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Preface
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throughout my studies. This dynamic and impactful field, with the opportunity to influence patients’ lives,
is truly inspiring. Conducting my thesis project in this area has been a valuable opportunity. Now, I can
say that I have learned extensively about strokes, registration techniques, and deep learning, while
also gaining valuable experience in conducting a clinical study and interviewing clinicians. Managing
three projects simultaneously was challenging, but I am proud of the results and the knowledge I have
acquired.

I am particularly grateful to have conducted this research in the field of stroke, a topic that holds personal
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unknown. This has fueled the motivation for myself and the entire research group. I am thankful for
the knowledge, enthusiasm, and motivation shared by everyone involved.

I would like to thank my supervisors, Sandra, Theo and Danny, for their guidance and support. Sandra,
thank you for your willingness to take the time out of your busy schedule to answer clinically related
questions, involve me in fascinating interventional procedures and provide opportunities to witness
numerous endovascular thrombectomies, which greatly enriched my understanding of stroke. Theo,
thank you for your support and guidance despite your busy schedule. Your expertise, constructive
feedback, and kindness made this thesis journey both educational and enjoyable and helped me bring
this research to a higher level. I would also like to thank Danny for the opportunity to conduct part of
my thesis at Philips Healthcare. Gaining insight into the business perspective was very interesting and
valuable. I always enjoyed my days in Best, and I appreciate you involving me in your team meetings
and activities, even when I was primarily based at Erasmus MC. I learned a lot while working together
on the installation of CloudCast. I look forward to the next step as I start my career as an Image Quality
Specialist at Philips Healthcare. Furthermore, I am grateful to the involved interventional radiologists,
Sandra, Pieter-Jan, Ad, and Geert, for their participation in the core-laboratory study. I appreciate their
patience in working with the executable, which was new to them, and for dedicating their free time to
perform the scoring. My gratitude also extends to Frank and Ruisheng, who were consistent in joining
the weekly meetings, offering valuable insights and providing feedback. Special thanks to Matthijs,
your willingness to discuss the project, share knowledge, and engage in personal conversations made
this period even more enjoyable, and your contagious enthusiasm was truly motivating.

Finally, I would like to express my deep appreciation to my family, friends, Ben, Grayson, and room-
mates, Lucie, Merel and Inge. Thank you for always being there to listen and putting things in perspec-
tive. You made my student years unforgettable.

Lotte Strong
Rotterdam, September 2024
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List of abbreviations

Abbreviation Definition

ACA Anterior cerebral artery
AI Artificial intelligence
AIS Acute ischemic stroke
AP Anteroposterior
CI Confidence interval
CTA Computed tomography angiography
DICOM Digital imaging and communications in medicine
DSA Digital subtraction angiography
eTICI Extended thrombolysis in cerebral infarction
EVT Endovascular thrombectomy
FOV Field of view
ICA Internal carotid artery
ICC Intraclass correlation coefficient
IGT Image-guided therapy
IQR Interquartile range
LVO Large vessel occlusion
MCA Middle cerebral artery
MinIP Minimum intensity projection
OIP Open innovation platform
SUS System usability scale
TDT Target downstream territory
TICI Thrombolysis in cerebral infarction
UI User interface
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Summary

Ischemic stroke, defined as the sudden onset of a focal neurological deficit resulting from hypo-perfusion
due to an occluded cerebral artery, is a leading cause of mortality and long-term disability worldwide.
The standard treatment for acute ischemic strokes (AIS) is an endovascular thrombectomy (EVT), a
minimally invasive procedure for locally removing the occlusion. The effectiveness of an EVT is as-
sessed by estimating the reperfusion status on digital subtraction angiography (DSA) images using a
six-category visual grading system termed the extended Thrombolysis In Cerebral Infarction (eTICI)
scale. However, eTICI scoring suffers from inter-observer variability, complicating EVT outcome com-
parisons. To address this, ‘autoTICI’, a fully automated and objective deep-learning-based TICI scoring
method, was developed by our research group. This thesis aimed to improve and evaluate autoTICI in
clinical practice.

Chapter 1 provides a general introduction, highlighting the clinical background and relevance of auto-
mated TICI scoring.

Chapter 2 presents a pilot study that explored the technical feasibility and clinical implementability of
autoTICI within the interventional radiology workflow. The pilot study showed that the performance of
autoTICI is currently insufficient for implementation in clinical practice. Nevertheless, with an average
System Usability Score (SUS) of 81.3, autoTICI still demonstrated excellent usability within the clinical
workflow, indicating its potential for future clinical use. Besides, its potential as a decision-support tool
was recognized by multiple interventional radiologists, particularly in complex or high-stress scenarios.

Chapter 3 presents a core-laboratory study assessing the inter-observer agreement and efficiency of
eTICI scoring with and without autoTICI feedback, showing a substantial agreement both with and
without autoTICI, with weighted kappa values of 0.65 and 0.67, respectively. Additionally, autoTICI
had no significant effect on scoring efficiency, suggesting that the supplementary information did not
increase the time required for eTICI scoring.

Chapter 4 details the development of an automated deep-learning approach for direct segmentation of
vascular territories on cerebral DSA, aimed at improving the robustness of autoTICI by replacing the
atlas registration step in its pipeline. A nnUNet model was trained, validated, and benchmarked against
the atlas registration method. The proposed model demonstrated excellent performance on a held-out
test set, achieving a 100% success rate compared to 52.5% for atlas registration. Additionally, it signif-
icantly outperformed the atlas registration method in both segmentation accuracy and computational
efficiency.

Chapter 5 provides a general discussion and conclusion, synthesizing the results from the previous
chapters and offering recommendations for future research on autoTICI.

In this master’s thesis, autoTICI was successfully integrated into the clinical workflow of the interven-
tional radiology. Through the pilot study and inter-observer analysis, we were able to identify autoTICI’s
intended use and added value within the clinical workflow, along with key issues, challenges, pitfalls,
and future opportunities. By addressing one of these identified issues — atlas registration — through
automated vascular territory segmentation, the performance of autoTICI was significantly improved.
Although autoTICI is not yet ready for clinical implementation, with further optimization needed, the
contributions of this master thesis have brought it significantly closer to that goal.
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1
General introduction

1.1. Clinical background
1.1.1. Strokes
Stroke, defined as the rapid development of a focal neurological deficit due to a disrupted blood supply
to the brain, is a leading cause of death and long-term disability worldwide [1, 2]. With 15 million
people suffering from a stroke annually, it is a disabling condition with a high societal and economic
burden [2]. Strokes are classified as either ischemic or hemorrhagic, with ischemic strokes, caused by
a perfusion defect due to an occluded cerebral artery, accounting for 87% of cases [2]. The majority of
ischemic strokes (80%) involve the anterior circulation, with approximately 75% occurring in the middle
cerebral artery (MCA), 20% in the internal carotid artery (ICA), and 5% in the anterior cerebral artery
(ACA) (Figure 1.1) [3–6]. The MCA originates directly from the ICA and is divided into a proximal part
(involving theM1 andM2 segments) and a distal part (involving theM3 andM4 segments) [7]. Themore
proximal the occlusion, the greater the restriction of cerebral blood flow, leading to a more extensive
infarct (Figure 1.1) [4, 5, 8].

Figure 1.1: Schematic representation of the cerebral circulation, visualized in the anteroposterior (AP) and lateral view [9].

The standard of care for acute ischemic strokes (AIS) with a large vessel occlusion (LVO), an obstruction
in one of the large proximal cerebral arteries, is an endovascular thrombectomy (EVT). This minimally
invasive mechanical procedure involves navigating endovascular equipment through a groin puncture
to the occlusion site to locally remove the blood clot causing the obstruction [10, 11].

1.1.2. Digital subtraction angiography
During EVT procedures, digital subtraction angiography (DSA) and fluoroscopy are imaging modalities
used to locate the occlusion and perfusion defect and to navigate to the occlusion site. Fluoroscopy
images are two-dimensional (2D) low-dose X-ray projections, while DSA images are created by acquir-
ing a sequence of 2D high-dose X-ray projections while injecting an iodine-containing contrast medium
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1.1. Clinical background 2

into the targeted vessels. Images obtained before the arrival of the contrast bolus, referred to as mask
images, are subtracted from those taken during contrast injection, referred to as contrast images. This
process removes background structures from the contrast images, resulting in a subtraction image ex-
clusively showing the contrasted vessels (Figure 1.2). This enables the visualization of cerebral blood
perfusion, providing crucial information about the location of the perfusion defect [12].

Figure 1.2: Example of a DSA image in the anteroposterior (AP) and lateral view: a) mask frame; b) contrast frame; c)
subtracted frame (b-a).

1.1.3. TICI grading
The effectiveness of an EVT can be assessed by grading the reperfusion status on DSA images taken
before and after an attempt to remove a blood clot. In EVT terms, reperfusion is defined as the an-
tegrade restoration of a capillary blush [13]. The grading system, termed Thrombolysis In Cerebral
Infarction (TICI), originally adapted from a coronary reperfusion grading system, is constructed as a
five-category scale [14]. The scoring is performed by visually estimating the percentage of antegrade
reperfused territory beyond the previously occluded area, known as the Target Downstream Territory
(TDT) [14, 15]. Subtle differences in how each grade is correlated with patient outcomes have led to
multiple modifications of the TICI scoring metrics, such as modified TICI (mTICI) [16], extended TICI
(eTICI) [17] and expanded TICI [18], of which eTICI is the most widely used [10, 17–19]. eTICI consists
of 6 categories:

• eTICI 0: no reperfusion
• eTICI 1: blood flow past the obstruction, but no reperfusion of brain tissue
• eTICI 2A: <50% of TDT reperfused
• eTICI 2B: 50% - 90% of TDT reperfused
• eTICI 2C: 90-99% of TDT reperfused
• eTICI 3: complete TDT reperfusion

Despite their widespread use in clinical practice, TICI scoring metrics have several shortcomings. First,
the subjective and error-prone nature of visual reperfusion estimation results in moderate to substantial
inter-observer variability [20]. This variability may be further compounded by the confusion existing
between the concepts of reperfusion and recanalization in clinical practice. Reperfusion refers to the
antegrade restoration of a capillary blush, whereas recanalization is the restoration of blood flow, which
is necessary but not sufficient for reperfusion [21, 22]. This inter-observer variability poses a significant
challenge for structural EVT outcome comparison. Second, the use of various modified TICI scales can
reduce the ability to compare treatment success across different clinical trials. Third, the TICI grading
system consists of unevenly spaced coarse ordinal scales that confine a wide range of reperfusion
percentages per grade. As studies have shown that the functional outcome of EVT is associated with
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the increasing degree of reperfusion [23–26], this scoring system could therefore be inadequate for
accurately assessing treatment success.

1.1.4. Automated TICI grading
To mitigate these issues, a fully automated deep-learning-based reperfusion assessment method, re-
ferred to as ‘autoTICI’, was developed and investigated by our research group [27, 28]. The proposed
autoTICI pipeline, derived from the method of visual eTICI scoring, consists of four key components:
phase classification, motion correction, perfusion segmentation, and TICI scoring. First, a DSA acqui-
sition is divided into four vascular phases — non-contrast, arterial, parenchymal, and venous — using
a convolutional neural network (CNN). Non-contrast and venous phase frames are subsequently re-
moved from the DSA sequence. Second, affine registration is employed to correct for motion artefacts
in the remaining frames. From these aligned frames, a 2D minimum intensity projection (MinIP) is
generated and segmented into vessels, reperfused and non-perfused areas, including the background.
Then, a brain mask is segmented on the post-EVT MinIP using a method called atlas registration, after
which the pre-EVT is aligned with the post-EVT MinIP. For both steps, initial registration is achieved by
aligning landmarks detected at the superior part of the ICA. Comparing the reperfused areas in the pre-
and post-EVT MinIPs enables calculation of a continuous TICI output, reflecting the reperfusion per-
centage. Detailed information on the autoTICI pipeline is provided in a study by Su et al. [27]. Recent
studies have shown that the proposed autoTICI approach showed a strong correlation with eTICI, with
an average area under the curve (AUC) score of 0.81. Moreover, autoTICI demonstrated comparability
to eTICI in terms of clinical outcome prediction, achieving a prediction accuracy of 0.66 compared to
0.62 for eTICI [27, 29].

These results suggest that autoTICI could offer a more uniform and reliable method for reporting EVT
outcomes and enhance the comparability of treatment success across clinical trials. However, further
improvements are essential before autoTICI’s implementation can be considered viable:

1. Artificial intelligence (AI) applications often fail to achieve widespread adoption in clinical prac-
tice; no matter how effective autoTICI may be, this barrier must be overcome if the method is to
succeed [30, 31].

2. Though it is anticipated that implementing autoTICI will decrease inter-observer variation, this
has not yet been investigated.

3. AutoTICI’s robustness still requires improvement, as in 30% of cases the model prediction is
unreliable due to unsuccessful atlas registration [28].

1.2. Objectives and overview
Our research group aims to improve autoTICI and quantify its value, with the ultimate goal of its
widespread adoption in clinical practice. The three specific objectives of this thesis address the three
obstacles observed in section 1.1.4:

1. Assess the clinical implementability of autoTICI using the AI Funnel approach (described in sec-
tion 2.1) developed by Erasmus MC to achieve the successful integration of AI applications into
clinical settings.

2. Demonstrate the effect of autoTICI on inter-observer agreement.
3. Increase the robustness of autoTICI by improving the atlas registration step.

The remainder of this thesis is organized as follows. Chapters 2-4 each cover one objective and are
written to stand on their own, to facilitate independent reading. Chapter 2 describes the methods
and results of a pilot study on the clinical implementation of autoTICI in the workflow of interventional
radiology. Chapter 3 describes the methods and results of a core-laboratory study to assess the inter-
observer agreement and efficiency of eTICI scoring with and without autoTICI. Chapter 4 presents an
automated approach for directly segmenting the brain mask on cerebral DSAs, bypassing the current
atlas registration step. The results are compared against the atlas registration method employed in
autoTICI. Chapter 5 unites this research in a general discussion, synthesizing the results from the
previous chapters and offering recommendations for future research on autoTICI.



2
Clinical implementability of

automated TICI scoring

2.1. Introduction
The application of artificial intelligence (AI) in medical imaging, particularly in radiology, is a rapidly
growing field [32, 33]. Despite the promising technical performance and the increasing number of AI
applications, many studies have shown that these innovations often fail to be implemented and utilized
in clinical practice [30, 31]. This can be attributed to several factors, including unstructured implementa-
tion processes, uncertain added value for clinical practice, and significant variance in acceptance and
trust among users [30]. To address these challenges, the Erasmus MC has developed a structured ap-
proach, termed the ‘AI Funnel’, for integrating AI applications into clinical settings, which is detailed in a
recently published report [34]. Figure 2.1 illustrates the AI Funnel and summarizes the steps necessary
to adopt AI technologies in healthcare practices successfully [34].

Figure 2.1: Summary of the steps proposed by the Erasmus MC to be followed to ensure the effective integration of AI
applications into clinical practice [34]. AutoTICI is currently in the software development and pilot study stages of the AI Funnel,

which are depicted in orange.

In two recent studies, autoTICI1(1.1.4) has undergone model validation [27, 28], demonstrating its
readiness for the next phases in the AI Funnel: software development and the initiation of a pilot study
(Figure 2.1). The software development phase concentrates on creating a technically feasible and
user-friendly infrastructure for deploying autoTICI in the intended clinical environment. The pilot study
assesses the use and clinical implementability of autoTICI within the workflow of the intended setting
without impacting the patient care process.

