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Abstract

Constraint programming is a paradigm for solving combinatorial problems by checking whether constraints
are satisfied in a constraint satisfaction problem or by optimizing an objective in a constraint optimization
problem. To find solutions, the solver needs to find a variable and value ordering. Numerous heuristics de-
signed by human experts already exist to guide search and recent research uses machine learning to learn
new heuristics. In this work the concept of deep heuristics is introduced. First, data is collected during a
probing phase after which a deep heuristic function is learned based on the smallest, anti first-fail, and max-
imum regret heuristics. The learned deep heuristics look arbitrarily many levels in a search tree instead of
a single instant lookup for normal heuristics. The results show that deep heuristics solve 20.5% more prob-
lem instances than normal heuristics while improving on overall runtime for the Open Stacks and Evilshop
problems.

iii






Preface

This thesis is the final step in completing the MSc Computer Science programme at TU Delft. I would like to
take the opportunity to give my sincerest gratitude towards the people that have supported me during this
final stage.

First of all I would like to thank Neil Yorke-Smith for supervising me and for your inexhaustible positive
encouragement. Thank you for the many interesting discussions and for your feedback when I needed it. I
would like to thank the other members of thesis committee Mathijs de Weerdt and Johan Pouwelse for taking
the time to assess my thesis.

I am grateful to Christian Schulte, who unfortunately passed away earlier this year. He was a huge expert
in the field of constraint programming and helped me to get started with Gecode. I also want to thank Guido
Tack, who leads development of MiniZinc and is one of the main developers for Gecode, for helping me out
with Gecode and Minizinc.

I could not have started this master’s programme without the wonderful bachelor’s project I did with
David Alderliesten, Jesse Tilro, and Niels Warnars. Thank you for the good times. Overlapping with my thesis
project I joined the board of the Delft Student E-sports Association (DSEA) and I would like to thank my
fellow old-board members Rutger Bosmans, Remon de Graaf, Tim Rijkers, and Tim Yue for all the support
you gave me during the year. I am very grateful for being a part of DSEA from the very beginning 5 years ago,
getting to know so many lovely people over the years. Thank you Justin van der Krieken, Tim Rijkers, Quinn
Begelinger, and Maxime van Elsué for assisting me with Linux, design, and mental support where I needed it.
The wonderful cover was designed by Jesper van den Berg, thanks a lot. Finally, from the bottom of my heart,
I want to thank my parents Rob and Conny for always supporting me and believing in me no matter what I
do.

Delft, August 2020






Contents

Introduction 1
1.1 Problemstatement . . . . . . . . . . L. Lo e e e e e e e e e e 1
1.2 Research questions . . . . . . . . . . . . o i i e e e e e e e e e e 1
1.3 Methodology . . . . . . . . . e e e e e e e 2
1.4 DocumentStruCture . . . . . . . . . . . . ot e e e e e e e e e e e e e 2
Background and definitions 3
2.1 ConstraintProgramming . . . . . . . . . . ... L e 3
2.1.1 Constraint SatisfactionProblem . . . . . . . . . . . ... ... ... . 0oL, 3
2.1.2 Constraint Optimization Problem . . . . . . . . . . . ... ... L L. 3
2.1.3 Search . . . . . . .. e 3
214 MInIZInC. . . . . . L oo e e e e e e e e e e e 5
2.2 HeuristiCs. . . . . . . . o o e e e e e 5
2.2.1 Variable orderingheuristic. . . . . . . . ... L L oo o 5
222 Valueheuristic. . . . . . . . .. 6
2.3 Basicsofmachinelearning . . . . . . . . . .. L. L Lo 6
2.3.1 Learningalgorithm . . . . . . . . ... L 6
232 Generalization. . . . . . .. Lo e 7
2.3.3 Regressionanalysis . . . . . . . . ... 7
24 Relatedwork . . . . . . oL e e e e e 9
25 Summary . . .. oL Lo e e e e e e 10
Deepification: learning heuristics 11
3.1 Deepification . . . . . . . . L e e e e e e 11
3.1.1 Deepheuristics . . . . . . . . . . e e e e e e e e 11
3.1.2 Formalization of heuristics. . . . . . . . . . . . .. . 11
3.2 Datageneration. . . . . . . . . .. .o e e e e e e e e 13
321 Features . . . . . . . .. e e e e 13
3.22 Heuristicscore. . . . . . . . . . Lo e e e e e e 14
Framework 17
4.1 Probing . . . . . . . L e e e e e 17
4.2 Machinelearning . . . . . . . . . . L L e e e 17
4.3 Heuristicsearch. . . . . . . . . . L. e e e e e 18
44 Searchjobs . . . . . . . L e 18
4.5 Implementation . . . . . . . . . . . L e e e e e e e e 19
Experiment results 21
5.1 ExperimentalSetup . . . . . . . . . . .. Lo e e e e e e e e 21
5.1.1 Dataset . . . . . . . .. e e e e e 21
5.1.2 Problems. . . . . . . . e e e e e e 21
5.1.3 Parameterselection . . . . . . . . . .. L. e e e 22
5.14 Resultsevaluation . . . . . . . . . ... L e 22
5.1.5 Statistical significance . . . . . . . . .. L Lo 23
52 Results . . . . . . . L e 23
52.1 Overallresults . . . . . . . . . . . L e e 23
5.2.2 Hypothesis 1: halving probing time . . . . . . . . . .. ... ... ... ........ 30
5.2.3 Hypothesis 2: halvingjobtime. . . . . . . .. ... .. oo o000 30
5.2.4 Hypothesis 3: reducingdepth . . . . . . ... .. L Lo o Lo 31
5.25 Summary . . . ... e e e e e e e e 33

vii



viii

Contents

6 Discussion

6.1 Probing. . . . . .. ...
6.2 Machinelearningquality . . . . . . . .. ... ... ...
6.3 Heuristicfunctions . . . . . . . ... ... ... ........
6.4 Parameterselection. . . . . . .. ... ... ... ... ....

7 Conclusion

7.1 Answerstoresearchquestions . . . . . ... .. ... .....
7.2 Limitations . . . . . . . . ... Lo
7.2.1 Datageneration . . . . . . ... .. ... ........
7.2.2 Parallelization . . . . . . . ... ... ...
73 Futurework. . . . . . ... ... oL oo

7.3.1 Dynamic variable & value ordering

Bibliography

7.3.2 Variabletypes . . . . . .. . ... oL,
7.3.3 Deeplearning . . . . . .. ... ...
7.3.4 Towardsonlinelearning . . . . . . .. ... ... ....



Introduction

In 1997 for the first time in history, Deep Blue, a chess computer, beat the human chess world champion
Garry Kasparov in a match. This was very much a surprise to the world as most people had underestimated
the capabilities of the tin machine. How could a computer ever think like a human? Nowadays we simply do
not know any better than that a computer simply out-calculates us in chess and in many other problems.

To go even a step further, AlphaGo [40] by DeepMind added a neural network to its algorithm to beat the
Go world champion Lee Sedol. Soon DeepMind implemented AlphaZero [41] to master the game of chess and
this again made a huge impact in the chess world by showing that a computer could not only easily calculate
a sequence of chess moves, but also take into account the deeper positional features of the game.

The topic that revolves around solving problem like chess, go, but also other problems in the area of plan-
ning and scheduling, and logistics, is called Combinatorial Optimization (CO). CO problems typically
include many NP-hard problems, problems for which no algorithm exists that would solve them in polyno-
mial time, which often rules out the use of exhaustive search.

One of the methods to avoid brute-force algorithms is the use of approximation algorithms. For example,
based on the features of the current state of a game or problem we could compute some score based on a func-
tion. Knowing such a function would give us the best choice in every state, however this function is usually
unknown and can be instead approximated based on observations of data. This method of approximation is
called Machine Learning (ML) and is utilized in this thesis with the use of Constraint Programming (CP),
a discrete optimization paradigm using constraints on a set of decision variables, to solve CO problems.

1.1. Problem statement

In CP one typically models problems into Constraint Satisfaction Problems (CSPs), where the con-
straints have to be satisfied, or Constraint Optimization Problems (COPs), adding an objective value to
minimize or maximize next to satisfying the constraints. In these models a constraint solver is given a set of
decision variables with a domain of possible values to assign to find a solution. A solution, or failure if there
is none, is found by assigning a value to one of the variables one by one. However, the order in which the
variables are chosen can have significant effect on the total runtime of the solver [22].

Various variable ordering heuristics have been designed by human experts by learning them with ML
or learning which heuristic to use. However, the learned heuristics are based on the current search node.
Besides, some ML methods may require a lot of training time before starting search while others have a hard
time generalizing data.

In this work we focus on using regression analysis, a basic ML technique, to learn novel deep variable
ordering heuristics by approximating functions that look at multiple levels of a search tree with the aim
to generalize better than normal heuristics.

