario model with further bounds
on the scenarios. We start with looking at scenarios where the number of vertices per
scenario is small. We begin by showing that a priori TSP is still NP-hard when all scenar-
ios are very small. We reduce from the Max Cut problem [19]. Here, we are given a graph
G = (V ,E) and our goal is to find a set X ⊆V such that |δ(X )| is maximized, where δ(X ) is
the set {(i , j ) ∈ E : i ∈ X , j ∉ X }.

s t
... ...

Kn

1 1

1 1

1 1

2

a

b

2

Figure 3.1: Graph G ′ as in the proof of Theorem 3.3.

Theorem 3.3. A priori TSP is NP-hard even when |S j | ≤ 4 for all j .

Proof. We reduce from the Max Cut problem. Given an instance G = (V ,E) of Max Cut,
we create an instance of a priori TSP by making a complete graph G ′ on V ∪ {s, t }. All
edges with s or t as endpoint, except edge (s, t ), have length 1 and all other edges have
length 2 (see Figure 3.1). For every edge (a,b) ∈ E , we create a scenario {a,b, s, t }. All
scenarios have equal probability. Note that the second-stage tour on a scenario either
has a length of 4 or length 6. We say that a scenario is satisfied if its resulting tour has
length 4. Hence, minimizing the expected length is equivalent to maximizing the num-
ber of satisfied scenarios. We will show that OPTTSP = 6|E |−2OPTCUT, where OPTTSP and
OPTCUT are the optimal sum of tour lengths of a priori TSP in the created instance and
the optimal value of Max Cut in the original instance respectively.

Suppose there is a cut of size at least k in G , say Q ⊆ V . First, visit s. Then, visit the
vertices of Q in arbitrary order. After that, we visit t . Finally, we visit the vertices not in
Q in arbitrary order. It is easy to see that every scenario corresponding to an edge in the
cut has length 4, whereas other scenarios have length 6. Hence, there is a tour satisfying
at least k scenarios.
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On the other hand, suppose that we have a tour in G ′ satisfying at least k scenarios.
Without loss of generality, the tour can be written as (s,R1, t ,R2), where R1 and R2 are
sequences of vertices. The only way to satisfy a scenario {a,b, s, t } is by putting one vertex
of {a,b} in R1 and one vertex in R2. Hence, the k satisfied scenarios correspond to edges
in the cut R1 ⊆V which has size at least k.

By adjusting the proof of Theorem 3.3, we can prove that the master tour problem with
scenarios is NP-complete when |S j | ≤ 5. This is done by reducing from Set Splitting in-
stead of Max Cut and using that 3-Set Splitting is NP-complete [21]. This also shows that
Min-Max TSP is NP-hard when |S j | ≤ 5 for all j . Moreover, when |S j | ≤ 5 for all j , we can-
not approximate Min-Max TSP within a factor of 4

3 , unless P=NP. This is because a split
set will correspond to a scenario with tour length 6, whereas an unsplit set corresponds
to a scenario with tour length 8. The master tour problem with scenarios is still open for
|S j | ≤ 4.

Note that the graph we used in the proof of Theorem 3.3 is obtained by taking the metric
completion of K2,n . This graph is planar, bipartite and it has treewidth and pathwidth
equal to 2. Deterministic TSP would be polynomially solvable on such a graph with
bounded treewidth. Furthermore, there is a PTAS for deterministic TSP in planar graphs
[2]. The next theorem shows that this is not the case for a priori TSP (since the proof uses
the same graph as before, a metric completion of K2,n). This theorem relies on the fact
that Max Cut, given the unique games conjecture (UGC), cannot be approximated by a
factor above the Goemans-Williamson [12] constant, i.e. approximately 0.878567, unless
P=NP [20]. Without this conjecture, Håstad [17] showed that it cannot be approximated
above a factor 16

17 , unless P=NP.

Theorem 3.4. There is no 1.0117-approximation for a priori TSP with |S j | ≤ 4, unless
P=NP. Assuming UGC, there is no 1.0242-approximation, unless P=NP.

Proof. Consider the reduction from the proof of Theorem 3.3. As a result, we have
OPTTSP = 6|E |−2OPTCUT. If we have an (1+α)-approximation algorithm, we get a tour
with total length at most (1+α)(6|E | − 2OPTCUT). This implies that there are at least η
satisfied scenarios, where

4η+6(|E |−η) = (1+α)(6|E |−2OPTCUT)

−2η=−2(1+α)OPTCUT +6α|E |
η= (1+α)OPTCUT −3α|E |.

These correspond to edges in the cut, hence we have

Size of cut ≥ (1+α)OPTCUT −3α|E |
≥ (1+α)OPTCUT −6αOPTCUT

= (1−5α)OPTCUT,

where the second inequality follows from OPTCUT ≥ |E |/2. Hence, assuming P 6=NP ,
there is no (1+α)-approximation for 1−5α≥ 16

17 , i.e., there is no 1.0117-approximation.
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If we also assume that the unique games conjecture holds, there is no (1+α)-approxima-
tion for 1−5α≥ 0.878567, i.e., there is no 1.0242-approximation.

Since graph G ′ in Figure 3.1 used in Theorem 3.4 is the metric completion of K2,n , we get
the following corollary.

Corollary 3.5. A priori TSP in the scenario model on planar bipartite graphs does not ad-
mit a PTAS, unless P=NP.

When |S j | ≤ 6, we can slightly strengthen the result of Theorem 3.4, by reducing from
Max E4-Set Splitting, which cannot be approximated with a factor above 7

8 , unless P=NP
[17]. This gives an inapproximability of 1.0265 when |S j | ≤ 6.

One could also consider the path-version of a priori TSP. In fact, the application on pho-
tolithography is modeled as the path-version. It is easy to see that this problem is trivial
when |S j | ≤ 2 for all j . If we delete t from the graph created in the reduction of Theorem
3.3, we can use this graph and the same reduction to show that the path-version of a
priori TSP is NP-hard when |S j | ≤ 3. It is easy to see that this graph can be obtained by
taking the metric completion of the star graph. Note that we can also adjust Theorem
3.4 to the path-version which will give the same inapproximability result, i.e. there is
no 1.0117-approximation, unless P=NP, and there is no 1.0242-approximation if we also
assume that the UGC holds.

We can strengthen the inapproximability of a priori TSP by using strong results on Per-
mutation Constraint Satisfaction Problems [15]. We will call the problem that we need
4-Undirected Cyclic Ordering (4-UCO). To the best of our knowledge, the problem has
never been considered. In this problem, we are given a ground set U and a set of 4-
tuples∆UCO using elements from U . Our goal is to construct an ordering on U that max-
imizes the number of satisfied 4-tuples. We say that 4-tuple (a,b,c,d) is satisfied if one
of the following sequences is a subsequence of the total ordering: (a,b,c,d), (b,c,d , a)
, (c,d , a,b), (d , a,b,c), (d ,c,b, a), (c,b, a,d), (b, a,d ,c), (a,d ,c,b). In other words, we get
a collection of cycles and we want to find an ordering maximizing the number of cycles
that can be embedded in it. For completeness, we first show that deciding whether all
4-tuples can be satisfied is NP-complete by using a reduction from Cyclic Ordering. In
this problem, we are given a set of ordered triples ∆CO of ground set U . The question is
whether there exists a cyclic ordering on all elements such that each triple is ordered in
the right direction. This problem is NP-complete [11].

Theorem 3.6. 4-Undirected Cyclic Ordering is NP-hard.

Proof. Given an instance of Cyclic Ordering, we create elements a1 and a2 for every ele-
ment a ∈U and three additional elements, x, y and z. For every element a ∈U we create
ordered sets (x, y, a1, a2), (x, z, a1, a2) and (y, z, a1, a2). For every triple in ∆CO, we create
one set by splitting an arbitrary element. For example, we create set (a1,b1,b2,c1) for
triple (a,b,c).

If there exists a cyclic ordering, say (a,b, . . . , q), we can construct the following satisfying
solution for 4-UCO: (x, y, z, a1, a2,b1,b2, . . . , q1, q2).
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On the other hand, suppose that we have a satisfying solution for 4-UCO. Without loss
of generality, we may assume that (x, y, a1, a2) is visited in this direction. We will show
that x, y and z are visited consecutively. Suppose this is not the case and x, y and z are
placed at different positions on the solution. This splits the solution into three segments.
It is easy to see that for a any u ∈U , we must have u1 and u2 in the same segment. Now,
suppose that these elements are visited in the segment between x and y . This implies
that the tour has to visit (x,u2,u1, y) in this order. However, this conflicts with scenario
(y, z,u1,u2). Similarly, placing u1 and u2 between y and z implies visiting (y,u2,u1, z)
in this order. This conflicts with scenario (x, y,u1,u2). Thus, we know that the solution
visits x, y and z consecutively. We now fix the positions of u1 for all u ∈U and we move u2

to the position next to u1. This does not conflict with any of the scenario’s. The resulting
arrangement of the u1 vertices corresponds to an arrangement consistent with ∆CO.

In [15], it is shown that every Permutation CSP of constant arity is approximation resis-
tant. This means that, under the unique games conjecture, the best we can do is con-
structing a random ordering. Classical problems like Cyclic Ordering and Betweenness
are in this class of problems. It is easy to see that 4-UCO is also in this class. A corollary
of the work of Guruswami et al. [15] is that for any ε> 0 it is hard to distinguish between
instances where at least a (1− ε) fraction of the 4-tuples can be satisfied from instances
where at most a ( 1

3 + ε) fraction of the 4-tuples can be satisfied, assuming the unique
games conjecture is true. The natural generalization of 4-UCO is 5-UCO. For this prob-
lem, this result implies that there is no algorithm having a guarantee larger than 1

12 . This
gives the following results.
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Figure 3.2: Gadgets used in proofs of Theorem 3.7 and 3.8.

Theorem 3.7. Under UGC, there is no α-approximation for a priori TSP with

(a) α< 10
9 when |S j | ≤ 6,

(b) α< 4
3 when |S j | ≤ 8,

(c) α< 41
30 when |S j | ≤ 10,

unless P=NP.

Proof. (a) Given an instance of 4-UCO, we create |U |+2|∆UCO| vertices, one for each
element of U and 2 for each 4-tuple in ∆UCO. We create edges that correspond to
4-tuples in ∆UCO in the following way. For 4-tuple δ= (a,b,c,d), we have vertices
a,b,c,d and vertices sδ and tδ. We create edges (a, sδ), (sδ,b), (b, tδ), (tδ,c), (c,d)
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and (d , a), as in Figure 3.2. The scenarios correspond to these six vertices for every
tuple. Finally, the distances correspond to the shortest path distances in the cre-
ated graph. A tuple is satisfied if and only if the tour restricted to the scenario has
length 6. A solution satisfying 1

3 of the scenarios has value at least 1
3 ·6+ 2

3 ·7 = 20
3 .

A solution satisfying all scenarios has a value of 6. Since it is hard to distinguish
between these two cases, we obtain an inapproximability of 20

18 = 10
9 for a priori

TSP with |Si | ≤ 6.

(b) We use a similar reduction. Instead of adding two vertices per tuple, we create
four new vertices. In Figure 3.2, these vertices are called si , ti , qi and ri . The sce-
narios will therefore have size 8. Again, a tuple is satisfied if and only if the tour
restricted to the scenario has length 8. However, if we restrict the tour to a sce-
nario corresponding to a non-satisfied tuple, it must have length at least 12. A
similar calculation gives an inapproximability of ( 1

3 ·8+ 2
3 ·12)/8 = 4

3 .

(c) We now reduce from 5-UCO. We add 5 dummy vertices for each scenario and place
them between consecutive elements on the cycles. The scenarios will therefore
have size 10. Again, a tuple is satisfied if and only if the tour restricted to the
scenario has length 10. If we restrict the tour to a scenario corresponding to a
non-satisfied tuple, it must have length at least 14. A similar calculation gives an
inapproximability of ( 1

12 ·10+ 11
12 ·14)/10 = 41

30 .

For the path-version, we can strengthen previous results by using hardness results for
Betweenness. In this problem, we are given a set of triples ∆B from elements of U . The
triple (a,b,c) is satisfied if (a,b,c) or (c,b, a) is a subsequence of the total ordering. The
goal is to find an ordering on U maximizing the number of satisfied triples. By [15],
the best approximation ratio is 1

3 , assuming UGC. Without this conjecture, there is no
approximation for Max Betweenness with a factor better than 1

2 , unless P=NP [3].

Theorem 3.8. There is no 9
8 -approximation for a priori path-TSP with |S j | ≤ 5, unless

P=NP. Assuming UGC, there is no 7
6 -approximation, unless P=NP.

Proof. Given an instance of Betweenness, we create a graph with |U |+2|∆B| vertices. A
scenario contains the elements used in a triple and two extra vertices. The edges are
drawn in the following way. For triple δ= (a,b,c), we add edges (a, sδ), (sδ,b), (b, tδ) and
(tδ,c) (Figure 3.2). A triple is satisfied if and only if the path restricted to the scenario has
length 4. Assuming UGC, we get that there is no approximation algorithm with guarantee
smaller than ( 1

3 ·4+ 2
3 ·5)/4 = 7

6 for a priori path-TSP with |S j | ≤ 5, unless P=NP. Without

assuming UGC, there is no approximation algorithm with guarantee smaller than ( 1
2 ·4+

1
2 ·5)/4 = 9

8 , unless P=NP.

Finally, we note that by using twice the diameter of a scenario as a lower bound, we can
show that taking an arbitrary tour as a solution is a c/2-approximation when |S j | ≤ c.
A random tour gives a value of at most (c2 − 3c + 4/2c − 2) times the optimal value in
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expectation. This factor approaches c/2 for c large. Similar results hold for the path-
version.

3.3 BIG SCENARIOS

In this section, we investigate the special case of big scenarios, i.e. the case when each
scenario has size at least n − c, for small c. One would expect that simply taking the
optimal tour on the entire vertex set V would perform well on these instances. Here,
we analyze this option. Let us denote OPT(S) for the optimal value of a tour on S ⊆ V .
Further, let OPT(V )|S denote the value of the optimal tour on V shortcutted to S. As
before, let DS denote the diameter of the graph restricted to S.

Lemma 3.9. For S ⊂V and 1 ≤ c ≤ n/2 such that |S| = n − c, we have

OPT(V )|S ≤ OPT(S)+ cDS .

Proof. Suppose S = V \ {a1, . . . , ac }. Let Dai
S = minu∈S d(u, ai ) for i = 1, . . . ,c, where d

denotes the edge length. Since we can extend our tour on S to V by going back and forth
to each ai , we have

OPT(V ) ≤ OPT(S)+2
c∑

i=1
Dai

S . (3.1)

Furthermore, suppose w.l.o.g. that bi and di are the two vertices in S that are visited be-
fore and after ai in the optimal tour of V . If two consecutive vertices on the tour are not
in S, then one can reconstruct the tour accordingly without increasing the length of the
tour restricted to S. This is true since vertices not in S do not influence the tour restricted
to S and since c ≤ n/2. Hence, we can assume that there are no two consecutive vertices
on the tour that are not in S. Then

OPT(V ) = OPT(V )|S +
c∑

i=1
(d(bi , ai )+d(ai ,di )−d(bi ,di ))

≥ OPT(V )|S +
c∑

i=1
(2Dai

S −d(bi ,di )) ≥ OPT(V )|S − cDS +2
c∑

i=1
Dai

S . (3.2)

Combining Equations (3.1) and (3.2) we get

OPT(V )|S ≤ OPT(V )+ cDS −2
c∑

i=1
Dai

S ≤ OPT(S)+ cDS .

The inequality is tight for the graph in Figure 3.3 with c = 2. We can generalize this tight
instance for c ≤ n/2 by adding more diagonal paths.

Theorem 3.10. The optimal solution on V is a (1+ c
2 )-approximation for a priori TSP with

|Si | ≥ n − c, where 1 ≤ c ≤ n
2 .

Obviously, these results extend to Min-Max TSP.
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Figure 3.3: Instance for which inequality of Lemma 3.9 is asymptotically tight for c = 2, where
B is the set of black (non-white) vertices.

3.4 NESTED SCENARIOS

Let us now consider the case of nested scenarios, i.e. S1 ⊆ S2 ⊆ . . . ⊆ Sm . Here, the follow-
ing algorithm gives a constant-factor approximation. First, compute an 1.5-approximate
tour T j for scenario S j for all j . Let α1 = 1. Next, for h = 2,3, . . . let αh be the largest
number k > αh−1 for which Tk ≤ 2Tαh−1 . If no such k exists then let αh = αh−1 +1. The
first-stage tour is obtained by visiting vertices in the order Tα1 ,Tα2 , . . . .

Theorem 3.11. The algorithm above is a 9-approximation for nested scenarios.

Proof. Consider scenario S j . The last vertices of this scenario will be visited on the tour
Tαh , where h is the smallest index such that αh ≥ j . Note that for any h ≥ 2, we have
Tαh > 2Tαh−2 . Hence, we can decompose the concatenated tour up to Tαh into two parts
which correspond to even and odd h respectively, such that both parts have geometri-
cally increasing tour lengths. The length of the concatenated tour up to Tαh is therefore
at most

2Tαh−1 +2Tαh .

If αh = j , then the length of the tour is at most 2Tαh−1 +2Tαh ≤ 4Tαh = 4T j ≤ 6T ∗
j .

If αh > j , then we must have Tαh ≤ 2Tαh−1 , so the length of the tour is at most 2Tαh−1 +
2Tαh ≤ 6Tαh−1 ≤ 9T ∗

αh−1
≤ 9T ∗

j .

Finding a constant-factor approximation is still open for laminar scenarios, i.e., when
for each i , j , either Si ∩S j =; or Si ⊆ S j or S j ⊆ Si . It is even open in the case when the
scenarios have the following star-like structure.

Si ∩S j =; for i 6= j , i , j = 1, . . . ,m −1, and Sm =
m−1⋃
j=1

S j . (3.3)
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S6
S1S2

S3

S4 S5

Figure 3.4: Star-like instance with 6 scenarios.

It would be interesting to know if one could get a constant-factor approximation for
these instances. Finally, observe that the Min-Max TSP for laminar scenarios reduces
to standard TSP since the largest scenario determines the value of the solutions.

3.5 RELATION WITH MINIMUM SPANNING TREE PROBLEMS

It would be nice to have a similar relation between a priori TSP and a priori MST as in the
deterministic setting between TSP and MST. We consider two versions of a priori MST.
The first one is defined by Bertsimas [4], who called it a priori MST, although it seems
more natural to call it a priori Steiner Tree. The second problem is defined by Boria et
al. [5], who called it Probabilistic MST under Closest Ancestor (PMST-CA). In both prob-
lems, we have a graph G = (V ,E) and a probability distribution over subsets of vertices.
The second problem also has a root r that is always active. This is optional in the first
problem. The goal is to construct a tree on the entire vertex set in the first stage. A sub-
set S of the vertices, drawn according to the probability distribution, is revealed in the
second stage. In the a priori MST, the second-stage tree will be obtained by deleting in-
active vertices, provided that the remaining tree stays connected. In the PMST-CA, the
second-stage tree only contains active vertices. This is done by taking an edge between
an active vertex and its closest active ancestor in the rooted first-stage tree. In both prob-
lems, the goal is to construct a first-stage tour that minimizes the expected length of the
second-stage tree.

Unfortunately, it turns out that the expected length of the optimal a priori MST defined
by Bertsimas is not smaller than the optimal a priori TSP in general. The gap between
the optimal values of a priori MST and a priori TSP can be arbitrarily large.

Theorem 3.12. There are instances such that the optimal value of the a priori MST-solu-
tion is arbitrarily larger than the optimal value of the a priori TSP-solution.

Proof. Take a 3-regular graph with girth g . Sachs [24] showed that these graphs exist.
Define a scenario for each edge by the endpoints of the edge. All scenarios have the
same probability. Any tour on this graph will be shortcut to a tour of length 2 for each
scenario, so the objective value of a priori TSP is 2. Consider the optimal a priori MST.
Since this is a tree, it uses n−1 edges. If an edge is in the tree, the corresponding scenario
gets value 1. If an edge is not in the tree, the corresponding scenario gets value at least
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g −1. Since there are 3n/2 edges (and scenarios), we get at least the following objective
value. (

3n/2− (n −1)

3n/2

)
(g −1)+ n −1

3n/2
= g +1

3
+ 2g −4

3n
≥ g +1

3
.

Now, we can take g arbitrarily large, which makes the objective value arbitrarily large
and hence the gap with the objective value of a priori TSP.