2.2. Objectives and overview
This study aims to investigate the technical feasibility and clinical implementability of autoTICI within the
workflow of interventional radiology and to provide future recommendations for the next steps regarding

1This is one chapter in a larger thesis. See chapter 1 for a full background.
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its clinical implementation.

We achieved this by first investigating the workflow of the intended clinical setting and determining
autoTICI’s role. To integrate autoTICI into this clinical workflow, we implemented autoTICI in a technical
infrastructure created by Philips Medical Systems called the Open Innovation Platform (OIP). Besides
that, we designed a user-friendly interface for displaying the results of autoTICI within the OIP to ensure
smooth adaptation into clinical practice. Finally, we conducted a pilot study, titled ‘autoTICI to clinic’,
to evaluate the use of autoTICI in the clinical workflow of the interventional radiology department and
gathered the opinions of interventional radiologists on the challenges, opportunities and potential of
autoTICI. Appendix A provides a detailed description of the OIP infrastructure and outlines the steps
taken to integrate autoTICI into it. Appendix B describes the process involved in creating the user
interface (UI) design for autoTICI, including the list of design requirements and a description of the
worked-out designs. Section 2.3 outlines the workflow of the interventional radiology department and
describes the pilot study, including the patient inclusion, technical infrastructure, imaging data, and the
employed method.

2.3. Materials and methods
2.3.1. Clinical workflow for acute ischemic stroke
The intended clinical setting for the implementation of autoTICI is within the angiography suite of the
interventional radiology department, for which Figure 2.2 outlines the identified workflow steps. The
clinical workflow is described from the moment a stroke patient is transferred from the emergency
room to the angiography suite and concludes upon the patient’s transfer to the neurology department
following the endovascular thrombectomy (EVT)2.

Figure 2.2: Schematic overview of the clinical workflow steps for the EVT treatment of acute ischemic strokes in the
interventional radiology department [35]. The orange step depicts where autoTICI could be implemented in this workflow.
EVT = Endovascular Thrombectomy; DSA = Digital Subtraction Angiography; eTICI = extended Thrombolysis In Cerebral

Infarction

Once a patient is diagnosed and EVT is indicated, they are transferred to the angiography suite as
quickly as possible. A group-alert paging system for acute stroke ensures that all team members are
notified, can prepare the room for the EVT, and are ready to receive the patient. The team typically
consists of one or two interventional radiologists who perform the EVT and two technicians who pre-
pare and handle necessary materials and operate the angiography imaging system during the EVT.
Additionally, an anesthesiologist is present to administer sedation if needed and to support the inter-
ventional team with patient management. The patient is positioned on the angiography table, where a
sterile field and all the materials required for the EVT are prepared.

The EVT procedure starts with a groin puncture, with a femoral sheath inserted in the common femoral
artery. Under fluoroscopic guidance, an inner catheter is advanced and positioned in the internal carotid
artery (ICA). A pre-EVT digital subtraction angiography (DSA) run is then performed to confirm the

2Figure 2.2 aims to visualize the distinct steps involved in the workflow, acknowledging that some details are left out for clarity.
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location of the occlusion. Subsequently, a microcatheter is navigated to the distal side of the occlusion,
where minimal contrast is injected to verify its correct positioning and rule out any perforations. For
thrombus removal, a stent retriever is typically employed in combination with negative suction to prevent
distal emboli. After retrieving the stent, a post-EVT DSA run is performed, which is used for determining
the extended Thrombolysis In Cerebral Infarction (eTICI) score, with a score higher than 2B indicating
good reperfusion. Based on this assessment, a decision is made whether to conclude the procedure
after successful thrombus removal, make another attempt to achieve a higher eTICI grade, or terminate
after an unsuccessful attempt to avoid complications. During the workflow step depicted in orange in
Figure 2.2, autoTICI could be implemented as a decision support tool for interventional radiologists
by providing an objective score of the measured reperfusion. After the EVT treatment, the patient is
transferred to the neurology unit for further care [35–38].

2.3.2. Pilot study workflow
Figure 2.3 shows a schematic overview of the workflow steps of the ‘autoTICI to clinic’ study. The
diagram begins with the clinical workflow steps taken when a stroke patient receives EVT treatment,
followed by the procedure for obtaining written deferred consent. The technical workflow of the diagram
illustrates the background tasks performed by the OIP: streaming pseudonymized images acquired
during the EVT to a cloud storage called the ‘IGT cloud’. After obtaining deferred consent, these images
are uploaded to the OIP, where data preparation occurs and the autoTICI algorithm is run. In the final
phase, an interview is conducted with the interventional radiologist who performed the EVT. During this
interview, the radiologist completes the System Usability Scale (SUS) and a questionnaire assessing
the clinical implementability of autoTICI, with a comparative analysis against the current eTICI scoring
method. The study method is further detailed in the subsections below.

Figure 2.3: Schematic overview of the workflow steps of the ‘autoTICI to clinic’ study. The diagram consists of a clinical and
technical workflow phase, followed by an interview. Data flow and time steps are depicted by light and dark blue arrows,

respectively. *As ‘autoTICI to Clinic’ is part of the DIVINE study, deferred consent was obtained for participation in the DIVINE
study [39]

2.3.3. Patient inclusion
’AutoTICI to clinic’ was a single-centre, prospective cohort study conducted in the Erasmus MC. The
study was established as a part of a broader study, the DIVINE registry, which obtained approval from
our non-WMO institutional ethics committee [39].

Patients were included in the ‘autoTICI to clinic study’ if (1) they underwent EVT treatment for acute is-
chemic stroke (AIS) in the anterior circulation, and (2) they were treated using the Philips Xper FD20/10
angiography system, which was connected to the OIP. Patients were excluded if the interventional team
encountered failed intracranial access. After transfer to the neurology department, a deferred consent
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form was presented to the patient or their representative(s), which authorized the use of all imaging
data acquired during the EVT. Patients were given one hour to consider their participation, considering
the rapid transfers of stroke patients to other hospitals that frequently occur. Eligible subjects were
identified using PACS Vue and the electronic health record. Once the written deferred consent was ob-
tained, the interventional radiologists who performed the EVT for the included patient were approached
and asked for their permission to participate in an interview.

2.3.4. Technical feasibility
To integrate autoTICI into the intended clinical workflow of the interventional radiology department,
we implemented autoTICI in the OIP, an infrastructure hosted by Philips Medical Systems (Best, the
Netherlands). The OIP functions by securely streaming data from the imaging system via ‘CloudCast’
hardware to a cloud storage called the ‘IGT cloud’. After consent is obtained, imaging data is uploaded
to the ‘cloud’, where images are received, necessary computations are performed for the execution
of applications, and results are sent back to the CloudCast. A detailed description of the OIP and the
autoTICI integration can be found in Appendix A.

During ‘autoTICI to clinic’, we investigated the technical feasibility of running autoTICI using the OIP by
determining the reliability and calculation time for each included patient. We evaluated the reliability of
the OIP by comparing the number of DICOM images and frames per patient received in the cloud with
the imaging data in PACS Vue. The calculation time was defined as the time required for running au-
toTICI on the OIP, using an NVIDIA A10G GPU with CUDA version 12.2. This encompassed the total
computational time, as well as the time for each component of the autoTICI pipeline: DSA preprocess-
ing, landmark detection, atlas registration, pre-post registration, and phase selection [27]. Additionally,
a log file was maintained to record any issues encountered during the clinical implementation. This log
was regularly communicated to Philips to facilitate further improvements to the CloudCast system and
the OIP.

2.3.5. Data preparation
For each included patient, the data collected for this study encompassed all imaging data acquired
during the EVT procedure by the Philips angiography system located at the Erasmus MC (Philips Allura
Xper FD20/10). This data included fluoroscopy images and DSA sequences in the AP and lateral views,
which were pseudonymized and securely streamed to the IGT cloud, where they were temporarily
stored for one week. After consent was obtained, the imaging data was uploaded to the cloud. Within
the cloud, scripts were executed to filter out the fluoroscopy images, remove the unsubtracted from
the subtracted DSA images, and compile the streamed single-frame DICOM files into multi-frame DSA
sequences (Appendix A). Subsequently, four DSA sequences were manually selected to serve as input
for autoTICI: the pre- and post-EVT DSA sequences in the AP and lateral view. The pre-EVT DSA was
defined as the run before the first thrombus removal attempt, while the post-EVT DSA was the run
after the final attempt. Finally, the autoTICI pipeline was executed on the OIP, with the results being
produced according to the configuration of the selected UI design (Appendix B).

2.3.6. Clinical implementability interview
To investigate autoTICI’s clinical implementability, we conducted interviews with interventional radiolo-
gists after they performed the EVT on the included patients. These interviews aimed to assess the us-
ability and value of autoTICI within the existing EVT workflow (Figure 2.2), the radiologists’ confidence
and reasoning when scoring eTICI with and without the addition of autoTICI, and whether autoTICI
feedback might influence the number of thrombus removal attempts. To ensure accurate recollection
of procedural details and decision-making, interviews were conducted within one week post-EVT.

The interview consisted of two phases. In the first phase, the DSA sequences were presented, and
interventional radiologists completed a 0-5 Likert scale assessing their confidence in visual eTICI scor-
ing, along with a questionnaire to identify factors contributing to potential doubt. In the second phase,
autoTICI results were displayed alongside the DSA sequences, and the radiologists repeated the con-
fidence assessment. Additionally, they completed the System Usability Scale (SUS) to evaluate the
clinical usability of autoTICI. The SUS is a straightforward ten-item Likert scale that addresses various
usability aspects, including the need for support, confidence, training, and system complexity [40]. Fur-
thermore, a questionnaire assessed the added value of autoTICI and whether the radiologists would
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consider adjusting the number of attempts during EVT. An overview of the interview questions can be
found in Appendix C.

2.3.7. Evaluation
The outcomes regarding technical feasibility, reliability and calculation time, were reported as numer-
ical variables. Reliability was expressed as the total amount of streamed images and a percentage,
while computational time was reported using the mean and standard deviations. Regarding clinical
implementability, the following guidelines were used for interpreting the SUS scores determined for
autoTICI:

SUS Score Grade Adjective Rating
> 80.3 A Excellent

68 – 80.3 B Good
68 C Okay

51 – 68 D Poor
< 51 E Very poor

Table 2.1: System Usability Scale (SUS) interpretation guidelines [41]

2.4. Results
This section presents the results of the ‘autoTICI to clinic’ study, discussing patient inclusion, outcomes
related to technical feasibility, and findings from the interviews on clinical implementability, organized
into the following themes: clinical usability, confidence in eTICI scoring, and added value of autoTICI.

2.4.1. Patient inclusion
We included four stroke patients (median age 76 years, 50% female) who underwent EVT on the Allura
Xper FD20/10 system. Table 2.2 details the characteristics of each included patient. All EVT proce-
dures were successful. ATC004 was the only patient requiring general anaesthesia due to an epileptic
insult during the procedure. For patient ATC004, the occlusion had already resolved with intravenous
thrombolysis (IVT) as identified on the pre-EVTDSA, achieving 100% reperfusion. Therefore, no further
attempts were made to remove the thrombus, as depicted by 0 passes in Table 2.2.

Table 2.2: Summary of patient characteristics (n = 4).

ATC001 ATC002 ATC003 ATC004
Gender (female/male) Female Male Male Female
Age (years) 88 72 80 30
Occlusion location M1 M2 M2 M1
Anesthesia Type Local Local Local General
No. passes during EVT 2 1 1 0*
Post-EVT eTICI grade
(reperfusion (%))

2C (90-99) 3 (100) 3 (100) 3 (100)

Mean reperfusion percentage
autoTICI (AP, lateral) (%)

96 (93, 99) 58 (59, 56) 54 (57, 52) 100 (100,
100)**

*The occlusion resolved with intravenous thrombolysis, achieving 100% reperfusion pre-EVT, so no further attempts were made
to remove the thrombus (0 passes). **As autoTICI requires both pre-and post-EVT DSAs as input, the pre-EVT DSA was used
twice, resulting in a reperfusion difference of 0%. However, as the pre-EVT eTICI score was 100%, this value is tabulated.

AP: anteroposterior; EVT = Endovascular Thrombectomy

2.4.2. AutoTICI performance
Table 2.2 presents the reperfusion percentages calculated by autoTICI for the included patients and
Figure 2.4 shows the corresponding segmentations. The DSA sequence of patient ATC001 exhibited
significant motion artefacts, which initially resulted in unusable autoTICI predictions. This issue was
resolved by manually removing the motion frames from the DSA. Subsequently, the autoTICI-derived
reperfusion percentage of 96% aligned with the reported eTICI grade of 2C (Table 2.2). As illustrated
in Figure 2.4, the brain masks for ATC001 were correctly delineated by autoTICI. However, in the
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AP view, pixels at the superior border of the brain mask were mistakenly classified as non-perfused.
For patients ATC002 and ATC003, the lateral brain masks were undersized, missing part of the MCA
vascular territory, and the AP brain mask for ATC002 did not account for slight head rotation in the
image. For ATC002 and ATC003, the distal parts of the brain masks were incorrectly segmented
as non-perfused, leading to an underestimation of the actual reperfusion percentage as reported in
Table 2.2. For ATC004, as no post-EVT DSA was performed, the pre-EVT DSA was shown during
the interview. Figure 2.4 shows that the lateral mask was too large for ATC004, extending in the skull,
which led to incorrect segmentation of the Target Downstream Territory (TDT).

Figure 2.4: AutoTICI predictions for the four included patients. Reperfused and non-perfused segmentations are depicted in
green and red, respectively.

2.4.3. Technical feasibility
Due to technical difficulties with connecting the CloudCast to both channels of the biplane angiography
system (Allura Xper FD20/10, Philips), only the frontal channel could be installed, allowing only AP
images to be streamed to the OIP. Lateral DSA sequences were retrieved from PACSVue and uploaded
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manually to the OIP. All data processing was done by LS.

Due to hardware issues, CloudCast was non-operational for the last two patients, limiting the evaluation
of technical feasibility to patients ATC001 and ATC002, as shown in Table 2.3. Regarding reliability,
the number of DSA runs and frames per run received in the OIP matched 100% with the imaging data
in PACS Vue. The average total computational time for running autoTICI on the OIP was within a 5-
minute interval, with the AP view requiring approximately one minute longer than the lateral view. The
atlas registration step was the most time-consuming in the autoTICI pipeline, followed by the landmark
registration step, while phase selection, pre-processing, and pre-post registration were relatively quick,
taking only a few seconds for each view.

Table 2.3: Streaming reliability and computational times for running autoTICI on the OIP for each patient, with separate times
reported for the AP and lateral views.

