
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Biased-Noise
Threshold Studies
for Holographic Quantum Error-Correcting Codes

Master Thesis
Junyu Fan

Biased-Noise
Threshold Studies

for Holographic Quantum Error-Correcting Codes

by

Junyu Fan

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday May 31, 2024 at 1:00 PM.

Student number: 5726263
Project duration: October 2023 - April 2024
Thesis committee: Prof. Sebastian Feld,

Prof. Barbara Terhal,
Prof. Eliška Greplová,

This thesis is confidential and cannot be made public until May 31, 2024.

Cover : Generated by Poincaré tiling on https://malinc.se/.
Keywords: quantum error correction, biased-noise, holographic quantum er-

ror correction, AdS/CFT, tensor networks, thresholds

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://malinc.se/
http://repository.tudelft.nl/

Copyright © Junyu Fan, 2024
All rights reserved.

Summary

The differences between T1 and T2 in real-world quantum computing platforms underscore the impor-
tance of studying the thresholds of quantum error-correcting codes under biased noise, also spurring
active searches for error-correcting codes with thresholds exceeding the hashing bound under biased
noise. Recently, new error-correcting codes such as the XZZX code [1] and the holographic seven-
qubit tailored code [2] have exhibited a 50% threshold under pure Pauli noise. Notably, the XZZX code
achieves a threshold exceeding the hashing bound in cases of high bias.

This work reports on a holographic quantum error-correcting code, the HaPPY code [3], which also
exhibits a 50% threshold under pure Pauli noise and surpasses the hashing bound threshold under
high biased noise. Additionally, this work also explores the threshold of the holographic Steane code
under biased noise for comparison.

In addition to studying thresholds under biased noise, this work also investigates the thresholds of
various codes, including the Hyper-Invariant Tensor-Network code (HTN code) [4], holographic Reed-
Muller code [5], and some heterogeneous holographic codes, under quantum erasure channels and
depolarizing channels.

This work has developed an automated quantum tensor network operator push [5] program, which
supports the automated generation of stabilizers and complete logical operators for tensor network
quantum error-correcting codes. This greatly enhances the research efficiency of holographic codes,
and the program is now ready to be made available to the open-source community.

ii

Contents

Summary ii

1 Introduction 1
1.1 Research Background and Motivation . 1
1.2 General Research Goals . 1
1.3 Structure of the Thesis . 2

2 Background 3
2.1 Classical Error Correction . 3

2.1.1 Majority Vote: Classical Repetition Codes . 3
2.1.2 Space-Saving: Parity Check . 4
2.1.3 Principle of Inclusion-Exclusion: Classical Hamming Code 4
2.1.4 Classical Linear Stabilizers Codes . 5

2.2 Quantum Error Correction . 6
2.2.1 Error Modeling . 6
2.2.2 No Simple Majority Vote: Quantum No-cloning Theorem 8
2.2.3 Entangled Majority Vote: Quantum Repetition Code 8
2.2.4 To Enhance Error-Correcting Performance: Code Concatenation 10
2.2.5 From Code Concatenation to the Threshold Theorem 10
2.2.6 A Concatenated Code: Shor 9-Qubit Code . 12
2.2.7 Stabilizer Codes and Hashing Bound . 12
2.2.8 From Classical to Quantum: Calderbank-Shor-Steane (CSS) Code 14

2.3 Tensor Networks . 14
2.3.1 Tensor Networks: A Method for Representing Large Tensors 14
2.3.2 Quantum States as Tensors . 15
2.3.3 State Channel Duality: Quantum Mappings as Tensors 15
2.3.4 Graphical Representation of Tensor Networks . 15
2.3.5 Quantum Error Correction Codes as Tensors . 16
2.3.6 Tensor Network Representation of Code Concatenation 17

2.4 AdS/CFT Correspondence and Holography . 18
2.4.1 Thermodynamics of Black Holes . 18
2.4.2 Challenges of Extremal Black Hole and D-branes 18
2.4.3 A Container for Black Holes: Anti-de Sitter Space 19
2.4.4 AdS/CFT Correspondence Conjecture . 20

2.5 Holographic Quantum Error Correction Codes . 20
2.5.1 Ryu-Takayanagi (RT) formula . 20
2.5.2 Holographic Codes . 20
2.5.3 Inflation Pattern: Vertex Inflation and Edge Inflation 22
2.5.4 HaPPY Code . 23
2.5.5 Holographic Steane Code . 26
2.5.6 Hyper-Invariant Tensor Network (HTN) Code . 27
2.5.7 Holographic Reed-Muller Code . 28