Unlike the a priori MST, the PMST-CA can be used as a lower bound for a priori TSP. In
fact, we only lose a factor 2. Note that this only works for the rooted case, since PMST-CA
is defined with a root vertex.

Theorem 3.13. If there is anα-approximation for the PMST-CA, then there is a 2α-approx-
imation for the a priori TSP, and vice versa.

Proof. First, we show that the following inequalities are valid, where OPTMST and OPTTSP

denote the optimal values of PMST-CA and a priori TSP respectively.

OPTMST ≤ OPTTSP ≤ 2OPTMST.

The first inequality can be proven by taking the optimal a priori TSP-tour and deleting
one edge. This gives a spanning tree on V , called T . If we look at a specific active set
S, then the optimal a priori TSP-tour restricted to S will have exactly one edge less than
before. Namely, if we delete edge (a,b) from tour (1, . . . , a,b, . . . ,n), only edge (max{k ∈
S : k ≤ a},min{k ∈ S : k ≥ b}) will disappear from the restricted tour on S. Note that for
active set S, the tour without this edge is the same as T shortcutted to S. Hence, this is a
feasible solution for PMST-CA with cost no larger than the optimal value of a priori TSP,
and the first inequality has been proven.

The second inequality is proven by doubling the optimal tree and shortcutting the ob-
tained Eulerian tour. In each scenario, the cost of the edges is at most twice the cost of
the edges in the tree restricted to the scenario.

Now, if there is an α-approximation for PMST-CA, we double the tree and shortcut the
Eulerian tour to obtain a tour on V . This tour has a value of at most

2αOPTMST ≤ 2αOPTTSP.

Given an α-approximation for a priori TSP, we take the tour and delete one edge. The
resulting tree has a value of at most

αOPTTSP ≤ 2αOPTMST.

Recall that there is a randomized 4-approximation for a priori TSP in the independent
decision model [26]. There is also a deterministic 6.5-approximation [28] for this prob-
lem. Using Theorem 3.13, we obtain the following corollary.
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Corollary 3.14. There is a randomized 8-approximation and a deterministic 13-approxi-
mation for PMST-CA in the independent decision model. There is also a O(logn)-approxi-
mation in the black-box model.

Unfortunately, Theorem 3.13 does not imply a 2-approximation for a priori TSP, since
we can prove that PMST-CA is NP-hard in the scenario model. For this, we need the
following lemma. This lemma holds for both the scenario and the independent decision
model.

Lemma 3.15. If PMST-CA is NP-hard in the non-metric case, then it is NP-hard in the
metric case.

Proof. One can turn a graph into a graph satisfying the triangle inequality by adding a
sufficiently large number M to all distances. In the PMST-CA, this affects every solution
by an additive constant equal to

∑
S p(S)(|S| − 1)M , where p(S) is the probability that

set S is the active set. Hence, the complexity of the problem is preserved in the metric
case.

Boria et al. [5] showed that PMST-CA is NP-hard in the independent decision model, but
only for the non-metric case. Using Lemma 3.15, we obtain the following corollary.

Corollary 3.16. PMST-CA is NP-hard in the independent decision model, even if the tri-
angle inequality is satisfied.

Theorem 3.17. PMST-CA in the scenario model is NP-hard.

Proof. We reduce from the NP-complete problem Exact Cover by 3-Sets [19]. In this
problem, we are given 3q elements, X = {x1, . . . , x3q }, and m subsets, Y = {y1, . . . , ym},
with yi ⊆ X and |yi | = 3 for all i . The problem asks whether there are q sets that to-
gether cover all elements. Create the graph as in Figure 3.5. There are m scenarios with
probability 1/m. Define Si = X ∪ {r, s, yi }.

x1 x2 x3q

y1 y2 ym

r s

Edge (yi , x j ) if x j ∈ yi

· · ·

· · ·

Figure 3.5: Graph used in proof of Theorem 3.17. Edges (r, s) and (r, yi ) have length 0. Edges
(s, yi ) and (yi , x j ) have length 1. Edges (s, x j ) have length 2. All other edges have length M ,

where M is a large number.



3.6 CONCLUSION 39

If there is an exact cover, then construct the following solution. If set yi is chosen in
the cover, then use edge (s, yi ) and the edges from vertex yi to the corresponding ele-
ments of yi . If set yi is not in the cover, then use edge (r, yi ). Finally, use edge (r, s).
For any yi in the cover, consider the subtree containing s, yi and the x j ’s correspond-
ing to elements from subset yi . In scenario Si , the resulting subtree has value 4. In all
other scenarios, vertex yi will not be present and this subtree will contain three edges
from s to the vertices of the elements. Hence, this solution has expected value equal to
q(1/m ·4+ (m −1)/m ·6) = q(6−2/m).

Note that an optimal tree will never use edges with weight M or a combination of edges
that enforce using an edge of weight M in the shortcut solution. This leaves five ways of
connecting a specific set vertex yi and element vertex x j , where j is in set i , to r and s.
The five subtrees are depicted in Figure 3.6.

x j

yi

s

r

x j

yi

s

r

x j

yi

s

r

x j

yi

s

r

x j

yi

s

r

Figure 3.6: Form left to right, subtrees T1 up to T5.

Tree T3 is dominated by T1, since T1 only has cost 2 for connecting x j when yi is inactive
while T3 always has cost 2. Similarly, T4 is dominated by T2 and T5 is dominated by T1.
So, an optimal tree is a combination of T1 and T2. Suppose that the tree connects k set
vertices to s which connect ` elements vertices. The other set vertices are connected
to r whereas the other element vertices are connected to s. Number the k set vertices
connected to s as 1, . . . ,k and say that set vertex i connects `i element vertices. This tree
has an expected value of

1

m

k∑
i=1

((`i +1)+2(3q −`i ))+ m −k

m
6q = 6q + 1

m
(k −`),

which is equal to q(6−2/m) if and only if k = q and ` = 3q . Hence, there is a tree with
expected value at most q(6− 2/m) if and only if there is an exact cover. Using Lemma
3.15 completes the proof.

3.6 CONCLUSION

In this chapter, we looked at a priori TSP in the scenario model, since the problem of
minimizing the blading in photo-lithography machines is a direct practical application
of it. We showed how to get constant-factor approximation algorithms for instances of
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the a priori TSP with small, big or nested scenarios. An interesting question that remains
unanswered is whether there exists a constant-factor approximation for a priori TSP with
laminar scenarios. More specifically, it is still open whether we can do this on star-like
scenarios as defined in Equation (3.3). Next to restricted scenarios we also considered
restricted metrics. In Section 3.2 we showed that there is no PTAS for planar bipartite
graphs. We do not have such results in the Euclidean plane. It would be interesting to
settle the approximability of the problem in this metric. It is easy to construct examples
where the optimal solution crosses itself and hence the non-crossing property does not
hold. This property was a crucial ingredient of the PTAS by Arora [1] for the deterministic
problem. So far, we have not been able to show any lower bound or improve the upper
bound for this special case.

We did not succeed in improving the O(logn)-approximation for the general problem. In
fact, we conjecture that there is no o(logn)-approximation algorithm for a priori TSP in
the scenario model in the general case. Hence, we expect any given polynomial approx-
imation algorithm for the blading problem to have at best an O(logn)-approximation
guarantee. The problem instances produced by the problem of minimizing the blading
in photo-lithography machines have no restrictions on the size and amount of scenarios.
Thus, the best approximation guarantee we can have for this problem is O(logn). Algo-
rithms do not need to use information from the scenarios to achieve such a guarantee,
such as the randomized algorithm by Schalekamp and Shmoys [25] or, as we will see in
Chapter 4, a spacefilling curve heuristic such as the one by Platzman and Bartholdi [22].
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4
THE SPACEFILLING CURVE

ALGORITHM

In Chapter 2, we came across the problem of minimizing the distance blades have to
travel during the expose step in the photolithography processes and its direct relation
to a priori TSP. This process is used in semiconductor manufacturing to transfer the ge-
ometric pattern of a chip onto a wafer. Since the expose step often influences the to-
tal processing time of a wafer in the photolithography machine, minimizing the blade
movements reduces the processing time. The blade movements are determined by the
order of the reticle images. We showed that this can be formulated in such a way that it
is precisely a form of the a priori TSP in the scenario model. In Chapter 3, we looked at
properties of a priori TSP and we conjectured that there is no o(log(n))-approximation
algorithm for the problem.
An O(log(n))-approximation algorithm is given by Schalekamp and Shmoys [9] for the
black-box model of a priori TSP. This algorithm does not use any information of the
probability distribution and is constructed by (probabilistically) embedding the metric
in tree metrics.

Another O(log(n))-approximation algorithm which would work for a priori TSP in the
plane is the spacefilling curve heuristic proposed by Platzman and Bartholdi [8]. The
idea behind the algorithm is fairly simple: construct a space-filling curve φ : C → S,
which is a continuous mapping from the unit interval C = [0,1] onto the unit square
S = [0,1]2. After constructing the curve, we visit the points in ascending order in which
they occur on the curve. An example is shown in Figure 4.1.

In this chapter, we will look at the spacefilling curve algorithm and its application to
the problem of minimizing the distance blades have to travel in the photolithography
processes. We begin by formally describing the algorithm. Since in our application the
distances of the TSP are based on 4-dimensional points, we will extend the algorithm of

This chapter contains joined work with Céline Swennenhuis
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Figure 4.1: Example of the spacefilling curve heuristic for a planar TSP instance with 30 cities.

Bartholdi and Platzman to 4-dimensional points. Since the Sierpiński curve used cannot
(easily) be extended to four dimensions, we will consider the Hilbert curve. Lastly, we
will see the algorithm performs very well in practice on the real life a priori TSP instances
found when minimizing the blade movement in the photolithography machines.

4.1 THE SPACEFILLING CURVE HEURISTIC FOR PLANAR TSP

In planar TSP we are given a set N of points in the Euclidean plane and we want to find
a tour visiting all points exactly once that minimizes the distance travelled. Distance
between points are given by the Euclidean distance between two points in the plane (i.e.
if i = (xi , yi ), j = (x j , y j ) ∈ N , the distance di j =

∥∥i − j
∥∥=p

((xi −x j )2+(yi +y j )2)). In this
section, we will discuss the spacefilling curve algorithm given by Platzman and Bartholdi
[8].

As mentioned earlier, the algorithm is based in a spacefilling curve φ : C → S, where C =
[0,1] and S = [0,1]2. This curve is a continuous mapping from C onto S. The mapping is
surjective but it does not have to be injective. Hence, there might be t , t ′ ∈ C such that
φ(t ) =φ(t ′). We find the order in which the points are visited by doing the following two
steps.

1. For each point i ∈ S to be visited, compute a t ∈C such that i =φ(t ).

2. Sort the points in ascending order of their corresponding t and construct a tour
visiting the points in this order.

The spacefilling curve used is the Sierpiński curve. This curve is defined on the triangle.
A tour on the unit square is constructed by joining the two curves at their begin- and
endpoints. The Sierpiński curve on the triangle is constructed by successively dividing
the triangle into smaller triangles and marking the corners of the triangle. We label the
triangles with binary numbers. In every partition, we number the triangle which con-
tains the original marked vertex with an additional right hand 0 and the triangle without
a marked vertex with a 1. We mark in this triangle the vertex that was divided by the par-
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tition. Thus, the kth partition of S consists of 2k identical triangles, each labeled with the
binary representation of an integer 0, . . . ,2k. Figure 4.2 shows the first four partitions.

0

1

(a) k = 1
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11

(b) k = 2

000

001
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(c) k = 3
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11011110
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(d) k = 4

Figure 4.2: First four partitions of S in the spacefilling curve construction for the Sierpiński

This construction of te space-filling curve φ maps each subinterval of C = [0,1] onto the
subtriangle of S with the corresponding label. The starting point of the subinterval will
be mapped to the marked vertex of the triangle. The Sierpiński curve φ is not one-to-
one. This can easily be seen by looking at ( 1

2 , 1
2 ), for which it holds that φ( 1

8 ) = φ( 3
8 ) =

φ( 5
8 ) =φ( 7

8 ) = ( 1
2 , 1

2 ). There are eight possible encodings for this point, namely, 001, 011,
101, 111 and 000111. . ., 010111. . ., 100111. . . and 110111. . ..
Although φ is not one-to-one, we still define the mapping λ : S → C and only require
that for every p ∈ S, φ(λ(p)) = p. The non-uniqueness of λ turns out not to have any
theoretical or practical implications.
In the first step of the algorithm, we need to compute a t ∈C such that i =φ(t ) for each
point i ∈ S. For the Sierpiński curve, this boils down to find a division in subtriangles
such that each subtriangle contains at most one point. Hence, we can stop partitioning
when this occurs and construct a tour using the binary encoding of the triangles.

The main problem with this approach for our problem is that a Sierpiński curve is not
easily extended to three dimensions, let alone to four. The natural extension for a triangle
to a three dimensional object is the tetrahedron and six tetrahedrons could cover the unit
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cube. We could even mark one edge of every tetrahedron such that they form a tour. The
difficulty lies in how to split a single tetrahedron. Splitting the tetrahedron in half on the
marked edge, just like in the two dimensional case, will give two congruent tetrahedrons.
These tetrahedrons will however be heavily distorted and the ratio between different
edges of the tetrahedron will become unbounded as splitting continues as shown by
Bader [2].

Next to the Sierpiński curve, Bartholdi III and Platzman [3] also propose two different
curves to tackle TSP in the Euclidian space; the Hilbert curve and the ‘zig-zag’-curve.
For these curves, we do not have an approximation ratio, although Bertsimas and Grigni
[4] show an example were the heuristic tour is O(log(n)) from the optimal tour. We will
continue by considering the Hilbert curve as a basis for our heuristic, since it is easy
construct in four dimensions and it is easy to check the position of points on the curve.

4.2 HILBERT CURVE

The Hilbert Curve was first described by David Hilbert [6]. In this section, we will de-
scribe the four dimensional curve and adjust the curve to form a tour. The Hilbert curve
describes a continuous mapping from the unit line to the unit square. It is constructed
by iteratively dividing every square in four smaller squares. Every square contains a u-
shaped part of the curve and these are rotated and connected through the edges of each
square to form a continuous line. We call the starting curve the first level of the curve or
basis curve and the curve after the first iteration, the second level curve, continuing in
this way for every iteration. Figure 4.3 shows the first 3 levels of the curve.

Figure 4.3: First 3 levels of the Hilbert curve in 2D

Because we are solving a prior TSP in the scenario model, we want a tour instead of
a path. We therefore rotate the first and fourth square of the tour in the second level
and connect their endpoints. The rotation of the first and the fourth square is taken into
account, when construction the tour for higher iterations. This does however not change
the substructure of these levels, only its orientation. See Figure 4.4 for the first 3 levels
of this curve. Note that we could have a slightly different curve by rotating the square 90
degrees.

The three dimensional curve is less straight forward than the two dimensional one. Ac-
cording to Bader [2] there are three characteristics that we want to preserve:
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Figure 4.4: Adjusted Hilbert Curve in 2D, so it forms a circuit

• It should fill the unit cube.

• We want to be able to construct it recursively and it should be based on recursive
substructuring of cubes into subcubes with halve the side length of the original cube.

• It should be face-connected, so that we can form a curve.

The basis (i.e. the first level) of the two dimensional Hilbert curve is the cup. Given
start- and endpoints of the curve in the two dimensional case, there is only one curve
possible that visits all squares of the next iteration. In the three dimensional case, there
are more options for the start- and endpoints and given these there are multiple options
to construct a tour. A Hilbert curve can have three different basis forms of the curve in
three dimensions, which can be rotated to form even more basis curves. Figure 4.5 shows
these. Similarly, while the two dimensional Hilbert curve has only a single substructure,
there are multiple substructures in the three dimensional case.

Figure 4.5: The 3 different basis forms for the 3D Hilbert curve.

Again, we can form a tour by rotating two cubes at the second iteration. We can there-
fore only use the first two basis forms of Figure 4.5. We can rotate each of these forms
resulting in 6 different basis curves per basis form and each of these can be used for the
3-dimensional circuit.

The four dimensional case is very similar to the three dimensional case, only with more
basic form ans more rotations. We therefore fix the basic form we use to construct the
curve. This form is shown in Figure 4.6. We can rotate this basis curve. In total, this
results in 24 different starting curves. In our algorithm, we will consider all these starting
structures. There are even more substructures, but we will only use one substructure
and its rotations, namely one similar to our basis curve shown in Figure 4.6. To form
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a tour we rotate the first and the sixteenth hypercube in our second iteration to form a
tour instead of a path.

q = 0
curve moving from
q = 0 to q = 1.
q = 1

Figure 4.6: An impression of a four-dimensional Hilbert curve.

4.3 THE SPACEFILLING CURVE HEURISTIC FOR 4D a priori TSP

In the 4-dimensional a priori TSP in the scenario model, we are given a set of n points V
in the metric space S = [0,1]4 and a set of scenarios S with S1, . . . ,Sm ⊆V . Each scenario
S j has probability p j of being the active set and

∑
j p j = 1. We begin by finding an or-

dering on the points in V , called the first-stage tour. When an active set is released, the
second-stage tour is obtained by shortcutting the first-stage tour on the vertices of the
active set. The goal is to find a first-stage tour that minimizes the expected length of the
second-stage tour.
To tackle the 4-dimensional a priori TSP in the scenario model, we will use the same ap-
proach as found in Section 4.1, but now we will use the Hilbert curve H : C → S, where
C = [0,1] and S = [0,1]4 instead of the Sierpiński curve. Hence, we construct a tour in the
following way:

1. For each point i ∈V to be visited, compute a t ∈C such that i =H(t ).

2. Sort the points in ascending order of their corresponding t and construct a tour
visiting the points in this order.

To calculate t for points i ∈ V , we use the same method as proposed by Jin and Mellor-
Crummey [7]: The Hilbert curve is a self-similar space filling curve that can be con-
structed recursively. Therefore, if we know all basis curves that occur in our curve and
use these as first level curves to construct a second level curve, we can find a table with
the relation between the parent hypercube and its subhypercubes. This relation is the
same at every level of the curve. We collected these relations in a ‘movement specifica-
tion table’. This table can be used to iteratively construct the third and higher levels of
the curve. To construct the first and second level curves, we use the algorithm from Butz
[5].

Since we restricted ourselves to the hypercube found in Figure 4.6, we can identify each
curve in a (sub)hypercube by their movement in the first, second, fourth and eighth di-
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rection of the curve. Let x, y , z and q denote the directions of the axes and let x+ denote
an increase and x− denote a decrease in the x-direction and similarly for y , z and q . We
can then identify the basis curve in Figure 4.6 as x+z+y+q+. We then use the algorithm
by Butz to find the 16 subhypercubes of x+z+y+q+ and the movement specification ta-
ble. The ‘movement specification table’ is given in Table 4.1.

Subhypercube Orientation
1 z+, y+, q+, x+

2 y+, q+, x+, z+

3 y+, q+, x+, z+

4 q+, x−, z−, y+

5 q+, x−, z−, y+

6 y−, q+, x+, z−

7 y−, q+, x+, z−

8 x−, z+, y−, q+

9 x−, z+, y−, q+

10 y−, q−, x+, z+

11 y−, q−, x+, z+

12 q−, x−, z−, y−

13 q−, x−, z−, y−

14 y+, q−, x+, z−

15 y+, q−, x+, z−

16 z+, y+, q−, x−

Table 4.1: Movement specification table for x+, z+, y+, q+

By mapping each subhypercube back to x+, z+, y+, q+, we can use the same table for
every iteration and construct a Hilbert curve up until every given level j . To construct a
tour we rotate the first and sixteenth hypercube at the second level. Note that we do not
change the movement specification table.

Thus, using the above method, we can identify for every point i ∈V in which (sub)hyper-
cube it is contained up until a given maximum level j . Let C l

i denote the hypercube in
which hypercube (1, . . . ,16) point i is contained in level l . Our algorithm then works as
follows:

1. For each point i ∈ V compute in which of the 16 hypercubes C l
i it is contained in

levels l = 1, . . . , j .

2. Set ti =∑ j
l=1(C l

i −1)/(16)l .

3. Sort the points i ∈ V in ascending order of their corresponding ti and construct a
tour visiting the points in this order.