ATC001 ATC002 ATC003 ATC004
Reliability (%) 100 100 - -

-No. frames 86 69 - -
-Acquisition rate (fps) 3 3 - -

Mean computational time (AP,
Lateral) (s)

280 (171, 109) 284 (175, 109) 283 (174, 109) 284 (172, 112)

-Pre-processing 8 (4, 4) 4 (1, 3) 5 (2, 3) 5 (1, 4)
-Landmark prediction 63 (32, 31) 64 (32, 32) 74 (38, 36) 76 (39, 37)
-Atlas registration 187 (124, 63) 189 (127, 62) 185 (125, 60) 186 (126, 60)
-Pre-post registration 6 (3, 3) 6 (3, 3) 6 (3, 3) 6 (3, 3)
-Phase selection 16 (8, 8) 11 (6, 5) 14 (7, 7) 10 (5, 5)

OIP = Open Innovation Platform; fps = frames per second; AP = Anteroposterior

2.4.4. Clinical implementability
Interviews
We conducted interviews for three of the four included patients: the interview for ATC003 could not be
scheduled within a week post-EVT and was therefore not conducted according to protocol. The EVTs
of ATC002 and ATC004 were performed by the same clinician (obs 3). For ATC001, two interventional
radiologists (obs 1 and obs 2) were present during the EVT, and both were interviewed, resulting in a
total of four interviews with three distinct clinicians. All interviews were conducted by LS. Obs 1 and
2 were specialized in body procedures, with 1 and 2 years of experience in independently performing
EVTs, respectively, and obs 3 was a neuro-interventional radiologist with extensive experience (9 years)
in performing EVT procedures. Table D.1 (Appendix D) describes the characteristics of the included
clinicians and summarizes their responses given during the interview.

Clinical usability
Figure 2.5 presents the SUS scores assigned to autoTICI during each interview. Table D.2 (Appendix
D) displays the corresponding Likert scales awarded for each usability aspect. The average SUS score
for autoTICI was 81.3, indicating excellent usability within the workflow of interventional radiology [41].
Higher SUS scores were assigned to ATC001 compared to ATC002 and ATC004, with a notably lower
score in the second interview of observation 3, particularly concerning the questions on consistency
(Q6) and confidence (Q9) (Table D.1, Appendix D). Obs 3 attributed this decline to the inaccurate
autoTICI prediction for patients ATC002 and ATC004 (Figure 2.4). AutoTICI received maximum SUS
scores from all clinicians for questions regarding simplicity, ease of use, and intuitiveness (Q2, Q3, Q10).
All clinicians found the user interface easy to understand and expected that autoTICI would be quick to
learn when implemented (Q7, Q8). In the first three interviews, the clinicians stated they would want to
use autoTICI frequently in the angiography suite (Q1). During both interviews conducted for ATC001,
autoTICI was rated highly consistent, with an average score of 4.5 out of 5 (Q6). In contrast, for ATC002
and ATC004, the consistency scores dropped to 2 and 1, respectively, due to the inaccurate predictions
of autoTICI (Figure 2.4). The question about the need for technical support when using autoTICI in the
clinic (Q4) was challenging to answer since ‘autoTICI was not yet integrated in the clinic’ (obs 1). Obs
2 mentioned that ‘if autoTICI were automatically integrated, minimal support would be needed, but if
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manual steps are required, assistance with implementation would be necessary’.

Figure 2.5: System Usability Scale (SUS) scores assigned to autoTICI during each interview.

Confidence in eTICI scoring
Confidence in eTICI scoring decreased from 4 to 3.75 with the addition of autoTICI feedback (Figure
2.6). For ATC002, obs 3 experienced doubt in visual eTICI scoring due to a ‘small borderline thrombus
that made it difficult to distinguish between 2B and 2C scores’. For ATC004, doubt arose because
‘IVT had resolved the occlusion, but a small perfusion defect was still present’. AutoTICI did not im-
prove confidence for ATC002 and even decreased it for ATC004 due to repeated inaccurate reperfusion
predictions. For ATC001, there was no doubt regarding visual eTICI scoring, as the ‘case was straight-
forward with no complications’ (obs 1). This is reflected in Table D.1 (Appendix D), where the clinicians
chose not to change their eTICI scores or perform another attempt based on autoTICI feedback. How-
ever, obs 1 also mentioned that ‘during challenging situations — like performing EVT at night, when
fatigued, or under stress - maintaining a consistent score can be difficult’ and obs 2 added that ‘eTICI
scoring can be inconsistent due to conceptual confusion regarding the TDT’. Regarding autoTICI, they
both expressed doubts about the predicted reperfusion percentage in the AP view, due to a segmen-
tation error at the distal part of the brain mask. Nevertheless, they still suggested that in such cases,
autoTICI could increase confidence, as reflected by their Likert scores either remaining at 4 (obs 1) or
increasing from 4 to 5 (obs 2).

Figure 2.6: Confidence in eTICI scoring, measured on a Likert scale of 0-5, with scores indicated in orange for assessments
with autoTICI feedback and in blue for assessments without it.
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Added value of autoTICI
All clinicians recognized the intended use of autoTICI as a decision-support tool in the angiography
suite. Obs 1 noted that ‘autoTICI could be valuable as decision support when I am alone, stressed, or
tired, or in difficult cases’. Obs 1 suggested a 5-minute time window for autoTICI processing (represent-
ing the waiting time during suction), while obs 2 recommended 1 minute. Obs 3 noted that autoTICI
could add value not only as a clinical tool but also as a research tool to provide a consistent and more
objective metric for comparing stroke-related studies. In clinical settings, autoTICI would be particu-
larly supportive in cases of uncertainty (e.g., distinguishing between eTICI grades 2B and 2C or in
exceptional cases like ATC004). However, autoTICI currently lacks the necessary robustness and ac-
curacy, as reflected by decreased confidence and increased inconsistency. Therefore, ‘before clinical
implementation, autoTICI must become more robust and accurate’ (obs 3).

2.5. Discussion
2.5.1. Interpretation of results
Regarding technical feasibility, the CloudCast hardware reliably streamed all DSA frames to the OIP,
acquired at a frame rate of 3 fps, which is the rate typically used in clinical practice. AutoTICI was
processed on the OIP with an average computational time of 283 ± 1.90 seconds, with the AP view
taking about one minute longer than the lateral view. This discrepancy is attributed to the atlas registra-
tion step, which took longer for the AP view due to the higher number of AP atlases involved. The total
computational time fits the 5-minute time windowmentioned by obs 1 during the clinical implementation
interview. However, this interval was based on the waiting time during suction. Since the post-EVT
DSA, required as input for autoTICI, is acquired after thrombus retrieval, this time window does not ap-
ply to autoTICI. Obs 2 suggested a maximum waiting time of 1 minute for autoTICI in a clinical setting,
highlighting the need to reduce its computational time. Most time was consumed by atlas registration
(65.7%) and landmark prediction (24.5%), making these steps primary targets for improving speed.

AutoTICI received an average SUS score of 81.3, indicating excellent usability within the intended
workflow, particularly for simplicity, intuitiveness, and ease of use. However, we identified issues which
resulted in low SUS scores for confidence and consistency, hindering clinical implementation. These
problems were mainly due to unreliable atlas registration, resulting in incorrect brain masks in five out of
eight images across all patients (Figure 2.4). Another identified problem was the mislabeling of pixels
at the mask borders as non-perfused, which occurred in three out of four patients. This issue stems
from the lower contrast intensity in the distal brain regions, which is due to the reduced tissue density
and the smaller amount of contrast agent that reaches these areas. Consequently, these regions fail
to exceed the segmentation threshold, leading to an underestimation of the reperfusion percentage.
Despite these issues, clinicians expressed a desire to use autoTICI frequently and recognized its value
as a decision support tool during EVT, particularly during night shifts, in stressful or tiring situations, or
for difficult cases, such as distinguishing between 2B and 2C scores. AutoTICI could also help resolve
conceptual confusion about defining the TDT area. However, it may not provide significant benefits in
straightforward EVT cases. Furthermore, it is important to note that the clinicians’ interest in autoTICI
presupposed a future, more robust version, without the limitations and errors experienced during the
pilot study. Section 2.5.2 explores the improvements required to achieve the required accuracy and
efficiency.

2.5.2. Further improvements for clinical implementation
First, the atlas registration step requires improvement, as it caused the most issues during the ‘autoTICI
to clinic’ study and had the longest processing time. Atlas registration is a challenging task because it
requires inter-patient alignment, which is particularly difficult for DSA images due to variations in vascu-
lar anatomy and the lack of anatomical information, as DSA only visualizes the vessels. This complexity
is further increased in the context of stroke, where additional variations in perfusion levels are caused
by the occlusion [42–44]. Therefore, we recommend bypassing the atlas registration step in autoTICI
by directly segmenting the brain masks on the MinIPs, which is further discussed in Chapter 4. Elimi-
nating atlas registration would also remove the need for landmark detection, which currently serves as
its initial registration step, further reducing computational time. To further minimize computational time,
we suggest exploring the removal of landmark detection in the pre-post registration step. Alternative
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registration techniques, such as SIFT, which have shown promising results in similar registration tasks
in other studies, could offer a potential solution [44]. To potentially address the issue identified in the
perfusion segmentation step, we suggest exploring the use of adjustable thresholds based on depth or
developing region-specific thresholds for areas with varying contrast intensities.
Second, further automation of autoTICI is necessary for clinical implementation. The current version
requires users to manually specify input sequences, view, hemisphere, occlusion location, and head ori-
entation. Automating the detection of these parameters would reduce manual inputs, making autoTICI
more suitable for the clinical workflow. To accommodate case-specific variations, we recommend keep-
ing the selection of input DSA sequences a manual step.
Third, we recommend continuing to use the OIP for the clinical implementation of autoTICI, given its
potential to enable reliable real-time image data streaming in the angiography suite. However, since
the pilot study was not conducted during the procedure, the final steps of the OIP pipeline, such as
sending results from the OIP back to CloudCast and displaying them on the screen in the room, were
not done. Investigating these steps in a clinical setting would be valuable for future research.

2.5.3. Limitations
The results of this study should be interpreted considering several limitations. The first limitation was
the small sample size (n = 4), leading to a descriptive case analysis rather than a population-based
evaluation. A larger sample size would have provided greater clinical variability (different eTICI grades
and occlusion locations) and a broader range of scenarios to better assess the added value of autoTICI.
Furthermore, conducting interviews with more clinicians with varied specialities and experience levels
could offer further insights and opinions valuable for improving autoTICI and enhancing its clinical im-
plementation.
Second, due to issues with CloudCast, we could only assess the technical feasibility for 2 patients,
which is insufficient to draw definitive conclusions about streaming reliability. Further investigation is
needed to determine if reliability remains at 100% when streaming a larger volume of images or images
acquired at a higher frame rate.
The third limitation concerns the SUS scoring method for investigating autoTICI’s usability. Since au-
toTICI is not yet implemented, physicians found it challenging to answer certain questions, such as
the need for technical support when using autoTICI in the clinic (Q4). Although we provided a detailed
explanation of the potential future application, this is not equivalent to the experience of actually using
it in the angiography suite. Nevertheless, the SUS still provided a good indication of the strengths and
weaknesses of autoTICI in terms of usability.

A strength of this research is that the interviews were conducted in close proximity to a real clinical
setting, providing valuable insights into the intended use of autoTICI within its actual clinical context.
Furthermore, by involving clinicians early in the process, both in the design phase and through inter-
views, they became familiar with autoTICI, which is advantageous for future implementation.

2.6. Conclusions
In conclusion, autoTICI was successfully integrated into the workflow of the interventional radiology
practice. The pilot study showed that the performance of autoTICI is currently insufficient for implemen-
tation in clinical practice. Nevertheless, with an average SUS score of 81.3, autoTICI still demonstrated
excellent usability within the clinical workflow, indicating its potential for future clinical use. Besides that,
multiple interventional radiologists recognized the added value of autoTICI as a clinical decision-support
tool in the angiography suite, particularly in challenging situations such as night shifts, high-stress con-
ditions, or complex cases.

Future research should prioritize enhancing the reliability of autoTICI by improving the atlas registration
and perfusion segmentation steps. Additionally, further automation of autoTICI is required for clinical
implementation. Once these advancements aremade, we recommend continuing the ’autoTICI to clinic’
study to collect more data, utilizing the improved autoTICI method for a more accurate evaluation of its
clinical implementability. Following these improvements, autoTICI will be ready for the next phase in
the AI funnel, involving a clinical trial to establish its role as a decision support tool during EVT.
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Inter-observer agreement in eTICI

scoring: a comparative analysis with
and without autoTICI

3.1. Introduction
3.1.1. Inter-observer variation in eTICI scoring
Extended Thrombolysis In Cerebral Infarction (eTICI) is a six-category grading scale used to assess the
reperfusion status and thus the success of an endovascular thrombectomy (EVT) after acute ischemic
stroke (AIS). Despite its widespread use in clinical practice, eTICI scoring suffers from moderate to sub-
stantial inter-observer variability due to its dependence on the clinician’s visual assessment of digital
subtractive angiography (DSA) images [20–22]. To address this and other drawbacks of eTICI scoring,
our research group has developed a fully automated deep-learning-based variant, referred to as ‘au-
toTICI’1. Due to its objective and standardized nature, autoTICI is expected to increase inter-observer
agreement of eTICI scoring.

3.1.2. Goals and objectives
This study primarily aims to determine whether the implementation of autoTICI enhances inter-observer
agreement in eTICI scoring, thereby potentially improving the consistency of reperfusion grading. The
secondary objective is to evaluate whether autoTICI improves observer efficiency, measured as the
time required for eTICI scoring of a patient’s DSA sequences. Both objectives were assessed in a
core-laboratory setting by comparing both inter-observer agreement and observer efficiency with and
without autoTICI feedback.

3.2. Methods
This study took place in an imaging core-laboratory where four experienced interventional radiolo-
gists evaluated patient DSA sequences in two individual scoring sessions, one using the eTICI scale
alone and one using the eTICI scale supplemented by autoTICI results. Their assessments were com-
pared using standard statistical outcome measures to determine what effect autoTICI had on the inter-
observer agreement and scoring efficiency. The rest of this section describes the study’s technical
setup; results are discussed in section 3.3.

3.2.1. Patient inclusion
Patients were selected from the MR CLEAN Registry (parts 1 and 2), a prospective multi-centre registry
of consecutive patients treated with EVT in the Netherlands between March 2014 and November 2017
[4, 15]. Inclusion criteria required the presence of a large vessel occlusion on DSA within the internal

1This is one chapter in a larger thesis. See chapter 1 for a full background.
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carotid artery (ICA), ICA-top, or the M1 and M2 segments of the middle cerebral artery (MCA). Patients
were excluded if (1) their DSA sequences contained only unsubtracted images, (2) substantial motion
artefacts were present, (3) the DSAs were of poor image quality, (4) there was a limited field of view
(FoV) of the target downstream territory (TDT), (5) pre- and post-EVT DSA sequences were poorly
registered by autoTICI, (6) atlas registration in autoTICI resulted in an unusable brain mask, or (7) no
venous frames were classified by autoTICI.
For each included patient, a total of four DSA sequences, acquired before and after the EVT in AP and
lateral views, were selected for the core-laboratory study.

3.2.2. Core-laboratory study
The four participating radiologists (observers 1 - 4) were blinded to all clinical data. The study, following
a fully crossed design, consisted of two individual scoring sessions separated by two months to mini-
mize recall bias [45, 46]. To further reduce bias, the DSA sequences were presented in randomized,
different orders in each session.

3.2.3. eTICI scoring
For each scoring session, observers were provided with a local executable developed for the study,
which the observers ran on their local computers. The executable displayed a DICOM viewer showing
the four DSA sequences for each patient alongside a dropdown menu with the eTICI grades to select
from. During the second session, the autoTICI results were displayed alongside the DSA sequences.
The executable saved the grades and recorded the time needed to score each patient. Appendix E
shows an example of the executable for both sessions.