2.6 Quantum Lego . 29
2.6.1 Operator Push Protocol . 30

3 Methods 32
3.1 Quantum Lego-Based UPS Generator Program . 32

3.1.1 Architecture Diagram of the Program . 32
3.1.2 Tensor Legs, Tensor Classes, and Tensor Networks 33
3.1.3 Programmatic Construction of Holographic Tensor Networks 35

iii

Contents iv

3.1.4 Self-Push Operators: Autonomous Tensors . 36
3.1.5 Operator Push Manager . 37
3.1.6 Boundary Operator Readout and Correctness Verification 38

3.2 Erasure Decoder . 38
3.2.1 Recoverability of Logical Information under Erasure Channel 38
3.2.2 Erasure Vector and Filtered Pauli Strings . 38
3.2.3 Binary Representation of Pauli Strings . 39
3.2.4 The Mathematical Method for Judging the Recoverability of Logical Information . 39
3.2.5 Architecture of the Erasure Decoder . 40

3.3 Integer Optimization Decoder . 40
3.3.1 From Syndrome to possible Errors: Pseudoinverse Matrix 40
3.3.2 Generation of the Pseudoinverse Matrix for Holographic Codes 41
3.3.3 Combinatorial Optimization Problem: Minimizing the Weight of Possible Errors . 41
3.3.4 From Combinatorial Optimization Problems to Integer Optimization Problems . . 41
3.3.5 Judging the Success of the Decoding Result . 42

3.4 Code Distance Calculator . 42
3.5 Variable Weight Integer Optimization Decoder . 43

3.5.1 From Biased Noise Models to Weights . 43
3.5.2 From Variable Weights to Integer Optimization Models 44

3.6 Tensor-Network Decoder . 44
3.6.1 Maximum-Likelihood Decoding Based on Tensor Networks 45
3.6.2 Backtracking Contraction Algorithm . 47

3.7 Biased Noise Threshold Study . 49
3.7.1 Selection of Data Points for Biased Noise . 49
3.7.2 Arrangement of Monte Carlo Experiments . 49

3.8 Threshold Study of HTN Codes . 50
3.8.1 Study of the Threshold of HTN Codes under Quantum Erasure Channels 50
3.8.2 Study of HTN Code Distances . 51
3.8.3 Study of the Threshold of Zero Rate HTN under Pauli Errors 51

3.9 Threshold Study of Holographic Reed Muller Code . 51
3.10 Heterogeneous Holographic Codes Threshold Study . 51

3.10.1 The Heterogeneous Codes Studied and Their Construction 51

4 Novel Results 54
4.1 Holographic Codes under Biased Noise Channel . 54

4.1.1 HaPPY Code under Biased Noise . 54
4.1.2 Holographic Steane Code under Biased Noise 55
4.1.3 Comparison to the Hashing Bound . 56

4.2 Distance and Threshold of HTN Codes . 57
4.2.1 Distance of HTN Codes . 57
4.2.2 Erasure Threshold of Zero Rate Gauge-Fixed HTN Codes 59
4.2.3 Erasure Threshold of Constant Rate Gauge-Fixed HTN Codes 60
4.2.4 Threshold of Zero Rate Z Gauge-Fixed HTN Codes under Pauli Noise Channel 61

4.3 Erasure Threshold of Holographic Reed Muller Codes 62
4.4 Threshold of Heterogeneous Holographic Codes . 62

5 Conclusion 64

References 65

Acknowledgement 70

A Data and Code Availability 71

1
Introduction

1.1. Research Background and Motivation
Quantum computing, with its inherent high parallelism, has the potential to achieve computational power
far exceeding classical computing for certain types of problems [6–8]. Since the concept of quantum
computing was introduced by Richard Feynman [9–11], the theoretical framework for quantum comput-
ing has been continuously expanded and refined, and many different directions have emerged in the
exploration of physical platforms for quantum computing [12–14].

In the current physical platforms for quantum computing, the main focus for improvement lies in scala-
bility and the quality of quantum bits (qubits). The quality of qubits mainly includes the fidelity of various
operations, relaxation time T1, and coherence time T2. Maintaining the protection of quantum states
over a long period on actual physical devices remains a challenging problem, as many factors can
cause quantum information to become unreliable [15, 16]. The current quality of qubits is not sufficient
to support the needs of reliable quantum computing [17, 18] . Therefore, improving the quality of qubits
is an urgent issue, and one viable solution is the use of quantum error correction.