1.2. Research questions
In order to research the problem statement the main research question is defined as

How can machine learning improve variable ordering heuristics for constraint optimization
problems?
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To answer this question the following sub-questions are asked:

1. How to collect data to fit a machine learning model in constraint optimization problems?

2. How can the fit of a machine learning model to learn heuristics be improved in constraint optimization
problems?

3. How can a search strategy improve search in constraint optimization problems when using machine
learning?

1.3. Methodology

Deep heuristics, the learned variable ordering heuristics, will be implemented in Gecode [1], a constraint
solver. To do this, search strategies within Gecode are used to start a probing phase in which pseudo-random
datais gathered. This data, including features and labels, is then utilized by regression analysis to learn a deep
heuristic function. Finally, given the current search state heuristic can predict scores with the learned model
and select the variable with the best predicted score. Because the dataset is pseudo-random a restart-based
search strategy is added by halting search after 15 minutes and starting from scratch. This allows for multiple
machine learning models to be learned which increases the chance of finding solutions.

MiniZinc [33] is able to use the implementation within Gecode which makes it possible to test it on the
RCPSP, Evilshop, Amaze, and Open Stacks COPs. We compare the total runtime, average runtime, and number
of instances solved of the learned deep heuristics ‘Deep Smallest’, ‘Deep Maximum Regret’, and ‘Deep Anti-
First-Fail’ versus Smallest, Maximum Regret, and Anti-First-Fail. To test the quality of the machine learning
model we use R? and Spearman’s rank correlation.

1.4. Document structure

The outline for this thesis is as follows. In chapter 2 the necessary background and definitions of CP and ML
are provided. Chapter 3 will introduce and formalize the concept of deep heuristics. Chapter 4 describes
the framework which uses the deep heuristics to solve constraint problems. Chapter 5 tests the framework
against four COPs. Based on those results, three hypotheses for parameter selection are added to further
evaluate performance. Finally, chapter 6 discusses the results and chapter 7 concludes the thesis by indicating
limitations, answering the research questions, and prospects for future research.



Background and definitions

This chapter starts with an introduction to constraint programming and machine learning and then presents
related work in this area.

2.1. Constraint Programming

2.1.1. Constraint Satisfaction Problem
In a CSP a set of variables have to be assigned with values chosen from a range of values. The range of the
values that can be assigned is defined in the domain of a variable. More formally CSP(V, D, C) where

¢ V is afinite set of decision variables

¢ D is afinite set of domains D, for each variable v € V, each containing containing the possible values
for v

» Cis afinite set of constraints what values each variable v € V may take

2.1.2. Constraint Optimization Problem
One can also add an objective function to a CSP which is typically maximized or minimized. This turns the
CSP into a Constraint Optimization Problem (COP).

2.1.3. Search

To find solutions in CSPs and COPs aCP solver typically uses search trees. Figure 2.1 shows such an example
of a search tree where edges present value assignments and nodes represent the current variables with their
domains. Assigning certain values may lead to empty domains, resulting in failures such as when assigning
x[0] = 1. When every domain size is exactly one then a solution has been found denoted by the green node.

In this section it is first shown how a constraint problem can be solved via search after which different
popular techniques are explained to improve this process.

The most intuitive search is the brute-force method of backtracking by always selecting the first available
variable in V and value v in its domain D. Take the example of the n-queens problem, a constraint satisfaction
problem, where the goal is to place n queens on a n times n chessboard such that none of the queens can
touch each other if they were to move. Queens may move horizontally, vertically, and diagonally. Figure 2.2
shows the backtracking process for a 4-queens problem where the columns of the chessboard can be seen as
variables and the rows as values. Thus, search begins by selecting the first variable with its first value, column
1 and row 1. Then for the second variable the solver has problems with the first two rows as the queens touch
and thus that branch results in a failure. This process repeats itself until a solution has been found or when
every variable and value have been tried.

Inference Backtracking alone is not at all efficient as we iterate over all variables and values. Constraint
programming solvers often implement propagators which aim to remove redundant values from the domain
of a variable. For the n-queens problem we can define a simple procedure as in algorithm 1.
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Figure 2.1: Example of a search tree [1]

Figure 2.2: Backtracking Search in the 4-queens CSP by Roman Bartdk, 1998 (https://ktiml.mff.cuni.cz/ bartak/constraints/images/back-
track.gif)

Algorithm 1: Propagator n-queens problem

x — placed queen column;
y — placed queen row;
n — board width;
while x is not n do
RemoveValueFromAllDomains(x, y);
L xX=x+1;

Reset x to placed queen column;

while x and y are not n do
RemoveValueFromAllDomains(x, y);
xX=x+1;
y=y+1
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Figure 2.3: Inference by propagation in the 4-queens CSP by Roman Bartdk, 1998 (https://ktiml.mff.cuni.cz/ bartak/constraints/im-
ages/forward.gif)

Combining propagation together with backtracking results in a smaller search tree as seen in figure 2.3
where the crosses on the squares on the board represent the values removed by propagation.
Rossi et al. [36] provides an overview of other CP techniques.

2.1.4. MiniZinc

MiniZinc is an open-source constraint modelling language' in which both CSPs and COPs can be modelled
[33]. Modelling happens through defining variables, decision variables, and the constraints on the variables.

Once the modelling has been completed one can solve constraint problems by choosing one of the default
solver within the MiniZinc library: Gecode, Chuffed, findMUS, Globalizer or OSICBC. The solver is responsi-
ble for the search itself and there are no declarations of how to search for solutions. However, it is possible to
communicate with the solver through search annotations. Should the solver support a certain heuristic for
variable ordering or value selections then it is possible to add them to an annotation such as in listing 2.1 for
a CSP where first fail selects the variable which is likely to fail first and indomain_min select the lowest
value in a variable’s domain.

solve :: int_search(q, first_fail , indomain_min) satisfy;

Listing 2.1: MiniZinc syntax, solving for an array q of decision variables

Picking the appropriate strategy for both modelling and solving may improve search time, but there is
typically no heuristic or modelling strategy which works best for any CSP or COP. That is because in general
they are NP-hard.

2.2. Heuristics

The term heuristic derives from the Greek verb ‘heuriskein’ which means ‘to find. Aheuristic or search
heuristic is a model or technique to solve problems more quickly than exact algorithms and often do so by
approximating the solution. We can classify a heuristic into two types: perturbative or local heuristics,
which operate on an already fully instantiated candidate set, and constructive heuristics, which may itera-
tively expand a candidate set [10]. In this work we will be using constructive variable ordering heuristics and
some well-known heuristics will be presented in this section.

2.2.1. Variable ordering heuristic
Given a constraint problem with domain D and variables X, a variable ordering heuristic should de-
cide which variable to assign a value to first. Below you will find an overview of such heuristics including the

1 https://www.minizinc.org/
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ones used in this work. Other variable ordering heuristics can be found in [36].

First-fail A typical heuristicis first-fail [25] (FF) that selects variable x which is most likely to fail, mean-
ing that by assigning a value to x first the constraints cannot be satisfied. Formally, this is the same as picking
the variable with the smallest remaining domain as empty domains result in failures. On the other hand
anti-first-fail (AFF) would pick the variable with the largest domain, least likely to fail.

Smallest The smallest (SM) heuristic simply chooses the variable with the smallest value in its domain.

Maximum regret Maximum regret (MR) chooses the variable with the largest difference between the two
smallest values in its domain and is based on regret theory . If a second choice was more desirable than the
picked choice then a human may experience regret, however would the first choice also be the most desirable
then one could experience extra pleasure based on the difference with the next value. [31]

Domwdeg The domwdeg heuristic by Boussemart et al. [6] stands for ‘domain weighted degree’ and chooses
the variable with the smallest value of domain size divided by weighted degree, where the weighted degree is
the number of times the variable has been in a constraint which failed.

2.2.2. Value heuristic

Given a constraint problem with domain D and variable x, a value heuristic is to give the order in which
the values in domain D should be explored. To create an ordering, typically a scoring function score(X) with
features X is constructed to indicate how good it is to assign v to x given D [13]. Such a scoring function can
use the variable ordering heuristics explained in section 2.2.1.

2.3. Basics of machine learning
Machine learning (ML) is the act to use stored information to answer questions and to draw new conclusions
[37]. In this section we will give an introduction to ML by presenting a few techniques and challenges.

2.3.1. Learning algorithm

Mitchell [32] defines a machine learning algorithm as “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at tasks in 7', as mea-
sured by P, improves with experience E.” In this section not all possible parts that may be used are defined.
Instead the ones used in this research are explained in more detail.

Task T The task of a machine learning algorithm is not the learning itself but task accomplished by learning.
An example could be to determine similarity between two images. Tasks are usually described by what hap-
pens when the algorithm gets a certain example input for example filled with features, describing an object
or event. Two common machine learning tasks are:

1. Classification In this task the algorithm should determine to which class or category a certain input
belongs to. Typically a function f:R" — {1,..., k} is learned by the algorithm to compute this where k is
the number of classes. An example is the problem to classify which painting belongs to which famous
painter. Given the features, such as paint colors or frame size, the algorithm should decide its class.

2. Regression With Regression the algorithm should predict a numerical value given an input. Thus, ap-
proximating a function f : R" — R. Examples are predicting how much money there will be on a bank
account one month into the future, or predicting the score for a given chess move.

Other tasks are found in the deep learning book by Goodfellow et al. [24].

Performance measure P When a machine learning algorithm has a certain task, we must evaluate how well
the task is performed. The performance measure P is usually specific to task T. For classification accuracy
can be used to look at how many of the outputted classes are correctly predicted.