3.2.4. Training session
To mitigate bias caused by observers’ unfamiliarity with the executable and with autoTICI, as well as
potentially differing definitions for reperfusion and the TDT, we conducted a training session prior to
the study. The training session detailed the study design, provided precise eTICI scoring definitions,
and explained the autoTICI model output. The observers also practiced on a training set of 10 patients
to become familiar with the executable. We provided the following eTICI scoring definitions to the
observers: reperfusion was defined as the antegrade restoration of capillary blush in the TDT. The TDT
was defined as the occluded brain region that was supplied via antegrade blood flow prior to stroke
onset.

3.2.5. Outcome measures
Inter-observer agreement
Inter-observer agreement for eTICI with andwithout autoTICI was quantified using the two-sidedweighted
kappa and two-way mixed intraclass correlation coefficient (ICC) [46]. The two-sided weighted kappa
was used to assess absolute differences in eTICI scores between observers, facilitating direct com-
parison with other studies found in literature [47–51]. Agreement levels for the weighted kappa were
categorized using Landis and Koch’s guidelines: less than 0 indicates no agreement, 0–0.2 slight agree-
ment, 0.2–0.4 fair agreement, 0.4–0.6 moderate agreement, 0.6–0.8 substantial agreement, and 0.8–1
almost perfect agreement [52]. A two-way mixed ICC was calculated for both absolute agreement,
assessing differences between exact values, and consistency, evaluating how closely different raters
provided similar rank orders [46]. This dual approach allowed for a comprehensive assessment of inter-
rater reliability. ICC values below 0.5 indicate poor reliability, 0.5–0.75 moderate reliability, 0.75–0.9
good reliability, and above 0.9 indicate excellent reliability [53].

The two-sided weighed kappa was also determined for the dichotomized eTICI score, which is a cat-
egorization used during EVT to divide perfusion levels into failure (eTICI grades ≤ 2A) and success
(eTICI grades ≥ 2B). This analysis aimed to provide insights into the potential impact of autoTICI on
decision-making during EVT, such as whether to attempt further thrombus removal.

The change in eTICI scores between the two sessions was assessed by calculating the eTICI scores
for each observer and across all observers. Scores were reported as either mean or median values,
along with 95% Confidence Intervals (CIs) or Interquartile Ranges (IQRs), depending on the normality
of the data. Statistical analysis was conducted using a two-sided paired Student’s t-test for normally
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distributed data or a two-tailed Mann-Whitney U-test for non-normally distributed results.

Additionally, the percentage of observer consensus for each eTICI grade was calculated by dividing the
number of times all observers assigned the same grade by the total number of times that grade was
assigned across all observers.

Time to score
The time required to complete the eTICI scoring, with and without the addition of autoTICI feedback,
was reported usingmeans and 95%CIs or medians and IQRs, depending on the normality of the results.
Comparisons were made using the two-sided paired Student’s t-test or the two-tailed Mann-Whitney
U-test. Additionally, scoring times were calculated for each eTICI grade.

3.2.6. Sample size calculation
For the inter-observer agreement calculation, it was expected that the two-sided weighted kappa would
increase by one category, moving from ‘moderate to substantial’ (κ = 0.60) to ‘substantial to almost
perfect’ (κ = 0.80) [20, 51]. Considering a significance level (α) of 0.05 (95% confidence), a power
(1-β) of 80%, and a proportion of positive ratings of 0.5, the sample size calculation indicated that a
minimum of 126 patients was required to detect a significantly different kappa between eTICI with and
without autoTICI feedback [54]. For the dichotomized eTICI score, a higher agreement was expected,
resulting in a lower required sample size [54].

To calculate the number of patients needed to capture a significant change in scoring time between
eTICI and eTICI combined with autoTICI, a minimum of 34 images is required. This calculation con-
sidered the same significance level (α) and power (1-β) as previously mentioned, with an expected
scoring time of 60 seconds, a difference of 30 seconds and a standard deviation of 60 seconds.

3.3. Results
3.3.1. Patient inclusion
A total of 126 patients were selected from the MR CLEAN Registry (parts 1 and 2) using randomized
stratification to reflect the distribution of occlusion locations and eTICI grades within the registry, as
detailed in Table 3.1 [4]. During the core-laboratory study, the raters observed an additional occlusion
in the anterior cerebral artery (ACA) for 4 patients, which caused confusion. Therefore, we decided to
remove these patients from the analysis, resulting in a total of 122 patients (Table 3.1).

Table 3.1: Summary of patient characteristics (n = 122). AutoTICI reperfusion percentages are reported as median and Inter
Quartile Ranges [IQRs].

No. patients 122
No. occlusion locations

- ICA (%) 24 (20)
- M1 (%) 70 (57)
- M2 (%) 28 (23)

No. of eTICI grades
- 0 (%) 22 (18)
- 1 (%) 4 (3)
- 2A (%) 23 (19)
- 2B (%) 27 (22)
- 2C (%) 11 (9)
- 3 (%) 35 (29)

Reperfusion autoTICI (%)
- Overall 68 [34, 88]
- AP 79 [49, 93]
- Lateral 57 [28, 79]

ICA = Internal Carotid Artery; M1 = first segment of Middle Cerebral Artery (MCA); M2 = second segment of MCA; eTICI =
extended Thrombolysis In Cerebral Infarction; AP = Anteroposterior
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3.3.2. AutoTICI performance
Table 3.1 presents the medians and IQRs of the reperfusion percentages calculated by autoTICI for the
included patients, separately for AP and lateral views, and the overall median. Notably, the reperfusion
percentage was higher in the AP view than in the lateral view.
Figure 3.1 shows four examples of autoTICI segmentations on included patient data. AutoTICI demon-
strated good performance in 67 patients (55%), as illustrated in the first example of Figure 3.1, where it
accurately predicted an average reperfusion percentage of 53% (AP: 57%, lateral: 48%), correspond-
ing to an eTICI grade of 2B. For this patient, inter-observer agreement was low in the session without
autoTICI, with scores ranging from 2A to 2C, but with autoTICI feedback, all observers consistently
predicted 2B. The brain registration step was generally accurate, due to the exclusion of cases with
failed atlas registration. However, in 8 cases (6.5%), the brain mask was still too small, leading to an
underestimation of the reperfusion percentage, as shown in the second example in Figure 3.1. Addi-
tional issues were noted in the perfusion segmentation step. In 9 cases (7.5%), vascular overprojection
led to an undersized TDT, as depicted in the third example in Figure 3.1, which shows overprojection
of the ACA territory. Another issue in the perfusion segmentation step was the mislabelling of pixels
as non-perfused at the mask borders, as illustrated in the fourth example of Figure 3.1. This issue was
consistently observed in 38 patients (31%), leading to slightly underestimated reperfusion percentages.

Figure 3.1: Four examples of autoTICI predictions; with a good prediction, undersized brain mask, overprojection leading to an
undersized TDT and missed reperfused area at the mask borders. Reperfused and non-perfused segmentations are depicted

in green and red, respectively.

3.3.3. Inter-observer agreement
Table 3.2 summarizes the inter-observer agreement analysis for eTICI scoring with and without au-
toTICI feedback. The two-sided weighted kappa test indicated substantial agreement for visual eTICI
scoring alone (κ = 0.65) and with autoTICI feedback (κ = 0.67) (p = 0.99). Similar agreement levels
were observed for the dichotomized scores, with a more pronounced increase in the weighted kappa
when autoTICI feedback was included (p = 0.47). The two-way mixed ICC analysis showed ‘good’
inter-rater reliability for absolute measurements, which improved to ‘excellent’ for the consistency ICC.
Across both scoring sessions, observer agreement was highest for eTICI grades 0 and 3, with lower
agreements for the intermediate grades. The addition of autoTICI generally improved observer agree-
ment rates, despite the minor reductions in agreement for grade 1 (from 15% to 13%) and grade 2C
(from 16% to 15%).

Table 3.3 provides the medians and IQRs of the eTICI scores assigned by each observer when scoring
with and without autoTICI feedback, along with the overall eTICI grade across all observers. The
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Table 3.2: Results of the inter-observer agreement analysis for eTICI scoring without (session 1) and with (session 2) autoTICI
feedback.

Session 1: eTICI Session 2: eTICI + autoTICI
Two-sided weighted kappa

- eTICI score 0.65 0.67
- Dichotomized score 0.68 0.76

Intraclass Correlation Coefficient (ICC)
- Consensus 0.91 0.92
- Absolute agreement 0.81 0.84

Observer agreement (%)
- Overall 50 55
- eTICI 0 60 65
- eTICI 1 15 13
- eTICI 2A 36 42
- eTICI 2B 18 24
- eTICI 2C 16 15
- eTICI 3 42 47

eTICI = extended Thrombolysis In Cerebral Infarction

median eTICI grade across both scoring sessions was 2B [2A, 3], aligning with the median autoTICI
reperfusion percentage of 68 [34, 88] (Table 3.1), which corresponds to an eTICI grade of 2B [2A,
2B]. In the second scoring session, the median score for observer 2 showed a slight decrease toward
the overall median. However, the addition of autoTICI did not result in significant differences in the
eTICI grades, as indicated by the Mann-Whitney U-test (p = 0.24, p = 0.06, p = 0.63, and p = 0.45 for
observers 1 - 4, respectively).

Table 3.3: eTICI grades assigned by each observer when scoring without (session 1) and with (session 2) autoTICI feedback,
along with the overall average eTICI grade. Values in the table represent the medians and Inter Quartile Ranges [IQRs].

Grade eTICI Grade eTICI + autoTICI
Observer 1 2B [2A, 2C] 2B [2A, 2C]
Observer 2 2C [2A, 3] 2B [2A, 2C]
Observer 3 2C [2A, 3] 2C [2A, 3]
Observer 4 2B [2A, 3] 2B [2A, 3]
Overall 2B [2A, 3] 2B [2A, 3]

eTICI = extended Thrombolysis In Cerebral Infarction

3.3.4. Time to score
Figure 3.2 visualizes the scoring times and IQRs of each observer in boxplots. Four outliers were
excluded from the analysis due to scoring times exceeding 600 seconds. The addition of autoTICI
feedback did not result in a significant increase in overall median scoring time, as indicated by the
Mann-Whitney U-test (p = 0.11). However, for individual observers 1, 2 and 3, the scoring time did
increase significantly (p = 0.0001, p = 0.040, and p = 0.011, respectively), whereas the time for observer
4 significantly decreased (p = 0.031). Figure 3.2 shows considerable variation in scoring times recorded
per observer, particularly for observers 2 and 3, with this variation being more pronounced during the
session with autoTICI feedback.

Table 3.4 presents the median scoring times for each assigned eTICI grade, the overall median scoring
time across all observers, and the percentual difference between the two sessions. For most eTICI
grades, the inclusion of autoTICI feedback led to increased scoring times, except for grades 1 and 3,
where scoring times were reduced.
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Figure 3.2: Time to score measured for all observers when performing eTICI grading without (session 1) and with (session 2)
autoTICI feedback.

Table 3.4: Scoring time for each assigned eTICI grade, measured when scoring without (session 1) and with (session 2)
autoTICI feedback, along with the percentual difference between the two sessions. Values in the table represent the median

and Inter Quartile Ranges [IQRs].

eTICI grades Scoring time eTICI (s) Scoring time eTICI +
autoTICI (s)

Difference in scoring
time (%)

0 22 [12, 33] 24 [13, 40] +9.1
1 31 [10, 35] 23 [15, 69] -26
2A 21 [10, 35] 22 [13, 42] +4.8
2B 31 [14, 41] 36 [22, 55] +16
2C 30 [15, 45] 31 [16, 61] +3.3
3 26 [18, 41] 22 [15, 34] -15
Overall 25 [14, 39] 26 [15, 46] +4.0

eTICI = extended Thrombolysis In Cerebral Infarction

3.4. Discussion
Due to the subjective nature of visual reperfusion estimation, eTICI scoring suffers from fair to moderate
inter-observer agreement [20, 47, 50, 51]. This study aimed to assess whether the implementation of
autoTICI could improve inter-observer agreement in eTICI scoring.

The study demonstrated substantial inter-observer agreement for eTICI scoring both alone and with au-
toTICI feedback, with weighted kappa values of 0.65 and 0.67, respectively. The addition of autoTICI
feedback did not lead to a statistically significant increase in agreement. Dichotomization resulted in
a higher kappa value for the session with autoTICI feedback, reflecting the increased observer agree-
ment observed across nearly all eTICI grades (Table 3.2). However, the overall agreement remained
substantial across the two scoring sessions, and the difference in weighted kappa was not statistically
significant. Moreover, the ICC analysis showed that interobserver reliability improved from ‘good’ for ab-
solute agreement to ‘excellent’ for consistency ICC. This suggests that while the observers maintained
similar rank orders for eTICI grades, discrepancies existed in the exact assigned grades. The addi-
tion of autoTICI feedback slightly reduced these discrepancies by aligning individual observers’ eTICI
scores more closely with the overall median, although this improvement was not statistically significant
(Table 3.3).

The lack of statistical significance could be explained by the fact that the observers were all experienced
neuro-interventional radiologists, who were already highly skilled in eTICI scoring and therefore might
benefit less from autoTICI feedback. Furthermore, the training session emphasized standardized defi-
nitions for eTICI scoring, potentially reducing the variability associated with conceptual differences that
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typically contribute to inter-observer variability in clinical settings. While this approach was intended to
improve result comparability, it may have limited the potential impact of autoTICI in reducing variability.
Future research could include clinicians with varying levels of experience to better assess the influ-
ence of autoTICI in a broader clinical context. Moreover, the lack of significance may also be attributed
to issues identified in autoTICI. Three issues were observed (3.3.2): undersized brain masks (6.5%),
vascular overprojection (7.5%) and incorrect segmentation of non-perfused pixels at the mask borders
(31%), also noted in studies by Su et al. and van der Sluijs et al. [27, 28]. These issues likely reduced
observer confidence in autoTICI during the second scoring session, leading to continued reliance on
visual eTICI scoring. Addressing these problems should be a priority in future research. Exploring
different thresholds based on the level of contrast intensity could be a potential approach to improving
perfusion segmentation accuracy.

It was observed that the median autoTICI reperfusion percentage was higher in the AP view than in the
lateral view (Table 3.1). This difference is attributed to the greater overprojection of contrast intensity
from the lateral hemisphere onto the AP view compared to the overprojection from the AP hemisphere
onto the lateral view.

Regarding scoring efficiency, there was no significant increase in the time to perform eTICI scoring
without and with the addition of autoTICI. However, for three of the four observers, the time required
for scoring did increase. This increase could be attributed to the need to process and incorporate more
information, especially when the model produced incorrect predictions, requiring observers to evaluate
whether to rely on the model’s output. The scoring time for eTICI grade 1 showed the most significant
decrease, with a reduction of 26% (Table 3.4), likely because this grade is particularly challenging to
determine due to conceptual confusion between reperfusion and recanalization, and autoTICI feedback
may have provided additional confidence in these cases.

The inter-observer agreements observed in this study were consistent with those reported in the liter-
ature [47, 50, 51]. Table 3.5 provides a summary of similar studies investigating inter-observer agree-
ment in visual eTICI scoring. Volny et al. reported fair to moderate agreement, with Krippendorff’s
alpha values ranging from 0.36 to 0.56, while Heiferman et al. found a fair to moderate agreement with
weighted kappa values between 0.35 and 0.57, both of which are lower than the substantial agreement
found in our study [47, 51]. Notably, these studies were conducted in clinical settings, where operators
tend to overestimate scores by 33% compared to core-laboratory members, as shown by Fahed et al.
[50]. When Heiferman et al. repeated their analysis in a core-laboratory setting, they observed moder-
ate to substantial agreement (κ = 0.42-0.70), which more closely aligns with our findings [51]. Similar
to our study, Nielsen et al. developed a deep learning-based method for automated and objective TICI
scoring to improve inter-observer agreement [20]. Their method achieved a substantial agreement (κ =
0.61) when combined with expert TICI ratings, which is comparable to the agreement levels observed
in our study [20].