The algorithm takes O(n log(n)) time. Given a j , the maximum deviation is smaller than
O(n · 2− j ). One could choose j , based on the minimum distance between the points.
Given this distance, j can be chosen such that no two points share a subhypercube at
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level j (unless they have the same coordinates). Finding this distance takes O(n log(n))
time.
For our application, we need a path instead of a tour. Therefore, when minimizing the
blading, we add a fourth step to the algorithm. Let d(x, y) denote the distance measure
of the metric space S for x, y ∈ S.

4 Find the maximum d(u, v) with u, v ∈ V where u is visited right before v on the
constructed tour and is maximal. Construct a path by starting at v and ending at
u on the constructed tour.

In the above algorithm, we use a single level one curve, namely x+, z+, y+, q+. We will
therefore call this algorithm Hilbert1. When first using this algorithm, we concluded
that it was very fast, but also that the choice of the level one curve has a big influence
on the quality of the solution. Because of this dependence, we also constructed an al-
gorithm where we construct a tour (or path) using the above algorithm with 24 differ-
ent level one curves. From the 24 tours found, we take the best solution. The 24 level
one curves are obtained by rotating the x+, z+, y+, q+ curve. We will call this algorithm
Hilbert24.

Note that in the description of the algorithm, we never used that the set of scenarios
with associated probabilities are given. The algorithm does not use the probability dis-
tribution, hence it actually works for any kind of distribution on the points in the 4-
dimensional space.

4.4 APPLICATION AND RESULTS

The algorithm was tested on the real-world data from the semiconductor manufacturer
to minimized total blade movement. We evaluate its performance against the original
ordering of the images and the ordering found by ILP solver SCIP[1] used in Section 2.4
for the pilot study. This study contains 46 products which account for 33.9% of the total
work in progress.

The points defining the blading positions are not in the unit hypercube. We therefore
multiply them by a factor c, where c = (c−cmi n )

cmax−cmi n
, with cmax and cmi n the maximum and

minimum values of all coordinates in our data set. This resizing makes sure all values
are between 0 and 1, while the relative distances stay the same.

We will test two versions of our spacefilling curve heuristic against the ILP found in Sec-
tion 2.4. We take j = 8, since after resizing the minimum distance between two points
over all instances is 0.00714 and 2−8 < 0.00714. The approximation results can be found
in Table 4.2. We will also try to speed up the ILP by using the solution found by the
Hilbert24 algorithm as an initial solution for the ILP. The time required for each algo-
rithm can be found in Table 4.3.

The Hilbert24 algorithm performs quite well for the blading optimization problem.
Compared to the original solution, the solution found by Hilbert24 is only worse for
four of the job optimization problems. In three of those cases, the original ordering was
already optimal (MFS00, MYA00,MH021). In the last case (NKH02), the original was only
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Instance Objective value (Btotal) Approximation ratio
Product Images Layers Original ILP Hilbert1 Hilbert24 Hilbert1 Hilbert24
MAA28 20 22 3124.62 3124.62 3196.67 3124.62 1.02 1
MAA04 20 25 3174.15 3174.15 3222.88 3174.15 1.02 1
MFS00 27 30 3253.83 3253.83 4134.13 3362.09 1.27 1.03
MAA01 18 24 3766.23 3517.08 4093.08 3577.15 1.16 1.02
MAA50 22 46 4271.1 3198.15 3365.3 3227 1.05 1.01
MAA29 20 22 3854.13 3298.6 3298.6 3298.6 1 1
SZS08 19 18 3968 3356.42 3440.17 3356.42 1.02 1
SQB01 30 14 5589.74 4640.15 4932.11 4665.15 1.06 1.01
MA936 23 49 5262.5 4374.2 4389.12 4389.12 1 1
SAC19 17 21 2677.03 2065.25 2219.63 2065.25 1.07 1
MAA45 19 28 6757.42 5392.8 5614.93 5392.8 1.04 1
MX028 26 48 6642.52 4339.3 5015.6 4339.3 1.16 1
RMP01 6 15 2589.9 2589.9 3299 2589.9 1.27 1
BGY00 7 22 3973.5 3973.5 4884.9 3973.5 1.23 1
MA924 22 29 6817 5582.1 5938.2 5597.22 1.06 1
XX055 26 46 4798.95 3922.35 4292.15 3922.35 1.09 1
DWB12 36 27 9177.64 6467.53 7384.78 6467.53 1.14 1
MAE00 16 18 3017.27 2403.75 2504.72 2403.75 1.04 1
MGY01 8 22 2848.63 2480.03 3170.78 2480.03 1.28 1
SZS05 18 21 3389.15 2646.79 2871.54 2646.79 1.08 1
XX040 24 62 4124.55 2644.89 2909.78 2644.89 1.1 1
MAA47 20 22 5551.7 4294.3 4548.35 4294.3 1.06 1
MX031 26 38 5323.07 3886.75 4227.58 3886.75 1.09 1
MAB00 22 42 3924.05 2536.6 2877.02 2536.6 1.13 1
XJ203 52 61 6104.29 3932.45 4466.73 3965.23 1.14 1.01
SAC03 19 17 2393.15 1991.68 2027.9 1991.68 1.02 1
DWB57 32 30 8827.86 6542.26 7060.97 6542.26 1.08 1
NKH02 19 29 7324.75 7294.33 7891.14 7561.34 1.08 1.04
MAA48 21 29 2373 2373 2422.03 2373 1.02 1
MAE03 20 18 3300.7 2298.57 2406.05 2298.57 1.05 1
XXW61 20 36 6632.37 5739.22 5806.05 5787.29 1.01 1.01
DWB14 36 27 9177.64 6467.53 7384.78 6467.53 1.14 1
XX056 23 56 6639.62 4333.05 4996.72 4333.05 1.15 1
MAA54 21 32 4662.35 3721.67 4218.22 3721.67 1.13 1
MAA62 16 23 3845.97 3105.01 3167.8 3105.01 1.02 1
MAA32 19 27 3857.08 3857.08 4387.63 3857.08 1.14 1
MYA00 26 22 5300.35 5300.35 5655.2 5655.2 1.07 1.07
MAB04 18 18 2938.18 2346.35 2413.8 2346.35 1.03 1
DWB06 36 36 9177.64 6467.53 7384.78 6467.53 1.14 1
SAB21 18 18 3419.88 2817.12 2935.2 2817.12 1.04 1
DWB40 36 31 9892.7 7550.32 7591.89 7591.89 1.01 1.01
MH021 19 28 3997.99 3997.99 4483.59 4075 1.12 1.02
MX032 19 30 4442.72 3261.03 3315.13 3261.03 1.02 1
MAA49 23 34 5424.43 4613.83 5053.8 4668.3 1.1 1.01
RKH05 17 27 8526.28 5302.28 6046.98 5407.03 1.14 1.02
MAA25 23 37 3726.45 3040.18 3352.63 3112.4 1.1 1.02

Average 22.28 29.93 4997 3989.47 4354.35 4017.84 1.09 1.01

Table 4.2: Results of the blading minimization for the ILP solver and the spacefilling curve
heuristics, compared to the original order used in the Fab.

0.4% from the optimal solution. On average, the solution found by Hilbert24 is 19.6%
smaller than the original solution. This results in a gain in total time needed for the cur-
rent work in progress similar to the gain of using the ILP (1.5% on ‘fast’ tools and of 1.7%
on the ‘slow’ tools).
Compared to the optimal solution, it is on average only 1% away from the optimal solu-
tion. It is optimal for 31 of the 46 instances. In the worst case, it is 7% from the optimal
solution (MYA00).
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The Hilbert1 algorithm performs worse than the Hilbert24 algorithm for the blading
optimization problem. This is of course to be expected, since the solution of Hilbert1
is one of the solutions considered in Hilbert24, but the difference is quite large. The
Hilbert1 algorithm is worse than the original solution for 12 of the instances. On aver-
age, the solution found by Hilbert1 is 12.9% smaller than the original solution. Hence,
even using this algorithm to minimize the blade movement would result in a gain of 1.0%
on ‘fast’ tools and of 1.1% on the ‘slow’ tools in total time needed for the current work in
progress. It is at most 27% larger than the optimal as well as from the original solution
(MFS00). On average, it is 12% larger than the optimal solution.
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Instance Time (sec)1

Product Images Layers ILP Hilbert1 Hilbert24 ILP initial ∆ ILP
MAA28 20 22 0.632 0.042 0.062 0.838 -0.206
MAA04 20 25 0.174 0.005 0.056 0.161 0.013
MFS00 27 30 2.297 0.006 0.096 2.123 0.174
MAA01 18 24 0.776 0.005 0.052 0.962 -0.185
MAA50 22 46 0.267 0.005 0.069 0.287 -0.020
MAA29 20 22 0.450 0.004 0.057 0.371 0.079
SZS08 19 18 0.399 0.004 0.053 0.434 -0.035
SQB01 30 14 2.324 0.007 0.115 5.792 -3.468
MA936 23 49 0.613 0.005 0.074 0.698 -0.085
SAC19 17 21 0.294 0.034 0.049 0.608 -0.314
MAA45 19 28 0.849 0.005 0.054 0.636 0.213
MX028 26 48 0.733 0.006 0.092 1.024 -0.290
RMP01 6 15 0.048 0.002 0.011 0.018 0.030
BGY00 7 22 0.015 0.002 0.012 0.018 -0.003
MA924 22 29 0.451 0.005 0.069 0.684 -0.233
XX055 26 46 0.994 0.006 0.092 0.921 0.074
DWB12 36 27 4.086 0.008 0.163 2.251 1.835
MAE00 16 18 0.486 0.004 0.041 0.541 -0.056
MGY01 8 22 0.034 0.003 0.016 0.035 -0.001
SZS05 18 21 0.185 0.004 0.049 0.205 -0.020
XX040 24 62 0.795 0.005 0.079 1.217 -0.423
MAA47 20 22 0.187 0.004 0.058 0.309 -0.121
MX031 26 38 0.045 0.006 0.089 0.096 -0.051
MAB00 22 42 0.522 0.005 0.073 0.605 -0.083
XJ203 52 61 0.908 0.016 0.325 0.810 0.099
SAC03 19 17 0.054 0.004 0.053 0.040 0.014
DWB57 32 30 1.021 0.007 0.130 1.072 -0.051
NKH02 19 29 5.983 0.004 0.055 4.107 1.876
MAA48 21 29 0.482 0.004 0.061 0.610 -0.128
MAE03 20 18 0.260 0.004 0.057 0.371 -0.111
XXW61 20 36 0.743 0.004 0.058 1.132 -0.390
DWB14 36 27 4.051 0.009 0.162 2.225 1.826
XX056 23 56 0.819 0.005 0.077 0.538 0.282
MAA54 21 32 0.558 0.004 0.061 0.660 -0.103
MAA62 16 23 0.769 0.004 0.042 0.459 0.310
MAA32 19 27 0.078 0.004 0.054 0.082 -0.004
MYA00 26 22 0.236 0.006 0.090 0.403 -0.167
MAB04 18 18 0.696 0.004 0.049 0.665 0.030
DWB06 36 36 4.071 0.009 0.161 2.250 1.821
SAB21 18 18 0.548 0.004 0.049 0.495 0.053
DWB40 36 31 14.976 0.009 0.162 10.043 4.933
MH021 19 28 0.066 0.004 0.053 0.073 -0.007
MX032 19 30 0.357 0.004 0.053 0.143 0.214
MAA49 23 34 0.372 0.005 0.075 0.685 -0.313
RKH05 17 27 1.377 0.004 0.044 0.661 0.716
MAA25 23 37 0.288 0.005 0.073 0.181 0.106

Average 22.283 29.935 1.226 0.008 0.077 1.068 0.158

Table 4.3: Time required for blading minimization by the ILP solver and spacefilling curve
heuristics. ∆ ILP is time required for the ILP without initial solution minus time with initial

solution.

Both Hilbert1 and Hilbert24 are very fast. Table 4.3 shows that Hilbert1 takes at
most 0.042 seconds (MAA28) and Hilbert1 takes at most 0.325 seconds (XJ203). On
average, Hilbert24 is almost 16 times faster than the ILP. We also tried to use solution
found by Hilbert24 as an initial solution to the ILP. In general, the ILP with initial so-
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lution takes around the same time as the ILP without. There are some instances for
which it even generates a significant decrease in time (DWB12, NKH02, DWB14, DWB06,
DWB40). There is however one instance (SQB01), where it increases the time required
for the ILP by 3.468 seconds. This could be because the Hilbert24 solution is close to
the optimal, but not in the neighborhood of the optimal solution.

We fixed j = 8 since 0.00714 is the minimum distance after resizing over all problem
instances that a blade has to travel between two images. This minimum is only obtained
in MX028, XX055 and MX031. We could speed up the algorithm for some of the other
instances by first calculating the required j and using this j for the algorithm. Appendix
A.3 shows the result per instance. On average it reduces the time of Hilbert1 by 5.3%
and Hilbert24 by 6.0% (including the time required for finding j ).

4.5 CONCLUSION

We looked at a space filling curve heuristic for the a priori TSP problem. We saw that
the Sierpinski curve solves TSP problems in the plane, but it is not easily extended to
higher dimensions. Since the Hilbert curve is easily computed in higher dimensions, we
used that curve instead, but we lose the approximation guarantee. Although we used the
heuristic on a priori TSP, it can be used for a variety of optimizations problems that are
optimizing over points in a multidimensional space.
We tested the algorithm on instances from the problem of minimizing the blade move-
ment in the photolithography process. The Hilbert24 algorithms is very fast (it requires
less than 0.5 seconds) for the instances and on average it is less than 1% away from the
optimal solution. Although the ILP is fast enough for our application, one might how-
ever also include the Hilbert24 algorithm in the programming when building the Litho
Job Manager described in Section 2.5, to give a good approximate solution for larger in-
stances.
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5
SCHEDULING IN THE METAL AND

PHOTOLITHOGRAPHY BAYS

In this chapter, we look at the scheduling of jobs in the metal and photolithography ar-
eas of the semiconductor fab. We analyze the possible benefits of replacing the existing
dispatching rules by an optimization algorithm. The dispatching rules give a priority
to every job. Operators use these priorities to decide which job will be put on an avail-
able machine first. The process times for a single job can be different for the candidate
machines due to the high-mix nature of the fab. These tool speed differences are not ex-
ploited with the current rules. Through an enlarged data-collection and an improved IT-
architecture, we can now accurately predict the process times for each job in the WIP on
all candidate tools. This enriched information is used to construct a two stage algorithm,
which exploits the speed differences of the candidate tools. This new scheduler solution
can give a load distribution which is balanced over the possible equipment while it opti-
mizes the overall equipment throughput. In the second stage the job priorities are taken
into account and reticle constraints in case of lithography.

5.1 INTRODUCTION

European IC manufacturers are typical suppliers of customized products for equipment
manufacturer companies, which means high-mix (product diversity), low volumes (many
customers) and high flexibility. In order to collect the market advantages of high-mix,
low-volume production the semiconductor industry needs to solve the associated com-
plex logistic manufacturing challenges. The processing of different wafer products re-
quires thousands of recipes. On top of that, additional complications arise from the

This chapter contains joined work with Jan Driessen
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hardware differences (because of product-dedicated tool layout and/or wafer fab expan-
sion with second-hand equipment).

In existing legacy 200mm fabs, the data-collection from the manufacturing equipment
is quite often insufficient to obtain reliable process times for all recipes. The speed dif-
ferences over the candidate tools for each recipe are usually not known accurately, e.g. in
a simple model the wafers-per-hour production rate is scaled linearly with the number
of available components. As a result, the scheduling (i.e. assignment) of lots in the WIP
(work-in-progress) to the various candidate tools is generally done using a basic set of
dispatching rules, very similar to the approach by Dabbas and Fowler [5].Each product
or lot is assigned a priority rating by the logistic manager. This priority rating is used by
the logistic manager to take control of the expected fab-out dates of each product (i.e.
sense of urgency for delivery). In the daily fab operation the lot with the highest priority
in front of the machine is handled first by the operator and loaded onto the equipment.

In general, when a job enters the factory it is given its priority rating. However, these pri-
orities may shift over time due to a couple of reasons. First of all, the priority may change
when a job is running late. Furthermore, the priority may be raised when there are time
constraints between consecutive steps and the batch is not expected to make all process
steps in time. Additionally, sometimes the process step may result in a few wafers with
errors. These wafers are split up in a new batch, called the child batch, and are given ad-
ditional process steps for repairs. It may be beneficial to unite this child batch with the
original (parent) batch. For this, the priority of the child batch is increased. Finally, the
equipment performance is monitored by regular inspection of the processed jobs. Only
a fraction of the jobs in the fab will be inspected. It is important that the interval between
consecutive lot-inspections for each tool does not become too large. When this interval
becomes too large, the priority of the next inspection lot is increased. Of course, it is pos-
sible that lots in the WIP have the same priority. For these situations certain tiebreaker
rules are in place, which may vary per tool group.

Dispatching strategies which rely predominantly on priority ratings, and which lack de-
tailed and accurate timing input for all different recipes on all candidate tools, are not
necessarily suited to maximize the fab-efficiency. However, the integration of modern IT-
solutions in existing legacy semiconductor fabs has resulted in ‘smart solutions’ which
can predict accurate process times for the WIP in front of the tool. In this chapter we
will use this enriched information as model input to develop and validate improved dis-
patching strategies to raise the overall throughput of the critical tool-sets in the fab.

5.2 MOTIVATION

The processing in an high-mix, low-volume environment is irregular and difficult to
model and/or predict. More processing details are needed (on wafer and component
level) as well as a raised level of manufacturing science (complex mathematical models)
to accurately describe and model high-mix, low-volume manufacturing. In an ideal IT-
architecture where all relevant data is collected and analyzed almost ‘live’, it is possible
to predict the next-load and next-unload timestamps for each tool. Moreover, using a
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component-based timing model it becomes possible to accurately predict the process
time for each lot in the queue on all possible candidate tools.

In a recent paper by Driessen et al. [8], it has been demonstrated that a raised level of
manufacturing science can be realized in existing legacy 200mm fabs based on a ro-
bust data-collection compatible with outdated hardware and software. A mathemati-
cal timing model has been developed which is capable to predict accurate recipe-times
per tool in high-mix, low-volume manufacturing based on the historic data-collection.
Because the implementation of the smart manufacturing strategies is quite labor inten-
sive, the feasibility of this approach has been demonstrated in the pilot phase on two
tool-families, 1) the metallization tool-set (AMAT Endura) with the most complex di-
versity of component-utilization per recipe, and 2) the lithography tool-set (ASML step-
per/scanner with SVG track) which is supposed to serve as the bottleneck of the manu-
facturing line.

For these two pilot tool-sets the smart manufacturing solution has matured into a re-
liable timing model which is capable to generate accurate tool-recipe predictions. The
process flow of a wafer through such a so-called ‘multi-path cluster tool’ is modeled lo-
gistically using the SEMI standard E10-0304E. Based on the process times and handling
times, one can determine the throughput times at each functional step depending on
the number of available components. The overall takt time at tool level is determined by
the bottleneck step, which can be readily identified in such a logistic model.

In Figure 1, this timing model is exemplified for the metallization toolset. In the actual
fab, these multi-path cluster tools are laid out with various configurations. The collected
timing information at wafer/component-level is analyzed and used as the input data for
the timing model. Using the actual up/down status of individual components, it is now
possible to accurately predict the recipe times of all lots in the WIP on all candidate tools.

In case of lithography, the exposure time at the stepper also depends on the reticle pa-
rameters. As described in a previous paper by Driessen [7] and discussed in Section 2.1,
the total process time (TP ) to pattern the wafer can be expressed in a simple model

TP = c0 + c1(N D/I )+ c2N + c3(M −1)+ c4B (5.1)

where the coefficients c0, c1, c2, c3 and c4 are equipment constants which represent the
stepper hardware. The reticle-job is described by the other parameters: N is the total
number of flashes, D is the required energy dose, I is the light intensity at the wafer, M is
the number of different images, and B is the total blade movement needed to create the
series of partial exposures.

In order to use the predicted process times obtained from the new smart manufacturing
solution, we have to validate the accuracy of the calculated recipe times on the can-
didate tools. This essential step has been performed for all tool-sets where our smart
IT-solution has been implemented. In Figure 5.2 the validation results are shown for the
most critical tool-set in the semiconductor fab that we consider.