Itis not always straightforward to choose a metric which works well with the desired system. For instance,
should we penalize a regression system more if it makes a lot of small mistakes or rare large mistakes?
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Experience E The experience of a machine learning algorithm is about what kind of data it is allowed to ex-
perience throughout its learning process. Learning algorithms can be categorized in two types of experiences,
unsupervised learning and supervised learning.

1. Unsupervised learning In this task the algorithm should determine to which class or category a certain
input belongs to. Typically a function f : R” — {1,..., k} is learned by the algorithm to compute this
where k is the number of classes. An example is the problem to classify which painting belongs to
which famous painter. Given the features, such as paint colors or frame size, the algorithm should
decide its class.

2. Supervised learning With Regression the algorithm should predict a numerical value given an input.
Thus, approximating a function f :R"” — R. Examples are predicting how much money there will be on
a bank account one month into the future, or predicting the score for a given chess move.

Unsupervised learning In unsupervised learning, machine learning algorithms experience a dataset with
many features and try to learn properties to give structure to the dataset. There are also clustering algorithms
which try to divide the dataset into examples with the same features.

Supervised learning In supervised learning, learning algorithms experience a dataset with features but at-
tached to the examples are 1abels, rewards, or targets. For example, given the feature set of X : {3,6,1} and
attached labels y: {6,12,2} a machine learning model can approximate a function f(X) = y to be f(x) = 2x.

Online and offline learning The term online is commonly used to refer to algorithms that process input
data the moment they are received. Hence, online learning is when a machine learning model is fitted or
a prediction is made in short time after input data is received. On the other hand, in offline learning we
gather data, typically for a long period, to fit a model and afterwards use the model to make predictions. [37]

Reinforcement learning adds a feedback loop between the learning process and the experience with the
dataset. More information about this can be found in [43]. Another technique, Deep learning is to allow
computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each
concept defined through its relation to simpler concepts. The hierarchy of concepts enables the computer to
learn complicated concepts by building them out of simpler ones. If we draw a graph, a neural network,
showing how these concepts are built on top of each other, the graph is deep, with many layers. Hence, the
name deep learning. A detailed overview on this is found in the deep learning book by Goodfellow et al.
[24].

Figure 2.4 shows the relation of machine learning in artificial intelligence.

2.3.2. Generalization
A huge challenge in machine learning is the ability of the trained algorithm to perform well on new examples.
This ability is called generalization and typically the aim is to keep the generalization error, or test
error as low as possible. To test the generalization error the dataset is split up into a training set to train the
algorithm and a test set to test the newly trained algorithm on. This prevents training and testing on the same
dataset causing bias. When training on the training set we can measure a training error which we try to
minimize by setting paramaters. Finally, we test the trained model on the test set to measure the test error.
The training error should be as small as possible to get a better algorithm but we also need to minimize
the gap between the training error and test error. This is to prevent underfitting, where the training error is
not small enough, or overfitting, where the gap between training error and test error is too large. We can alter
the capacity of a model to control whether it will underfit or overfit which is the ability to fit a wide variety
of functions. Low capicity and the model will struggle to find a fitting function, otherwise a high capicity and
the model may use too much information from the training set to fit a function. Figure 2.5 shows the different
scenarios.

2.3.3. Regression analysis

In this section the typical regression methods Support-Vector Regression (SVR), Stochastic Gradient Descent
(SGD), and Random Forest Regression (RFR) are explained, of which RFR will be used in this work. We use
the implementations of Scikit-Learn in Python [35].
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Figure 2.4: Venn diagram showing the relation of areas within machine learning by Goodfellow et al., 2016 [24]
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Figure 2.5: Fitting of a model onto a dataset by Goodfellow et al., 2016 [24]



2.4. Related work 9

Y

Figure 2.6: SVR with a boundary plane of width 2e in which no point is included in the loss margin { by Schélkopf and Smola, 2002 [38]

Supportvector regression SVRis an extended form of Support Vector Classification (SVC) or Support Vector
Machine (SVM). The SVM is a popular approach for supervised learning if you do not have any specialized
prior knowledge about a domain [37]. Three properties make SVMs attractive:

1. SVMs construct amaximum margin separator which is a decision boundary with the largest possible
distance to example points. An example of such a boundary can be seen in figure 2.6.

2. SVMs have the ability to embed data into a higher-dimensional space, using a so-called kernel trick.

3. SVMs are a nonparametric method: they retain training examples and potentially need to store them
all. They have the flexibility to represent complex functions, but they are resistant to overfitting.

Stochastic gradient descent If we have the task of finding the best & where
h(x) = w1 x+ wy

then this can be typically done by minimizing a loss function such as the squared loss function with for ex-
ample a training set of n points. Such a loss function can be defined as

N
Loss(h) = Y (y; — (w1 x; + wp))®
=1

which is minimized when its partial derivatives, weights wy and w; are zero:

0 XN 0
Z(y] (w1x1+wo)) —Oand—Z(y]—(wlx]+w0))
6w1 j=1

611/0
However, often these equations do not have a closed-form and can instead be seen as a general optimization
search problem. This problem can be addressed by a hill-climbing algorithm that follows the gradient of a
function to be optimized. Because we are minimizing the loss, it is called gradient descent. We call it
stochastic gradient descent when we only consider a single training point at a time [37].

Random Forest Regression Another supervised learning method is the use of Decision Trees where we
try to predict a target value by learning decision rules from data features. A Random Forest Regressor
constructs multiple decision trees during training and averages the outcome of those trees as a resulting
prediction. [7, 27]

2.4. Related work

There is many work in the field of combining combinatorial optimization with reinforcement learning (2, 15,
18, 29] and deep neural networks [8, 21, 28, 42, 45]. However, in this work our aim is to use regression analysis
to prevent long training time and we use constraint programming to solve combinatorial problems.
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Chu et al. [13] use ML to learn value heuristics. First training instances are created and features are
selected. These features are mostly the lower bounds, upper bounds or assignments of variables close to
the decision variable in the constraint graph. Then the partial least squares regression method is
utilized to learn the score function. Our approach differs in a few ways. Firstly, we learn variable ordering
heuristics and we utilize a more complex score function, utilizing multiple heuristic score functions over
multiple nodes. Secondly, our framework uses a restart-based approach in probing and in search. Dewanto
etal. [19] useepsilon support vector regressiontolearnasearchheuristic function. In their proposed
algorithm they support both offline and online learning. In offline learning testing is interleaved with training
as the learning model is updated between two search planning processes. In the online setting the learning
model is updated during every search process. Our framework uses restart-based searching without any
training in between search processes.

Bessiere et al. [3] describe a framework to utilize ML in constraint programming (CP) which they call the
inductive constraint programming loop. In this framework the ML and CP component work closely
together. The ML component observes the world and extracts patterns and feeds information to the CP com-
ponent which solves the general CSP. The solution of the CSP is then applied to the world making the whole
process a loop which repeats. The framework may be effective for online learning and working with partial
information. In context of learning heuristics the inductive loop could be extended with a ML component for
learning heuristics using the CSP, but also patterns from the world.

Bonfietti et al. [5] extend their previously introduced Empirical Model Learning (EML) method which
embeds a ML model into a CP model. The extension consists of two ML classifiers: decision trees and
random forests. They embed a classifier function f in CP by introducing a vector of variables X to represent
the attributes and a variable y to represent the class. They then find constraints by enforcing some degree of
consistency on the relation X = ¥ A\ y = w <= f(¥) = w. This technique could perhaps be used to learn a
heuristic which propagates or relaxes a CSP by learning it’s constraints. Geschwender et al. [23] also build a
classifier which allows for selection of the appropriate consistency algorithm for CSPs.

Lombardi et al. [30] is referred to as an important survey on boosting combinatorial problem modeling
with ML. As addition to presenting current work with ML they also highlight in a systematic fashion pivotal
themes and shared issues observed with regard to ML: ML input configurations visited at search time may
be considerably different from those considered at training time because of the model inaccuracy, objec-
tive values may have more to do with approximation errors than with the actual quality of the solution due
to optimizer bias, active learning can provide significant advantages over passive learning in terms of so-
lution accuracy and convergence, in non-deterministic systems the same input example may lead to
different results, and lastly when dealing with an approximate model, the practical value of finding global
optima appears questionable.

2.5. Summary
Section 2.4 shows a lot of work in the field of combining ML with combinatorial problems, trying to learn
heuristics for CSPs and COPs but also the addition or removal of constraints in such models. Even more so,
the use of ML can also be difficult due to model inaccuracies and stochastic behaviour. However, ML is a
promising field to discover more about combinatorial problems and its features.

Hence, in this work we aim to use deep heuristics in order to use ML more effectively than in related work
to learn variable ordering heuristics. The features and labels that we collect for the model can result in a
more informative model due to the deep heuristic functions. The stochastic behaviour of the model can be
supported by search strategies as discussed in 2.1.3.



Deepification: learning heuristics

In this chapter we define the concept of a deep heuristic (DH) and show how they look at more levels of a
search tree than standard variable ordering heuristics. Section 3.1 formalizes DHs. Section 3.2 explains how
data is generated to train the machine learning model.