Table 3.5: Summary of studies investigating the inter-observer agreement of eTICI scoring, compared to our method.

Authors (year of
publication)

Observers eTICI grading
system

Measure Results

AutoTICI (2024) Core-laboratory
members (n = 4)

eTICI, eTICI +
autoTICI

Cκ 0.65, 0.67

Nielsen et al.
(2021)

Core-laboratory
members (n = 2)

mTICI + automated
approach

Cκ 0.65

Heiferman et al.
(2020)

Core-laboratory
members (n = 4)

mTICI Cκ 0.42–0.70

Clinical operators (n
= 4)

mTICI Cκ 0.35–0.57

Volny et al. (2017) Clinical operators (n
= 3)

eTICI Kα 0.36–0.56

Cκ = Cohen’s kappa; Kα = Krippendorff’s alpha

The results of this study should be interpreted with several limitations in mind. The first limitation
regards the sample size calculation. The anticipated difference between the scoring sessions, with the
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observer agreement to increase with one class, was overestimated. This overestimation, along with the
extra exclusion of four patients, may have led to an insufficient sample size to detect a small difference.
However, given that the actual difference between the two groups was only 0.02, a larger sample size
would likely still have resulted in a non-significant finding.

The second limitation pertains to the measurement of scoring efficiency, which was conducted automat-
ically by the local executable. As observers performed the scoring independently on their local PC’s,
recorded times may have been affected by external factors, such as forgetting to close the executable
during breaks or when attending to other tasks. These factors likely contributed to the large variation
in scoring times across observers, suggesting that the results may not accurately reflect the true scor-
ing times. Therefore, these findings should be interpreted with caution. Conducting the scoring in a
controlled setting would have yielded more reliable measurements.

The third limitation is the absence of an intra-observer analysis with and without autoTICI feedback.
Intra-observer variability in the literature ranges from 0.45 to 0.70 [51], indicating that the differences
observed between the first and second scoring sessions could partly result from variability within indi-
vidual observers. Incorporating an intra-observer analysis would have provided valuable insights into
this influence and clarified whether autoTICI had a significant effect in reducing such variability.

3.5. Conclusions
This core-laboratory study evaluated whether the implementation of autoTICI could enhance inter-
observer agreement in eTICI scoring. We found similar agreement levels for eTICI scoring without and
with autoTICI, with weighted kappa values of 0.65 and 0.67, respectively. These substantial agreement
levels align with findings from previous studies in the literature. Despite issues identified in autoTICI,
the overall eTICI scores and observer agreements remained unaffected. Furthermore, the addition of
autoTICI feedback did not significantly impact the overall observer efficiency, indicating that the sup-
plementary information did not prolong the time required for eTICI scoring — both encouraging results
for the potential clinical application of autoTICI.

Future research should focus on addressing the identified issues in autoTICI. Repeating the second
scoring session with an improved version of autoTICI could provide a more accurate assessment of its
impact on inter-observer agreement. Additionally, including clinicians with varying levels of experience
would help evaluate the tool’s potential effectiveness in a clinical context.



4
Segmentation of vascular territories
on cerebral DSA using deep learning

4.1. Introduction
4.1.1. Clinical background
The standard treatment for acute ischemic strokes (AIS) with a large vessel occlusion (LVO) is an
endovascular thrombectomy (EVT), a minimally invasive mechanical procedure for removing blood
clots or thrombi [10, 11]. During EVT, digital subtraction angiography (DSA) is the imaging modality
used to visualize cerebral blood vessels and perfusion. The effectiveness of an EVT can be assessed
by estimating the reperfusion status on DSA images using the Thrombolysis In Cerebral Infarction
(TICI) grading system [14]. However, TICI scoring suffers from moderate to substantial inter-observer
variability, presenting challenges for structural outcome comparison [20, 23–26]. To address these
issues, our research group developed and evaluated ‘autoTICI’, a fully automated and objective method
for assessing reperfusion after EVT treatment, detailed in the studies published by Su et al. and Van
der Sluijs et al. [27, 28] and in section 1.1.41.

While autoTICI has shown potential in predicting clinical outcomes with accuracy comparable to tradi-
tional eTICI scoring, its robustness still requires improvement. Our previous studies have shown that
challenges in the autoTICI pipeline often arise from unsuccessful vascular territory segmentation [27,
28], a critical step in the autoTICI pipeline where the occluded cerebral artery’s vascular area is mapped
to the post-EVT minimum intensity projection (MinIP) using atlas registration. The segmentation de-
fines the measurement area for subsequent steps in the autoTICI pipeline, allowing for comparison of
reperfused areas before and after EVT treatment.

4.1.2. Atlas registration
Since cerebral DSA images only display vessel structures and lack clear anatomical boundaries, direct
segmentation of vascular territories is challenging, especially in cases of proximal occlusions. This
issue can be addressed by bringing prior information to the segmentation task, for which atlas registra-
tion is a widely used method, which involves aligning a standardized anatomical ‘atlas’ with a patient-
specific image [43]. An atlas refers to a reference image that depicts a typical anatomy under normal
conditions and includes predefined segmentations of anatomical regions. Registering the atlas to the
patient’s image yields a transformation which allows the atlas segmentation to be transformed and
treated as a segmentation estimate for the patient image [55]. This is particularly useful for delineating
specific tissues or regions that are difficult to identify [42].

In autoTICI, atlas registration is employed to map predefined vascular territories, specifically of the
internal carotid artery (ICA) and middle cerebral artery (MCA)— commonly affected in ischemic strokes
— onto the post-EVT MinIP [3–5]. To account for anatomical variation and topological differences, 21

1This is one chapter in a larger thesis. See chapter 1 for a full background.
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atlases are used, selected from a non-stroke cerebral DSA dataset and segmented by an experienced
interventional radiologist (SC). These atlases are spatially aligned to the post-EVT MinIP using affine
registration, with the final atlas selected based on the highest Mattes Mutual Information (MI).

However, in the context of autoTICI, atlas registration presents particular challenges due to the need for
inter-patient alignment, which is difficult with DSA images, because of variations in vascular anatomy
and the lack of anatomical structures. This complexity is further compounded by stroke-related perfu-
sion changes caused by the occlusion [42–44]. In a recent study, Van der Sluijs et al. showed that
atlas registration was only successful in 79% of anteroposterior (AP) and 70% of lateral cases, leading
to incorrect determination of the measurement area and autoTICI results [28]. Given that the model
requires both AP and lateral views for a prediction, autoTICI was considered unreliable in 30% of cases.

Before autoTICI can be considered ready for clinical implementation, substantial improvements to its
vascular segmentation task are essential. A previously conducted literature review on state-of-the-
art registration techniques for cerebral DSA found that inter-patient registration techniques, such as
atlas registration, were not addressed in the literature [44]. This research gap presents challenges for
further improvement and validation of the atlas registration method. Another challenge is the lengthy
processing time required by atlas registration (2.4.3). For autoTICI to be effectively used as a decision-
support tool during EVT procedures, this processing time needs to be significantly reduced. Artificial
intelligence (AI) offers a promising solution to both challenges by potentially enabling direct prediction
of segmentation areas on cerebral DSA images, thereby eliminating the need for atlas registration.

4.2. Objectives and overview
This study aims to improve the robustness of autoTICI by developing an automated approach for direct
vascular territory segmentation on cerebral DSA. Initially, a deep learning-based approach for auto-
matic segmentation of vascular territories was developed and validated on an internal test set. The
effectiveness of the proposed method was assessed by comparing the automated segmentations with
those derived from atlas registration.
Section 4.3 describes the technical details of the proposed methodology, section 4.4 describes the
tests performed and section 4.5 describes their results.

4.3. Methods
Figure 4.1 outlines the proposed methodology. First, we manually created reference standard segmen-
tations (4.3.3 and 4.3.4), which were used to train (4.3.5) a deep learning framework (4.3.2) on 90%
of the imaging dataset (4.3.1). After validating this model (4.3.7), we tested both the model and the
atlas registration method on the remaining 10% and compared their performance (4.4.4). In addition,
we conducted three experiments (4.4.1 - 4.4.3) to assess the impact of training variations on model
performance.

4.3.1. Data inclusion
Imaging data was included from a subset of theMRCLEANRegistry (parts 1-3) [4, 15], which comprised
365 stroke patients and 1336 DSA sequences. This subset, previously used in a study on arterial
input functions (AIF) in cerebral DSA, was selected based on the availability of ICA and MCA vascular
territory segmentations for all post-EVT DSA sequences (n = 730). Patients were included in this subset
if their DSAs showed an ICA, M1, or M2 occlusion and an eTICI grade higher than 2A, indicating ‘high’
perfusion levels, which were necessary for AIF calculations. However, this selection may have caused
a selection bias towards higher perfusion outcomes. To mitigate this and enhance dataset diversity,
pre-EVT sequences (n = 606), indicative of ‘low’ perfusion levels, were also included in this study.
DSA sequences were excluded from this study if their MinIP (1) showed significant motion artefacts,
(2) failed to capture the largest part of the MCA or ICA within the field of view (FoV), (3) had poor image
quality, or (4) were oblique acquisitions (in between AP and lateral), resulting from patient head rotation
during the procedure. This exclusion criterion was established to focus the model’s predictive ability
primarily on AP or lateral views, in line with autoTICI’s output.
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Figure 4.1: Overview of the steps involved in training and testing of the proposed segmentation model, including
pre-processing, the division of included data into the internal training, validation, and test sets, and post-processing. The

traditional atlas registration approach is performed on the same internal test set images to facilitate segmentation comparisons.

4.3.2. nnUNet
For our deep learning framework, we chose no-new-UNet (nnUNet), which is widely recognized as the
state of the art for medical image segmentation [56, 57]. NnUNet is robust and versatile across various
imaging modalities and features a self-configurable framework capable of tuning the entire pipeline
based on the provided dataset, including pre-processing, network architecture selection, model training,
and post-processing. Figure 4.2 illustrates the ‘standard’ architecture of the nnUNet framework used
for 2D modalities [58].

4.3.3. Reference standard segmentations
Deep learning frameworks need labelled reference input to ’learn’ the task for which they are created. In
our case, we needed to provide nnUNet with reference standards for both the pre-and post-EVT DSA
images. For the post-EVT DSAs, the existing segmentations served as reference standards, which
were created for the post-EVT MinIPs using the autoTICI atlases. This was done manually by Matthijs
van der Sluijs (MS), a PhD candidate with expertise in stroke imaging and a contributor to autoTICI.
Reference standards for the pre-EVT DSAs were created by LS by manually registering the post-EVT
segmentations to the corresponding pre-EVT MinIPs and adjusting the masks for size, rotation and
scaling. All annotations were performed in MeVisLab 3.0.2, using an in-house tool.

4.3.4. Pre-processing
The initial pre-processing step involved generating MinIPs (2D) from the included DSA sequences (2D
+ t). To meet the input specifications required by nnUNet, the MinIPs and segmentations were resized
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Figure 4.2: ‘Standard’ architecture of the 2D nnUNet framework [58]

to 1024x1024 pixels, ensuring uniform size and pixel spacing [57]. Three labels were assigned to the
background, MCA and ACA segmentations. The ACA mask was created by subtracting the MCA from
the ICA, as the MCA is fully enclosed within the ICA. Figure 4.3 shows the 2D MinIPs alongside the
corresponding reference standard segmentations.

Figure 4.3: Examples of the 2D MinIP input images are displayed in AP and lateral views. On the right, the corresponding
reference standard segmentations are shown. The labels were assigned as follows: the background was labelled ‘0’ (black),

the MCA mask was labelled ‘1’ (grey), and the ACA mask (ICA - MCA) was labelled ‘2’ (white).

During the annotation of the reference standards, scaling caused the larger ICA mask to scale more
than the MCAmask, leaving residual lines at the ICA boundaries that were not fully covered by the MCA
mask and, therefore, not subtracted. Residual lines were removed from the ACA mask using a series
of morphological operations: erosion to separate the residual ICA lines, connected component analysis
to isolate and retain the largest mask, and dilation to restore the mask to its original size. Figure 4.4
shows the result of the morphological operations on the subtracted ACA mask.

4.3.5. Model training
We employed the 2D model of nnUNet (version 2) for training and testing [56]. We divided the input
data, the MinIPs and corresponding labels, into 10% for testing and 90% for training. The training data
was further divided into training and validation sets using an 80/20 split. A patient-based randomized
stratification was employed to ensure that images from the same patient remained within the same
split. Besides that, stratified sampling was performed to ensure class balance across the underlying
occlusion locations (ICA, M1, M2).
Model training was conducted on theGPU cluster of the ErasmusMC, using NVIDIAGeForce RTX 2080
Ti 11GB and NVIDIA A40 48GBGPUs, and on a local PC (Ubuntu 24.04 LTS, Linux 6.8.0) containing an
NVIDIA GeForce RTXGPU. During training, five-fold cross-validation was performed with 1000 epochs.
Model ensembling was performed by averaging the weights of the five models trained on each fold. No
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Figure 4.4: Visualization of the morphological operations — erosion, connected component analysis, and dilation — on the
ACA mask (ICA - MCA): (a) ACA mask (AP), with residual ICA mask lines; (b) ACA mask (AP) after preprocessing; (c) ACA

mask (lateral) with residual ICA mask lines; (d) ACA mask (lateral) after preprocessing.

adjustments were made beyond the default settings provided by nnUNetv2. Initially, separate models
were trained for the AP and lateral views. Subsequently, a combined model capable of distinguishing
between the AP and lateral views was developed by combining all data.

4.3.6. Post-processing
The predicted segmentations underwent the same morphological operations — erosion, connected
components analysis, and dilation — as were applied during pre-processing to ensure consistency.
Additionally, the ICA mask was reconstructed by combining the ACA and MCA labels. All pre-and
post-processing tasks were conducted in Visual Studio Code, using Python version 3.11.8.

4.3.7. Performance metrics
The model performance was evaluated by calculating the Dice Similarity Coefficient (DSC) and Aver-
age Surface Distance (ASD) for the predicted and reference standard segmentations. The DSC was
computed using the following equation:

DSC =
2× |X ∩ Y |
|X|+ |Y |

, (4.1)

where X and Y represent the set of pixel locations in the predicted and reference standard segmen-
tations, and |X ∩ Y | is the number of elements in both sets. The DSC quantifies the global overlap
between the two segmentations, with its value ranging from 0 to 1. A DSC of 1 indicates perfect agree-
ment, whereas a DSC of 0 signifies no overlap at all.