We have analyzed one month of production data processed on 26 lithography tools. The
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Deposition @1/2/3/4
■ Ti (Titanium)
■ TiN (Titanium-Nitride)
■ Al (Aluminum)
■ SiCr (Silicon-Chromium)
■ Co (Cobalt)

Pretreatment
■ F = Orient
■ E = Degas
■ C = Sputter-etch

(a) tool-layout AMAT ENDURA (b) process flow modeling (SEMI E10-0304E)

Equipment (layout)

Tool1 Tool2 Tool3 Tool4 Tool5 Tool6

Recipe & Stack (I) (II) (II) (III) (III) (IV)

A TiN 94 145 147 143 145 142

B Ti-Al-TiN 108 82 80 100 102 103

C Ti-Al-TiN 183 103 104 189 192 184

D Ti-Al 263 130 126 256 254 257

E Ti-Al-Ti-TiN 166 164 118 119

F Ti-Al-Ti-TiN 157 153 134 135

G SiCr 192

1) mathematical timing model
@ component level
■ process time – recipe dependent

■ handling time – recipe independent

@ equipment level
■ determine limiting component

■ calculate effective takt time

2) data-collection → determine and vali-
date model input → accurate prediction of
actual and golden recipe times.

Figure 5.1: The process time on a so-called ‘multi-path cluster tool’ depends on the ac-
tual tool-layout. Using the SEMI-standard E10-0304E a mathematical model is set up.
The process times and handling times are used as input and can be validated regu-
larly with historical data from the equipment. Taking into account the actual tool-status
(e.g. components up or down), one can accurately predict the recipe times needed for

scheduling optimization.

high-mix character is obvious from the large amount of different reticle jobs: on average
a specific exposure job is performed only 6.5 times on one of the 26 candidate tools. In
Figure 5.2a the predicted takt times are compared to the actual observed values. Even
though these takt times are distributed over a wide range (from 50 to 130 seconds), we
are capable of making reliable predictions. The accuracy is obtained from the distribu-
tion of the difference ∆takt = taktactual − taktmodel. This accuracy is shown in Figure 5.2b
where a Gaussian distribution with a standard deviation of σ = 2.5 seconds is found. On
top of this, the model is capable of detecting changes which impact the process time.
This is illustrated in Figure 5.2c where the number of available coater components in the
lithography changed from 1 to 2. We see that our timing model adapts correctly to the
new tool speed settings.

With the process times for all different tool-recipes combinations now available, the
challenge lies in finding an algorithm that makes use of this new data to find a better
schedule for the current WIP the fab. The goal of such an algorithm would be to produce
the jobs as fast as possible while still taking into product restrictions, reticle conflicts and
time constraints.
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(a) observation versus prediction (b) accuracy of timing model

■ 20684 runs (1 month data, 26 tools)

■ 3250 reticle jobs (≈ 6.5 run/reticle)

■ exposure time = function(N , M ,B ,D)

■ accurate predictions (σ= 2.5 sec)

■ for new reticles and small runners

■ dynamic model adapts to comp. up/down

(c) adaptive model (auto-adjust)

Figure 5.2: In case of photolithography, the wafers-per-hour production rate depends
not only on the tool layout (see Fig. 5.1) but also on the parameters of the reticle job (see
Eq. 5.1). The observed takt times are distributed over a wide range (a), for which the
model can make accurate predictions (b). Moreover, the model can detect tool changes

which impact the equipment throughput (c).

5.3 ALIGNMENT OF NAMING CONVENTION

As described in Section 1.5, scheduling problems are often studied in the field of math-
ematical optimization. The names and definitions used are not necessarily the same as
the terminology used in the daily operation of a manufacturing line. In Figure 5.3 we
make a comparison of the naming conventions in these two fields by visualizing their
definitions in a Gantt chart.

In manufacturing, we can identify three important metrics; cycle time, lead time and
capacity time. Cycle time is defined as the total time from the beginning to the end of a
process. In the graph it corresponds with the time interval between lot-start (podPlaced)
and lot-finish (podUnlocked). Lead time is explained as the time required to manufac-
ture an item, including queue time and run time. It is the time interval between the
lot-finish of the job in the previous process step and the lot-finish of the current step, as
illustrated in our Gantt visualization. Finally, capacity time is related to the production
speed of the equipment. It is inversely proportional to the equipment throughput.

Both cycle time and capacity time are recipe dependent, and they may differ over the
various processing equipment. As described in section 5.2, in a high-mix manufacturing
line detailed data is needed to cover all possible tool-recipe combinations. The lead time
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Deposition
1 = Ti
2 = TiN
3 = Al
4 = TiN

Pretreatment
F = Orient
E = Degas
C = Sputter-etch

Manufacturing

transport... cycle time transport...

podPlaced podUnlocked

transport & wait cycle time

lead time

lot (N −1) capacity time lot (N +1)

Tool-level metric: capacity time

Lot-level metrics: lead time & cycle time

F
E
C

Ti

TiN

Scheduling

Machine 1

Machine 2

job 1 job 2

job 3 job 4 job 5

p24

C2

Metrics for job j
■ C j = completion time (≈ lead time)
■ pi j = process time (≈ capacity time)

Figure 5.3: The terminology used in the field of manufacturing differs from the naming con-
vention applied in scheduling research. However, it is possible to identify the terms with
similar meaning. The completion time C j of a job can be compared to the lead time of the
manufactured product (i.e. delivery speed of the lot), whereas the process time pi j is equal

to the capacity time of the production line (i.e. equipment throughput or tool-speed).

depends strongly on the WIP-levels in front of the available tools, and how the logistic
transport of lots in the fab is organized. It is well-known that a great amount of WIP will
result in large average lead times.

In scheduling one can distinguish two important metrics - completion time and process
time. Completion time is the calculated amount of time required to complete a particu-
lar task. In the Gantt visualization it is indicated by the total time span from ‘start’ until
‘job finish’. The process time is the specific amount of time needed on a certain machine
to process an individual job. In Figure 5.3 it correlates with the length of the individual
building blocks making up the complete schedule. From this graph it is obvious that it
matches the capacity time in manufacturing.

Scheduling optimization impacts both metric measurements. A reduction of the average
completion time per job can be interpreted in the field of manufacturing as a shortened
lead time, which is beneficial for lot delivery (i.e. customer satisfaction). On the other
hand, a reduction of the average process time per job corresponds to a raised overall
throughput of the equipment (i.e. increased fab effiency). Both points of view will be
discussed in this chapter when interpreting the optimization calculations for metal and
photolithography.
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5.4 KNOWN APPROACHES

Many scheduling problems encountered in a semiconductor fab have been considered
in literature. The photolithography bay is often the focus of these studies since it is the
bottleneck of the fab. The literature that tackles logistic problems in lithography can be
roughly divided in two types of techniques: dispatching rules or scheduling algorithms.

Dispatching rules have been studied for quite some time in literature. Through these
rules a priority is assigned to a job, and machines select jobs with the highest priority.
Classical examples are i) first-in-first-out, where jobs are processed in the order in which
they are received; ii) shortest processing time first; iii) critical ratio, which is calculated
by dividing the time remaining to complete a job by the expected time needed to finish
the job; and iv) earliest due date, by which jobs are processed according to their delivery
dates. These rules perform reasonably well for some problems [12]. Sarin et al. [13] give
a detailed overview of the basic dispatching rules used in the semiconductor industry
and their performance.

Geiger et al. [9] conclude after many years of research on dispatching rules that there is
no dispatching rule that outperforms consistently all the other rules and that the per-
formance of every rule is very dependent on the problem considered. Therefore, they
propose a machine-learning algorithm that dynamically generates effective dispatching
rules automatically from a set of given rules.

Scheduling algorithms for the problems found in the photolithography areas have to be
able to deal with the reticle requirements of the jobs. Cakici and Mason [4] model this as
an identical parallel machine scheduling problem with auxiliary resources and release
dates. The objective is to minimize the total weighted completion time. They use an ILP
formulation reminiscent of the one found in Section 2.3 to find optimal solution to the
problem with at most 3 machines, 15 jobs and 6 reticles.

Ham and Cho [11] consider parallel machines with auxiliary resources, which require
additional setup times. They use a two stage model. First, they use an ILP to find an
assignment of the jobs and resources to the machines. They find a reduction of 2.7%
in total completion time for instances with 30 machines, 500 jobs and 800 reticles. In
the second stage, the jobs assigned to each tool are sequenced using a set of dispatching
rules.

Doleschal et al. [6] formulate the lithography scheduling as a problem with unrelated
machines with auxiliary resources. They use an ILP with three objective functions, that
they optimize in three stages. In sequential steps the high priority jobs, the total number
of jobs and load balance are optimized. The result of this ILP is an allocation of the
resources such that every resource is assigned to at most 1 machine. The assignment is
then tested in an online environment using a simulation model and evaluated against a
dispatching rule. In their test it yields especially good results in terms of cycle time and
lead times (e.g. tardiness).

Bitar et al. [2] propose a memetic algorithm. They consider the problem of unrelated
parallel machines with release dates, sequence dependent setup times and auxiliary re-
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sources. The algorithm optimizes two objective functions: it minimizes the total weighted
completion time and maximizes the total number of jobs produced in a fixed time win-
dow. The memetic algorithm generates solutions using a genetic algorithm, which are
then improved using a local search algorithm (in this case simulated annealing). They
analyze the impact of different parameters on the performance of the algorithm.

All of the above described scheduling algorithms use a priority rating (or weight factor)
for every job. This priority is used either as part of the objective function or as a second
stage, the so-called post-processor. In this step the jobs that have been assigned to a
machine are sequenced in order of priority. In this manner the logistic manager still has
a means of control to influence the actual processing order of individual jobs. Note, such
a means of control is often highly appreciated in the daily operation of a manufacturing
line, because the scheduling algorithms are often perceived as ‘black boxes’.

As a final remark, all of the above described scheduling algorithms focus on the con-
straints due to the limited availability of reticles (resources). For instance, individual
reticles cannot be assigned to multiple machines simultaneously, which is referred to as
a reticle conflict. However, when the high-mix character of a fab increases, more reticles
are available and the chance of encountering reticle conflicts is reduced. Looking at the
data provided in Figure 5.2, we consider these reticle requirements less of a constraint in
the fab that we consider. Therefore, we propose an algorithm that focuses more on the
production time differences and less on the reticle requirements.

5.5 MODEL AND ALGORITHM

Given the new detailed data that have become available as described in Section 5.2,
we are able to model the production bays and devise an algorithm that optimizes the
scheduling. We will use a static model where we are given a number of machines and
the current work in progress. For each job j we know where it can be processed (ma-
chine i ) and with what process time (pi j ). Furthermore, we know the job priority from
the dispatching model and (in case of photolithography) the reticle that is required. Fi-
nally, we know which jobs are already on a machine. The goal is to find an algorithm
that minimizes the machine time required for the current WIP, while still balancing the
load. Optimizing the machine time only, may result in an overloading of the fastest ma-
chine and an idle situation on the slow equipment. This would wreak havoc for the line
balance, resulting in large completion times. Therefore, a smarter way of optimizing is
needed to satisfy the customer needs (i.e. shorter lead times)

In the more formal notation of Graham et al. [10], we formulate the problem as a schedul-
ing problem with unrelated parallel machines. We are given a set of m unrelated ma-
chine M , a set of n jobs J and a set of l resources R. We have the following parameters:

• a process time pi j ,∀i ∈ M , j ∈ J . pi j =∞ if job j cannot be processed on machine i .

• a priority (or weight) w j ,∀ j ∈ J .

• a resource (or reticle) r j ∈ R,∀ j ∈ J required when scheduling in the lithography bay.
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• a partial schedule S′ containing the jobs in J that are already on a machine.

Note that, we will denote r q as the qth resource and r j as the resource used by job j .
The proposed algorithm works in two stages, similar as described by Ham and Cho [11].
First, an integer linear program (ILP) is used to find an optimized assignment of jobs in
the WIP to the available machines. In the second stage, dispatching rules and priority
ratings are used to determine the ordering of the jobs on each machine.

As an objective function for the ILP, we will use the total completion time objective (TCT
=

∑
C j ). As explained in section 5.3, this objective minimizes the lead time of the jobs.

It achieves our goal of finding a balanced schedule that minimizes the total machine
time by preferring to put a job on a faster machine. Overloading the fastest machines
results in large completion times, thus penalizing the planning of jobs far ahead in time.
As a result, jobs are moved to the other equipment and the proposed load distribution
becomes more balanced.

First, we calculate di ,∀i ∈ M from S′, which is the timestamp when all jobs already
loaded onto machine i are finished. Therefore, at time di the machine i becomes avail-
able for scheduling of jobs waiting in the WIP in front of the tool. Next, We use the fol-
lowing ILP formulation:

min
∑m

i=1

∑n
j=1

∑n
k=1(kpi j +di )xi j k

s.t.
∑m

i=1

∑n
k=1 xi j k = 1, ∀ j ∈ {1, . . . ,n},∑n

j=1 xi j k ≤ 1, ∀i ∈ {1, . . . ,m},∀k ∈ {1, . . . ,n},

xi j k ∈ {0,1}, ∀i ∈ {1, . . . ,m},∀ j ∈ {1, . . . ,n},∀k ∈ {1, . . . ,n}.

Here xi j k = 1 when job j is the kth job to be processed on machine i after di , and xi j k = 0
otherwise. Bruno et al. [3] show that the problem of minimizing the total completion
time on unrelated machines

(
R| |∑C j

)
can be solved efficiently (in polynomial time of

the input size) using a minimal-cost-flow formulation. The ILP formulation we use, is
very similar to the formulation obtained from this minimal-cost-flow formulation. The
matrix obtained by both formulations is totally unimodular. Therefore, one can drop
the binary constraints and solve the now linear program in polynomial time of the input
size.

After solving the ILP, we fix the machine assignment of each job, according to the value
of xi j k . Let Ji ⊆ J denote all jobs assigned to machine i by the ILP scheduler. In a sec-
ond step, a post-processor uses the priority ratings provided by the logistic manager to
determine the order in which these jobs will be processed.

For the metallization tool-set the post-processor is very straightforward. We sort the jobs
j on every machine according to their priority rating w j . When the jobs have the same
weight factor, they are ordered according to their processing time pi j .

In case of lithography, the post-processor becomes more complex. We also have to take
into account the reticle constraints. Two jobs using the same reticle cannot be processed
at the same time. A reticle conflict occurs in the proposed schedule S when two jobs
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using the same reticle have overlapping intervals on the timeline. The post-processor
tries to find a schedule without these conflicts.

Algorithm 1: Post-processor photolithography

Input: m machines, jobs J = J1 ∪ . . .∪ Jm , processing times p j = pi j , j ∈ Ji ,∀i ∈ M , weights
w j ,∀ j ∈ J , resources r j ∈ R,∀ j ∈ J and a partial schedule S′.

Output: A schedule S containing the machine and position for all jobs j

1 initialization: Set J̄ = J \ JS′ and set M̄ = M \ M;, where JS′ are all jobs scheduled in S′ and
M; are all machines that have no jobs in J̄ that can be assigned to them. Set the current
schedule S equal to the partial schedule S′. Set r q (t ) equal to the completion time of the
last job using reticle q in S′ and set mi (t ) to the completion time of the last job on
machine i in S′.;

2 while J̄ 6= ; do
3 find i ∈ M̄ such that mi (t ) = mini∈M̄ mi (t );
4 find j ∈ J̄i with r j (t ) ≤ mi (t ) such that j has maximum w j ;

5 if j does not exist then
6 find j ∈ J̄i such that j has maximum w j ;

7 end
8 Add j to S on i on the first available position;
9 Set r j (t ) = mi (t )+pi j , mi (t ) = mi (t )+pi j and remove j from J̄ ;

10 if J̄i =; then
11 Remove i from M̄ ;
12 end
13 end
14 return S

The post-processor algorithm 1 schedules the jobs on each machine according to their
weight. It does this one job after the other. For the next job to be considered, it first
considers the jobs with a reticle that is not in use on another equipment. Among these
it finds the job with the highest priority and schedules it. If such a job does not exist, it
schedules a job with its reticle in use, which create a reticle conflict. In this manner all
reticle conflicts will occur at the end of the schedule. Figure 5.4 shows a small example
of influence of the post-processor on the schedule.

High priority Low priority

Machine 1

Machine 2

Machine 3

Machine 4 time (h)

1 2 3 4 5 6

(a) Without post-processor

Machine 1

Machine 2

Machine 3

Machine 4 time (h)

1 2 3 4 5 6

(b) With post-processor

Figure 5.4: The post-processor sorts the jobs according to their weight. In the figures,
dark red represents high and yellow low priority. Jobs already on the tool are white.
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Although not currently implemented in the post-processor, one could make another ad-
justment to Algorithm 1 to cluster scheduling jobs which use the same reticle one af-
ter the other. In the sorting process the next job is selected with an adjusted weight
w̄ j = w j + b j , where b j equals a bonus value when job j uses the same reticle as the
previous job scheduled on i and zero otherwise.

The construction of the ILP is done in Matlab as well as the implementation of the post-
processor. The ILP itself is solved using SCIP[1]. The results shown are obtained using
an Intel core i7-4600 CPU, 2.10 GHz with 8 GB of RAM.

5.6 ANALYSIS STRATEGY TO IDENTIFY POSSIBLE GAIN

The scheduling algorithm makes an assignment of all the lots in the WIP to the available
tools. This proposed load distribution is a static advice. In actual manufacturing, the
WIP evolves dynamically, with new lots being added to the WIP when they finish the
previous step. Depending on their priority settings, these new lots may even overtake
jobs with a lower priority. Therefore, it is quite complicated to determine the possible
benefits of the new smart solution.

The implementation of the new scheduling algorithm into the existing manufacturing
line requires a major effort to make all the necessary modifications not only in the IT-
architecture, but also in the logistic organization of the fab (e.g. lot transport). Before
committing resources to such a big task, it is crucial to have an accurate estimate of the
expected benefits.

To make an assessment of the improvement opportunity, an analysis method is pro-
posed which compares the static result of the scheduling optimization with the actual
historical loading of the equipment in the high-mix fab. In Figure 5.5, this strategy is
illustrated for an example with 2 tools.

The historical loading of these 2 machines is plotted on a timeline in Figure 5.5a. Every
hour we take a snapshot of the jobs already on a machine, as well as the jobs waiting in
front of the tool-set, including their priority rating. At a later moment we can identify
on which machine these individual jobs have been processed as is shown in Figure 5.5b.
Next, we construct a reference loading scenario by eliminating the idle gaps as well as the
lots which were not present in the initial WIP list. This reference schedule is depicted in
Figure 5.5c.

As explained in Section 5.2, the new smart manufacturing solution is capable to pre-
dict accurate recipe-times per tool for all jobs in the WIP. This enriched information is
included in the snapshot, which serves as input for the scheduling algorithm. The opti-
mized loading is presented in Figure 5.5d and can be compared directly with the refer-
ence schedule. This snapshot analysis can be repeated for every instance. By aggregating
these results over a longer period (i.e. many snapshots), we expect that the impact of the
continuously changing WIP levels will balance out. In the next sections, we will apply
this analysis strategy to the historical data collected for the two pilot tool-sets in metal
and photolithography.
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Machine 1

Machine 2

04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(a) historical loading of two machines as observed in actual production

Machine 1

Machine 2

(b) identify the lots which were present in the WIP at 05:00

Machine 1

Machine 2

(c) eliminate idle gaps → reference loading scenario at 05:00

Machine 1

Machine 2

(d) scheduling optimization → improved loading scenario at 05:00

Figure 5.5: Strategy to compare the load distribution in actual manufacturing with scheduling
optimization

5.7 RESULTS METAL

In the manufacturing line that we consider, a total of 22 multi-path cluster tools are used
for metal deposition. Using the timing model of Figure 5.1 and the different tool-layouts,
we can make accurate predictions of the actual process times for all possible tool-recipe
combinations.

Because of some functional constraints and hardware differences, not all recipes are
interchangeable over all 22 machines. In fact, we can split the metal tool-set in three
functional groups in which the job processes can be exchanged: 1) full wafer-coverage
- 10 tools, 2) shielded marker - 9 tools, and 3) CVD-deposition - 3 tools. For all three
subsets the analysis strategy has been applied using a large time window of historical
loading (period = 7 months).

The hourly reference scenarios derived from actual manufacturing can be used in sched-
uling calculations with alternative optimization criteria. When we proposed to exploit
the tool-speed differences to optimize the machine loading, many stakeholders were
worried that the fast tools would become overloaded, and worse, that the slow tools
would receive no load and remain idle. For this reason we have included two differ-
ent metrics in the analysis: 1) the average completion time (aCT) and 2) the required
machine capacity (MC). The impact of alternative optimization strategies on these two
measurement values will be evaluated in this analysis.