3.1. Deepification

First a definition of DHs is given with an example to show how they work. Afterwards we mathematically
formalize deep heuristic functions and define the following heuristics: Deep Smallest (DS), Deep Maximum
Regret (DR), and Deep Anti-First-Fail (DAFF).

3.1.1. Deep heuristics

Deep heuristics use a deep heuristic function (DHF) by inputting a set of features and using the result
to select the variable with the best score (definition 1). For a search tree where the nodes represent the cur-
rent variable selection and the edges are the variable selection options a DHF looks at multiple levels of the
tree, iterating over multiple nodes. The DHF consists of a heuristic function which computes a score at each
node. For instance, the smallest heuristic function would simply return the lowest value in a variable’s do-
main, which we call the heuristic score for that node. The DHF could then in turn return a new deep
heuristic score by averaging all the collected heuristic scores.

A DHF may give substantial information about many nodes compared to a heuristic score for a single
node, but computing multiple heuristic scores is a costly operation during search. That is why machine
learning learns a model to approximate the DHF and predicts scores based on a set of features. Figure 3.1
gives an example of what nodes may be used to compute the DHF given a depth value d.

Definition 1. A deep heuristic function is a custom designed function that uses the result of a heuristic func-
tion of multiple nodes in d levels of a search tree, given an arbitrary depth d.

Now that the DHF is defined we can select variables based on the outcomes of this function. Let us take
the example search tree from figure 3.1 and select a variable at node A. We compute a deep heuristic score for
each of the variable selection options x, y, and z by inputting the set of features for node A. We then compare
the scores and select the variable with the highest or lowest score depending on the kind of heuristic we want
to use. For example, if we use the smallest heuristic then we use the minimum score of the DHF as defined
in the next section. We call the heuristic that selects a variable this way Deep Smallest. The act to use a
heuristic such as the smallest heuristic and define a deep heuristic with is to deepify the heuristic.

3.1.2. Formalization of heuristics

To deepify heuristics a DHF needs to be defined. The heuristics that we will deepify in this work are smallest,
maximum regret, and anti-first-fail. They are implemented in Gecode and we can deepify them given the fea-
tures that can be retrieved from Gecode. Some heuristics which use successes, failures, or constraints cannot
be used as discussed in section 7.2.1. Table 3.1 defines their heuristic property.

11
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{z.y}

@ {z.v.x} @ (2 y.x)

(a) Computing a deep heuristic score from node B for the selection of (b) Computing a deep heuristic score from node A for the selection of
variable y with a depth level of 1. This would be the same as using a variable y with a depth level of 2.
normal heuristic.

Figure 3.1: Examples of computing a deep heuristic score with a total of three variables. The nodes represent the current variable ordering
and the edges a variable selection. A solution is found through the path {A, B, C, D}

Heuristic Heuristic attribute

smallest the lowest value in a variable’s domain

maximum regret  the largest difference between the two smallest values in a variable’s domain
anti-first-fail the largest a variable’s domain

Table 3.1: The heuristics used in this work with their heuristic properties
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Heuristic function Function output Heuristic objective
Bsmaitest,x the lowest value in Dy minimization
Rmax—regret,x the difference between the two smallest values in D, maximization
Ranti—ffx the size of domain D, maximization

Table 3.2: Heuristic functions based on their respective heuristic property along with their objective

For each of the above heuristics we use a heuristic function 4 computing a score based on the heuristic’s
property. The property also determines whether we desire the lowest or highest heuristic and show this in
table 3.1.

The heuristic functions are then used to define the DHFs which iterate over search nodes, averaging the
heuristic scores for a particular heuristic from the function in table 3.2. A recursive function is defined to
compute the deep heuristic score:

hyx+ v k+1), ifk<d.
g0, v, k) = X ZyeMg(J/ ) ! 3.1)
0, ifk=d.
g(x, v, k)
Hx, v, k)= ———F—— 3.2
( ) nodes-counted 8.2
where
x variable in the current search node
v assigned value to the current variable
k current level in the tree
M set of variables of children of the current node
hyx heuristic score by selecting variable x where r is a heuristic from table 3.1
nodes-counted total nodes for which a heuristic score is computed
d the depth for which we compute the heuristic in the number of levels of a tree

For the assignment of values we choose the lowest value in the domain for minimization problems and the
highest value for maximization problems. Value heuristics can be used instead, but in this work the variable
ordering heuristics are independently tested. Dynamic variable and value ordering is proposed in section
7.3.1.

3.2. Data generation

The deep heuristics introduced in the previous section are approximated through supervised machine learn-
ing, which means training samples are needed to fit the machine learning model. At each search node we
gather all features Xy along with labels yscore to approximate a deep heuristic function h as

h(Xf) = Yscore (3.3)

3.2.1. Features

Historical data is not available in this work because search has not started yet so we do not have any informa-
tion about the search nodes and we assume that no probing or other search has been done before our search.
This means we have to artificially create our own dataset. Hence, a probing phase is initiated on the problem
that is being solved. This acts as a short pre-search to gather features at every search node of the search tree.
This technique is also employed by Chu et al. [13] to learn value heuristics.

To obtain as many different assignments as possible a random variable order and random value assign-

ment chosen. Regardless of which deep heuristic function we are learning, the following features at each
search node are saved:
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Figure 3.2: Computing labels yscore in the green nodes for variable choices which go at least 2 levels deep

D, variable domain size

Dy total domain size of all variables
v assigned value

Up value position in the domain

Umin Minimum value in the domain

Umax Maximum value in the domain

'min ~ Mmaximum regret as the difference between the two smallest value in the domain
'max Maximum regret as the difference between the two largest value in the domain

These features are possible to collect during probing, but also during the actual search. This is impor-
tant because predictions have to be made based on the features gathered during probing. Features such as
‘number of siblings/children’ tell about the structure of the search tree but cannot actually be used because
while during search this is often futuristic data. For example, going through a node for the first time means
the node does not have any children nodes yet, thus making that feature unreliable. Some features are not
possible to collect due to limitations found in section 7.2.

3.2.2. Heuristic score

The features are acquired and the probing phase has ended. Now the labels y ... from equation 3.3 have to
be computed. To do this, we compute for each node in the search tree that was probed the deep heuristic
score.

After all features are collected, the labels yscor. are computed by iterating over the nodes in the probed
tree that have children who go at least d levels deep. Other nodes are discarded to make sure the features
represent the depth. After all, if a machine learning model predicts a heuristic score for a node with a depth
value of 25, then gathering features for this node which only has depth value 1 makes it unclear what the data
says. Figure 3.2 gives an example of the computation of labels for a depth value of 2. Let there be a heuristic
score s; for each variable i. The only nodes from which deep heuristic scores can be computed are the green
nodes, respecting the depth value. From node A, selecting variable y, would yield a deep heuristic score
of (sy + sy + sz)/ nodes counted = (2 +1+1)/3 = 1.33. From node A, selecting variable z, would yield a deep
heuristic score of (s; + sy + 5,)/ nodes counted = (3 + 1+ 2)/3 = 1.33. Finally, from node B, selecting variable y,
would yield a deep heuristic score of (s), + sx)/ nodes counted = (2+1)/2 = 1.5.



3.2. Data generation 15

Algorithm 2 shows the naive approach to compute the labels based on the recursive function 3.2. It could
be improved by using a dynamic programming algorithm, iterating from leaves to root and memorizing com-
puted values by reusing them.

Algorithm 2: Computing labels yscore

d — depth value for the heuristic;

N — nodes from the probed tree;

h — height of the probed tree;

s < heuristic score or label for node n;

/* Recursive function with node n, depth d and current depth d. */
COMPUTESCORE (n, d, d,;)

if d = d. then

| return s,

foreach child c of node n do
| sc<— coMPUTESCORE(c,d,d;+1)
return s, + S,

/* Call the recursive function for each node in the tree */
foreach node n in N do
k < level in tree of node n;
Sn<—0;
ifd < h— k then
t $p — COMPUTESCORE (1, d,0) / nodes-counted;







Framework

Now that the idea of deepification has been established we have to use the deep heuristics during search such
that they can be used effectively. This chapter defines a framework which is defined as a probing, machine
learning, and heuristic search phase along with a search strategy to guide these phases.

4.1. Probing

Probing happens by assigning random values to a random variable order. After all variables have been as-
signed a value, search normally continues to mutate the current solution until an optimal, in COPs, has been
found. This means that probing has the chance of finding an optimal solution during probing which would
skip the necessity of starting the machine learning and search phase. However, the goal for probing is to col-
lect data with many different variable orderings and value assignments. Thus, probing is restarted repeatedly
by resetting the variables and assigned values. This happens with the use of a constant cutoff value [36] which
stops search after a specific constant amount of failures.

The framework makes one exception to the random process which is the selection of the first variable
after each restart. To make sure all variables are picked at least once during probing the framework keeps a
list of variables which were not selected yet. The reason to do this is because it can be promising to have more
data on the first variable selections, which could reduce cost of overall search as investigated by Ortiz-Bayliss
et al. [34]. This way of probing also increases the chance to find a set of backdoor variables [44]: a set of
variables which can significantly reduce search cost.