In quantum error correction, a commonly used error model is the Pauli error model [19], where Pauli
operators X, Y , and Z are used to model errors occurring on qubits. When the probabilities of the
three types of Pauli errors are equal, it is called a depolarizing error channel. When the probabilities
of the three types of Pauli errors are unequal, it is referred to as a biased noise channel. In real-world
quantum computing physical platforms [20], noise is not uniformly distributed among Pauli X, Y , and
Z errors.

The threshold [21] is an important indicator for measuring the error correction performance of a quan-
tum error-correcting code. Therefore, studying the threshold of quantum error-correcting codes under
biased noise and searching for quantum error-correcting codes with high threshold under biased noise
can be very meaningful.

Holographic codes, inspired by the AdS/CFT duality [22], are a type of quantum error-correcting code
capable of modeling certain properties of the AdS/CFT duality. Research on the error correction prop-
erties of holographic codes under biased noise is still relatively unexplored, making it highly meaningful
to study the error correction performance of holographic codes under biased noise.

Holographic codes also represent a broad category of error-correcting codes, many fundamental prop-
erties of which have not yet been explored. Meanwhile, heterogeneous concatenated codes [23] have
been shown to support more transversal gate operations and exhibit thresholds [24, 25], making the
properties of heterogeneous holographic codes also worthy of investigation.

1.2. General Research Goals
Based on the above background, the general research goals of this work are:

1

1.3. Structure of the Thesis 2

1. Currently, holographic codes such as the HaPPY code and the holographic Steane code have
been studied for their thresholds in depolarizing channels. This work will investigate their thresh-
olds under biased noise.

2. For some newer holographic codes that have not been studied for their threshold performance,
such as the HTN code [4] and the holographic Reed Muller code [5], this work will preliminarily
investigate their thresholds under the quantum erasure channel and the depolarizing channel.

3. This work will also propose some heterogeneous holographic codes and study their thresholds
under the quantum erasure channel.

1.3. Structure of the Thesis
Based on these research goals, this work aims to provide results on the thresholds of holographic
codes under different noise channels, primarily biased noise channels.

To achieve these goals, this thesis will start by introducing the background concepts necessary for
understanding holographic codes. It will then proceed to the methods section, detailing the tools and
researchmethods developed and used in this work to study the thresholds of holographic codes. Finally,
the results section will present the findings of this research.

The background section of this thesis starts with the basics of classical error correction, then moves on
to introduce quantum error correction, followed by an exploration of the connections between tensor
networks and quantum error-correcting codes. It then introduces the theoretical background of the
AdS/CFT conjecture [22, 26] and its connections with quantum information, leading to the introduction
of the concept of holographic quantum error-correcting codes and discussing some typical holographic
codes. Finally, it covers the quantum LEGO [5] and operator-pushing rules, explaining how to obtain
the operators for holographic codes.

The methods section of the thesis first introduces the functionality and architecture of an automated op-
erator generation program for holographic codes, developed based on the quantum lego and operator-
pushing rules. It then describes a quantum erasure decoder used to assess the recoverability from
quantum erasure errors. Next, it introduces three types of quantum error correction decoders for Pauli
errors: the first is a minimum weight decoder based on integer optimization, known as the integer
optimization decoder; the second is a variable weight integer optimization decoder, which is an adap-
tation of the integer optimization decoder optimized for biased noise channels; and the third is a tensor
network-based maximum likelihood decoder.

The results section of the thesis first reports on the threshold performance of several holographic codes
under biased noise channels using the variable integer optimization decoder and tensor network de-
coder, and compares these results to the hashing bound. It then presents the threshold performance of
various types of HTN codes under quantum erasure channels, depolarizing channels, and pure Pauli
noise channels, as well as the distance calculations for different sizes of HTN codes. The section also
reports on the threshold performance of the holographic Reed Muller code under quantum erasure er-
rors. Finally, it discusses the threshold behaviors of various heterogeneous holographic codes under
quantum erasure errors.

2
Background

2.1. Classical Error Correction
In classical digital computers, information is fundamentally processed, transmitted, and stored in binary
form. Although there exist some data transmission and storage technologies (e.g. Pulse Amplitude
Modulation), which are not strictly binary, ultimately, the data from these technologies are decoded into
binary form for processing.