To complement the global assessment provided by the DSC, ASDwas employed as ametric tomeasure
local distances between the predicted and reference standard segmentations. The ASDwas calculated
as follows:

ASD =
1

|SX |+ |SY |

 ∑
x∈SX

min
y∈SY

d(x, y) +
∑
y∈SY

min
x∈SX

d(y, x)

 , (4.2)

where |SX | and |SY | are the sets of all points on the surface of segmentations X and Y . d(x, y) cal-
culates the Euclidean distance between point x on the predicted segmentation and point y on the
reference standard segmentation. The sums compute the minimum distances for all points on both
surfaces, and the overall expression averages these minimum distances. A lower ASD value indicates
closer alignment of the segmentation contours, with a value of 0 representing perfect conformity. For
both outcome measures, either the means and 95% Confidence Intervals (CIs) or medians and Inter
Quartile Ranges (IQRs) were calculated, based on the normality of the data.
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4.4. Experiments and benchmarking
By varying the characteristics of the training dataset, we were able to test the impact of training vari-
ations on model performance. We tested three variations: combined versus separate AP and lateral
models (4.4.1), full-sized versus half-sized training datasets (4.4.2), and full-phase versus single-phase
datasets (4.4.3). We also compared the proposed model against the existing atlas registration method,
evaluating both overall performance and performance across different occlusion locations and EVT
stages (4.4.4).

4.4.1. Comparison of combined and separate AP/lateral models
In an initial experiment, we assessed the performance of the segmentation models trained separately
for AP and lateral views and compared these to the combined model. This analysis aimed to determine
whether such a combined model, which was preferred due to its simple implementation, could achieve
similar results or even outperform the separate models for each view. The decision to proceed with
either the separatemodels or the combinedmodel for further experiments was based on their respective
performance outcomes (DSC and ASD). The models were statistically compared using either a two-
sided paired Student’s t-test or a Mann-Whitney U-test, depending on the normality of the results.

4.4.2. Evaluation of training size
A second experiment was conducted using two different dataset sizes to assess the impact of training
data volume on the model performance. The initial model, described in section 4.3.5, was trained and
tested using all input MinIPs. A second dataset was introduced, containing only half of its original size,
which was selected using patient-based randomized stratification to maintain a balanced representation
of the underlying occlusion locations. Both models were evaluated with the full-sized test set. The
models’ performances were statistically compared using a two-sided paired Student’s t-test or a Mann-
Whitney U-test, depending on the normality of the data.

4.4.3. Phase-specific analysis
The segmentationmodel was trained usingMinIPs that included all vascular phases—arterial, parenchy-
mal, venous, and non-contrast frames. To discern which phases influenced the model predictions, we
compared the performance of segmentations predicted on the full-phase MinIP with those predicted on
MinIPs created for each phase. Phase-specific MinIPs were created from the original DSA sequences
using the deep-learning phase selection model implemented in the autoTICI pipeline [27]. The non-
contrast phase was included to assess whether the model uses the skull outline present in frames with
motion artefacts. Statistical testing was conducted using either a Mann-Whitney U-test or a two-sided
paired Student’s t-test, depending on the normality of the data.

4.4.4. Comparison against traditional method
Webenchmarked the performance of the proposed segmentationmodel against the traditional atlas reg-
istration method. For this comparison, segmentations were generated for the test set MinIPs using the
atlas registration method in autoTICI. The segmentations produced by both methods were evaluated
using the performance metrics (4.3.7), along with additional outcomes robustness and computational
time, to assess their suitability for implementation in autoTICI.

Computational time was defined as the time required by the model to generate a segmentation for one
test set MinIP, excluding time spent on pre- or post-processing. Due to the potential hardware influence
on computational time, both methods were executed on the same PC (DELL Latitude 5510) using a
CPU under controlled conditions to reduce the potential impact from active programs. The computation
time was reported for both methods as means and 95% CIs for normally distributed data, or medians
and IQRs for non-normally distributed data.

Robustness was defined as the percentage of clinically successful segmentations, which was deter-
mined using a Likert scale ranging from 0 to 3 to indicate anatomical correctness. A value of 0 indi-
cated a ‘failure’, where the segmentation was located in the incorrect hemisphere and/or was outside
the boundaries of the expected anatomical area; 1 was ‘marginal’ indicating that the segmentation was
in the correct hemisphere, but substantially outside the boundaries of the anatomical area; 2 indicated
‘acceptable’, meaning the segmentation was largely inside the expected anatomical area, and 3 de-
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noted a perfect segmentation that matched anatomical expectations. For segmentations rated from 0
to 2, inaccurate mask boundaries (superior, inferior, left, right) were identified, and the reasons for the
errors were noted. Errors were categorized based on incorrect scaling (either too large, encompass-
ing the territory from another vessel or the skull, or too small, missing part of the intended vascular
territory), improper rotation (incorrect angle of the mask), or incorrect location of the mask on the input
image. The success rate was defined as the percentage of annotations that received a Likert score
of 2 and 3. This classification was based on the operational requirements of autoTICI, where exact
mask placement is not critical, and minor deviations are acceptable for satisfactory reperfusion calcu-
lation. For both methods, the segmentations were independently annotated by two observers, LS and
MS. In cases of discrepancies, a consensus was reached to determine a final Likert score for each
segmentation.

Furthermore, we compared the performance and robustness of both model’s segmentations across
different underlying occlusion locations (ICA, M1, M2) and EVT stages (pre- and post-procedure).

4.5. Results
4.5.1. Data
Data inclusion
Figure 4.5 presents a flowchart illustrating the data inclusion process, with numbers provided for the
patients and corresponding pre-EVT, post-EVT, AP, and lateral DSA sequences. Table 4.1 details the
underlying distributions of EVT-stages, views and occlusion locations. A total of 119 DSA sequences
were excluded, with the majority from the pre-EVT group (n = 104) compared to the post-EVT group
(n = 15). This was mainly due to the lower quality of pre-EVT acquisitions, primarily intended for veri-
fying catheter positioning rather than for detailed inspection of reperfusion status. The AP and lateral
sequences had a similar number of exclusions, 59 and 60 respectively. As a result, 1217 eligible DSA
sequences from 361 stroke patients were included in the analysis, distributed across a training/valida-
tion set (n = 1097) and a test set (n = 120). The dataset contained slightly more post-EVT than pre-EVT
images, with proportions of 41% and 59% and 46% and 54%, in the train and test set, respectively (Ta-
ble 4.1). The distributions of occlusion locations aligned with the MR CLEAN Registry (parts 1-3) where
ICA, M1, and M2 occlusions are reported at 19%, 55% and 25% [4].

Figure 4.5: Flowchart of the process of data inclusion.
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Table 4.1: Distribution of EVT-stages, views and occlusion locations of included DSA sequences, across the training/validation
and test sets.

Variables Internal training/validation set Internal test set
No. patients 354 62
No. DSA sequences

- Total 1097 120
- Pre-EVT (%) 447 (41) 55 (46)
- Post-EVT (%) 650 (59) 65 (54)
- AP (%) 588 (54) 63 (53)
- Lateral (%) 509 (46) 57 (47)

No. occlusion locations
- ICA (%) 159 (15) 23 (19)
- M1 (%) 587 (53) 67 (56)
- M2 (%) 351 (32) 30 (25)

AP = anteroposterior; ICA = Internal Carotid Artery; M1 = first segment of Middle Cerebral Artery; M2 = second segment of
Middle Cerebral Artery; EVT = endovascular thrombectomy

4.5.2. Comparison of combined and separate AP/lateral models
All models were trained using the nnUNet framework with a plain convolutional U-Net architecture,
detailed in Table F.1 (Appendix F). The AP, lateral, and combined models demonstrated comparable
DSC and ASD scores, with no statistically significant differences as determined by the Mann-Whitney
U-test (Table 4.2). The p-values were 0.88 for the DSC in both segmentations and 0.99 and 0.82 for the
ASD in the ICA and MCA segmentations, respectively. The combined model was selected for further
experiments due to its simpler implementation, with median DSC and ASD scores for the ICA of 0.96
(IQR: 0.94–0.97) and 13.8 (IQR: 10.1-20.5), respectively. The model performance for the MCA was
lower, with median DSC and ASD scores of 0.94 (95% CI: 0.92–0.96) and 41.6 (IQR: 35.0–47.2).

Table 4.2: DSC and ASD for ICA and MCA segmentations predicted by the trained models. The atlas registration method is
tabulated for comparison. Values in the table represent medians and Inter Quartile Ranges [IQRs].

ICA territory MCA territory
DSC ASD (px) DSC ASD (px)

AP 0.95 [0.94, 0.96] 13.1 [9.35, 16.8] 0.94 [0.93, 0.95] 37.2 [32.0, 43.0]
Lateral 0.96 [0.94, 0.97] 16.8 [11.6, 22.1] 0.94 [0.92, 0.96] 44.4 [41.3, 54.7]

Combined 0.96 [0.94, 0.97] 13.8 [10.1, 20.5] 0.94 [0.92, 0.96] 41.6 [35.0, 47.2]
Combined half size 0.95 [0.93, 0.97] 14.3 [11.0, 21.9] 0.94 [0.92, 0.96] 41.2 [36.1, 47.4]

Atlas 0.82 [0.76, 0.89]*** 47.3 [30.4, 66.5]*** 0.78 [0.69, 0.85]*** 68.6 [50.1, 88.4]***
Statistical differences between the trained models/atlas method and the combined model are indicated as follows: p ≤ 0.05 (*),

p ≤ 0.01 (**), p≤ 0.001 (***), p ≤ 0.0001 (****).
ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; DSC = Dice Similarity Coefficient; ASD = Average Surface
Distance; px = pixels; AP = separate model trained for the AP view; Lateral = separate model trained for the lateral view;

Combined = model trained for AP and lateral views; Combined half size = combined model trained with half of the training data.

4.5.3. Evaluation of training size
The performance of the combined model trained on the full training set and the combined model trained
on the half-size dataset did not show statistically significant differences (p = 0.50 and p = 0.63 for DSC;
p = 0.55 and p = 0.84 for ASD, for the ICA and MCA, respectively) (Table 4.2). Figure 4.6 presents
the training and validation loss curves for the combined model trained on the full and half training data.
Both models showed similar loss curves, with comparable gaps between the training and validation
losses, suggesting that the reduction in training data did not lead to increased overfitting.

4.5.4. Phase-specific analysis
The segmentations predicted on the arterial and parenchymal phases showed no significant differences
in DSC and ASD scores compared to the combined phases (p = 0.07 for the DSC and p = 0.11 for the
ASD of ICA, and p = 0.96 for the ASD of MCA), except for the DSC of the MCA in the arterial phase
(p = 0.04) (Figure 4.7). This is also illustrated in two examples in Figure 4.8, where phase-specific
segmentations are visualized in yellow alongside the combined model’s segmentations in blue. The
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Figure 4.6: Train and validation loss of the combined model trained with (left) 1097 and (right) 549 images. Train and validation
losses are depicted in blue and red, respectively, and the corresponding Dice Similarity Coefficient (DSC) is visualized in green.

arterial and parenchymal phase predictions displayed good accuracy in both views, with only minor
deviations in mask delineation compared to the combined model.
In contrast, the model performance for the venous phase MinIPs was significantly lower than the com-
bined model, except for the ASD score for the MCA (p = 0.0001 and p = 0.05 for the DSC, and p = 0.01
and p = 0.07 for the ASD, for ICA and MCA, respectively). In the example in the AP view shown in
Figure 4.8, the segmentation was positioned in the wrong hemisphere, resulting in a DSC of 0.0. In the
lateral view, the MCA mask had an incorrect orientation with an uneven contour, while the ICA mask
remained relatively accurate, especially at the superior border.
The non-contrast phase had the worst DSC and ASD scores, with notably large IQRs, as shown in
Figure 4.7, with all results significantly worse than the combined phases (p ≤ 0.001). In this phase,
the model produced inaccurate and random segmentations in the example in the AP view, whereas
the lateral view, which had motion artefacts, yielded slightly more accurate results, particularly at the
superior border (Figure 4.8).

Figure 4.7: Boxplots visualizing the DSC and ASD for ICA and MCA segmentations across the arterial, parenchymal, venous
and non-contrast phases. The left graph represents DSC values. The right graph represents ASD values. ICA and MCA

segmentations are depicted in blue and orange, respectively. Statistical differences between the performance of the individual
vascular versus the combined phases are indicated as follows: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).
ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; DSC = Dice Similarity Coefficient; ASD = Average Surface

Distance

4.5.5. Comparison against traditional method
The combined model significantly outperformed the atlas registration method in both DSC and ASD
values (p ≤ 0.001)(Table 4.2). This finding is further supported by the visualizations of both methods’
segmentations illustrated in Figure 4.9. The segmentations generated by the combined model closely
approximate the reference standards in both views. Additionally, the combined model effectively cap-
tured variations in the angle of the head and accurately predicted segmentations for zoomed-in images
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Figure 4.8: Visualization of the ICA and MCA segmentations predicted for the phase-specific MinIPs of example test set
images in the AP and lateral view, depicted in yellow. Blue and yellow masks represent the segmentations of the combined

model. ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; AP = Anteroposterior

or images that contained text or black borders. In contrast, the atlas registration segmentations are too
small in both views and misaligned in the AP view, extending beyond the skull. It can also be observed
that the nnUNet segmentations were more rounded compared to the reference standard segmentations
and those produced by the atlas method.

In terms of computational time, the atlas registration method was significantly slower, taking 141 sec-
onds compared to 4.19 seconds for the segmentation model (Table 4.3) (p ≤ 0.0001). Regarding
robustness, Figure 4.10 shows that the combined model predominantly received scores of 3 for both
ICA and MCA segmentations, with a few instances of scores of 2, indicating a 100% success rate. In
contrast, the atlas registration method primarily yielded scores of 1 and 2, with fewer instances of 0
and 3. This resulted in a success rate of 52.5% for ICA segmentations and 53.3% for MCA segmenta-
tions. Examples of segmentations corresponding to each Likert score are provided in Appendix G. Of
the eight segmentations predicted by the combined model that received a Likert score of 2, six were
lateral, all with an oversized inferior border. In the AP view, the segmentations were slightly undersized.
For the atlas registration method, among the 108 segmentations that received scores between 0 and 2,
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Figure 4.9: Visualization of the ICA and MCA segmentations of the combined segmentation model and the atlas registration
method of example test set images in the AP and lateral views. Blue and yellow masks represent the reference standard and
predicted segmentations, respectively. ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; AP = Anteroposterior;

DSC = Dice Similarity Coefficient; ASD = Average Surface Distance

the majority (n = 84) exhibited errors across multiple borders, with the superior border being the most
commonly affected (n = 39). The most frequent issues were scaling errors (n = 74), typically resulting
in undersized masks (n = 66). Additional errors included incorrect positioning (n = 19) and rotation
inaccuracies (n = 11).

Figure 4.10: Distributions (%) of annotated Likert scores for the proposed combined segmentation model and the traditional
atlas registration method, for the ICA and MCA segmentations. ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery

Table 4.3: Results of the success rate (%) and computational time (median and Inter Quartile Ranges [IQRs]) for the ICA and
MCA segmentations produced by the combined model and the atlas registration method.

Success rate (%)
ICA territory
(AP, lateral)

MCA territory
(AP, lateral)

Computational
time (s)

Combined model 100 (100, 100) 100 (100, 100) 4.19 [3.88, 4.46]
Atlas 52.5 (55.6, 49.1) 53.3 (57.1, 42.9) 141 [87.6 , 223]****

Statistical differences between the computational times of the atlas method and combined model are indicated as follows: p ≤
0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).

ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; CI = Confidence Interval
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4.5.6. Effect of occlusion location
Both the atlas and the proposed segmentation method exhibited similar patterns in model performance
across different occlusion locations, with the overall performance of the atlas registration method being
inferior to that of the segmentation model (Figure 4.11). Overall, no clear differences were observed in
model performance across the ICA, M1, and M2 occlusion locations, though a slight increase in ASD
was observed for the MCA segmentations for M1 occlusions created by the atlas registration method.
Besides that, a slight difference in model performance was observed between the EVT stages for
both the DSC and ASD outcome measures; pre-EVT segmentations were notably worse than those
predicted for the post-EVT MinIPs in both the ICA and MCA segmentations across both methods.