4.2. Machine learning

To train a machine learning model the random forest regressor is used with default Scikit-Learn parame-
ters!. Support vector regression (SVR) and stochastic gradient descent (SGD) were also considered for use
but showed some drawbacks. SVR has a fit time complexity which is more than quadratic with the number of
samples which means it is hard to scale with a dataset of more than a couple of 10000 samples?. SGD on the
other hand supports large-scale data, but has a lot of hyper-parameters to tune which means that the use of
cross-validation, trying to set the best hyper-parameters per problem per data instance, can be costly.

A comparison has also been made in terms of prediction latency for the regressor implementations in
Scikit-Learn. We want to minimize this latency because search requires a lot of predcitions being made by
the ML model. One way of doing this is to make predictions in bulk rather than atomic, one prediction per
call to the model. An overview of prediction latency when doing bulk predictions in figure 4.1. From this
figure we can see that a linear model is extremely efficient when it comes to making bulk predictions whereas
RFR and SVR more experience latency.

Considering the aforementioned comparisons, SVR is not scalable for this framework and SGD is a good
candidate in terms of prediction latency but complicated to implement due to hyper-parameter tuning.

Due to the latency it is not tractable to make predictions for every feature combination. Often when the
solver is backtracking values will be mutated until the solution no longer fails. However, if one would make

Thttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
Zhttps:/ /scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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Figure 4.1: The prediction latency in Scikit-Learn when doing multiple predictions at the same time for different models3

a prediction each time a value is changed while the variable order remains the same then often the same
resulting predictions is made. For a domain size |D,| of a variable x then the solver could make O(|Dy|)
predictions. Is the domain size large, then there could be a lot of prediction latency. To save runtime the
framework caches predictions and uses them each time a variable ordering was already seen before. The
downside to this is that a value change also leads to a prediction change in the model and a cached prediction
would result in a different outcome.

We can even go a step further and introduce a threshold ¢ where predictions are made only for the first
t variable positions in the solution. For now, caching saves enough time and this threshold is not utilized in
the framework.

4.3. Heuristic search

The framework is implemented as an extension of Gecode 6.2.0 [1]. This solver allows for custom branchers
which make choices on which variable and value to pick next. For each currently unassigned variable a
heuristic score is predicted through the ML model within this brancher. A variable is then selected depending
on the chosen deep heuristic: the lowest predicted heuristic score for Deep Smallest and Deep Max Regret
and the highest predicted score for Deep Anti-First Fail. Deep heuristics are not used on value selection which
means that the minimum value in the chosen variable’s domain is chosen for minimization problems and the
maximum value for maximization problems.

4.4. Search jobs

So far we have discussed the three main phases of using a learned deep heuristic: probing, machine learning,
and search. We define this as a job with a fixed job time. To get a wider variety of variable orderings and
values we introduce a restart-based process which allows for multiple search jobs within the total search
time given. Whenever search does not finish within the given job time then search is halted and the next
job started. The data gathered by probing is not transferred between jobs as it would greatly increase the
time to fit a model. Jobs restart until an arbitrary search time is reached. Figure 4.2 shows an overview of the
restart-based search.

One could argue to perform longer probing instead of multiple shorter probing phases. However, besides
causing a longer fitting time this increases the chance that the solver may be stuck for along time on a variable
ordering. In this case, the solver tries to backtrack, assigning different values to the variables, but fails a lot.
However, by restarting search completely we get a different predicted variable ordering due to the pseudo-

Shttps://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html
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job time
| Probing ‘ | Probing | ‘ Probing ‘
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Search Search Search
- search time -

Figure 4.2: Restart-based search: independent jobs with a job time repeat until search time is reached

random probing.

4.5. Implementation

The framework is implemented in C++ inside Gecode which in itself can be used in the MiniZinc modelling
program. Once the custom Gecode solve is added to MiniZinc one can use deep heuristics with this annota-
tion:

solve :: heuristic_search(q) minimize;

where g are example decision variables used in a minimisation problem. From the source code in Gecode
we call a Python script where Scikit-Learn library is used to train the ML model. Scikit-Learn is used because
it is easy to use and has multiple libraries for machine learning such as different learning techniques, dataset
utilities, and cross-validation. Figure 4.3 describes the steps to use deep heuristics and how it is implemented
within Gecode, using MiniZinc annotations and the Scikit-Learn library.
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Experiment results

In this chapter the results are shown and the methodology to obtain them. Section 5.1 explains what problems
are experimented on, where the data instances come from, what parameters are used, and how we measure
quality. Section 5.2 shows the overall results and the results of hypotheses.

5.1. Experimental setup

5.1.1. Data set
To test the deep heuristics implemented in Gecode we will be using Minizinc. They provide a list of modelled
constraint problems' to which we add our custom annotation as explained in section 4.5. Next to the mod-
elled problems, Minizinc also has a huge amount of data instances? available. Many of these were used for
the MiniZinc Challenge which is an annual competition for constraint solvers3.

We select those data instances that run for at least a minute in Gecode with the smallest variable ordering
heuristic. This is to prune the dataset of problems that are too easy to solve.

5.1.2. Problems

We test deep heuristics on the Resource Constrained Project Scheduling Problem (RCPSP), Evilshop, Amaze,
and Open Stacks. They respectively include 138, 11, 13, and 43 data instances which can be found at the
MiniZinc benchmarks repository*. Amaze and Evilshop do not contain that many instances which is why
Open Stacks was added later during research. Note that we should take this in mind when inspecting the
results for Amaze and Evilshop.

RCPSP The RCPSP® is an NP-hard problem [4] which consists of J activities each having a process time p j
for j € J. Once an activity is started it cannot be stopped and due to technological requirements there is a
precedence relation between activities. An activity requires an amount of resources, for example a machine
or vehicle, before it can start. These resources are renewable as their full capacity becomes available again
after a period [26]. The objective is to find and optimal schedule with respect to the earliest end time of the
schedule. The tasks’ resource requirements may not exceed the resource capacities and each precedence
relation must be met.

Specific to Minizinc and CP, this problem is modelled with a constant discrete capacity over time and tasks
with a constant discrete duration and resource requirements.

The solver will use the starting times of the activities as decision variables.

Evilshop The Evilshop® problem is a variant of the classic job-shop scheduling problem where the capac-
ity of resources has been left as a variable and tasks use more than half of the possible maximum capacity.

Thttps://www.minizinc.org/mznc_list_of_problems_and_globals.html
Zhttps://github.com/MiniZinc/minizinc-benchmarks

Shttps:/ /www.minizinc.org/challenge.html
4https://github.com/MiniZinc/minizinc-benchmarks
Shttps://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp/repsp.mzn
Shttps://github.com/MiniZinc/minizinc-benchmarks/blob/master/evilshop/evilshop.mzn
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Besides that, start times are scaled up.
The solver will use the starting times of the jobs as decision variables.

Amaze Amaze’ is a game in which we have been given a grid containing pairs of natural numbers where
the goal is to connect the pairs: 1 to 1, 2 to 2, etc. Lines can only be drawn horizontally or vertically and they
may never cross.

The solver will use each cell of the grid as a decision variable to insert natural numbers.

Open Stacks In the Open Stacks? problem, also called Minimizing the Maximum Number of Open Stacks
(MOSP), there are customers who can order products. Only one product at a time can be manufactured in
batches. The customers can order multiple products and a stack to save the products for the customers is
opened once manufacturing for one of their products has begun. Once all ordered products for a customer
are manufactured, the products can be sent and the stack is freed. The aim is to determine the sequence of
manufacturing products such that we minimize the maximum amount of open stacks that are needed which
is the maximum number of customers whose products are being manufactured simultaneously. [12]
The solver uses the schedule of manufacturing products as decision variables.

5.1.3. Parameter selection

All the instances are run for a maximum search time of 4 hours after which they time out and job times of
15 minutes for the deep heuristics allowing at most 16 jobs in total. This maximum makes it more feasible
to experiment with the data instances as some could potentially run for a week or more given an unfitting
heuristic. The small runtime window gives the flexibility of testing more data instances more frequently. A
huge downside to this method is that we cannot measure exact runtime differences between Gecode and
our custom solver for instances that require long search runtimes of close to an hour. To make up for this a
comparison is made without looking at instances that timed-out.

Per instance we run each deep heuristic three times and take the average of their results. This is done
because there may be variance in the individual results due to the random behaviour of probing.

For all problems we select a depth value of 25. The size of the decision variable set of the problems is at
least 30 which means that with a depth value of 25 we make sure that we gather data for at least the first 5
levels of the search tree. More on how this works can be found in 3.2.2.

Selecting how long we should probe can be very dependent on the problem: as the complexity of the
problem changes, for instance multiple decision variables or more constraints per variable, it may take a
variable amount of time to collect data. For RCPSP, Evilshop, and Amaze we set the probing time to 1 million
nodes and for Open Stacks 2 minutes as the collection of 1 million nodes of information takes a very long
time. Probing time for RCPSP, Evilshop, and Amaze is usually within the minute. The last column of table 5.2
and table 5.3 show the average dataset size that is used after probing has finished.