These binary digits used to store 0s and 1s are called bits, and they are the fundamental units of
information in classical digital computers. However, computers may experience errors in information
due to various reasons, such as external electromagnetic interference, timing errors due to inaccurate
clocks, and so on. We can abstract the errors occurring on bits as bit-flip operations. When the errors
are not too severe, we hope to detect and correct these errors through classical error correction to
make our computers more reliable.

A bit flip operation results in the inversion of the bit’s information.

Û : 0→ 1, 1→ 0 (2.1)

Numerous error-correcting codes have been proposed for the detection and correction of bit flip errors.

2.1.1. Majority Vote: Classical Repetition Codes
A very intuitive method involves repeating the original binary information three times [27]. Let’s assume
that the information we want to encode is denoted as S.

S = 010011101100 (2.2)

After encoding using the repetition code, the information is denoted as S̄:

S̄ =

010011101100010011101100
010011101100

 (2.3)

This way, when a bit flip error occurs at a certain position, for instance, at the j-th bit of the i-th set of
the repeated information ÛijS̄, we can correct the erroneous bit by comparing the information of this
specific bit across the three sets and employing a majority vote method to rectify the bit that underwent
the flip.

3

2.1. Classical Error Correction 4

Ûi=2,j=5S̄ =

010011101100010001101100
010011101100

→ Û2
i=2,j=5S̄ = S̄ =

010011101100010011101100
010011101100

 (2.4)

We can see that, while repetition codes are effective at detecting and correcting bit flip errors, they
come with a cost: only 1/3 of the transmitted information is effective, and the remaining 2/3 is redundant.
Encoding information in this manner would lead to a significant waste of storage space and bandwidth.
Therefore, we must seek smarter ways to detect errors.

2.1.2. Space-Saving: Parity Check
To enhance information protection with fewer error correction bits, parity checks [28] offer a practical
solution. It involves appending an extra error correction bit, P , to the original binary message, forming
a combined sequence {P |S}. For instance:

{P |S} : {0|010011101100} (2.5)

The underlying principle of this parity check error correction code is to maintain an even total count
of 1s. Consequently, if the received message contains an odd number of 1s, a single bit flip error is
indicated, prompting a request for message retransmission.

However, it’s noteworthy that while parity checks can detect single bit flip errors, they lack the capability
for immediate error correction. This limitation renders simple parity check codes suboptimal for practical
scenarios where immediate error correction is preferable.

2.1.3. Principle of Inclusion-Exclusion: Classical Hamming Code
Strategically arranging parity checks can pinpoint the error’s location, with the Hamming code [29, 30]
serving as a prime example. In this method, 16 bits are arranged in a matrix as depicted below:

Figure 2.1: An example of a Hamming code with a total of 16 bits, where the light blue bits are parity check bits that store the
parity information for different regions of bits.

Bits 1, 2, 3, 5, and 9 are designated as parity checks. Bit 1 ensures overall matrix parity, bits 2 and
3 secure parity for columns 2, 4 and 3, 4 respectively, while bits 5 and 9 maintain parity for rows 2, 4
and 3, 4 respectively. This arrangement not only identifies the location of bit flip errors but also enables
immediate correction. The Hamming code is capable of detecting up to two bit flip errors and correcting
a single error.

Furthermore, this concept can be represented in matrix form, known as the parity check matrix.

2.1. Classical Error Correction 5

H =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

 (2.6)

Each row of this matrix represents a parity check, where an element of 1 indicates inclusion of that bit
in the parity check. In other words, the parity check incorporates this bit when calculating the parity
(odd or even) of the total number of 1 elements. Consequently, a generalized parity check matrix can
be denoted as H, where hi represents a specific parity check.

H =

h1

h2

...
hm−1

hm

 (2.7)

By applying the matrix H to the binary codeword c and performing modulo-2 matrix multiplication, we
can obtain the results of all parity checks, which we refer to as the syndrome γ. This syndrome γ is
then used to locate and correct the erroneous bits.

γ = Hc (2.8)

A significant advantage of Hamming code lies in its ability to locate and correct errors directly through
simple logic gates [31], resulting in minimal computational overhead for decoding. Additionally, there
are error-correcting codes like LDPC (Low-Density Parity-Check) that are widely employed in modern
classical computing [32–36].

