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ABSTRACT

We are rapidly entering the era of genomics. The dramatic cost reduction of DNA sequencing due
to the introduction of Next Generation Sequencing (NGS) techniques has resulted in an expo-
nential growth of genetics data. The amount of data generated, and its associated processing into
useful information, poses serious computational challenges. Here, we give a brief introduction of
NGS, show a typical NGS processing pipeline, and show the associated challenges from a com-
putational perspective. A case study is presented where one component of the NGS processing
pipeline is accelerated: BWA-MEM, the de-facto industry-standard for the mapping stage. This is
a first step in achieving a fully heterogeneously accelerated NGS pipeline.
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1 Introduction

With the introduction of Next Generation Sequencing (NGS) techniques, the cost of sequen-
cing complete genomes has fallen dramatically and has reached a point where it is becoming
a feasible method to use in a wide variety of applications, such as medical diagnosis and
forensics. Figure 1]illustrates how this cost reduction has even outpaced Moore’s law, resul-
ting in turn in an enormous growth of sequenced DNA data. The amount of data generated
is projected to rival, if not overtake, other Big Data fields, such as astronomy and streaming
video services [SLET15]. However, this data is not very usable in its raw form of millions of
short reads, short DNA fragments of usually only a few hundred base pairs. An example of
a typical processing pipeline is given in Figure 2| First, these raw reads need to be reassem-
bled into a complete genome using a mapping tool. Short read mapping finds the most likely
place on a reference genome that a read originates from. Then, after obtaining the complete
genome, the reads are sorted and mutations as compared to a reference genome are disco-
vered during a variant calling phase. Many such mutation sites are annotated and knowledge
about specific mutations can help in establishing a medical diagnosis.
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Figure 1: DNA sequencing costs are falling at a pace faster than Moore’s law (from [Wet16]).

All the steps of the NGS pipeline operate on huge data sets, requiring large amounts of
processing by complex algorithms. A sequencing run on an Illumina HiSeq X, a state-of-the-
art NGS sequencer, produces data in the order of 1.2 TB every two days. For cancer data
sets, this data requires multiple days of processing, even on high performance computing
clusters, taking over 3,000 CPU-core hours of processing time. The extreme scale of data and
processing requires enormous computing capabilities to make the analysis feasible within
a realistic time frame. Heterogeneous computing holds great potential to provide large ad-
vantages in processing speed and power-efficiency. Power-efficiency is becoming at least as
important as raw performance, as it is an important driver to overall data center cost.

2 NGS Computational Challenges

NGS processing pipelines come in many forms and shapes, depending on the specific use
case. However, there are a number of traits that all such pipelines share. These characteristics
make them pose unique challenges when targeted for acceleration efforts. The two most
important ones are outlined below:

Extreme-Scale Data Size: The data size that these processing pipelines deal with are
of an enormous magnitude. As an example, a single human genome contains three billion
base pairs (A, C, G or T). The sequencer also provides a quality score for each base, which
indicates the confidence with which the nucleotide was read. Finally, as only short fragments
are sequenced and this data often contains errors, it is common practice to read the genome
multiple times, a coverage of 30x or more being typical. This results in a compressed output
size of around 100 GB. A single sequencer is able to process multiple samples in parallel.

An advantage is that this huge amount of data typically coincides with an abundance of
parallelism. For example, in the case of short read mapping tool BWA-MEM, the mapping
of short reads is independent, and hence these can be mapped in parallel.
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Figure 2: Processing time per NGS pipeline stage for a 30x coverage cancer NGS DNA data
set with three tumor samples and one normal sample. Time is expressed in CPU-core hours.



Complex Multikernel Algorithms: Most of the tools in the pipeline are complex algo-
rithms, consisting not just of a single phase that dominates execution time, but instead con-
taining a number of time-consuming steps. For example, BWA-MEM processing is spread
over three distinct stages, making acceleration of this algorithm more challenging, as not
only does it require the adaptation of multiple separate algorithms, but also care has to be
taken to not shift the bottleneck to another part of the application, limiting the benefit of
any potential speedup as per Amdahl’s law. This makes it quite difficult to obtain larger
performance gains.

3 Heterogenous Acceleration of the NGS Pipeline

As the growth of genomic data is rapidly outpacing the increase in computational capabili-
ties of a typical processor, it is clear that other means have to be used to meet the increased
processing demand. As heterogeneous systems hold a great potential for large advantages
in speed and efficiency, compared to traditional forms of computing, it has been our stra-
tegy to accelerate the individual components of the NGS pipeline into such systems. As a
staple tool within NGS pipelines, the widely used BWA-MEM short read mapping tool was
an interested candidate for acceleration. Our experiences are briefly discussed below.

3.1 Case Study: Accelerated BWA-MEM

The goal of the BWA-MEM algorithm is to find the best mapping of a short read onto a
reference genome [Li13]. It makes use of the Seed-and-Extend paradigm (see Figure [3), a
two-step method consisting of an Exact Matching phase and an Inexact Matching phase.
First, exactly matching subsequences of the read and reference are identified. A single short
read can have many such seed locations identified. Then, these seeds are extended using
an algorithm similar to the widely-used Smith-Waterman algorithm, using a scoring system
that awards matches and penalizes mismatches, insertions and gaps. The highest scoring
match is chosen as final alignment. Figure 2, which contains a typical flow of an NGS pipeline,
shows that BWA-MEM contributes about 36% to the overall processing time of the entire
pipeline. Therefore, it is an important target for acceleration to reduce the overall time, cost
and energy of processing NGS data sets.
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Figure 3: BWA-MEM uses the Seed-and-Extend paradigm. First, seed locations on the refer-
ence are found, which are subsequently extended using a Smith-Waterman-like algorithm.



3.2 Accelerated Implementation Results

We have implemented two heterogeneously accelerated version of BWA-MEM: an FPGA-
accelerated version utilizing a single Xilinx Virtex-7 FPGA on the Alpha Data add-in card
[HSM™16], and a GPU-based implementation using CUDA [HSBAA16]. Both versions of-
fload the Seed Extension phase, which takes between 40%-50% of execution time, on the
accelerator, accelerating the Smith-Waterman-like dynamic programming routine using a
systolic array as detailed in [HSBAA15]. Thus, the implementations are able to achieve an up
to two-fold speedup in overall application-level performance over the software-only imple-
mentation. This is the maximum theoretically achievable speedup when accelerating only
this one BWA-MEM program kernel, as per Amdahl’s law. This translates into tens of hours
of time saved for real-world data sets.

4 Future Outlook

Acceleration of BWA-MEM is just one step of providing a fully accelerated NGS pipeline.
There are many more steps that require large amounts of processing time. Examples include
the various tools for variant calling, or for imputation. The bioinformatics software com-
munity needs to step up to this challenge, in order to be ready for the surge in demand for
processing power as a result of ubiquitous generation and use of genomics data.
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