5.1.4. Results evaluation

Firstly, the quality of deep heuristics is evaluated by comparing runtime with Gecode having a standard
heuristic, i.e. smallest (SM) versus Deep Smallest (DS), max regret (MR) versus Deep Max Regret (DR), anti-
first-fail (AFF) versus Deep Anti-First-Fail (DAFF). A comparison in total number of nodes cannot be made
which is a limitation to the restart-based search mechanism: when a job is cancelled then Gecode does not
show the statistics with the number of nodes. Next to a runtime comparison we also record the number of
instances that are solved by each heuristic and the number of times a heuristic outperforms another. This is
useful as we have a lot of different data instances with different solving time.

Secondly, we measure the quality of the fitted ML model with the coefficient of determination R?, which
is the proportion of the variance in the dependent variable that is predictable from the independent vari-
able(s). It is defined as
Z;lzl (yl - }71‘)2

Ry p=1-1——F
y y Z,’-l:l(_)/i —J/)2

https://github.com/MiniZinc/minizinc-benchmarks/blob/master/amaze/amaze.mzn
8https://github.com/MiniZinc/minizinc-benchmarks/blob/master/open_stacks/open_stacks_01.mzn
Ihttps://scikit-learn.org/stable/modules/ classes.html#regression-metrics
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where y = %Z?Zl ¥i, Ji is the predicted value of the i-th sample, and y; is the corresponding true value. The
outcome can range from 1, an optimal prediction, to an arbitrarily large negative number.

However, the order of the predicted values for selecting variables is more important than predicting the
exact true value. This is why we also add Spearman’s rank correlation metric to get an idea of how well the
relationship between the predicted dataset and true testset can be described using a monotonic function and
is defined as

6y d?

Fe=1o—— i
s nn?-1)

where d; is the difference between the predicted rank and true ranking per sample. The value for r; can range
from -1 to 1 where 1 would be a perfectly predicted ranked order.

R? and Spearman’s rank correlation are also used to evaluate the top 10 predicted values to get a better
idea of the quality of early choices. These are denoted as R*@10 and Spearman@10. These metrics are used
on 20% of the dataset where the other 80% is used for training to prevent bias.

5.1.5. Statistical significance

In the results we would like to make a comparison of the means of deep heuristics versus the mean of normal
heuristics. For this we define the following null-hypothesis for each deep heuristics mean versus normal
heuristic mean for each problem [16]:

Ho:pupy = Uy

We set the significance level to @ = 0.05 and compute the p-value for each comparison with Welch’s t-test,
because the compared datasets have different variances. This test is defined as

If the p-value is lower than the significance level then we reject the null-hypothesis of the two sets having
the same averages. We reject this in favor of a hypothesis where the mean is either a higher average or lower
average.

5.2. Results

5.2.1. Overall results

To get a good sense of the overall performance of deep heuristics compared to SM, MR, and AFF we first
inspect the total runtime of the heuristics on all problems. Figure 5.1 shows the total runtime of Gecode
running the SM, MR, and AFF heuristics versus DS, DR, and DAFF on all problems. The runtime bars of
the deep heuristics have been divided into the probing, machine learning, and search phases. DS uses 7.7%
less total runtime, DAFF 26.1%, and DR uses 4.4% more total runtime than the normal heuristics. DAFF
outperforms AFF on all problems, where DS and DR mostly have a higher overall runtime. However, one
could argue that DAFF outperforms AFE because of the fact that AFF performs worse on all problem relative
to SM and MR. Hence, we present the average runtime of the heuristics per problem for SM, MR, and AFF in
figure 5.2a. Not only do we observe that AFF indeed performes worse than the other heuristics, but also that
AFF mostly timed out showing only some solved instances as outliers shown by the boxplot. We observe that
MR on average outperforms the other heuristics for each problem where as DR does not as shown in figure
5.2b. Ttis difficult to say that a deep heuristic outperforms another due to the fact that there is a lot of variance
which can be seen through the boxplots.

Figure 5.3 compares the total average runtime. It is evident that AFF runs worse that DAFE These figures
include timeouts, which means that the we do not know for how long these instances would have run given
unlimited runtime. This is why we also make a comparison in average runtime without timed-out instances.
Figure 5.4 shows that deep heuristics are outperformed in average runtime on most problems. Note that this
graph does not include instances where deep heuristics outperform timed-out instances. Thus we can reason
that normal heuristics perform better than the deep heuristics when they solve instance in 4 hours. Figure
5.4b misses two bars because there are no instances where neither AFF nor DAFF timeouts.
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%instances solved RCPSPj30 Evilshop Amaze Open Stacks

Gecode Smallest 29.7% 54.6% 38.5%  23.26%
Deep Smallest 31.2% 18.2% 23.1%  54.26%
Gecode Anti-First Fail 15.9% 18.2% 18.2%  23.26%
Deep Anti-First Fail 35.4% 63.6% 63.6%  56.59%
Gecode Max Regret 37.7% 18.2% 76.9%  57.36%
Deep Max Regret 41.6% 48.5% 28.2%  58.14%

Table 5.1: Percentage of total instances solved by heuristics

Number of outperforms done by Gecode and Deep Smallest Number of outperforms done by Gecode and Deep Anti-First-Fail

70 mmm Gecode outperforms DS mmm Gecode outperforms DAFF
== DS outperforms Gecode mmm DAFF outperforms Gecode

No outperforms No outperforms

#instances
#instances
&

RCPSP j30 Evilshop Amaze Open stacks RCPSP 30 Evilshop Amaze Open stacks

(a) SM versus DS (b) AFF versus DAFF

Number of outperforms done by Gecode and Deep Regret

mmm Gecode outperforms DR
mmm DR outperforms Gecode
No outperforms

#instances

RCPSP 30 Evilshop Amaze Open stacks

(c) MR versus DR

Figure 5.5: Number of times that heuristics outperform each other

Table 5.1 presents the percentage of instances solved per problem by heuristics. The percentages in the
table for deep heuristics are based on all runs as deep heuristics are run three times per instance. This means
that RCPSP has 414 instances, Evilshop 33 instances, Amaze 39 instances, and Open Stacks 129 instances.
We can also say that we count a success when at least one out of three runs would solve the instance within
4 hours. In this case for all problems, DS outperforms SM by 38 (18.5%) instances, DR outperforms MR by
21 (10.2%) instances, and DAFF outperforms AFF by 67 (32.7%) instances. This way in total deep heuristics
solve 126 (20.5%) more instances than normal heuristics. In the table the deep heuristics outperform normal
heuristics as they are able to solve more problems within 4 hours. Only in the Amaze problem DS and DR and
Evilshop DS is outperformed. It is difficult to reason why because the number of instances of those problems
is low, but DAFF solves more problems than DS and DR for them.

Another point of view is to look at the number of instances in which heuristics outperform another which
is shown in figure 5.5. Notable is that DS and DAFF outperform SM and AFF in more instances and that many
RCPSP problems cannot be solved within the time limit by either heuristic. Overall MR works better than SM
and AFF on RCPSP and Open Stacks.

If a deep heuristic search completes within 4 hours then one of the search jobs in the framework suc-
ceeded. We denote these successes as 'solutions’. The solutions are independent of other search jobs and
hence we compare their runtimes in figure 5.6. It can be said that the solutions have significant less runtime
than the normal heuristics which can be partly explained by the fact that search jobs get a maximum runtime
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Figure 5.6: Comparison in runtime between normal heuristics and deep heuristic solutions

of 15 minutes.

Lastly, table 5.2 and 5.3 show the average quality of the fitted model for deep heuristics and solutions. It
can be noticed that for the R? values the models have a really high error margin. For the R? values of the top 10
ranked values this goes to well beyond -1 showing that the predicted value is often not even close to the one in
the test set. The Spearman’s rank correlation shows that values are mostly around the 0 mark and sometimes
above which indicates that the ranking quality of the system is not great, but not that bad either. Note that
the true ranking is based on only 20% of the dataset which means that data for early decision making could
be located in the other 80%. We also present the true ranks of predicted values. In general we see that the
first three predicted ranks are pretty close to the true first rank based on the average size of the dataset. For
example, for DS RCPSP the 1st predicted rank has as true 1st rank 706 which is 706/41730-100 = 1.7% from the
top rank. For DR in Evilshop the metrics could not be recorded due to an unknown implementation reason.

Finally we perform the statistical significance test as found in table 5.4 for the average runtime without
timeouts, table 5.5 for the average runtime with timeouts, and table 5.6 for the average runtime of solutions.
Note that most p-values for the average runtime without timeouts in table 5.4 are higher than the significance
level @ and some p-values for Amaze are missing, possibly due to the low amount of samples.