2.1.4. Classical Linear Stabilizers Codes
For classical stabilizer codes [37], they are denoted by [n, k], where n and k indicate that the code
encodes k bits into n bits of error-correcting code (always having n > k). In the code space C, the
Hamming distance between any two different codewords y and z is at least d. The Hamming distance
between codewords y and z is the number of positions where their elements (0 or 1) differ. A [n, k]
code with a minimum distance d can be referred to as an [n, k, d] code. Such a code can correct any
bit flips that are less than half of the code’s minimum distance. Specifically, a binary [n, k] linear code
(with elements only 0 or 1) actually forms a k-dimensional subspace of Zn2 . In this case, the minimum
distance of the code is the same as the minimum Hamming weight (or number of 1s) of any non-zero
codeword.

Generator Matrix

The generator matrix G of a linear code C of [n, k] is an n × k matrix defined over Z2. This matrix
defines the range of the code C:

C = range(G)={Gx : x ∈ Zk2}. (2.9)

To obtain the codeword y from the original information x, simply multiply x by the generator matrix G:

y = Gx ∈ Zn2 (2.10)

This process actually maps the original information x into a higher-dimensional space, thereby poten-
tially incorporating the capability for error detection and correction.

Parity-Check Matrix

2.2. Quantum Error Correction 6

The parity-check matrixH for a classical linear stabilizer code [n, k] is an (n−k)×nmatrix that operates
over Z2:

C = ker(K) = {y ∈ Zn2 : Hy = 0}. (2.11)

For a given codeword y′ ∈ Zn2 , its syndrome is Hy′ ∈ Zn−k2 . The syndrome can be used to infer the
locations of errors and thus to correct the codeword.

Dual Codes

For a linear code C of [n, k], its dual code, denoted as C⊥, includes all strings whose modulo 2 inner
product with any codeword in C is zero:

C⊥ = {y ∈ Zn2 : y · x = 0 for all x ∈ C}. (2.12)

C⊥ is a [n, n − k] linear code. If we have the generator matrix G and the parity-check matrix H for
C, then the generator matrix for C⊥ is the transpose of H (HT), and the parity-check matrix is the
transpose of G (GT). If a code C satisfies C ⊆ C⊥, it is called weakly self-dual; if C = C⊥, it is called
self-dual.

2.2. Quantum Error Correction
In quantum computing, a fundamental computing unit is called a qubit [19]. It represents a normalized
quantum state within the Hilbert space spanned by two mutually orthogonal states.

Typically, we denote these two mutually orthogonal states as |0〉 and |1〉. Consequently, the pure state
of a qubit can be expressed in the following form:

|ψ〉 = eiδ(cos(θ/2)|0〉+ sin(θ/2)eiϕ|1〉) (2.13)

In this context, θ is polar angle, ϕ is azimuthal angle, and eiδ is a global phase. For a single qubit, people
are often more concerned with the polar angle and the azimuthal angle. Therefore, a sphere, called
the Bloch sphere, is used to represent the state of the qubit. This representation visually encapsulates
the state’s position in its two-dimensional Hilbert space.

2.2.1. Error Modeling
From this, we can deduce that describing a quantum state on the Bloch sphere requires two degrees of
freedom. Consequently, the errors that can occur in a qubit are not limited to the simple bit flips found
in classical cases. The relative phase between the quantum states |0〉 and |1〉 is also crucial, making
phase flips a significant type of quantum error. Both of these errors, bit flips and phase flips, can be
regarded as manifestations of Pauli operators [38].

Bit F lip : X|0〉 = |1〉, X|1〉 = |0〉 (2.14)

Phase F lip : Z|0〉 = +1|0〉, Z|1〉 = −1|1〉 (2.15)

Certainly, besides these quantum errors that can be represented by Pauli operators, there are other
types of quantum errors as well. For example, some actual quantum devices are not strictly two-level
systems, and quantum states may be excited to states beyond the defined |0〉 and |1〉 states. This type
of error is known as leakage [19].

Single Pauli Error Channel

A typical error model is the single Pauli error model, defined as follows:

E(ρ) = (1− p)ρ+ p(rxXρX + ryY ρY + rzZρZ) (2.16)

2.2. Quantum Error Correction 7

Where ρ is the density matrix, p is the probability of a Pauli error occurring, and rx, ry, rz are the
proportions of the various Pauli errors occurring, with rx + ry + rz = 1.