Figure 4.11: Boxplots displaying the DSC (top) and ASD (bottom) for the ICA (left) and MCA (right) segmentations created by
the proposed segmentation model and the traditional atlas registration method, across different occlusion locations (ICA, M1,
M2) and EVT stages (pre and post). ICA = Internal Carotid Artery; MCA = Middle Cerebral Artery; M1 = first segment MCA; M2

= second segment MCA; EVT = Endovascular thrombectomy

Regarding robustness, Figure 4.12 shows that the combined model maintains consistent Likert score
distributions across all occlusion locations and for both EVT stages. In contrast, for the atlas registration
method, there is a noticeable decrease in the proportion of scores of 0 and 1 for the underlying occlusion
locations ICA, M1 and M2 respectively, accompanied by an increase in scores of 2 and 3. This trend is
reflected in the corresponding increasing success rates of 39.1% for ICA, 55.2% for M1, and 62.5% for
M2. Additionally, there is a difference between the EVT stages, with pre-EVT segmentations showing
more scores of 0 and 1 compared to post-EVT, resulting in success rates of 45.3% for pre-EVT and
58.2% for post-EVT.
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Figure 4.12: Visualization of the distributions (%) of annotated Likert scores for the proposed segmentation model and the
traditional atlas registration method, presented for the segmentations across different occlusion locations (ICA, M1, M2) and for
the EVT stages (pre and post). Numbers in the stacked bars represent percentages, noted alongside the sample sizes. ICA =

Internal Carotid Artery; MCA = Middle Cerebral Artery; M1 = first segment MCA; M2 = second segment MCA; EVT =
Endovascular thrombectomy
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4.6. Discussion
In a previous study, autoTICI results proved unreliable in 70% of lateral and 79% of AP cases due to un-
successful vascular territory segmentation using atlas registration [28]. Therefore, significant improve-
ments in robustness are necessary before autoTICI can be considered viable for clinical implementation.
To address this issue, we proposed an automatic deep-learning approach for direct segmentation of
ICA and MCA vascular territories on cerebral DSA and benchmarked it against the atlas registration
method. The proposed model achieved excellent results on the held-out test set, with a 100% success
rate in both views. This indicated that our approach is well-suited for implementation in the autoTICI
pipeline.
For the proposed model, 93% of segmentations were rated as anatomically perfect, and 7% showed
slight deviations due to scaling errors at the inferior border in the lateral view. These deviations may be
due to difficulties in manually delineating the lateral inferior border due to PCA overprojection, leading
to variations in the reference standards and, subsequently, in the predicted segmentations. In contrast,
the atlas registration method yielded lower success rates: 55.6% in the AP view and 49.1% in the lat-
eral view, and 57.1% in the AP view and 42.9% in the lateral view for ICA and MCA, respectively (Table
4.3, Figure 4.9). Most errors were due to undersized masks (55%), indicating that the atlas registration
method struggled primarily with correct scaling (Figure 4.9 and G.3, Appendix G). The success rates for
the atlas registration method found in this study were lower than those reported by van der Sluijs and
Su et al. [27, 28], which could be caused by differences in the included imaging data, and the smaller
validation dataset of 120 images (62 patients) in our study compared to 1684 images (421 patients) in
theirs. Additionally, van der Sluijs and Su et al. pre-processed DSA sequences by removing motion
frames, text and black borders, which was not performed in our analysis.
It was observed that the nnUNet segmentations were more rounded compared to the reference stan-
dard segmentations and those produced by the atlas method. This is due to the model predicting a
probability distribution for each pixel’s label, resulting in rounded masks without straight boundaries.

In terms of model performance, the proposed approach significantly outperformed the atlas registration
method. It was observed that ICA segmentations consistently achieved higher performance than MCA
segmentations, as reflected by a small drop in DSC and a relatively larger increase in ASD (Table 4.2).
This difference is likely due to the model’s difficulty in accurately delineating the MCA-ACA border,
which is located in the middle of the brain and challenging to define, whereas ICA segmentations have
clearer borders aligned with the skull in the lateral view and the sagittal midline in the AP view (Figures
4.8 and 4.9). Additionally, the larger mask area of the ICA results in greater overlap, leading to higher
DSC and lower ASD values. The nature of these metrics can explain the observed relative differences
between the DSC and ASD. DSC calculates the overlap between masks, and since the masks cover a
large portion of the MinIP, the DSC remains high due to the substantial overlap. Conversely, ASD does
not consider the total pixel count of the mask, leading to more pronounced differences. This highlights
a limitation of the ASD metric, as it does not account for variations in mask size. Future research could
incorporate a local metric better suited to capturing differences in segmentation scaling.

Initially, we included all eligible images due to the high variability that exists in DSA acquisitions. How-
ever, our experiment using only half of the training data demonstrated that the combined model could
still achieve similar performance.

The phase split analysis (4.5.4) revealed that the combined model mainly relied on contrast information
from the arterial and parenchymal phases for creating accurate predictions in the correct hemisphere
and lateral orientation. This is evidenced by errors occurring in the venous and non-contrast phases
(Figure 4.8) and the non-significant differences of the parenchymal phase with the combined model,
which experiences overlap from the arterial phase due to residual contrast agent in the arteries when
it first reaches the parenchyma. This finding is advantageous for clinical applicability since the arterial
and parenchymal phases are almost always present in DSAs, whereas venous frames may be absent
due to early acquisition termination. Nonetheless, we recommend including all available phases, as
the venous and non-contrast phases can assist in delineating the superior mask borders in cases of
low perfusion, particularly when there is slight motion making the skull outline visible. This analysis
was conducted primarily to gain insight into which phases the combined model relied on. To directly
compare model performance across different phases, separate models should be trained for each
phase individually. For such analyses, it is important to consider phase overlap (e.g., arterial contrast
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persisting into the parenchymal phase) for which the use of a Frangi filter could be explored for removing
potential arterial and venous vessels from the parenchymal phase [59].

The experiment on occlusion location (4.5.6) demonstrated that the proposed model maintained con-
sistent performance and robustness across different occlusion locations, despite varying distributions
of input data. This indicates that the approach of randomized stratification was effective. A minor
difference in performance was observed between EVT stages, potentially suggesting better model
performance on highly perfused examples; however, the difference was small and had no impact on
robustness (Figure 4.12). In contrast, the atlas registration approach showed increased robustness
from ICA to M2, and pre- to post-EVT (Figure 4.12). This could be explained by the fact that post-EVT
MinIPs of patients with distal occlusions are more similar to the non-stroke atlases. Further investiga-
tion into the relationship between perfusion levels and performance metrics for the atlas registration
method would be valuable.

The proposed model was significantly faster than the atlas registration method (33 times faster). How-
ever, these times could have been influenced by the local CPU of the PC, which could have affected the
results due to unknown background tasks. Besides that, the computational time for the atlas method
depends on the number of atlases and could have been optimized. Nevertheless, the substantial dif-
ference in speed between the methods, combined with the fact that nnUNet can be tuned for GPU
acceleration, underscores the potential of the proposed model for clinical application in the autoTICI
pipeline.

To our knowledge, this was the first study to investigate an automated deep learning-based approach
for segmenting vascular territories on cerebral DSA. Other studies using deep-learning methods for
DSA segmentation focused exclusively on vessels [60–66] and intracranial aneurysms [61, 66, 67],
as shown in Table 4.4. All studies used convolutional neural networks (CNNs), with most employing
the U-Net architecture [60, 62–65, 67], achieving mean DSC scores between 0.8 and 0.9, which is
lower than the performance of our model. However, direct comparison is limited, as these studies
focused on vessel segmentation, whereas our approach targeted vascular territories. Patel et al. (2020)
compared DeepMedic, a 3D convolutional neural network with multiple input channels, to a U-Net
model for intracranial vessel segmentation, finding DSC scores of 0.94 ± 0.02 for DeepMedic and 0.92
± 0.02 for U-Net, both similar to our results [66]. In 2023, Patel et al. applied DeepMedic to a different
dataset and reported a DSC of 0.87 ± 0.008 [61]. This difference in outcome may be attributed to the
use of different ground truths in the latter study, derived from CTA and coregistered to DSA through
3D-2D registration [61]. We were the only study focused on segmenting vascular territories without
clear anatomical boundaries, highlighting a research gap in this area. Given the high performance and
robustness of our method, extending this approach to other vascular territories, such as the PCA, or
other brain areas critical for stroke outcomes, like theWernicke and Broca areas, could offer substantial
clinical value [68].

The findings of this study should be interpreted whilst taking several limitations into account.
First, the manual annotation of reference segmentations could have introduced bias, particularly given
the difficulty in visually delineating borders due to overprojection. Since these annotations were used
for both model training and calculation of the performance metrics, the results may not fully reflect the
true vascular territories and should therefore be interpreted with caution. Future research should re-
duce this bias by using more objective and accurate reference standard segmentations delineated on
CTA and co-registered with DSA [61].
A second limitation is that the reference standard segmentations for post-EVT MinIPs were performed
by MS and those for pre-EVT MinIPs by LS, potentially introducing bias due to inter-observer variabil-
ity. However, since the pre-EVT segmentations were identical to the post-EVT ones, with adjustments
made for motion between pre- and post-EVT MinIPs, differences are expected to be minimal.
A third limitation is that the method was not validated on a larger external test set to assess general-
izability. Future research could address this by validating the model on a different subset of the MR
CLEAN Registry or patients from the ‘autoTICI to clinic’ study.

A strength of this research is that the proposed segmentation method addressed two key issues identi-
fied in chapter 2: improving the robustness and reducing the computational time of autoTICI, bringing
autoTICI closer to clinical implementation.
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Table 4.4: Comparison of our method to other DL methods for segmentation of cerebral structures on DSA. The DSC scores
of the reported studies (and in one study the F1-score) are displayed as mean ± standard deviations or [95% Confidence

Intervals]. The DSC scores of our method are reported as median and [Inter Quartile Ranges]

Authors (year of
publication)

Segmentation
application

Method Model performance
(DSC or F1*)

Our method (2024) ICA and MCA vascular
territories

nnUNet 0.96 [0.94, 0.97] for ICA,
0.94 [0.92, 0.96] for MCA

Liu (2024) [64] Intracranial arteries VSS-Net: U-Net capturing
spatiotemporal features

0.76

Patel (2023) [61] Intracranial vessels + IA DeepMedic 0.87 ± 0.008
Vepa (2022) [63] Cerebral vessels Weakly-Supervised CNN 0.84 ± 0.005
Meng (2020) [62] Cerebral vessels U-Net with skip

connections
0.88*

Jin (2020) [67] IA U-Net 0.53
Patel (2020) [66] Brain vessels with IA DeepMedic and U-Net 0.94 ± 0.02, 0.92 ± 0.02
Zhang (2020) [60] Intracranial vessels U-Net 0.83 ± 0.052
Neumann (2018) [65] Cerebral arteries U-Net 0.88
IA = Intracranial aneurysm; CNN = Convolutional Neural Network; DSC = Dice Similarity Coefficient; ICA = Internal Carotid

Artery; MCA = Middle Cerebral Artery

4.7. Conclusions
In conclusion, this study proposed a deep learning method for the segmentation of vascular territories
on cerebral DSA, demonstrating excellent results on an internal test set. The method significantly
outperformed the current atlas registration approach in robustness, accuracy, and computational time,
showing promise for clinical application. Future research should focus on retraining the model with a
more objective reference standard co-registered from CTA, followed by validation on a larger external
dataset. Ultimately, the model should be integrated into the autoTICI pipeline to enhance its robustness,
enabling more objective and reliable reperfusion quantification during EVT.



5
General discussion and conclusions

This master thesis aimed to improve and evaluate autoTICI, with the ultimate goal of implementing it
in clinical practice to establish a more uniform and reliable method for structurally reporting outcomes
of endovascular thrombectomy (EVT) procedures.

Our pilot study showed that the current performance of autoTICI is insufficient for clinical implementa-
tion, mainly due to unreliable atlas registration and inaccurate perfusion segmentation. Despite these
challenges, autoTICI demonstrated excellent usability within the clinical workflow, highlighting its poten-
tial for future clinical use. Besides, multiple interventional radiologists acknowledged the added value
of autoTICI as a decision-support tool during EVT, particularly in challenging situations such as night
shifts, high-stress conditions, or complex cases. We showed that autoTICI could be effectively inte-
grated into the interventional radiology workflow through the use of the Open Innovation Platform (OIP)
(Philips Medical Systems, Best, the Netherlands), which facilitated reliable streaming and processing
of digital subtraction angiography (DSA) images in the angiography suite. The current autoTICI pro-
cessing time on the OIP was 283 ± 1.90 seconds, which is too long for practical clinical use. Since
the majority of this time is consumed by atlas registration (66%), this step was identified as the primary
target for speed improvement.

The core-laboratory study showed similar inter-observer agreement levels for extended Thrombolysis
In Cerebral Infarction (eTICI) scoring without and with autoTICI, with weighted kappa values of 0.65
and 0.67, respectively. Despite the issues identified in autoTICI, the overall eTICI scores and observer
agreement remained unaffected. Furthermore, the addition of autoTICI feedback did not significantly
impact the overall observer efficiency, indicating that the supplementary information did not prolong
the time required for eTICI scoring — both encouraging results for the potential clinical application of
autoTICI.

Future research should focus on improving the performance of autoTICI. This can be achieved by
implementing the automated vascular territory segmentation method developed in this thesis, which
demonstrated excellent results regarding robustness, segmentation accuracy, and computational ef-
ficiency on an internal test set. Future research on this segmentation approach should evaluate its
robustness on a larger external test set and explore using a more objective reference standard co-
registered from CTA. Improving the accuracy of the perfusion segmentation step is another priority for
enhancing autoTICI performance. Future research could potentially investigate the use of different
Otsu segmentation thresholds for different regions with contrast intensity differences.
Further automation of autoTICI is also an essential step necessary for clinical implementation. This
could be achieved by developing a classification model to automatically detect the view, hemisphere,
head orientation, and occlusion location, thereby eliminating the need for manual inputs. Since the pro-
posed segmentation model already accurately identified the correct view, hemisphere, and orientation,
training a classification model for these tasks seems feasible.
After implementing these improvements, it is recommended to continue the ‘autoTICI to clinic’ study to
gather more data, using the enhanced autoTICI method to allow for a more accurate assessment of its
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clinical applicability.

Following these advancements, autoTICI is ready for the next step in the AI funnel, which involves con-
ducting a clinical trial to evaluate autoTICI as a decision-support tool in the angiography suite. Addition-
ally, an inter-observer analysis with the improved version of autoTICI should be performed, involving
clinicians with varying levels of experience. Conducting this study in a clinical setting rather than a
core-laboratory environment would provide a better evaluation of autoTICI’s potential effectiveness in
a real-world clinical context. The results of these studies can support the approval of autoTICI as a
medical device under the Medical Device Regulations (MDR).