In literature, the normally used optimization criterion is the minimization of completion
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time. As explained in section 5.3 a reduced average completion time per job leads to
a shortened lead time and faster lot delivery to the customer. In contrast, to address
the worries of the stakeholders we will also use two optimization criteria in which the
machine capacity is either minimized or maximized. In this manner we can illustrate
the impact on manufacturing when overloading either the fast tools or the slow tools.
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(b) machine capacity (MC) w.r.t. reference scenario

i) reference ( on tool, actual manufacturing)

• MC = 135.7hr → 100%
• aCT = 8h35min → 100%

ii) optimized ( on tool, aCT minimized)

• MC = 127.5hr → 93.9%
• aCT = 7h25min → 82.2%

iii) fastest ( on tool, MC minimized)

• MC = 103.8hr → 76.5%
• aCT = 32h36min → 364%

iv) slowest ( on tool, MC maximized)

• MC = 160.4hr → 118%
• aCT = 34h58min → 391%

(c) different scenarios at (DAY2, t = 00:00)

Figure 5.6: The historical loading of 9 metal tools with exchangeable processing in functional
group ‘shielded marker’ is used for analysis. As explained in section 5.6 every hour a snapshot
of the WIP is available for analysis to determine the impact on a) average completion time
(aCT) and b) machine capacity (MC =

∑
pij). Depending on the optimization goal, one can

arrive at various alternative loading scenarios as shown in Figure c for timestamp (DAY 2,
t=00:00).

The complete analysis for the 7-month period contains 5103 hourly WIP snapshots. The
three aforementioned optimization strategies have been performed for all instances and
for all three functional metal groups. In Figure 5.6 we present the analysis results over
a two-day period for sub-set 2 (shielded marker). In Figure 5.6.a the average comple-
tion time is visualized on a scale of 0-12 hours. Because minimizing and/or maximizing
the machine capacity produced very large aCT-values, they are not visible on this scale.
The WIP-level of the snapshot is also included in this graph. The mathematical strategy
which minimizes the aCT-value gives the best results in this graph.

In Figure 5.6.b the relative machine capacities of the three optimized scheduling results
are presented, where a normalization is applied with respect to the reference scenario.
Now, all three optimization strategies are depicted in the graph. The optimization results
where the machine capacity has been minimized or maximized serve as the range of
possible values for any alternative loading scenario. Even though the aCT-optimization
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does not directly influence this machine capacity, there is obviously an indirect benefit.
This can be understood, because the completion time of an individual job contains the
sum of the process times of all previous jobs. Thus, the aCT-value improves when the
previous processing is done with the shortest capacity times possible.

To illustrate the impact of these three optimization strategies in detail, four different
loading scenarios are shown in Figure 5.6.c for one specific WIP-snapshot, taken at an
arbitrary timestamp (DAY 2, t=00:00). In the reference scenario (i) the machine-loading
is displayed as found in actual manufacturing. The corresponding aCT-value and MC-
value serve as normalization (100%) for the three optimization strategies. In the opti-
mized scenario (ii) the aCT-value is minimized giving a reduction of 17.8% compared
to the reference scenario. As mentioned earlier, the machine capacity is reduced indi-
rectly as well resulting in MC = 93.9%. In the fastest scenario (iii) all jobs are processed
on the fastest machine leading to MC = 76.5%, but the scheduling distribution becomes
severely unbalanced characterized by the high aCT-value of 364%. In the slowest sce-
nario (iv) all processing is done on the slowest machines, which results in the worst case
MC (114%) and poor values for aCT (391%).

5.7.1 OVERALL RESULTS FOR A 7-MONTH PERIOD

The optimization results have been collected for all WIP snapshots in a 7-month period.
Because the WIP-levels in front of the metallization tools is relatively low, the variation
from one snapshot to the next one can be quite large. In other words, in one hour of
processing, the changes in WIP and tool-situation can lead to significant jumps in the
results as can be seen in Figure 5.6. The scheduling optimization gives a loading distri-
bution which holds for a static situation with no new jobs arriving over time. However,
in actual manufacturing we deal with a dynamic situation where new jobs are added
to the WIP-list over time in a random manner (much like an online optimization prob-
lem). This results in a error in the estimate for the capacity gain ∆MC. By averaging the
optimization results over many instances, we expect that the contribution of this error
becomes negligible.

The overall statistical results have been brought together in Table 5.1. These results sug-
gest that the tool-speed differences can be exploited in all three functional groups in
metallization. If the transport logistics can be aligned with this scheduling optimization,
it may be possible to free up to 4.5% of machine capacity. Depending on the machine ca-
pacity of the other toolsets in the fab, this increase will contribute to a raise of the overall
fab efficiency.

5.8 RESULTS PHOTOLITHOGRAPHY

The toolset for lithography consists of a total of 37 machines. The differences in mate-
rial used such as photoresist and exposure hardware (stepper vs. scanner) lead to four
different functional groups where the jobs are interchangeable from a hardware point of
view. Within these four functional groups, additional constraints for job-exchange may
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Tool group

Full Coverage Shielded Marker CVD
(10 tools) (9 tools) (3 tools)

instances 4394 2913 3402

average 39.6 28.3 15.1
median 29 25 11W

IP

max 197 132 66

ref 0:42:35 0:56:56 0:48:50
opt 0:41:23 0:55:24 0:46:39

aM
C

gain 97.18% 97.33% 95.52%

ref 3:12:13 3:24:00 3:35:06
opt 2:50:15 2:57:02 3:18:22aC

T

gain 88.57% 86.78% 92.2%

calc. time 332 msec 259 msec 36 msec

Table 5.1: Optimization results for metal obtained from a 7-month period with 5103 in-
stances. Only WIP snapshots have been taken into account which contain more jobs

than the number of machines.

be in place since not all reticles have been qualified on all possible machines: the spec-
ifications for critical dimension control require additional tweaking and tuning per ma-
chine for each reticle. Three of the four functional groups are small (< 4 tools) and have
negligible differences in hardware layout and tool speed. We will focus on the largest
functional group (24 tools) which has significant differences in hardware (e.g. number of
coater or hardbake components, lamp power, blading speed). As a result, the tool speed
differences for each individual job can be quite large. Moreover, this functional group is
considered the bottleneck of the fab based on the historical data for the WIP levels and
the machine loading.

As explained in Section 5.6, we construct reference scenarios for each WIP snapshot us-
ing the historical loading of the lithography equipment. This is visualized in Figure 5.7.
The jobs which were present in the WIP snapshot at time t = 0 have been identified in
the Gantt visualization of Figure 5.7a. We can distinguish lots already placed on the tool
( ) and lots waiting to be dispatched. These waiting lots can be separated in fixed jobs
( ) which need to be processed on a specific machine and flexible jobs ( ) which can be
dispatched on multiple machines. The fraction of fixed jobs is relatively high (∼20%) be-
cause the critical dimension constraints often require that successive photolithography
operations are performed on the same equipment. In the timelines of Figure 5.7a, we
can identify many lots which were not in the WIP list at t = 0 ( ) but which overtook the
previous lots because of priority settings and/or lot availability at the tool location.

In Figure 5.7b the reference scenario is constructed by eliminating the idle gaps and the
jobs which were not present in the WIP list at t = 0. The resulting load distribution ap-
pears quite unbalanced. In fact, one could interpret this scenario as if some tools were
overloaded at the expense of other tools. However, from the timeline of Figure 5.7a we
find that all tools are completely loaded. This dynamic evolution of the historical load-
ing means that new WIP arrives with the same rate at which it is processed, keeping WIP
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(b) unbalanced reference scenario

304 lots in WIP at t = 0 → identified in historical load
40 on tool; 50 fixed (no alternative);
214 flexible (multiple candidate tools).

• continuous changing WIP-level and tool-status:
tool down; tool idle; lots arriving later.

• reference scenario (b) → unbalanced machine loading
40 on tool; 50 fixed; 214 flexible

• reference scenario (c) → ignore lots with large CT
40 on tool; 39 fixed; 146 flexible
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(c) reference scenario with cut-off after 8h

Figure 5.7: The historical loading of the litho tools (a) is analyzed into a reference scenario
(b) which suggests that the machine loading is unbalanced, whereas all tools are completely
loaded in Figure (a). Using a cut-off time the lots with a large completion time (CT) are elim-
inated in Figure (b) resulting in a more balanced reference scenario (c). The specific times-

tamp of this WIP snapshot is also used in the next Figures 5.8 and 5.9

levels high, such that tools never need to be idle in practice. On average, we find that per
hour approximately 35 ∼ 40 jobs are added to the WIP list and about the same amount
disappears after processing.

Because the average completion time (aCT) of the unbalanced scenario in Figure 5.7b
is relatively high, the results of the scheduling optimization may suggest a gain in aCT
(or lead time) which is too optimistic. For this reason we have applied a second analysis
strategy in which a more balanced reference scenario is created by eliminating the jobs
with a large reference completion time. In Figure 5.7c this modified reference scenario
is depicted for a cut-off time of 8 hours.

Both reference scenarios have been analysed for the chosen litho toolset using the hourly
WIP snapshots. The number of lots in the WIP snapshot for lithography is much larger
than for metal, resulting in longer calculation times. We analyzed a period of 5 months
for the scheduling optimization in lithography.

5.8.1 RESULTS UNBALANCED REFERENCE SCENARIO

The complete analysis for the 5-month period contains 3676 WIP snapshot. In only 27
instances the WIP level was smaller than the number of tools (i.e. n < 24). Because of
the high WIP levels the hourly changes in WIP resulted in relatively small changes of the
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analysis results. The effect of changes in tool status (tool up versus tool down) was found
to be larger than the evolving WIP levels.

In Figure 5.8, the lithography results are presented using the unbalanced reference sce-
narios for a 6-day period with a similar graph layout as in Figure 5.6. In Figure 5.8a, the
aCT-value is depicted on a scale of 0-7 hours, as well as the WIP level of the snapshot. The
best results for average completion time are found with the optimized scenario, which
minimizes aCT.
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(a) average completion time (aCT) is optimized
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(b) machine capacity (MC) w.r.t. reference scenario

i) reference ( on tool, actual manufacturing)

• MC = 123.2hr → 100%
• aCT = 5h20min → 100%

ii) optimized ( on tool, aCT minimized)

• MC = 119.8hr → 97.3%
• aCT = 4h46min → 89.5%

(c) different scenarios at (DAY3, t = 10:00)

Figure 5.8: The historical loading of 19 litho tools is used to determine the impact on a) com-
pletion time (CT) and b) machine capacity (MC). The results are visualized in a similar man-
ner as the metallization example of Figure 5.6. The average completion time (aCT) is op-
timized for timestamp (DAY 3, t=10:00), as visualized in Figure (c) by the aCT-lines in the

reference and optimized scenarios.

In Figure 5.8b the relative machine capacities of the three different optimizations are
shown. Again, the results have been normalized with respect to the reference scenario.
The results where the machine capacity have been minimized and maximized provide
a window of possibilities for any alternative loading scenario. Similar as for the metal
analysis, the aCT-optimization results in indirect benefits for the machine capacity (MC).

In Figure 5.8c the reference scenario for one specific WIP snapshot is compared to the
optimized scenario where aCT has been minimized. The arbitrary timestamp has been
taken (at DAY3, t=10:00). The reference scenario (i) displays the machine loading as
found in actual manufacturing. In the optimized scenario (ii) this aCT-value has been
minimized giving a relative value of aCT = 89.5%. The machine capacity is reduced indi-
rectly resulting in reduction of 2.7%.
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5.8.2 RESULTS REFERENCE SCENARIO WITH CUT-OFF VALUE OF 8 HOURS

In the second optimization analysis for lithography, we eliminated jobs from the refer-
ence scenario when their completion time was above a certain cut-off value. In Figure
5.9 the optimization results are presented for a 6-day period using a cut-off value of 8
hours. The graph layout is the same as in Figure 5.8.

In Figure 5.9a the aCT-value is depicted on a scale of 0-4 hours, as well as the WIP level
in the different snapshots. As expected the best results for average completion time are
found for the optimized scenario which minimizes aCT. Note that, the gain in average
completion time is smaller than in Figure 5.8. This is understandable since the cut-off
reference scenario is better balanced.
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(b) machine capacity (MC) w.r.t. reference scenario

i) reference ( on tool, actual manufacturing)

• MC = 89.9hr → 100%
• aCT = 3h09min → 100%

ii) optimized ( on tool, aCT minimized)

• MC = 86.6hr → 96.4%
• aCT = 2h58min → 94.0%

(c) different scenarios at (DAY3, t = 10:00)

Figure 5.9: The optimization strategy of Figure 5.8 is repeated for the cut-off reference sce-
nario of Figure 5.7. The lots with large completion times (CT > 8 hours) have been removed,
resulting in a more balanced reference scenario. Optimizing the average completion time
now gives a smaller gain (aCT→ 94.0%), whereas the machine gain is improved (MC→ 96.4%)

in comparison to Figure 5.8. The corresponding aCT-value is displayed as a vertical line.

The relative machine capacities of the three different optimizations are shown in Figure
5.9b, where the results have been normalized with respect to the cut-off reference sce-
nario. The results show the same trend as Figure 5.8b, but with an enlarged range. The
reason for this is that in the original reference scenario the fast tools were loaded more
than the slow tools. This is a direct consequence of the fact that the fast tools are the
preferred tools for qualifying new jobs, resulting in relative long queuing times in front
of these tools. Therefore, we expect that the cut-off strategy will give a better estimate for
the possible gain in machine capacity.

Finally, in Figure 5.9c the reference and optimized scenarios are compared for the same
timestamp as in Figure 5.8c. The reference scenario (i) displays the machine loading as
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found in actual manufacturing. In the optimized scenario (ii) this aCT-value has been
minimized giving a relative value of aCT = 94.0%. The machine capacity is reduced indi-
rectly resulting in a normalized value of MC = 96.4%.

5.8.3 OVERALL RESULTS FOR A 5-MONTH PERIOD

The optimization results for lithography have been collected for all WIP snapshots in a
5-month period. Because of the large WIP-levels in front of the lithography machines,
the variation from one snapshot to the next one is relatively small. The comparison of
the static scenario of the scheduling optimization and the dynamic scenario of historical
loading again results in error in the estimate for the capacity gain. We expect the con-
tribution of this stochastic error is nullified by averaging the optimization results over
many instances, obtaining a realistic estimate for the capacity gain in real manufactur-
ing.

Optimization Strategy

no cut-off cut-off = 8 hours
(24 tools) (24 tools)

instances 3649 3649

average 233 174.8
median 216 169W

IP

max 651 337

ref 0:27:49 0:27:55
opt 0:27:20 0:27:22

aM
C

gain 98.26% 98.03%

ref 5:26:17 3:09:53
opt 4:52:24 2:57:22aC

T

gain 89.61% 93.98%

Av. conflicts 1.36 1.59

calc. time 25.82 sec 3.26 sec

Table 5.2: Optimization results for lithography obtained from a 5-month period with
3676 instances. Only snapshots have been taken into account which contain more jobs

than machines (n > 24).

The overall statistical results have been brought together in Table 5.2. These results sug-
gest that the tool-speed differences can be exploited in the bottleneck group in lithogra-
phy. If the transport and dispatching logistics can be aligned with this scheduling opti-
mization, it may be possible to free up almost 2.0% of machine capacity for the toolset
which is considered the major bottleneck of the fab. Furthermore, the schedule has on
average less than two reticle conflicts and these occur at the end of the schedule. We
therefore thinks these will not play any part when scheduling with the the continuously
changing WIP in the actual fab.
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5.9 CONCLUSION AND FUTURE WORK

The proposed two stage algorithm uses the newly available accurate process times for
all possible tool-recipe combinations to improve the overall throughput in the metal-
ization and photolithography bays. The algorithm focuses on minimizing the average
completion time of the jobs, but it also allows the logistic manager to influence the dis-
patching order of the lots assigned to a specific machine. In the pilot studies, we found
improvement opportunities that suggest a reduced lead time as expressed by the aver-
age completion time (aCT) as well as an overall raised equipment throughput indicated
by the reduced machine capacity (MC). For the metalization tools the expected benefits
are an aCT-reduction of about 7.8% and a capacity gain of ∆MC = 1.67%, whereas for
photolithography we find an average aCT-benefit of 6.02% and a capacity gain of ∆MC =
1.97%. These results are obtained considering static WIP and therefore the reductions
might defer in practice. However, since we averaged over many instances we expect
the implementation of the proposed scheduling optimization to yield similar results and
contribute to a raise of the overall fab efficiency.

In order to deploy the optimization algorithm in the daily fab operation, it needs to be in-
tegrated with the current IT-architecture. A graphical user interface (GUI) or dashboard
needs to be created to inform the operators about the scheduling decisions. The GUI
needs to be up-to-date with the latest information, since it needs to cope with continu-
ously evolving WIP-levels and changing tool statuses. The calculation time required to
perform the scheduling optimization is dominated by the LP solver, which needs O(n3.5)
operations, where n is the number of jobs in the WIP. Therefore, one might want to re-
duce the number of jobs in the optimization input, much like we did with the cut-off
strategy in photolithography. To create a reduced input file one can take into account
the job priorities and a minimum amount of candidate jobs for each available machine.

For the operators to work efficiently, the proposed job-machine allocations should not
change for the jobs that are being transported for imminent dispatching. This can be
achieved by increasing the time interval between optimization calculations for modified
WIP levels. Alternatively, one could also fix the lot-tool assignment for jobs planned for
imminent dispatching. In such a strategy, the first part of the proposed load distribution
should become fixed once the lots have been put on transport to their assigned tool.
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6
PARALLEL MACHINE SCHEDULING

WITH A SINGLE RESOURCE PER JOB

In this chapter, we study a variant of the problem of scheduling jobs on parallel machines
with the objective to minimize the total completion time, i.e. the sum of the completion
times of all jobs. In this variant, each job uses exactly one resource, thus partitioning the
jobs. There is only one unit of each resource available at any time, so jobs using the same
resource cannot be processed simultaneously. Using the classification of Graham et al.
[8] as described in Section 1.5, we will denote the problem as P |partition|∑ j C j .

The problem is motivated by a scheduling problem found in the semiconductor industry
as seen in Chapter 5. As described in Chapter 1 the wafer, which contains the chips, will
visit different production bays multiple times during its production cycle. The expensive
photolithography pieces of equipment are often the bottleneck of the production line.
Hence, the overall performance of the factory can be improved by raising the equipment
throughput on these tools (which is achieved by minimizing

∑
j C j ). For the photolithog-

raphy however we also need to ensure the reticle (the resource) is available when a job is
processed.

In the scheduling problem P ||∑ j C j , one wants to minimize the total completion time
while scheduling on a set of parallel machines. It is well-known from the literature that
P ||∑ j C j is polynomially solvable by using the shortest processing time first (SPT) order
on the earliest available machine (Smith [12]). This rule makes sure that every time a
machine finishes a job, it will be assigned, from among the jobs waiting, the job with a
shortest processing time.

Our problem adds auxiliary resource constraints. Blazewicz et al. [2] describe the re-
source requirements with the entry resλδρ in the β field of the scheduling problem. The

This chapter is based on the paper that appeared as a preprint on Arxiv [10]
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number of different resources is given by λ ∈ {·,cλ}. If λ = cλ, the number of resources
is given by cλ. If λ = · it is part of the input. The resource capacities are denoted by
δ = {·,cδ}. If δ = cδ, there is exactly cδ of every resource available. If δ = ·, the total
amount available of a resource is part of the input. The resource requirements per job
are denoted by ρ = {·,cρ}. If ρ = cρ , every job needs exactly cρ of a resource it requires. If
ρ = ·, the amount required is part of the input.

The type res·11 implies that per resource type, there is one resource available at any given
time and this resource will be used entirely if a job needing this resource is processed.
Thus, jobs that share the same resource cannot be processed simultaneously. When only
res·11 is in theβfield of the scheduling problem, a job can need any number of resources.
This does not capture that every job in the lithography bay needs only one resource, the
reticle. Therefore, we indicate the problem within this chapter by partition in the β field
of the scheduling problem. Hence, partition is a special case of res ·11 resources.
We know from Blazewicz et al. [2] that if the number of machines is m ≥ 3 and there
are no further restrictions on the P |res ·11, p j = 1|∑ j C j , the problem is NP-hard. The
proof is based on a reduction from partition into triangles and uses multiple resources
per job. It is proven by Garey and Johnson [6] that P2|res ·11, p j = 1|∑ j C j can be solved
in polynomial time by a reduction to the matching problem.