When rx = ry = rz =
1
3 , this channel is known as the depolarizing channel; in other cases, it is referred

to as a biased noise channel.

Using X (phase flip), Z (bit flip), and Y (both phase and bit flip) Pauli operators to model quantum
errors discretely might seem insufficient because the movement of states on the Bloch sphere (con-
sidering only pure states) can be continuous, and X, Z, and Y operators cannot describe all possible
movements on the Bloch sphere. However, using X, Z, and Y errors to model single qubit errors is a
common practice and is practically feasible. Here is an example to illustrate:

A rotation on the Bloch sphere can be represented as:

R̂n(θ) = cos(θ/2)Î − i sin(θ/2)n · σ (2.17)

Where:

n · σ = nxX̂ + nyŶ + nzẐ (2.18)

θ is the angle of rotation around the axis (nx, ny, nz). For example, when the rotation for the first qubit
of a quantum error-correcting code is around the axis (nx, ny, nz) = (1, 0, 0), the rotation is:

R̂n(θ) = cos(θ/2)Î1 − i sin(θ/2)X̂1 (2.19)

Assuming the entire error-correcting code’s state is |Ψ〉, then after this rotation, the entire system’s
quantum state is:

|Ψ′〉 = (cos(θ/2)Î1 − i sin(θ/2)X̂1)|Ψ〉 (2.20)

Assuming there is an ancillary qubit whose stabilizer includes a Z check at the position of qubit 1, at
this point, the ancillary qubit and qubit 1 are actually in an entangled state. Measuring the ancillary
qubit will actually affect the state of qubit 1. However, the measurement of the ancillary qubit will cause
the entire error-correcting code system |Ψ′〉 to collapse to the error-free state |Ψ〉 with a probability of
cos2(θ/2), and to a state with an error X̂|Ψ〉 with a probability of sin2(θ/2), thereby allowing for error
correction [38].

Therefore, for errors that keep the quantum state on the Bloch sphere, it is reasonable to model these
errors using X, Y , and Z operators.

Quantum Erasure Error Channel

During the process of quantum communication and computing, quantum information may be lost for var-
ious reasons (for example, the loss of photons in quantum optical communication, or qubits transitioning
to non-computational energy levels known as leakage). These losses occur with certain probabilities,
and at the time of the final readout of quantum information, we explicitly know which qubits’ information
has been lost. As illustrated in the diagram, this channel is referred to as the quantum erasure channel
[39–42]:

ρ→ (1− ϵ)ρ+ ϵ |e〉 〈e| (2.21)

Where ϵ is the probability of quantum erasure errors, and ρ is the density matrix. An example of a
quantum erasure channel for the transmission of 4 qubits is shown in the figure.

2.2. Quantum Error Correction 8

Figure 2.2: Example of a quantum erasure channel: Quantum information of 4 qubits is sent from the left to the right side.
During transmission, one qubit is lost, so only 3 qubits are received on the right side, and it is known which qubit was lost.

2.2.2. No Simple Majority Vote: Quantum No-cloning Theorem
Lemma 2.2.1. Known as theQuantumNo-cloning Theorem [43], it is impossible to clone the quantum
state of a qubit using unitary transformation.

Proof. Given the qubit to be cloned is |ψ〉:

|ψ〉 = α|0〉+ β|1〉 (2.22)

And the initial state of second qubit and the environment is at some reference states, for instance |ϕ〉
and |Ai〉. Suppose a unitary operation Û is able to clone the quantum state of the first qubit to the
second qubit:

U(|ψ〉|ϕ〉|Ai〉) = |ψ〉|ψ〉|Afψ〉 = (α|0〉+ β|1〉)(α|0〉+ β|1〉)|Afψ〉 (2.23)

The final state of the environment will in general depend on the state to be cloned. Let’s pick an example
that the first qubir is at the state |0〉, then the cloning action is:

U(|0〉|ϕ〉|Ai〉) = |0〉|0〉|Af0〉 (2.24)

Similarly, if the first qubit to be cloned is at the state |1〉

U(|1〉|ϕ〉|Ai〉) = |1〉|1〉|Af1〉 (2.25)

Therefore, the action of cloning a generic state |ψ〉 = α|0〉+ β|1〉 is:

U((α|0〉+ β|1〉)|ϕ〉|Ai〉) = αU(|0〉|ϕ〉|Ai〉) + βU(|1〉|ϕ〉|Ai〉) (2.26)

Now insert Eq.2.24 and Eq.2.25 into this equation, we get:

α|0〉|0〉|Af0〉+ β|1〉|1〉|Af1〉 (2.27)

Which is different from the desired cloned state of Eq.2.23.