In this master thesis, autoTICI was successfully integrated into the OIP’s technical infrastructure, en-
abling its potential clinical use within the workflow of the interventional radiology. The pilot study and
inter-observer analysis identified autoTICI’s intended clinical role, its added value, future opportunities
and key challenges, including technical issues like unreliable atlas registration. By developing a deep-
learning approach for vascular territory segmentation, both the robustness and computational time of
autoTICI were significantly improved. Although autoTICI is not yet ready for clinical implementation,
with further performance optimization needed regarding perfusion segmentation, this thesis has made
substantial progress in advancing autoTICI towards its goal of improving the comparability of stroke
treatment outcomes across clinical trials.
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A
Open Innovation Platform

A.0.1. Technical infrastructure
To integrate autoTICI into the intended clinical workflow of the interventional radiology department, au-
toTICI was implemented in an infrastructure hosted by Philips Medical Systems (Best, the Netherlands),
called the Open Innovation Platform (OIP). The OIP is a rapid prototyping platform designed to facil-
itate the development of cloud-based applications that integrate with interventional procedures. The
OIP functions by streaming data from the imaging system via ‘CloudCast’ hardware to a storage called
‘IGT cloud’. From there, imaging data are uploaded to the cloud, where necessary computations are
performed for the execution of applications, and results are sent back to the CloudCast. These results
can then be connected to the touchscreen interface and display of the imaging system. A connection
to the cloud can also be established via a ‘Websocket’ connection, enabling real-time streaming of
imaging data directly to the OIP, bypassing the IGT cloud. However, this streaming option has not yet
been implemented for autoTICI to clinic’ due to technical issues and the requirement to obtain deferred
consent before sending imaging data to the OIP. Figure A.1 shows a schematic overview of the OIP
infrastructure.

Figure A.1: Schematic overview of the Open Innovation Platform (OIP) infrastructure. Images get streamed from the imaging
system to the ‘IGT cloud’ storage via the ‘CloudCast’ hardware. From the ‘IGT cloud’, images are uploaded to the OIP, where
they are processed, after which the results are sent back to the CloudCast. These results can then be displayed on the imaging
system’s touchscreen interface. A connection to the cloud can also be established via a ‘Websocket’ connection, enabling

real-time streaming of imaging data directly to the OIP, bypassing the IGT cloud.

A.0.2. AutoTICI implementation
To implement autoTICI on the OIP, the autoTICI algorithm, along with its pipeline and necessary Python
packages, was configured within the OIP development environment, which operates on a Jupyter Hub
platform using Python 3.11.
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A CE-approved workstation was installed in the angiography system cabinet at Erasmus MC to run
the CloudCast software, facilitating secure data streaming to the cloud for which an internet connec-
tion with an open port was established. Measures were taken to protect patient privacy, including
pseudonymizing DICOM data before streaming and ensuring that no data was shared with Philips. Ad-
ditionally, multi-factor authentication was required for CloudCast hardware connections. In preparation
for clinical use, preliminary testing was conducted on a similar angiography system (Xper FD20/10)
at Philips Medical Systems (Best, the Netherlands). This testing verified that the imaging data was
correctly pseudonymized and complete.

The CloudCast hardware streamed all imaging data acquired during EVT procedures, temporarily stor-
ing the data on the IGT cloud until patient consent was obtained. Once consent was secured, the data
was uploaded to the OIP for further processing and analysis. The imaging data acquired during EVT
procedures comprised both fluoroscopy images and DSA sequences. To optimize storage, a script was
implemented to filter out unnecessary fluoroscopy images, focusing solely on DSA sequences required
for autoTICI. Further processing was performed to differentiate between unsubtracted and subtracted
frames of the streamed DSA sequences, ensuring that only subtracted images were retained for further
analysis. This differentiation was based on the average intensity values derived from their histograms
(Figure A.2).

Figure A.2: Visualization of the histograms for unsubtracted and subtracted images from the DSA sequence. The distinction
between unsubtracted and subtracted images was made using the average intensity values obtained from their histograms.

Finally, the DSA frames, streamed as single-frame DICOM files in a random order, were organized into
multi-frame DICOM files, ensuring that the frames in each sequence were ordered correctly according
to the chronological acquisition. These processed sequences were then stored in a designated cloud
folder, ready for further processing and analysis by the autoTICI algorithm.



B
User-interface designs

B.0.1. List of requirements
To ensure a smooth adoption of autoTICI amongst interventional radiologists, a user-interface (UI)
design was created for visualizing the results of autoTICI in the OIP in a user-friendly and efficient
manner. Design requirements were constructed in consultation with both technical and medical experts
in the field of stroke imaging and treatment.

We determined that the outcomes of autoTICI should be visually represented through mask overlays on
the 2D minimum intensity projections (MINIPs), depicting the calculated reperfused and non-perfused
areas. The masks should have a semi-transparent filling ensuring visibility of the structures in the un-
derlying image. For clarity, easily distinguishable colours were chosen: red for non-perfused tissue and
green for reperfused tissue, with the corresponding percentages colour-coded accordingly. Although
no interventional radiologists involved were colour-blind, the colours can be adjusted to blue and yellow
if needed. To enhance the functionality of autoTICI, the UI design should incorporate features that en-
able visualization of intermediate steps where errors might occur, such as brain area registration and
the pre- to post-EVT DSA registration steps. This functionality allows users to assess the accuracy and
reliability of the autoTICI predictions and understand any discrepancies. Additionally, incorporating the
original input DSA sequences is essential, as they provide insight into the images used by the algorithm
and facilitate verification of the visual eTICI score in case of incorrect autoTICI predictions. Additionally,
the UI design should be intuitive and quick, as clinicians prefer straightforward features. The design
should be created within the OIP environment to ensure compatibility and ease of implementation.

B.0.2. Worked out designs
Based on the list of requirements, three potential UI designs were developed in the OIP development
environment using Python 3.11 and open-source packages openCV and ipywidgets: the 1) basic, 2)
transparency, and 3) interactive design. Examples of each design can be found in Appendix B.

The basic design included the minimally required information and features as specified in the list of
requirements (Figure B.1), including the post-EVT MINIP with the overlayed autoTICI mask displayed
next to the four input DSA sequences. The autoTICI mask showed reperfused areas in green and non-
perfused areas in red with a fully opaque outline and a 15% opaque filling. The legend displayed the
colour-coded percentages of the non-perfused and reperfused areas. The white contour indicated the
outline of the registered brain mask, allowing the user to determine if the registration was successful.
In the transparency design, the opacity of the mask fill could be adjusted by a slider (Figure B.2). The
interactive design included additional interactive widgets (Figure B.3). This allowed the user to display
the overlay results on both the pre-and post-EVT MINIPs (Figure B.4). Another feature in the design
displayed the original brain mask which was registered to the patient, providing more insight into the
brain mask registration process.

The three designs were shown to two experienced neuro-interventional radiologists for comparison in
terms of usability and intuitiveness. Both favoured the basic design because it provided sufficient insight
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into the accuracy and reliability of the autoTICI predictions while maintaining the most straightforward
and simple interface. Therefore, the basic design was selected for displaying the results of autoTICI
during the pilot study.

Figure B.1: Basic design: the four input DSA sequences are shown on the left, alongside the post-EVT MINIP with the
autoTICI mask overlays. The legend shows the colour-coded percentages.

Figure B.2: Transparency design: the four input DSA sequences are shown on the left, alongside the post-EVT MINIP with the
autoTICI mask overlays. The transparency of the mask fill can be adjusted with a slider. The legend shows the colour-coded

percentages.
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Figure B.3: Interactive design: the four input DSA sequences are shown on the left, alongside the post-EVT MINIP with the
autoTICI mask overlays. The original brain atlas is visualized when clicking the ’Atlas’ button. The legend shows the

colour-coded percentages.

Figure B.4: Interactive design: the four input DSA sequences are shown on the left, alongside the pre-EVT MINIP with the
autoTICI mask overlays. By clicking the ’Pre/post’ button, the user can switch between the pre-EVT and post-EVT MINIP and

corresponding overlays. The original brain atlas is visualized when clicking the ’Atlas’ button. The legend shows the
colour-coded percentages.



C
AutoTICI to clinic: interview questions

Name:

Role (speciality):

□ Interventional radiologist (neuro)
□ Interventional radiologist (body)
□ Interventional radiologist fellow
□ Interventional radiologist trainee

Number of years of experience in independently performing EVT’s:

The following is a questionnaire on the current method of visual eTICI scoring:

1. I find the scoring method easy to use
2. I find this scoring method inconsistent
3. I think most interventional radiologists can learn this scoring method very quickly
4. I feel very confident using this scoring method

Please rate each statement from 1 (Strongly Disagree) to 5 (Strongly Agree)

Comments:

What eTICI score did you give during EVT?

Do you have doubts in defining the eTICI score?
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□ No
□ Yes, why?

What percentage would you give for the amount of brain reperfusion?

The following is a questionnaire on the automatic method of eTICI scoring with autoTICI feedback:

1. I would like to use this scoring method frequently
2. I find this scoring method unnecessarily complicated
3. I find the scoring method easy to use
4. I need the support of a (technical) expert to use this scoring method
5. I find the various functions in this scoring method well integrated
6. I find this scoring method inconsistent
7. I think most interventional radiologists can learn this scoring method very quickly
8. I find the scoring method very cumbersome to use
9. I feel very confident using this scoring method
10. I needed to learn a lot of things before I could get going with this scoring method

Rate each statement from 1 (Strongly Disagree) to 5 (Strongly Agree)

Comments:

Do you have doubts about if the vasculatory territory is correctly drawn by the model?

□ No
□ Yes, why?

Do you have doubts regarding the reperfusion percentage calculated by the autoTICI model?

□ No
□ Yes, why?

Now that you see the reperfusion percentage of the autoTICI model, would you change your earlier
given eTICI score?

□ No
□ Yes, to which eTICI score would you change it and why?
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Would you want to make a change in the EVT procedure based on autoTICI? Would you make another
attempt?

□ No
□ Yes, why?

Did autoTICI give you new insights? What value does autoTICI have for you?

□ No
□ Yes, why?



D
AutoTICI to clinic: clinical

implementability interview

Table D.1: Characteristics of included clinicians and summary of their answered questions during the clinical implementability
interview.

No. interview 1 2 3 4
Patient ATC001 ATC001 ATC002 ATC004
Clinician (specialty)* Obs 1 (body) Obs 2 (body) Obs 3 (neuro) Obs 3 (neuro)
Experience in performing EVT
(years)

1 2 9 9

eTICI
Doubts in eTICI scoring eTICI scoring is

generally
straightforward
but can be

challenging in
stressful

situations or
exceptional
cases.

Not for this
case. However,
eTICI scoring

can be
inconsistent

due to
conceptual
confusion.

A small
borderline

thrombus at the
edge between
2B and 2C

made it difficult
to distinguish
between these

scores.

I was uncertain
because,
although

thrombolysis
resolved the
occlusion, I

noticed a small
perfusion
defect.

Given TICI score (estimated
reperfusion %)

2C (99%) 2C (99%) 2C (90%)** 3 (95%)

autoTICI
Calculated reperfusion (AP,
lateral) (%)

96 (93, 99) 96 (93, 99) 57.5 (59, 56) 0 (0, 0)***

Doubt in brain mask No No Yes, mask is
too small,

missing part of
the MCA
vascular
territory

Yes, mask
partly extends
into the skull
and does not
capture the
whole MCA

area.
Doubt in perfusion percentage Yes,

reperfusion is
too low in the
AP view due to
segmentation
error from
collateral

overestimation.

Yes, the
percentage is
too low as

segmentation
did not account
for collaterals,
but this is not
clinically
relevant.

Yes, due to
undersized
mask, the

percentage is
underesti-
mated.

No, but that is
since the

reperfusion was
already 100%
pre-EVT.

SUS score 85 87.5 82.5 70
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Comments SUS Hard to say
something

about technical
support as

autoTICI is not
yet integrated in
the workflow.

If autoTICI is
automatically
integrated, then
it would be
clinically
suitable.
Technical
support
required if

manual input is
needed.

Hard to say
something
about

consistency, I
have not seen
autoTICI for
multiple
patients.

The
consistency is
low for autoTICI
as it gave the

wrong
prediction
twice.

Added value AutoTICI is
valuable as a
decision

support tool in
stressful or
exceptional
cases.

AutoTICI has
added value in
the clinic as a

decision
support tool.

Yes, autoTICI
has added
value in both
clinical and
research
settings. It

could be very
nice in cases of

doubt.

In this patient,
the added

clinical value
would be high.
However,

autoTICI could
not support me

due to
unsuccessful

mask
registration.

Change in eTICI score No No No No
Another attempt No No No No
* All clinicians were interventional radiologists, however had different specialties (neuro, body)
** Obs 3 estimated a eTICI 2C during the interview, however in the EHR a eTICI score of 3 was reported.
*** As no post-EVT DSA was performed, the pre-EVT DSA was also used as the post-EVT DSA for autoTICI.
Resulting in a reperfusion percentage of 0%, since the eTICI was already 100% at the time of the pre-EVT DSA acquisition.

Table D.2: Likert scales for each usability aspect of the System Usability Scale (SUS) assigned to autoTICI during each
interview.

Interview Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
1 5 1 5 1 3 2 5 3 4 1
2 5 1 5 4 3 1 5 1 5 1
3 5 1 5 1 3 3 5 1 2 1
4 4 1 4 2 3 4 4 2 4 2
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Core-laboratory study: executable for

eTICI annotations

Figure E.1: Executable for annotating eTICI scores, showing the four original DSA sequences and a dropdown menu for
selecting the chosen eTICI grade.
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Figure E.2: Executable for annotating eTICI scores, showing the four original DSA sequences alongside the autoTICI result
and a dropdown menu for selecting the chosen eTICI grade.



F
Model architecture

F.0.1. Model architecture
The models were trained using a convolutional U-Net architecture featuring a symmetrical contracting (encoder) and expanding
path (decoder) interconnected by skip connections. Table F.1 outlines the U-Net layers, including kernel sizes, strides, and
output shapes. The final output layer contained three channels corresponding to the background, MCA, and ACA classes. A
softmax activation function was applied to convert the output into a probability distribution, and the argmax function was used to
determine the class with the highest predicted probability for each pixel.

Table F.1: Configuration of layers for the deep learning model, detailing the layer type, kernel size, stride, and output shape.

Layer type Kernel size Stride Shape
Input - - 0, 512, 512
2 conv + leaky ReLU 3x3 2 32, 512, 512
2 conv + leaky ReLU 3x3 2 64, 256, 256
2 conv + leaky ReLU 3x3 2 128, 128, 128
2 conv + leaky ReLU 3x3 2 256, 64, 64
2 conv + leaky ReLU 3x3 2 512, 32, 32
2 conv + leaky ReLU 3x3 2 512, 16, 16
2 conv + leaky ReLU 3x3 2 512, 8, 8
2 conv + leaky ReLU 3x3 2 512, 4, 4
Output - - 3, 512, 512
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G
Robustness: Likert scale examples

Figure G.1: Examples of Likert scores 2 and 3 for segmentations generated using the atlas registration method.
Segmentations of the ICA and MCA are shown in yellow and blue, respectively. ICA = Internal Carotid Artery; MCA = Middle

Cerebral Artery; AP = Anteroposterior
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Figure G.2: Examples of Likert scores 0 and 1 for segmentations generated using the atlas registration method.
Segmentations of the ICA and MCA are shown in yellow and blue, respectively. ICA = Internal Carotid Artery; MCA = Middle

Cerebral Artery; AP = Anteroposterior

Figure G.3: Examples of Likert scores 2 and 3 for segmentations predicted by the combined segmentation method.
Segmentations of the ICA and MCA are shown in yellow and blue, respectively. ICA = Internal Carotid Artery; MCA = Middle

Cerebral Artery; AP = Anteroposterior
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