The overall results presented so far give an impression of the quality of deep heuristics. However, it is hard
to test the quality of the ML model and it is unclear how different parts of the framework contribute towards
performance. To further test this and what parameters could fit best we define three hypotheses:

* Hypothesis 1 Halving the probing time results in a lower total runtime. Figure 5.3 showed the division
of probing, ML fitting time, and actual search. Reducing probing time could possibly reduce the total
runtime without potentially increasing heuristic search time. A side effect is that the ML fitting time is
also reduced, because less data is gathered. For the RCPSP, Amaze, and Evilshop problems we reduce
probing time from 1 million nodes to half a million nodes and Open Stacks from 2 minutes to 1 minute.
There are a number of reasons to halve the probing. Firstly, if we would halve probing time and only the
probing time will change to total runtime than we would outperform normal heuristics in any problem.
Secondly, if we reduce probing time by too much then we would have possibly to little data for the ML
model. Finally, it can be hard to draw conclusions by lowering probing time only by a little. This is due
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average metrics R? R%’@10 Spearman Spearman @ 10 Rank of 1st predicted value Rank of 2nd predicted value Rank of 3rd predicted value = Dataset size
DS RCPSP 0.19 -31787.46 0.40 0.03 706 818 822 41730
DS Evilshop 031 -71.74 0.14 0.39 14 15 17 272

DS Amaze -1.68 -35904.47 -0.02 0.16 13 13 16 385

DS Open stacks 0.05 -28957.35 0.29 0.02 10361 9474 10258 143417
DAFF Fail RCPSP  0.39  -13701.66 0.57 0.03 1812 1687 1814 41426
DAFF Evilshop -0.01 -109.17 0.25 0.07 22 22 24 274
DAFF Amaze -0.32  -7148.79  -0.04 0.15 16 18 21 1198
DAFF Open sstacks -0.02 -35837.92 0.21 0.05 3994 4274 4271 94234
DR RCPSP -0.12  0.00 0.01 0.00 802 785 724 41449
DR Evilshop err err err err err err err 270
DR Amaze -0.16 -0.05 nan 0.10 34 36 33 1230
DR Open stacks -0.12  0.00 0.09 0.02 4741 5120 5010 138506

Table 5.2: Average quality of deep heuristics presented through R2, Spearman’s rank correlation, and predicted rankings

solution metrics R? R%@10 Spearman Spearman @ 10 Rank of 1st predicted value Rank of 2nd predicted value Rank of 3rd predicted value Dataset size
DS RCPSP 0.27  -35713.61 0.50 0.04 845 1185 1343 65409
DS Evilshop 0.26 -37.16 0.15 0.38 11 16 16 218
DS Amaze -7.09 -67.34 -0.15 0.68 14 12 13 113
DS Open stacks -0.05 -22499.85 0.18 0.04 7506 6424 7497 94663
DAFF RCPSP 0.44 -20307.12  0.65 0.06 2878 3140 2866 68747
DAFF Evilshop -0.03 -44.12 0.25 0.11 15 20 19 224
DAFF Amaze -0.90 -222.80 -0.15 0.43 10 17 17 198
DAFF Openstacks -0.07 -20591.68 0.15 0.02 2944 2786 2702 55869
DR RCPSP -0.13  0.00 0.02 -0.02 1199 1092 586 63398
DR Evilshop err err err err err err err 213
DR Amaze -0.39 -0.19 nan 0.38 14 19 29 227
DR Open stacks -0.16  0.00 0.05 0.00 3504 3929 4205 86904

Table 5.3: Average quality of deep heuristic solutions presented through R2, Spearman’s rank correlation, and predicted rankings
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Mean average runtime (no timeouts) p-value Significant difference

DS vs SM: RCPSP 0.12 No
DR vs MR: RCPSP 0.014 Yes
DAFF vs AFF: RCPSP 0.45 No
DS vs SM: Evilshop 0.19 No
DR vs MR: Evilshop 0.15 No
DAFF vs AFF: Evilshop 0.13 No
DS vs SM: Amaze - No
DR vs MR: Amaze 0.45 No
DAFF vs AFF: Amaze - No
DS vs SM: OS 0.33 No
DR vs MR: OS 0.016 Yes
DAFF vs AFF: OS 0.14 No

Table 5.4: Significance of mean comparison average runtime without timeouts, comparing the p-value to a = 0.05

Mean average runtime (with timeouts) p-value  Significant difference

DS vs SM: RCPSP 0.68 No
DR vs MR: RCPSP 0.75 No
DAFF vs AFF: RCPSP 4.6-107%  Yes
DS vs SM: Evilshop 0.08 No
DR vs MR: Evilshop 0.21 No
DAFF vs AFF: Evilshop 0.028 Yes
DS vs SM: Amaze 0.53 No
DR vs MR: Amaze 0.004 Yes
DAFF vs AFF: Amaze 0.018 Yes
DS vs SM: 0S 3.8-10%  Yes
DR vs MR: OS 0.85 No
DAFF vs AFF: 0S 1.7-107*  Yes

Table 5.5: Significance of mean comparison average runtime with timeouts, comparing the p-value to a = 0.05

Mean average solution runtime p-value Significant difference
DS vs SM: RCPSP 1.02-10° 7 Yes
DR vs MR: RCPSP 6.76-1071*  Yes
DAFF vs AFF: RCPSP 2.8-1072  Yes
DS vs SM: Evilshop 4.5-107° Yes
DR vs MR: Evilshop 2.2-1073 Yes
DAFF vs AFF: Evilshop 1.2-107° Yes
DS vs SM: Amaze 0.12 No
DR vs MR: Amaze 0.62 No
DAFF vs AFF: Amaze 2.8-107%1 Yes
DS vs SM: OS 4861077  Yes
DR vs MR: OS 0.14 No
DAFF vs AFF: OS 1.2:107%  Yes

Table 5.6: Significance of mean comparison average solution runtime with timeouts, comparing the p-value to @ = 0.05
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Figure 5.7: Hypothesis 1: Total runtime divided into probing, ML, and search phase

to the variance of the results: a small change in total runtime would not be possible to fully relate to the
small change in probing time.

¢ Hypothesis 2 Halving the job time leads to more instances solved. Figure 5.6 shows that the mean of the
average solution runtime is usually below 200 seconds which means we can test the system by reducing
the job time, which is defined in section 4.4, from 900 to 450 seconds. A lower job time will increase the
total number of jobs for search from 16 to 32 and should thus have more chance of finding a solution
in one of the jobs.

* Hypothesis 3 Reducing the depth value by 5 will decrease the average runtime of the framework. First
of all, reducing depth will increase the amount of data gathered by including more feasible nodes as
explained in section 3.1. This will increase the ML fitting time, but gather more data about nodes further
away from the root. Secondly, using less depth may lead to finding less promising nodes at deep levels.
We reduce depth by 5 too see whether such a small value change has any impact on the average runtime
while a larger decrease in depth can result in really long probing and ML fitting time.

5.2.2. Hypothesis 1: halving probing time

We present the total runtime in figure 5.7 and average runtime including timed-out searches in figure 5.8.
Runtime has increased for most problems, with a respective total increase of 9.1%, 15.2%, and 13.7% for DS,
DAFE and DR. We can see that the probing time is sometimes larger even though probing time was halved,
this could be the case because it took more search jobs to find a solution which means more probing phases
were initiated. This is also pointed out by the increase in average runtime: respectively 7.4%, 16.5%, and

12.7% for DS, DAFE and DR. Thus, for these particular parameters, halving probing time does not improve
overall runtime.

5.2.3. Hypothesis 2: halving job time
Table 5.7 presents the number of instances solved when we halve the job time from 900 to 450 seconds. If
we compare the results with the ones from table 5.1 then it can be noticed that halving the job time leads to



5.2. Results 31

Average runtime Deep Smallest by problem Average runtime Deep Anti-First-Fail by problem

— —— [ Gecode — M Gecode
mmm Deep Heuristic Search 14000 == Deep Heuristic Search
mmm H1: Halve probing time mmm H1: Halve probing time

14000
12000 12000
10000

10000

8000 8000

Runtime (s)
Runtime (s)

6000 6000

RCPSP j30 Evilshop Open stacks

RCPSP j30 Evilshop Open stacks

(a) SM versus DS (b) AFF versus DAFF

Average runtime Deep Regret by problem

—_— e — — — mm Gecode
= Deep Heuristic Search
mmm H1: Halve probing time

14000

12000

10000

8000

Runtime (s)

RCPSP j30

(c) MR versus DR

Figure 5.8: Hypothesis 1: Average runtime of normal heuristics versus deep heuristics

%instances solved RCPSPj30 Evilshop Amaze Open stacks

Deep Smallest 26.57% 9.09% 20.51% 56.59%
Deep Anti-First Fail 34.78% 15.38% 28.21% 44.19%
Deep Max Regret 35.51% 15.15% 25.64% 49.61%

Table 5.7: Percentage of total instances solved

a considerable decrease of the number of instances that are solved. That means that we do not profit from
the increase in the number of search jobs that can be performed. Instead, there is simply not enough time to
solve certain data instances within 450 seconds.

Figure 5.9 shows the number of times normal heuristics and deep heuristics outperform one another.
Notable is that SM outperforms DS in more instances but DAFF and DR show an improvement in number of
outperforms. There is a slight improvement for the open stacks problem and no improvement for the Amaze
and Evilshop problem.