The problem can also be viewed as a special case of PD|res 1 · 1|∑ j C j . In PD|res 1 ·
1|∑ j C j , we have dedicated machines and are given only one resource of a certain quan-
tity cδ and every job needs exactly 1 from that resource. We can rewrite P |partition|∑ j C j

to PD|res 1 · 1|∑ j C j by taking cδ equal to the number of machines and introducing a
dedicated machine for every resource, such that all jobs that share a resource have to
be processed on the same machine. One could also view P |partition|∑ j C j as a special
version of scheduling with conflicts. In scheduling with conflicts, jobs cannot be pro-
cessed at the same time if they share an edge in the conflict graph G = (J ,E) with an edge
between two jobs if they share the same resource. In our problem, G is a collection of
cliques.

Our contribution is as follows. First we prove that allowing preemptions to the prob-
lem, does not change the problem. Using that, we conclude that in each optimal sched-
ule for P |partition|∑ j C j , all jobs sharing the same resource must be processed in non-
decreasing order of their processing time. If we restrict the problem to p j = 1, we can
proof the problem is polynomially solvable. Thereafter we look at an approximation al-
gorithm for P |partition|∑ j C j , based on a variant of the shortest processing time (SPT)

rule that takes the partition constraints into account. We prove that it gives a
(
2− 1

m

)
-

approximation and show that it cannot give an α-approximation with α < 4
3 . In the

last three sections we look at three related problems and show that they are NP-hard.
The first problem has additional processing set restrictions for resources, meaning each
resource has a set Mr of machines on which it can be used. From this, we can also
conclude that the problem with unrelated machines, i.e. R|partition|∑ j C j , is also NP-
hard. This is the situation of the scheduling of photolithography machines in practice.
The second related problem assumes that resources are unmovable, meaning that once
a resource is used on a machine, it can thereafter only be used on that specific machine.
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In the last related problem, each job has at most q resources with q ≥ 2 a constant.

6.1 DEFINITIONS

Before we begin our analysis of the problem and its solutions, we first formally define
partition as part of the β field and some intermediary concepts. We have m identical
machines and let J be the set of jobs that are to be scheduled. Each j ∈ J has a processing
time p j and each machine can only process a single job at a time. We will denote C j as
the completion time of job j in a feasible schedule for an instance. We want to minimize
the sum of the completion times (total completion time).

Definition 3. If partition is in theβ field, there is a partition R of J , i.e., there is a collection
of subsets R = {r 1, . . . ,r s } with r k ⊆ J , where every job is contained in exactly one of the
subsets. If j , j ′ ∈ r k , j and j ′ cannot be processed at the same time. Furthermore, we want
to define which resource is used by which job. Let r j = {r k ∈ R | j ∈ r k }, i.e., the subset that
contains job j . If two jobs share the same resource, we will denote this by r j = r j ′ .

When we look at a job, we will often consider the other jobs that share the same resource.
We will, therefore, introduce the concept of slack, which, intuitively, is the amount of
time before and after the job that its resource is not being used.

Definition 4. A job j has positive slack d+ ≥ 0, which is the largest non negative number,
such that in a given schedule all jobs j ′ ∈ J which have the same resource and start after
job j , start at least d+ time units after j finishes. More formally, we define d+ as

d+ := min
{
C j ′ −p j ′ −C j | j ′ ∈ J satisfies r j ′ = r j and C j ′ >C j

}
where we define +∞ as the minimum over the empty set.
Similarly, a job j has negative slack d− ≤ 0, which is the largest non negative number,
such that all jobs j ′ ∈ J which have the same resource and start before job j , finish at least
d− time units before j starts. More formally,

d− := min
{
C j −p j −C j ′ | j ′ ∈ J satisfies r j ′ = r j and C j ′ <C j

}
where we define +∞ as the minimum over the empty set.
The slack d > 0 of a job j , is defined as d = min{d+,d−}.

We defined the slack of a job by considering all jobs that share the same resource, but
often we are only interested in the last job before and the first job after a job j that use
the same resource. We therefore introduce the following concept.

Definition 5. Let d+ be the positive slack of j , we call a job pair ( j , j ′) a blocking pair if
r j = r j ′ and C j =C j ′ −p j ′ −d+. Thus, j ′ is the first job to start after C j that uses the same
resource as job j . A blocking pair ( j , j ′) is tight if d+ = 0.

Given a tight pair where the two jobs are not on the same machine, it can be advanta-
geous to construct a schedule where they actually are on the same machine. We will call
this operation ‘untangling’. Before we define it properly however we need to first define
a job’s suffix.
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Definition 6. Let job j be processed on machine i . The suffix of job j , S( j ), is the set of jobs
j ′ ∈ J that are also processed on machine i with C j ′ >C j .

Definition 7. Given a tight pair ( j , j ′), let i be the machine on which j is processed and i ′
be the machine on which j ′ is processed. Untangling ( j , j ′) is the operation that changes
the schedule by swapping suffices between the machines i and i ′, i.e., we move j ′ and S( j ′)
to machine i and S( j ) to machine i ′.

Since we work with parallel machines, untangling will not change any of the start or
completion times of the jobs. Hence, it will not create any resource conflicts and the
objective function remains the same.

6.2 PROBLEM PROPERTIES

In this section, we consider the structure of optimal solutions. We show that there is no
non-trivial idle time in an optimal solution and that given a resource, the jobs using that
resource are scheduled from shortest to longest. We will continue by looking at the com-
plexity of the problem. Whether or not P |partition|∑ j C j is NP-hard remains an open
problem, but we can show that when p j = 1 the problem is polynomially solvable. We
also show that the problem with preemptions is equal to the problem without preemp-
tions.

We first note that if |R| < m the problem becomes trivial. In that case, one will put all
jobs which use the same resource in shortest processing time order on one machine. We
continue by looking at idle times in a solution.

Lemma 6.1. For every instance of P |partition|∑ j C j there exists an optimal solution that
contains no idle times.

Proof. Suppose that we have an optimal schedule with idle times, we begin by untan-
gling all tight pairs. If an idle time remains, we consider the last idle time, which appears
on machine i that starts on time t1 and ends at time t2. Since we have untangled all tight
pairs, the resource used by the job on machine i starting at time t2 is not used until time
t2. Hence, we can start the processing of this job earlier. We can then schedule the job
either at time t1 or at the last time before t2 its resource was used. This would reduce
the completion time of this job. Therefore, after untangling, there cannot be any idle
times. Since untangling does not change completion times there is an optimal schedule
without idle times.

In the proof, we saw it is easy to turn an arbitrary schedule into a schedule where tight
pairs ( j , j ′) are processed on the same machine. We call such a schedule a tight schedule.

Definition 8. A tight schedule is a schedule without any idle time and in which each tight
blocking pair ( j , j ′) is executed on the same machine.

Notice that untangling results in jobs using the same resource being processed one after
another on the same machine. We will call these job sequences trains.
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Definition 9. A train sequence T ( j1) in a schedule is a maximal sequence of consecutively
jobs j1, j2, ..., jc on the same machine using the same resource.

Notice that a tight schedule only consists of train sequences T ( jk ) with nonzero slack
between the train sequences of the same resource, where the jk are the first jobs to be
scheduled when a machine changes resource.

We continue by looking at the order in which jobs that use the same resource are pro-
cessed. We will prove that this is from shortest to longest processing times. We will prove
this by first looking at the problem with preemptions, denoted by P |partition,prmp|∑

j C j . In a preemptive schedule, the total amount of processing done on the job needs
to be equal to its processing time (p j ), but jobs can be interrupted at any time and the
processing done is not lost. A job can thus be split into multiple parts, possibly processed
on different machines. We begin by defining these more precisely.

Definition 10. A job part j l is the l th maximal part of the job j that is processed without
interruption on a single machine with positive length. The superscript l will be omitted
when it is of no importance. A pair of job parts ( j , j ′) is called a blocking pair if r j = r j ′ and
j ′ is the first job part to start after j that uses the same resource as job part j . A blocking
pair ( j , j ′) is tight if job part j ′ starts at the time j ends, i.e., d+ = 0.

The definitions for blocking pair, slack, suffix, train sequence, tight schedule and untan-
gling can easily be extended to the case of job parts.

Lemma 6.2. In an optimal schedule for P |partition,prmp|∑ j C j all jobs sharing the same
resource must be processed in SPT-order, i.e., if job j and j ′ both use resource r ∈ R and
p j < p j ′ then C j <C j ′ . Furthermore, if C j <C j ′ , all job parts of j will be processed before
any job parts of j ′.

Proof. Suppose we have an optimal schedule S where this is not the case. Then there is
a resource r ∈ R and two jobs using this resource (r j = r j ′ ), job j and job j ′, with C j <C j ′
and p j > p j ′ . From S we get an ordering of the jobs using resource r . Let jS(r,p) denote
the l th job finishing in S using resource r .
Create a new schedule S′ which is identical to S except for all jobs using resource r . We
remove from S all job parts using resource r . This will remove t = ∑

j∈J |r j =r p j units of
processing from the schedule. We fill these units of processing again with the jobs using
resource r but now we process them in an SPT-order. We process the first job in the
ordering jS′(r,1) in the first p jS′(r,1)

units of t . We schedule the second job in the ordering
jS′(r,2) in the first p jS′(r,2)

units of t after C jS′(r,1)
and so on until all jobs using resource r are

scheduled. Resource r will be used in the same time as in S by only a single job, hence S′
is a feasible schedule. Furthermore, it holds that C jS(r,1) ≤C jS(r,p)∀p, since

p jS′(r,1)
+p jS′(r,2)

+ . . .+p jS′(r,p)
≤ p jS(r,1) +p jS(r,2) + . . .+p jS(r,p) . (6.1)

Since p j > p j ′ , equation (6.1) is satisfied with inequality for the l th job and S cannot be
optimal.
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Theorem 6.3. There is an optimal schedule for P |partition,prmp|∑ j C j without any pre-
emptions.

Proof. Assume not, then take any optimal tight schedule with a minimal amount of pre-
emptions. Let t1 be the time of the last occurring preemption, let job j be the job that is
being interrupted with resource r on machine i , let j l be the respective job part. Let t2

be the time that job part j l+1 starts on machine i ′. Let j ′ be the job part on machine i
that starts at t1 and let r ′ be its resource.
We know that t2 > t1, otherwise we would not have a tight schedule. Furthermore, fol-
lowing from Lemma 6.2, resource r cannot be used by another job between t1 and t2.
We also know that i 6= i ′ by the following argument illustrated in Figure 6.1. Assume
i = i ′. Take ε > 0 as the minimal negative slack of all train sequences between t1 and t2

on machine i . Then, one can move all jobs on machine i between t1 and t2 ε to the front
and then split j l on t1 − ε and move the second part from [t1 − ε, t1] to [t2 − ε, t2]. Since
there is no preemption after t1, at least one job finishes earlier in this new situation and
no jobs is completed later. Thus, the original schedule was not optimal.

j l j l+1

t1 t2

· · ·

j l j l+1

t1 −ε t2 −ε
· · ·

move ε to front

Figure 6.1: Situation where i = i ′. The squiggly line represents a preemption.

We know that job j ′ cannot end before or on t2. As illustrated in Figure 6.2, if it would,
one could move job j ′ ε> 0 to the front, where ε is the negative slack of job j ′. This would
split the job part j l on t1 − ε and moving the part that was executed during the interval
[t1 − ε, t1] to the back of j ′. This leads to a feasible schedule, since we defined t2 as the

j l

j l+1

t1 t2

j ′i

i ′

move ε to front

j l j l

j l+1

t1 −ε t2

j ′i

i ′

Figure 6.2: Finding a better solution if C j ′ ≤ t2
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time that job part j l+1 starts and resource r is not used between t1 and t2. Furthermore,
since j ′ is a finishing job part and it finishes ε earlier, this will lead to a schedule with
better objective value.

As a result, there is only one possible situation that can occur with the last preemption:
The last preemption is at a different machine than where it later continues and job j ′
starts at t1 on machine i and does not finish before or at t2. The partial schedule is
shown in Figure 6.3.

j l

j l+1

t1 t2

j ′i

i ′

S( j ′)

S( j )

Figure 6.3: Only possible situation in an optimal schedule with preemption.

Let S( j ) be job part j l+1 on machine i ′ and its suffix and let S( j ′) be job part j ′ on ma-
chine i and its suffix. The jobs in these sets all finish, as j l is the last preemption. When
we look at the number of jobs in both sets, there are two possibilities:

• |S( j )| < |S( j ′)|. Figure 6.4 illustrates this case. Take a maximal ε> 0 such that all train
sequences in S( j ) can start ε later (i.e. have d+ ≥ ε) and all train sequences in S( j ′)
can start ε earlier (i.e. have d− ≥ ε), while staying in a feasible schedule. Move the
sets in the mentioned directions and move the interval [t1 −ε, t1] of job j on machine
i to machine i ′ in the interval [t2, t2 + ε]. Also, move j l+1 ε to the back and j ′ ε to the
front. Clearly, this is a feasible schedule. All job parts in the sets S( j ) and S( j ′) have
no preemptions, thus the objective value changes by ε(|S( j )| − |S( j ′)|), and therefore
becomes smaller. Hence, this situation cannot happen in an optimal solution.

j l

j l+1

t1 t2

j ′i

i ′

move ε to back

move ε to front

j l

j l+1

t1 −ε t2

j ′i

i ′

Figure 6.4: Finding a better solution if |S( j )| < |S( j ′)|

• |S( j )| ≥ |S( j ′)|. Figure 6.5 illustrates this case. Take a maximal ε> 0 such that all train
sequences in S( j ) can start ε earlier (i.e. have d− ≥ ε) and all train sequences in S( j ′)
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can start ε later (i.e. have d+ ≥ ε), while staying a feasible schedule. Move the sets
in the mentioned directions and move the interval [t2, t2 + ε] of job j on machine i ′
to machine i on the interval [t1, t1 + ε]. Also move job j l+1 to the front and j ′ to the
back. Clearly, this is a feasible schedule. All job parts in the sets S( j ) and S( j ′) have
no preemptions, thus the objective value changes by ε(|S( j ′)|−|S( j )|). Hence, |S( j )| >
|S( j ′)| cannot happen in an optimal solution.

j l

j l+1

t1 t2

j ′i

i ′

move ε to front

move ε to back

j l

j l+1

t1 +ε t2

j ′i

i ′

Figure 6.5: Finding a better solution if |S( j )| > |S( j ′)|

Therefore, in an optimal solution, |S( j )| = |S( j ′)|. Since the ε was chosen maximal in
the |S( j )| ≥ |S( j ′)| case, there must be a new tight pair, created by moving the suffices
backward and forward. Untangle new tight pairs, such that the schedule becomes tight
again. In the new schedule, it must hold that again |S( j )| = |S( j ′)|, because otherwise the
solution was not optimal. It is possible that (one of the) newly tight pairs was ( j l , j l+1),
in that case a preemption was removed contradicting the assumption that the number
of preemptions was minimal. If not, keep repeating moving the suffices and job parts as
described and untangling. This can be done only a finite number of times since there
is a maximum number of tight pairs (bounded by n) and because during this process,
tight pairs remain tight and no new job parts are created (and with it new preemptions).
Hence, there is an optimal schedule containing no preemptions.

Following from Theorem 6.3 and Lemma 6.2, we know that P |partition,prmp|∑ j C j and
P |partition|∑ j C j have the same objective value and we obtain the following result.

Theorem 6.4. In an optimal schedule for P |partition|∑ j C j , all jobs sharing the same re-
source are processed in SPT-order, i.e., if job j and j ′ both use resource r ∈ R and p j < p j ′
then C j <C j ′ .

We continue by looking at p j = 1, since P3|res.11, p j = 1|∑ j C j isNP-hard. Surprisingly,
with at most one resource per job, the problem becomes polynomially solvable.
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Theorem 6.5. P |partition, p j = 1|∑ j C j is polynomially solvable.

Proof. The problem can be reduced to an instance of the Min-Cost Flow problem. Next
to the source node s and the target node t , we construct three sets of nodes VJ , Vres,pos,
V ′

res,pos and VM ,pos. The set VJ corresponds to the jobs. It has n nodes; one for every job.
The set Vres,pos corresponds to the resource needed and the completion time/position of
the job on a machine in the schedule. The completion time and position on a machine
are in this case equal since p j = 1 and we may assume no idle times from Lemma 6.1.
The set Vres,pos has n|R| nodes. The set V ′

res,pos is a duplicate of these nodes. The set
VM,pos corresponds to the used machine and the completion time/position of the job on
the machine in the schedule. It has mn nodes.
We start by constructing arcs with cost 0 and capacity 1. The first set of arcs is con-
structed from s to every node in VJ . From every node v j ∈ VJ , we construct an arc to
every node in Vres,pos that corresponds to the resource needed by job j . We construct
from every node vr,p ∈Vres,pos an arc to the corresponding node with the same resource
and position v ′

r,p ∈ V ′
res,pos. Next, we construct from every node v ′

r,p ∈ V ′
res,pos an arc

to every node in VM ,pos having the same position p. Lastly, we construct arcs with ca-
pacity 1 and cost equal to position p from every node vm,p ∈ VM ,pos to t . We thus have
n(1+n+|R|+|R|m+m) arcs. Lastly, we require that we have at least n units of flow from
s to t .

Jobs Resource &
Position

Machine &
Position

s

J1

J4

M1 ,1

M2 ,4

t

J2

J3

r1 ,1

r1 ,2

r1 ,3

r2 ,1

r2 ,2

r1 ,4

r2 ,3

r2 ,4

M1 ,2

M1 ,3

M1 ,4

M2 ,1

M2 ,2

M2 ,3

1

2

3

4

1

2

3

4

r1 ,1′

r1 ,2′

r1 ,3′

r1 ,4′

r2 ,1′

r2 ,2′

r2 ,3′

r2 ,4′

Figure 6.6: Min Cost-Flow instance for P |partition, p j = 1|∑ j C j with 4 jobs and 2 resources.

Suppose we have an instance of P |partition, p j = 1|∑ j C j with objective value c and con-
sider its corresponding Min-Cost Flow instance. We put one unit of flow in the network
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for every job in the schedule of P |partition, p j = 1|∑ j C j corresponding to the job, its po-
sition, which machine and which resource used. For example, for a job j on position p
machine M using resource r , we put one unit of flow from s to t through nodes v J , vr,p ,
v ′

r,p and M , p. Since no jobs share the same machine or resource at a given position,
every node v ∈ V \ {s, t } will have at most one unit of flow going in and going out. Thus,
we have a feasible flow. Furthermore, we only put flow on edges from vm,p ∈VM ,pos to t ,
if and only if we also have a job with corresponding machine m and position p, thus we
have a flow of cost c. The reverse is also true by this construction and hence we have an
objective value of c for P |partition, p j = 1|∑ j C j if and only if we have an objective value
of c for its corresponding Min-Cost Flow instance.

Note that, the above proof can easily be adjusted to the problem where one has more
than one unit of a resource available, by setting the capacities of the arcs between Vres,pos

and V ′
res,pos equal to the amount of resources one has. Furthermore, notice that one

could put the costs on a different set of edges. In this way, one can also show that
P |partition, p j = 1|∑ j w j C j is polynomially solvable by setting the cost of the edges be-
tween v J and vr,p equal to w j times the position.

Since we know that P |partition, p j = 1|∑ j C j is polynomially solvable, one might won-
der what happens when the processing time of each job is bounded, i.e. 1 ≤ p j ≤ c,
where c is a constant. A simple Shrinking algorithm would be to create an instance of
P |partition, p j = 1|∑ j C j by setting all processing times in our original problem to one.
We then solve this problem using the construction in Theorem 6.5 to obtain an opti-
mal schedule SOPT

p j =1. We can then construct a feasible schedule for P |partition,1 ≤ p j ≤
c|∑ j C j in the following way: All jobs in SOPT

p j =1 start at a given integer s j ∈Z+, since p j = 1.

We can create a feasible solution SALG from SOPT
p j =1 by setting the starting time for all jobs

to cs j . In this way, in every time interval ci ≤ t ≤ c(i +1) with i ∈Z+, every machine will
only work on one product. There also will not be any resource conflicts, since there were
none in SOPT

p j =1 in the corresponding interval i ≤ t ≤ (i +1).

Proposition 6.6. The Shrinking algorithm gives a c-approximation for P |partition,1 ≤
p j ≤ c|∑ j C j .

Proof. Let OPT denote the optimal value for P |partition,1 ≤ p j ≤ c|∑ j C j and SOPT the
optimal schedule and OPTp j =1 denote the optimal value for P |partition, p j = 1|∑ j C j .
The Schrinking algorithm gives a feasible solution of cost cOPTp j =1, so it suffices to show

that OPT ≥ OPTp j =1. Using SOPT, we can find a schedule Sp j =1 for our constructed in-
stance of P |partition, p j = 1|∑ j C j . This is done by scheduling all jobs 1 time unit before
there completion time in SOPT. Thus all completion times in Sp j =1 will be the same as in

SOPT. Furthermore, since 1 ≤ p j ≤ c in SOPT, there will be no resource conflict in Sp j =1,

since there were none in SOPT.

Note that one can remove all idle time in SALG by using the untangling operation de-
scribed in the proof of Lemma 6.1.
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6.3 SHORTEST PROCESSING TIME FIRST

The shortest processing time first (SPT) rule is optimal for a few scheduling problems,
one of which is P ||∑ j C j . In this section, we will look at how well the rule performs for
P |partition|∑ j C j . Before we can do this however we need to adjust the rule slightly to
cope with the resources.

Definition 11. The SPT-available rule schedules the jobs according to a list. This list con-
tains all jobs ordered from shortest to largest processing times. At any point in time, when
a machine is available for processing. The rule selects the first job in the list for which
the resource is not in use. It then removes the job from the list. If multiple machines are
available at time t and a job is selected of which the resource was not available just before
time t , the algorithm will put this job on the machine that was previously using this re-
source. Otherwise the rule will choose an arbitrary available machine. No job is added to
a machine that is available if the resource is in use of all jobs on the list.

Because of the way we defined the SPT-available rule, jobs that share the same resource
and that are processed one after the other will be scheduled on the same machine. In
other words, the SPT-available rule produces a tight schedule. This schedule also has no
idle times, since if at time t a job j of resource r is scheduled on machine m which would
create an idle time, then it could not be scheduled on that machine earlier due to some
other job j ′ using the same resource on some machine m′. Job j can only be scheduled
at time t since j ′ just finished. But the rule states that job j then has a preference for
machine m′ over m (creating a tight schedule).
The SPT-rule is optimal for P ||∑ j C j . Hence, one might wonder whether this is also the
case with the SPT-available rule for P |partition|∑ j C j . Example 1 shows that this is not
the case.

4 1 4 1 4 1+ε

SPT-available rule

Optimal

Figure 6.7: Optimal and SPT-available schedule for Example 1

Example 1: (SPT-available not optimal)
Consider 2 machines with 12 jobs that use 3 resources. We divide the jobs
J into 3 groups depending on the resource used, J = J1 ∪ J2 ∪ J3. We have
4 jobs in J1 = { j1, . . . , j4} with p1 = . . . = p4 = 1 using the first resource. We
have another 4 jobs in J2 = { j5, . . . , j8} with p5 = . . . = p8 = 1 using the second
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resource. Lastly, we have 4 jobs in J3 = { j9, . . . , j12} with p9 = . . . = p12 = 1+ε
with ε> 0 using the third resource.

The SPT-available rule will schedule the jobs in J1 ∪ J2 first on the two ma-
chines and will then at time 4 schedule the jobs in J3 on one machine one
after the other. This will result in an objective value of 46+10ε. An optimal
schedule would be to schedule first two jobs from J1 on the first machine
and then all jobs from J3. On the second machine all jobs from J2 are sched-
uled first and then the last two jobs from J1. This results in a schedule with
objective value 42+10ε. Hence SPT-available is not optimal.

The SPT-available rule is not optimal for P |partition|∑ j C j , but it might give a good
approximation. Example 1 gives a type of instance that is hard to tackle for the SPT-
available rule. We generalize this example to find a lower bound on the approximation
factor.

Lemma 6.7. The SPT-available rule does not give an α-approximation for
P |partition|∑ j C j with α< 4

3 .

Proof. Consider the instance I with 3 machines and job set J = J A ∪ JB . J A consists of 3c
jobs of length 1, that all use their own resource, with c ∈Z+ even. The set JB consist of 3c
jobs of length 1+ε with ε> 0, that all share the same resource, i.e., r j = r j ′ ,∀ j , j ′ ∈ JB .
The SPT-available rule will first schedule c jobs from J A on every machine. Then, it will
schedule at time c all jobs from JB on one machine. Let ALGI be the objective value of
the SPT-available rule for instance I . Then,

ALGI = 3
2 c(c +1)+3c2 + 3

2 c(3c +1)(1+ε)

= 9c2 +3c + 1
2 (9c2 +3c)ε

An optimal schedule would schedule the Jb jobs on a single machine and schedule the
J A jobs evenly on the remaining two machines. Let OPTI be the objective value of the
optimal schedule for instance I . Then,

OPTI = 3
2 c( 3

2 c +1)+ 3
2 c(3c +1)(1+ε)

= 27
4 c2 +3c + 1

2 (9c2 +3c)ε

Thus,

ALGI
OPTI

≥ lim
c→∞ lim

ε→0

9c2 +3c + 1
2 (9c2 +3c)ε

27
4 c2 +3c + 1

2 (9c2 +3c)ε

= lim
c→∞

9c2 +3c
27
4 c2 +3c

= 4

3

We will proceed by giving an upper bound to the approximation ratio by using an ap-
proach similar to the approach used by Chekuri et al. [4] to show a 2-approximation for
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the problem of minimizing the total weighted completion time on m parallel machines
with in-tree precedence constraints. We begin by defining the minimum completion
time of every job, based on the fact that by Theorem 6.4 all jobs sharing the same re-
source must be processed in SPT-order. Without loss of generality we can assume that
the jobs are ordered according to their processing times, j1 ≺ j2 ≺ ·· · ≺ jn , breaking ties
arbitrarily.

Definition 12. The minimum completion time k j for each job j is given by

k j = p j +
∑

j ′|r j ′=r j and p j ′≺p j

p j ′ .

Define OPTm as the optimal value for a given instance of jobs on m machines and let
OPTm

res be the optimal value for the instance of jobs on m machines with partition con-
straints. Clearly, OPT1 = OPT1

res for each instance since the additional constraints do not
interfere with the optimal schedule for one machine. Notice that the optimal schedule
for one machine and for parallel machines is created by the SPT rule [5]. Let C 1

j denote

the completion time of job j in an optimal schedule using one machine (with or without
partition constraints) and C m

j the completion time of job j in an optimal schedule for m

machines without partition constraints.

Lemma 6.8. 1
m OPT1 ≤ OPTm ≤ OPTm

res for each instance.

Proof. Clearly, the last inequality holds, as an optimal schedule for the problem with
constraints is always a feasible solution to the problem without the partition constraints.
Hence, we only have to show the first inequality.
Sort the jobs from small to large processing times. Let j be an arbitrary but fixed job and

let P j =∑ j
i=1 pi be the sum of all processing times of the jobs that have a smaller or equal

processing time than j . Clearly C m
j ≥ 1

m P j , since 1
m P j is the earliest time j can finish.

We also have that P j = C 1
j , since the SPT-rule is optimal. Thus, for every job j we also

have that 1
m C 1

j ≤C m
j from which the first inequality follows.

We can now prove the upper bound for the SPT-available rule.

Theorem 6.9. The SPT-available rule gives a
(
2− 1

m

)
-approximation for

P |partition|∑ j C j .

Proof. Let CG
j be the completion time of job j in a schedule created by the SPT-available

rule. We begin by proving by induction that

CG
j ≤

(
1− 1

m

)
k j + 1

m
C 1

j , ∀ j ∈ J . (6.2)
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The jobs that are the first to be scheduled on a machine are also the first of their resource.
Therefore,

CG
j = p j

=
(
1− 1

m

)
p j + 1

m
p j

=
(
1− 1

m

)
k j + 1

m
C 1

j

in that case.
Now assume that Equation (6.2) holds for any job j ′ ≺ j . Then, in particular, it also holds
for the job j ′ that is scheduled right before job j on the same machine. We distinguish
the following two cases:

• Job j ′ and job j use the same resource. Job j is scheduled right after j ′ and thus

CG
j =CG

j ′ +p j

≤
(
1− 1

m

)
k j ′ +

1

m
C 1

j ′ +p j (by induction)

=
(
1− 1

m

)
(k j ′ +p j )+ 1

m
(C 1

j ′ +p j )

≤
(
1− 1

m

)
k j + 1

m
C 1

j .

• Job j ′ and job j use different resources. This implies that j was scheduled at the
first possible free machine and not at a later possibility because of the resource con-
straints. Define job j ′′ as the job that is right before j in the schedule for one machine,
i.e. the last j ′′ in the ordering such that j ′′ ≺ j . For the starting time of job j (equal to
CG

j ′ ) it then holds that CG
j ′ ≤ 1

m C 1
j ′′ . Using this we see that:

CG
j =CG

j ′ +p j

≤ 1

m
C 1

j ′′ +p j

=
(
1− 1

m

)
p j + 1

m
(C 1

j ′′ +p j )

≤
(
1− 1

m

)
k j + 1

m
C 1

j (since p j ≤ k j ∀ j ).

Hence, we can conclude that (6.2) holds for all jobs j ∈ J .
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Note that
∑

j k j ≤OPT m
r es , since k j ≤C j in any feasible schedule for P |partition|∑ j C j by

the definition of the minimal completion time k j . Using equation (6.2) we get:

∑
j

CG
j ≤∑

j

(
1− 1

m

)
k j +

∑
j

1

m
C 1

j (using (6.2))

=
(
1− 1

m

)∑
j

k j + 1

m

∑
j

C 1
j

≤
(
1− 1

m

)
OPT m

res +OPT m
res (Lemma 6.8)

≤
(
2− 1

m

)
OPT m

res

6.4 MACHINE SUBSET CONSTRAINTS

Since we do not know the complexity of P |partition|∑ j C j , it is interesting to look at
related problems. We will look at several of these related problems. We begin by consid-
ering the problem where jobs that share the same resource can only be processed on a
subset of the machines.

We can add processing set restrictions by adding M j to the β field of a scheduling prob-
lem, as found in [11]. This means that for each job j , there is a set M j ⊆ {1, ...,m} such
that j can only be scheduled on machines in M j . Let us define a variation called pro-
cessing set restrictions for resources as follows: For each resource r ∈ R there is a set
Mr ⊆ {1, ...,m} such that all jobs sharing resource r can only be scheduled on machines
in Mr . We denote these restrictions as Mr in the β field.

Corollary 6.10. P |partition,Mr , p j = 1|∑ j C j is polynomially solvable.

This is a consequence of Theorem 6.5. One could use the same algorithm, but only in-
clude edges v ′

r,p to vi ,p if i ∈Mr .

Consider the following NP-complete problem from [7].

Definition 13. 3-PARTITION Given positive integers m and b, and a multiset of 3m in-
tegers A with

∑
a∈A a = mb, and b/4 ≤ a ≤ b/2 for all a ∈ A, does there exist a partition

(A1, ..., Am) of A into 3 element sets such that for each i , 1 ≤ i ≤ m,
∑

a∈Ai
a = b?

This problem is NP-hard in the strong sense for m ≥ 3. Using this, we will prove the
following theorem.

Theorem 6.11. P |partition,Mr |∑ j C j is NP hard in the strong sense.

Proof. Assume we have an instance of 3-PARTITION. Since 3-PARTITION is NP-complete
in the strong sense, we may assume that mb is bounded by a polynomial in m, which is
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crucial for our proof. Define Nc = 2mb and C = 8mb. Create an instance of P |partition,
Mr |∑ j C j with 2m machines and the following jobs:

• for all a ∈ A make job a j , with processing time pa j = a, a unique resource r (a j ) and
Mr (a j ) = {1,2, ...,m}. These jobs represent the integers that should be partitioned over
the first m machines.

• for all 1 ≤ i ≤ m make Nc jobs called ‘C ’-jobs with processing time C , resource i and
Mi = {i ,m + i }, so for each i , there are Nc jobs with length C , all sharing the same
resource, that can only be scheduled on machines i and m + i .

• for all 1 ≤ i ≤ m make job ri , also called a release date job with processing time pri = b
and resource i , so it shares its resource with a sequence of ‘C ’-jobs and can only be
scheduled on machines i and m + i .

• for all 1 ≤ i ≤ m make job Di , also called a ‘D’-job, with processing time pDi = N 2
C C ,

resource r (Di ) and Mr (Di ) = {m + i }, so its resource is unique and can only be sched-
uled on machine m + i .

Define Z+ = mb +m
(
NC b + (C +NC C ) NC

2

)
+m(b +N 2

c C )+2mb. We will show that the

optimal schedule for the scheduling problem has objective value Z∗ ≤ Z+ if and only if
the 3-PARTITION instance is a yes-instance.

Assume that the 3-PARTITION instance is a yes-instance, then the following schedule
is a feasible solution: We can find Ai with |Ai | = 3 s.t.

∑m
a∈Ai

a = b for all i . Schedule
each of these Ai at the beginning of one of the first m machines. Process the jobs in
non-decreasing order of their processing times per machine. Start the release date jobs
ri at machines m + i at t = 0. Process the ‘C ’-jobs from t = b and onwards at the first
m machines. Start each ‘D’ job Di at machine m + i at t = b. For a visualization of this
schedule see Figure 6.8. The objective value of such a solution is equal to

Z f eas = m ·b︸ ︷︷ ︸
release date jobs

+m

(
NC ·b + (C +NC ·C )

NC

2

)
︸ ︷︷ ︸

‘C ′ jobs

+m
(
b +N 2

C ·C)
︸ ︷︷ ︸

‘D ′ jobs

+ ZA︸︷︷︸
a j jobs

,

with 7
4 mb ≤ ZA ≤ 2mb since the following holds: b

4 ≤ a j ≤ b
2 , and the a j jobs are sorted in

non-decreasing order of their processing times per machine, so the worst case scenario
is if Ai only has jobs of processing times b

3 and the best case scenario is if Ai has jobs of

processing times b
4 , b

4 and b
2 . Since Z f eas ≤ Z+, we can conclude that Z∗ ≤ Z+.

We will show that if the 3-PARTITION instance is a no-instance, the optimal schedule
has an objective value Z∗ > Z+. Let Z∗ = Z∗

r + Z∗
C + Z∗

D + Z∗
a with Z∗

r , Z∗
C , Z∗

D and Z∗
a

the sum of the completion times of the release date jobs, ‘C ’-jobs, ‘D’-jobs and a j -jobs
respectively. Notice that mb is a lower bound on Z∗

r since the jobs cannot start before
t = 0. In the same way, mN 2

C C is a lower bound on Z∗
D . A lower bound on Z∗

a is 7
4 mb,

this is because if only the a j -jobs were to be scheduled on m machines, the SPT-order
would be optimal and would have 3 jobs on every machine. Suppose not, then there
is a machine i1 with 4 jobs or more. Then there is another machine i2 with 2 or less



6.4 MACHINE SUBSET CONSTRAINTS 95

...

a j a j a j

a j a j a j

a j a j a j
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b
. . .
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. . .

. . .

. . .

. . .

. . .

D1

D2

D3

...

...

NC ’C ’-jobs per machine

m

m

Figure 6.8: Feasible solution in the case of a yes-instance.

jobs. Moving the first job j on machine i1 to machine i2 would result in at least 3 jobs
finishing p j earlier and at most 2 jobs finishing p j later at machine i2. This leads to a
contradiction that SPT is optimal. So we may assume each machine has exactly 3 jobs
for finding the lower bound of Z∗

a . Then
∑m

i=1(3ai 1+2ai 2+ai 3) is minimal if one chooses

all ai 1 and ai 2 to be b
4 , i.e. as small as possible. This implies ai 3 = b

2 , as
∑

a∈A a = mb and
b
4 ≤ a ≤ b

2 for all a ∈ A. This leads to a total completion time and therefore a lower bound

of m
(

b
4 + b

2 +b
)
= 7

4 mb for Z∗
a .

If we have a no-instance, we argue that in the optimal schedule ∃a j with completion
time larger than b. Assume not, then all first m machines are processing a j jobs until b,
since

∑
a∈A a = mb . If there is a machine processing more than three a j jobs, it would

have to be four a j jobs of length b
4 , so that the a j jobs are all finished before or at b. But

then, there is also a machine processing only two a j jobs of length b
2 , otherwise another

machine would have to finish its a j jobs after b. Switching a b
2 job with two b

4 jobs would
then result in a smaller objective value. Hence, all machines are processing exactly three
a j jobs with

∑
a∈Ai

a = b for all 1 ≤ i ≤ m. Then we would find a partition, leading to a
contradiction. So there must be an a j finishing after b. Since a j ∈N for all j , we can find
an a j with completion time ≥ b +1. We distinguish 4 cases:

• At least one ‘C ’-job is scheduled before the ri job with the same resource. Let Ni be
the number of ‘C ’-jobs on machines i and m + i scheduled before the corresponding
release job ri . Then ri starts at Ni C or later. The lower bound on Z∗

r becomes mb +
C ·∑m

i=1 Ni . Then
∑m

i=1

(
(NC −Ni )b + (C +NC C ) NC

2

)
is a lower bound of Z∗

C . Using the

other lower bounds for Z∗
a and Z∗

D , we obtain the following lower bound for Z∗:

mb +C ·
m∑

i=1
Ni +

m∑
i=1

(
(NC −Ni )b + (C +NC C )

NC

2

)
+mN 2

C C + 7

4
mb.
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Then

Z∗−Z+ ≥ (C −b)
m∑

i=1
Ni −mb − 1

4
mb > 0,

using that C = 8mb and
∑m

i=1 Ni > 0.

• All ‘C ’-jobs are scheduled after the ri job with the same resource, but at least one ‘C ’-job
is scheduled on one of the last m machines. We split this up into two subcases:

– At least one such ‘C ’-job is scheduled before a ‘D’-job on the same machine.
We know all ‘C ’-jobs start after b, hence Z∗

C ≥ m(NC b + (NC C +C ) NC
2 ). Then

Z∗
D ≥ mN 2

C C +b +C since one ‘D’-job starts after b +C . Using the other lower
bounds we get

Z∗−Z+ ≥ b +C −mb − 1

4
mb > 0,

using that C = 8mb.

– At least one such ‘C ’-job is scheduled after a ‘D’-job on the same machine. Let i
be the resource of one such ‘C ’-job and Di the corresponding ‘D’-job. Then the
‘C ’-job finishes at N 2

C C +C or later, while any ‘C ’-job scheduled not after a D’-
job would have a maximum completion time of

∑3m
j=1 a j +b +NC C , which is the

sum of all processing times of jobs that could possibly be scheduled on machine
i . Hence Z∗

C ≥ m(NC b + (NC C +C ) NC
2 )+ (N 2

c C +C − (mb +b +NC C )). Using the
lower bounds for Z∗

r , Z∗
a and Z∗

D , we get

Z∗−Z+ = N 2
C C +C − (mb +b +NC C )−mb − 1

4
mb > 0,

using that C = 8mb and NC = 2mb.

• All ‘C ’-jobs are scheduled after the ri job with the same resource, all ‘C ’-jobs are sched-
uled on the first m machines, but at least one ‘C ’-job is scheduled before an a j job on the

same machine. All ‘C ’-jobs are scheduled after b, hence Z∗
C ≥ m(NC b+(C +NC C ) NC

2 ).
At least one a j has a completion time larger than C +b, while any a j not scheduled
after an ‘C ’-job has a completion time smaller than or equal to

∑3m
j=1 a j +b = mb +b,

so Z∗
a ≥ 7

4 mb + (C +b −mb −b). Using the lower bounds for Z∗
r and Z∗

D , we get

Z∗−Z+ ≥ (C −mb)−mb − 1

4
mb > 0

using that C = 8mb.

• All ‘C ’-jobs are scheduled after the ri job with the same resource, all ‘C ’-jobs are sched-
uled on the first m machines and all ‘C ’-jobs are scheduled after the a j jobs on the same
machine. Notice that the feasible solution in Figure 6.8 is structured in a similar way.
At least one machine i should have an a j job with completion time at least b +1. So
the sequence of ‘C ’-jobs on machine i should start at b +1 or later. This means that

Z∗
C ≥ m

(
NC b + (C +NC C ) NC

2

)
+NC . Using the lower bounds on Z∗

r , Z∗
a and Z∗

D , we
get:

Z∗−Z+ ≥ Nc −mb − 1

4
mb > 0,
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using that NC = 2mb.

So if the 3-PARTITION instance is a no-instance, Z∗ > Z+, hence the reduction is com-
plete.