5.2.4. Hypothesis 3: reducing depth

Figure 5.10 presents the average runtime of the heuristics figure 5.11 the average runtime of solutions. Re-
ducing depth results in an overall increase of 1.3% average runtime and 21.4% decrease in average solution
runtime. Through inspection we see that DHs with a lower depth value perform worse on RCPSP and Open
Stacks. On the other hand, Evilshop only sees an improvement with DR while Amaze has an overall lower
average runtime. This improvement can be a specific benefit to the Amaze problem because of the increased
amount of data gathered. Looking closely to DR on RCPSP we see a large increase in average runtime. Figure
5.11c misses a bar because there are no solutions without timeouts, again indicating the decreased perfor-
mance. Overall, reducing depth does not seem to positively affect runtime, possibly indicating that DHs need
a high depth value to find promising solutions.
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Figure 5.9: Hypothesis 2: Outperforms by heuristics versus deep heuristics
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Figure 5.10: Hypothesis 3: Average runtime of normal heuristics and deep heuristics
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Figure 5.11: Hypothesis 3: Average runtime of normal heuristics and deep heuristics solutions

5.2.5. Summary

In this chapter we have compared SM, MR, and AFF respectively against DS, DR, and DAFF by comparing
number of instances solved, overall runtime, average runtime, average runtime of solutions, number of in-
stances that heuristics outperform each other, and quality of the machine learning model through R? and
Spearman’s rank correlation. Overall deep heuristics solve more instances while overall runtime is worse, but
the conclusion differs for each problem-heuristic combination. The model’s prediction accuracy does not
show good quality in terms of R? and Spearman’s and it is unclear how these metrics can give a good descrip-
tion of the system’s performance. Hence, three hypotheses were defined which aim to show the performance
of a parameter selection different to the one defined in section 5.1.3. Firstly, halving probing time results in a
higher total runtime, because the framework does not gather enough data and needs more search jobs to find
solutions. Secondly, halving job time does not result in more instances solved due to the doubling of search
jobs. Thirdly, a decreased depth value, to gather more data, does not decrease overall average runtime.






Discussion

In the previous sections we have presented a framework to learn deep variable ordering heuristics and tested
their performance. In this chapter we discuss the different parts of the framework along with the results.

6.1. Probing

In chapter 3 and 4 we described the pseudo-random probing process by randomly selecting variables and
values. However, there are many different ways to guide probing. One way is to use different heuristics which
do not select randomly, but for instance aim to gather data based on the deep heuristic that we want to learn.
For example, the smallest heuristic could be used to gather data for Deep Smallest. However, the risk of using
a heuristic during probing could be its bias. After all, the deep heuristic should be able to look much deeper
into a tree at at nodes which a normal heuristic would perhaps not reach. A benefit is that the heuristic can
find a solution before probing finishes.

Another way or probing would be use multiple different heuristics. This would benefit not only the variety
of data, but also the ability for the solver to find a solution during probing. In a way this probing method
can function as a hyper-heuristic [9], selecting the best deep heuristic to learn based on the data gathered by
different heuristics. For instance, if a certain heuristic provides better scores in comparison to other heuristics
then it may be a good idea to deepify that heuristic.

6.2. Machine learning quality

In machine learning we can often assess the system by the model’s accuracy. However, as seen by the results
in chapter 5, the quality of the model is not descriptive relative to the fact hat we observe an improvements in
runtime on Gecode’s heuristics for some deep heuristics. This can be partially explained by the fact that the
model does not have a relation to underlying combinatorial problem, but instead functions as a proxy that in
alater phase of the system returns an optimal result. The predict+optimise problem is an example of trying to
overcome this problem by letting machine learning and combinatorial optimization interact with each other
as [17, 20]. Another research field in ML is feature selection [11, 39]. In this work a fixed set of features was
chosen, but a discussion remains on whether to dynamically select features or not and what kind of features
to select.

6.3. Heuristic functions

In chapter 3 we formalized deep heuristics by averaging heuristic scores. However, one can argue that the
deep heuristic score function may be improved by adding exploration and exploitation attributes. For in-
stance, one could add a discount factor to give more weight to earlier choices adhering to the principle of
making good early decisions [34] or should we instead of averaging simply take the minimum or maximum
heuristic score over all nodes?

6.4. Parameter selection

Three hypotheses were tested in chapter 5, but there are still many other possible parameter choices. The
hypotheses test only the change of a single parameter. This can result in finding a local optimum for that
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parameter, but the combination of changing multiple parameters could still find a global optimum. Even
more so, changing parameters improves performance for one deep heuristic or problem but decreases per-
formance for another. This means that parameter selection is difficult and perhaps the parameters of the
framework should only be tuned after selecting the right heuristic for the problem. A particular extension of
the framework would be to use a hyper-heuristic [9] which selects the best heuristic.

Another difficulty with parameter selection is choosing the job time. If a search problem can never be
solved within 30 minutes then a job time below 30 minutes could could never solve the problem. Perhaps the
job time can depend on the meta-data of the problem, for instance the number of variables or constraints, to
estimate the solve runtime.



Conclusion

This chapter concludes the thesis by first answering the research questions defined in section 1.2. Then the
limitations of this project are discussed. Finally, potential future research is suggested to further improve and
build upon the idea of deep heuristics.

7.1. Answers to research questions
The main research question is answered by first answering the sub-questions:

1. How to collect data to fit a machine learning model in constraint optimization problems?
When there is not enough historical data available one can introduce a probing phase as explained in
section 3.2 which gathers the features of search nodes of the search tree. To get a wide variety of data,
probing uses pseudo-random value and variable selection. Once probing has made a complete variable
ordering we restart the probing with a constant cutoff value to gather a new selection of variables and
values. At the start of each probing search we remember which variables were assigned first. This way
we assign each variable at least once to start the solution with.

2. How can the fit of a machine learning model to learn heuristics be improved in constraint optimiza-
tion problems?
In section 3 we formalized deep heuristics which look multiple levels into a search tree. In combi-
nation with the pseudo-random probing to gather data this may improve the fit of the model. The
learned heuristics did not show good quality scores by using standard regression metrics, but we can
see an overall improvement over Gecode in the number of instances that deep heuristics solve within a
4 hour time limit. For specific problem deep heuristic combinations the runtime is also improved over
Gecode heuristics.

3. How can a search strategy improve search in constraint optimization problems when using machine
learning?
The data that is gathered during probing provides a snapshot of the overall search tree by creating
random assignments. If the probing is done only once then there is no guarantee that promising nodes
with the best heuristic scores have been collected. This is where restart-based search can improve
search as described in section 4.4. With this multiple searches are tried with independent probing
phases each time having a different dataset.

The main research question is

How can machine learning improve variable ordering heuristics for constraint optimization
problems?

Variable ordering heuristics can be improved by learning a deep heuristic function. Deep heuristics use pre-
dictions from the learned function to define a score per variable ordering with the aim for to generalize better
than normal heuristics. The deep heuristics outperform normal heuristics by solving 20.5% more instances
and improve on total runtime for the Open Stacks and Evilshop problems.
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7.2. Limitations

7.2.1. Data generation

Gecode uses propagation to remove redundant values and will automatically skip the branching step if it is
not required. For example, if variable x has a domain D, = {2} then the value 2 is automatically picked. This
means that that the probing process explained in chapter 3 cannot add all nodes that Gecode iterates over as
data to the data tree.

Another probing limitation is the recording of successes, failures, and added or removed constraints. By
inspection of the codebase and documentation of Gecode it was not possible to find out how this information
is accessed. However, this kind of data may prove to be useful as features for any deep heuristic, but mostly to
able to deepify heuristics like domwdeg which uses the number of times that a variable has been in a constraint
that failed.

7.2.2. Parallelization

During probing we gather data by adding nodes to a tree structure. Due to the current implementation,
parallelization of this process leads to concurrent exceptions because of the addition of multiple nodes to the
same tree. A possible workaround could be to create multiple trees at the same time and for each of the trees
learn its own ML model.

7.3. Future work

7.3.1. Dynamic variable & value ordering

In this work we have used a fixed value heuristic, the minimum or maximum value of a domain. However,
we can also implement value selection with deep heuristics. Learning the value selection heuristic should
be almost the same as with variable ordering. But instead of a fixed variable ordering, for example choosing
variables in input order, we can also design a dynamic approach. For instance, the deep heuristic function
that is learned can include both variable and value chosen. This way variable and value selection depend on
each other and machine learning should try generalizing on assigning both. Cox et al. [14] show that picking
a variable-value pair instead of just variables gains more insight on which path to search on. Thus, dynamic
variable and value ordering may allow for a different heuristic approaches.

7.3.2. Variable types

The current implementation only allows for integer decision variables. Gecode supports boolean and floating
point types and deep heuristics could show different results then with the use of integer decision variables.
This way future research can also compare the framework to mixed integer linear programming (MILP) and
non-linear programming (NLP) solvers.

7.3.3. Deep learning

The regression technique used in this work is very fast in fitting a machine learning model and provides
an almost online learning setting. However, feature selection may still prove difficult as it is unclear what
features work best on deep heuristics. Deep Learning (DL) would try to learn the features on its own in an
offline setting an it would be interesting to see whether a DL model could for instance solve more instances,
but also perform well over multiple problems.

7.3.4. Towards online learning

The current framework uses a restart-based search mechanic where new data is gathered at every restart
without saving data from the previous search jobs. A promising feature to the framework may be to allow for
the total dataset to grow over time. This means a lot of data will be gathered from different problems and
data instances which brings its own difficulties. Stochastic Gradient Descent may be an interesting scalable
option for this.
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