We can use Theorem 6.11 to show that our original problem with unrelated machines
instead of parallel machines is NP-hard. This problem is actually the problem found in
the photolithography bays of European semiconductor factories [1].

Corollary 6.12. R|partition|∑ j C j is NP-hard in the strong sense.

Proof. We can reduce any decision variant instance IP of P |par ti t i on,Mr |∑ j C j , ask-
ing whether there exists a feasible solution with total completion time smaller than T , to
a decision variant instance IR of R|par ti t i on|∑ j C j asking the same question. This is
done by simply removing the processing set restrictions for resources and changing the
processing times to:

pi j =
{

p j if i ∈Mr ( j )

T if i 6∈Mr ( j )

where Mr ( j ) denotes the machine restriction for r ( j ), the resource of job j . Clearly, any
feasible schedule for IP is also a feasible schedule for the mapped instance IR with the
same total completion time. Hence if we have a yes-instance for IP , we also have a yes-
instance for IR . However, if we have a no instance for IP , all feasible solutions for IP

have a total completion time at least T . This means that all schedules for IR processing
only j on i ∈ Mr ( j ) for all j , also have a total completion time that is at least equal to
T . However, any schedule processing at least one j on an i 6∈ Mr ( j ) also has a total
completion time that is at least equal to T , because of such a job j . Hence IR is also a
no-instance.

6.5 UNMOVABLE RESOURCES

Moving resources can be a costly operation. Thus one might also consider the case were
the resources are also fixed on a machine. We therefore consider the problem where
every resource can only be used on one machine. We define unmovable as an addition to
the partition constraint, where all jobs j ∈ r k have to be processed on the same machine.

Theorem 6.13. P |partition,unmovable, p j = 1|∑ j C j is NP-hard.

Proof. We give a polynomial time reduction from the 3-Partition problem as defined in
Definition 13. We introduce in P |partition,unmovable, p j = 1|∑ j C j m machines and a
number of jobs equal to n = ∑

a∈A a and a number of resources equal to 3m, where M
is a large number. For every element of a ∈ A, we associate a number of jobs equal to a
sharing the same resource. If we have a yes-instance of 3-Partition, then, ∀i ∈ {1, . . . ,m},
we can schedule all jobs associated with a ∈ Ai to machine i . All machines will then be
busy processing until time b. This will give us an objective value of m

2 b(b+1). If we have
a no-instance of 3-Partition, we cannot distribute the jobs evenly over the machines and
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thus the objective value will be greater than m
2 b(b +1). Hence, there exists a solution to

3-Partition if and only if P |partition,unmovable, p j = 1|∑ j C j as constructed above has

an objective value of 1
2 mb(b +1).

Note that, one might have a yes-instance of P |partition,unmovable, p j = 1|∑ j C j , where
on one machine there are 4 resources being used. If this is the case, these resources all
have b/4 associated jobs and since it is a yes-instance, there also must be a machine
using only 2 resources with b/2 associated jobs. An easy switch of the last b/2 units of
processing of these two machines, will also lead to a yes-instance for 3-Partition.

6.6 TWO RESOURCES PER JOB

Because the problem was motivated by the scheduling problem found in the photolitho-
graphy bays of the semi-conductor industry, we are mainly interested in the case that
there is only one resource per job. However, one might also wonder what happens if
there is more than one resource needed per job. We will therefore analyze instances with
at most q resources per job. We introduce partition(q) for the β field of the scheduling
problem. If partition(q) is in the β field, there is a collection of subsets R = {r 1, . . . ,r R }
with r k ⊆ J , where every job is contained in at most q subsets. Let r j = {r k ∈ R | j ∈ r k },
i.e., all subsets that contain job j . If two jobs share the same resource, we will denote this
by r j = r j ′ , which implies that r j ∩ r j ′ 6= ; and that j and j ′ cannot be processed at the
same time.
The problem P |partition(q), p j = 1|∑ j C j is a special case of P |res · · · , types =R, pi < p| f
with f ∈ {

∑
j w j C j ,

∑
j T j ,

∑
j U j }. Here, s is the number of resources and there are R

types of jobs. A type of a job j is defined as the tuple (p j ,R1( j ), . . . ,Rs ( j )), where Ru( j )
is the amount of resource u required by job j . Note that, in our case, |R| = R = s. [3]
show that it can be solved in O(R(p + s)nRp +R2pnR(p+2)), resulting in the following
corollary.

Corollary 6.14. P |partition(q), p j = 1|∑ j C j is polynomially solvable for every q ∈ Z, if
the number of resources, |R|, is bounded.

However, we will now show that the problem becomes NP-hard when the number of
resources is not bounded, even with q = 2.

Theorem 6.15. P |partition(q), p j = 1|∑ j C j is NP-hard for every q ≥ 2, if the number of
machines m and resources |R| are unbounded.

Proof. We will prove this by a reduction from edge coloring. In the edge coloring prob-
lem, one assigns colors (or labels) to the edges of a graph G = (V ,E), such that no two
incident edges have the same color. Let ∆ be the maximum node degree in the graph G ,
then [9] shows that it is NP-hard to decide for an arbitrary graph G whether or not it can
be colored using only ∆ colors.
We can reduce this problem to P |partition(2), p j = 1|∑ j C j as follows. Suppose we are
given a graph G = (V ,E) with |E | = m. Take the number of machines equal to m. Intro-
duce a resource for every node u ∈V , |R| = |V |. We also introduce a job (with p j = 1) for



6.7 CONCLUSION 99

every edge e = {u, v} and these jobs require the resources that are associated with nodes
it connects (i.e. u and v). Thus every resource will be used at most∆ times and every job
uses exactly 2 resources. Lastly, we introduce (∆−1)n dummy jobs (with p j = 1), that do
no require a resource. Figure 6.9 shows an example of the reduction.

1

2 3

4

(a) Graph G = (V ,E)

1 2 1 3 2 3

3 4 2 4

time∆

n
m

ac
h

in
es

(b) Optimal schedule for the instance.

Figure 6.9: Example of the reduction from edge coloring to P |partition(2), p j = 1|∑ j C j with
a graph with ∆ = 3. Gray colored jobs represent dummy jobs and numbers represent the

resources.

We claim that there exists an edge coloring of graph G using only ∆ colors if and only if
the instance of P |partition(2), p j = 1|∑ j C j has an optimal value of 1

2∆(∆+1)m. Suppose
we are given a solution to the edge coloring problem which uses ∆ colors, then we can
put each color on a different time slot. So all jobs associated with an edge of the first
color will be put on machines in the first time slot. We fill up all unused machine time
until time ∆ with dummy jobs. Since jobs only share a resource if they were incident in
the graph, we will not have any resource conflict and all machines will be filled with jobs
until time ∆, thus resulting in an objective value of 1

2∆(∆+1)m.
Suppose we have a solution of the above instance of P |partition(2), p j = 1|∑ j C j with

objective value 1
2∆(∆+1)m. Then in each time slot we look for the jobs associated with a

node and give them the same color. Since the objective value is 1
2∆(∆+1)m there are no

jobs after time ∆, hence there are only ∆ colors. Since all jobs associated with incident
edges share a resource, no two incident edges will share the same color and hence we
have found an edge coloring using ∆ colors.

Exercise 1:
Show using a reduction from vertex 3-colorability with maximum node de-

gree 4, that P |partition(4), p j = 1|∑ j C j is NP-hard for every q ≥ 4, if the
number of machines m and resources |R| are unbounded.

6.7 CONCLUSION

In this chapter, we considered the scheduling problem of minimizing the total comple-
tion time on parallel machines when each job uses exactly one resource, P |partition|∑

j C j . Although the complexity of P |partition|∑ j C j is open, we proved that similar
problems such as P |partition,Mr |∑ j C j , P |partition(2), p j = 1|∑ j C j and P |partition,
unmovable, p j = 1|∑ j C j are NP-hard. Therefore, we conjecture that P |partition|∑ j C j
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is NP-hard as well.
The problem P |partition|∑ j C j always has an optimal solution where jobs sharing the
same resource are ordered in non-decreasing order of their processing time. Such an
optimal solution might even be more structured. For example, it remains open whether
or not there is always an optimal solution that yields the SPT order property on each ma-
chine for all jobs on that machine.
We showed that the SPT-available rule gives a

(
2− 1

m

)
-approximation. This bound may

not be tight. There is a lower bound of 4
3 on the approximation factor. Closing this gap is

another interesting open problem, as well as designing other approximation algorithms
with better approximation ratios.
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A
APPENDIX

A.1 EXERCISE 1

We will prove that P |partition(q), p j = 1|∑ j C j is NP-hard for every q ≥ 4, if the number
of machines m and resources |R| are unbounded, by a reduction to 3-colorability with
node degree at most 4. This problem is shown to be NP-hard by Garey et al. [2]. In this
problem, we are given a graph G = (V ,E), where every node has at most 4 adjacent arcs.
The goal is to find a labeling using only 3 different labels (i.e. colors), such that no two
vertices who share an edge share the same label.
We can reduce this problem to P |partition(4), p j = 1|∑ j C j as follows. Suppose we are
given graph G = (V ,E) with node degree at most 4, with |V | = n. Take the number of
machines equal to n. Introduce a resource for every edge, |R| = |E |. We also introduce a
job (with p j = 1) for every node and these jobs require the resources that are associated
with the edges adjacent to the node. Thus every resource will be used twice and every
job uses at most 4 resources since the node degree is at most 4. Lastly we introduce 2n
dummy jobs (with p j = 1), that do no require a resource.
We have a 3-coloring of graph G if and only if the instance of P |partition(4), p j = 1|∑ j C j

has an optimal value of 6n. Suppose we are given a solution to 3-coloring, then we can
put each label on a different time slot. So all jobs associated with a vertex of the first label
will be put on machines in the first time slot. We fill up all unused machine time until
time 3 up with dummy jobs. Since jobs only share a resource if they were adjacent in
the graph, we will not have any resource conflict and all machines will be filled with jobs
until time 3, thus resulting in an objective value of 6n.
Suppose we have a solution of the above instance of P |partition(4), p j = 1|∑ j C j with∑

j C j = 6n. Then in each time slot we look for the jobs associated with a node and give
them the same label. Since the objective value is 6n there are no jobs after time 3, this
there are only 3 labels. Since all jobs associated with nodes share a resource with ad-
jacent jobs, no two adjacent jobs will share the same label and hence we have found a
three coloring.
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A.2 RESULTS BLADE MOVEMENT OPTIMIZATION PILOT

We use the ILP formulation from Section 2.3 to optimize instances obtained from the
semiconductor fab. The goal is to reduce the blade movement as to reduce the machine
time needed for production. We obtained instances from the file that is used to define
the images. We converted the data in these files to the needed tables with the blading
positions and the image use per recipe step. Then, we used our algorithms to solve the
problem instances.

In total, data was obtained for 46 (of 575) products. These 46 products account for
45.54% of the total work in process (WIP). The order of the images was optimized us-
ing the ILP solver. The results of the optimization can be found in Table A.2.

The construction of the ILP is done in Matlab and solved using SCIP[1]. Calculations are
done using an Intel core i7-6700k CPU, 4.0 GHz with 16 GB of RAM.
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Optimization problem (details per product) Objective value (BPROD) Performance

Product WIP (%) # images # reticles Original Optimized ∆B (%) calc.time (sec)
MAA28 2.73 20 22 3124.62 3124.62 0 0.63
MAA04 2.40 20 25 3174.15 3174.15 0 0.17
MFS00 2.09 27 30 3253.83 3253.83 0 2.30
MAA01 1.97 18 24 3766.23 3517.08 6.62 0.78
MAA50 1.79 22 46 4271.1 3198.15 25.12 0.27
MAA29 1.76 20 22 3854.13 3298.6 14.41 0.45
SZS08 1.73 19 18 3968 3356.42 15.41 0.40
SQB01 1.55 30 14 5589.74 4640.15 16.99 2.32
MA936 1.45 23 49 5262.5 4374.2 16.88 0.61
SAC19 1.17 17 21 2677.03 2065.25 22.85 0.29
MAA45 1.15 19 28 6757.42 5392.8 20.19 0.85
MX028 1.12 26 48 6642.52 4339.3 34.67 0.73
RMP01 1.09 6 15 2589.9 2589.9 0 0.05
BGY00 1.06 7 22 3973.5 3973.5 0 0.01
MA924 1.06 22 29 6817 5582.1 18.12 0.45
XX055 1.06 26 46 4798.95 3922.35 18.27 0.99
DWB12 1.03 36 27 9177.64 6467.53 29.53 4.09
MAE00 1.01 16 18 3017.27 2403.75 20.33 0.49
MGY01 1.00 8 22 2848.63 2480.03 12.94 0.03
SZS05 0.87 18 21 3389.15 2646.79 21.90 0.19
XX040 0.87 24 62 4124.55 2644.89 35.87 0.79
MAA47 0.86 20 22 5551.7 4294.3 22.65 0.19
MX031 0.86 26 38 5323.07 3886.75 26.98 0.05
MAB00 0.81 22 42 3924.05 2536.6 35.36 0.52
XJ203 0.76 52 61 6104.29 3932.45 35.58 0.91
SAC03 0.74 19 17 2393.15 1991.68 16.78 0.05
DWB57 0.73 32 30 8827.86 6542.26 25.89 1.02
NKH02 0.67 19 29 7324.75 7294.33 0.42 5.98
MAA48 0.64 21 29 2373 2373 0 0.48
MAE03 0.64 20 18 3300.7 2298.57 30.36 0.26
XXW61 0.64 20 36 6632.37 5739.22 13.47 0.74
DWB14 0.63 36 27 9177.64 6467.53 29.53 4.05
XX056 0.63 23 56 6639.62 4333.05 34.74 0.82
MAA54 0.59 21 32 4662.35 3721.67 20.18 0.56
MAA62 0.59 16 23 3845.97 3105.01 19.27 0.77
MAA32 0.58 19 27 3857.08 3857.08 0 0.08
MYA00 0.58 26 22 5300.35 5300.35 0 0.24
MAB04 0.58 18 18 2938.18 2346.35 20.14 0.70
DWB06 0.56 36 36 9177.64 6467.53 29.53 4.07
SAB21 0.53 18 18 3419.88 2817.12 17.62 0.55
DWB40 0.53 36 31 9892.7 7550.32 23.68 14.98
MH021 0.53 19 28 3997.99 3997.99 0 0.07
MX032 0.50 19 30 4442.72 3261.03 26.60 0.36
MAA49 0.47 23 34 5424.43 4613.83 14.94 0.37
RKH05 0.47 17 27 8526.28 5302.28 37.81 1.38
MAA25 0.46 23 37 3726.45 3040.18 18.42 0.29

Total 45.54 1025 1377 229862.03 183515.83 - 56.37
Average 0.99 22.28 29.93 4997 3989.47 20.16 1.23

Table A.1: Blade movement optimization results for 46 products comparing the original blade
movement against the now optimized distance
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A.3 SPACEFILLING CURVE ALGORITHM WITH INSTANCE DEPEN-
DENT CURVE LEVEL

In Section 4.4, we look at the performance of space filling curve algorithms, Hilbert1
and Hilbert24, on problem instances found in the photolithography bay. We used them
to minimize the blade movement for 46 reticle jobs. In the algorithms, we fixed the max-
imum level of the curve, j = 8, since 0.00714 is the minimum movement between two
images after resizing over all problem instance. This however is only the minimum for
three reticle job instances; MX028, XX055 and MX031. We could speed up the algorithm
for some of the other instances by first calculating the required j and using this j for the
algorithm. Table A.2 shows the results per instance for the different algorithms including
the preprocessor that finds the required j . On average, it reduces the time of Hilbert1
by 5.3% and Hilbert24 by 6.0% (including the time required for the preprocessor).

The Hilbert1 and Hilbert24 algorithms are implemented in Matlab. Calculations are
done using an Intel core i7-6700k CPU, 4.0 GHz with 16 GB of RAM.
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Instance Preprocessor Time (ms)
Product Images Layers min∆B j Preproc. Hilb1(8) Hilb24(8) Hilb1( j ) Hilb24( j )
MAA28 20 22 0.0896 4 2.9 41.9 61.9 29.3 55.5
MAA04 20 25 0.0896 4 1.2 5.3 56.4 5.5 51.5
MFS00 27 30 0.0219 6 0.4 6.0 95.5 5.6 90.0
MAA01 18 24 0.0836 4 0.3 5.0 52.1 3.7 44.5
MAA50 22 46 0.0896 4 0.4 4.8 69.5 4.4 60.9
MAA29 20 22 0.0896 4 0.3 4.1 56.5 3.9 50.5
SZS08 19 18 0.1230 4 0.3 4.2 53.2 3.7 47.4
SQB01 30 14 0.0575 5 0.5 7.0 115.3 6.7 114.8
MA936 23 49 0.0896 4 0.4 5.2 74.3 4.6 66.0
SAC19 17 21 0.0555 5 0.3 33.5 49.1 3.5 40.3
MAA45 19 28 0.0896 4 0.3 5.1 53.8 3.8 47.3
MX028 26 48 0.0071 8 0.4 5.9 91.9 5.6 96.4
RMP01 6 15 0.1086 4 0.3 2.4 10.8 2.3 9.0
BGY00 7 22 0.1099 4 0.3 2.4 12.1 2.3 10.8
MA924 22 29 0.0896 4 0.3 4.9 68.7 4.4 67.9
XX055 26 46 0.0071 8 0.4 5.7 91.7 5.8 92.6
DWB12 36 27 0.0732 4 0.5 8.5 163.0 8.0 151.6
MAE00 16 18 0.0896 4 0.3 3.5 41.0 3.5 38.0
MGY01 8 22 0.0774 4 0.3 2.5 15.7 2.4 13.4
SZS05 18 21 0.1230 4 0.3 3.9 48.8 3.9 44.1
XX040 24 62 0.0071 8 0.4 5.1 78.8 5.0 76.5
MAA47 20 22 0.0896 4 0.3 4.2 58.1 4.0 51.3
MX031 26 38 0.0071 8 0.4 5.6 89.0 5.7 86.8
MAB00 22 42 0.0896 4 0.4 4.8 73.0 4.5 60.7
XJ203 52 61 0.0457 5 0.6 15.8 325.0 14.8 305.2
SAC03 19 17 0.0179 6 0.4 4.1 52.6 4.1 51.5
DWB57 32 30 0.0732 4 0.5 7.1 129.9 7.5 123.1
NKH02 19 29 0.0814 4 0.3 4.5 55.1 3.8 47.9
MAA48 21 29 0.0687 4 0.3 4.5 61.3 4.1 57.8
MAE03 20 18 0.0418 5 0.3 4.5 56.8 4.0 51.9
XXW61 20 36 0.0896 4 0.3 4.3 58.1 3.9 51.0
DWB14 36 27 0.0732 4 0.5 8.8 162.3 8.0 150.4
XX056 23 56 0.0071 8 0.4 5.3 76.6 5.0 73.3
MAA54 21 32 0.0896 4 0.3 4.5 61.2 4.1 56.1
MAA62 16 23 0.0747 4 0.3 3.5 41.6 3.3 35.9
MAA32 19 27 0.0896 4 0.3 4.2 54.2 3.8 48.3
MYA00 26 22 0.0732 4 0.4 5.9 89.8 5.3 87.2
MAB04 18 18 0.0616 5 0.3 4.1 48.9 4.0 45.9
DWB06 36 36 0.0732 4 0.5 8.5 161.4 8.9 152.9
SAB21 18 18 0.0896 4 0.3 3.8 48.8 3.7 43.3
DWB40 36 31 0.0732 4 0.5 8.5 162.5 8.1 150.3
MH021 19 28 0.0896 4 0.3 4.2 52.5 3.7 47.2
MX032 19 30 0.0896 4 0.3 4.3 53.5 3.7 46.8
MAA49 23 34 0.0896 4 0.4 4.8 74.6 4.6 68.6
RKH05 17 27 0.0962 4 0.4 3.6 44.0 3.7 40.8
MAA25 23 37 0.0896 4 0.4 5.2 72.5 4.5 66.0

Average 22.3 29.9 0.0071 8 0.9 6.6 76.6 5.4 71.1

Table A.2: Time required for blade movement minimization by the spacefilling curve algo-
rithms. min∆B is the minimum distance between points and j is the associated maximum
level required such that every point is contained in its own subhypercube. The time required
is shown for the preprocessor, Hilbert1 & Hilbert24 with j = 8 fixed and Hilbert1 &

Hilbert24 with j depending on the required j .
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