2.2.3. Entangled Majority Vote: Quantum Repetition Code
A very intuitive idea is to emulate classical repetition codes by constructing quantum repetition codes
[44]. However, the cautious would immediately recall the quantum no-cloning theorem and question
the feasibility of this approach. Indeed, quantum repetition codes do not involve cloning the original
single quantum state. Instead, they encode it into an entangled state, with the state vector being |000〉
and |111〉.

The encoding and decoding circuit for quantum repetition codes is depicted in the following picture.

2.2. Quantum Error Correction 9

Figure 2.3: An encoding circuit for a 3-qubits quantum repetition code, The top qubit starts with a quantum state |ψ⟩, which is
the state we want to encode using the repetition code. The middle and bottom qubits each start with the state |0⟩. Two CNOT

gates are used to set the second qubit and the third qubit in entanglement with the first qubit.

After encoding, the state is as follows:

|ψ〉 = cos θ|0〉+ eiϕ sin θ|1〉 → |ψ̄〉 = cos θ|0̄〉+ eiϕ sin θ|1̄〉 (2.28)

Direct measurement of a qubit leads to state collapse, destroying quantum coherence. To circumvent
this, we employ parity checks to extract error information. Since we measure the parity information of
qubits, we avoid collapsing the original qubit back to its eigenstate. As illustrated below, we introduce
two ancilla qubits to store the parity information. Subsequently, we measure the information from these
two parity-check ancillas. This forms the simplest decoding circuit for quantum repetition coding.

Figure 2.4: Quantum repetition code decoding circuit, where the blue qubits are ancillary qubits, used to store parity check
information from their neighboring qubits. This parity check information is transferred to the ancillary qubits via a set of CNOT

gates, followed by the measurement of the two ancillary qubits, thereby obtaining the syndrome.

Beyond the three-qubit quantum repetition code example, encoding n qubits into a quantum repetition
code follows a similar process.

|+〉 = 1√
2n − 1

∑
∑
vi=0

|v1, . . . , vn〉 (2.29)

|−〉 = 1√
2n − 1

∑
∑
vi=1

|v1, . . . , vn〉 (2.30)

Quantum repetition codes are limited to detecting a single error type; bit-flip codes identify X errors in
(n− 1)/2 qubits without recognizing Z phase-flips, while phase-flip codes discern Z errors in (n− 1)/2
qubits but are blind to X bit-flips.

2.2. Quantum Error Correction 10

2.2.4. To Enhance Error-Correcting Performance: Code Concatenation
Code concatenation [45–47] is a technique that can enhance a code’s error-correcting capabilities,
where one or more different quantum error-correcting codes are ”chained” together, thereby achieving
higher fidelity at lower single-qubit error rates. This technique stems from a straightforward idea: if an
error-correcting code can achieve a logical error rate ploge (p) that is lower than the physical qubit error
rate p, then it means that one can further encode the original error-correcting code using the same
error-correcting method to obtain an even lower logical error rate under the same physical qubit error
rate.

This basic version of code concatenation is referred to as ”tree-like” code concatenation in this work. It
re-encodes the original physical qubits into an increased number of physical qubits, thereby enhancing
redundancy and improving error correction capabilities.

Figure 2.5: An example of code concatenation based on the [[3, 1, d]] code: (a) A [[3, 1, d]] code encodes one orange logical
qubit into three white physical qubits. (b) The original three white physical qubits are then treated as new ”logical” qubits (they
are not truly the logical qubits of the entire code, hence they are depicted in brown) and are once again encoded using the
[[3, 1, d]] code into a total of nine new physical qubits. This type of code concatenation is referred to as ”tree-like” code

concatenation in this work, with its network structure presenting a simple tree-like architecture.

Code concatenation also has many additional benefits, such as expanding the code’s ability to correct
different types of errors. For example, as will be discussed below, the Shor 9-qubit code [48, 49]
benefits from code concatenation, which helps enhance its error-correcting capabilities for various types
of errors. Additionally, the Eastin–Knill theorem [50] states that no quantum error-correcting code can
allow for the transversal implementation of a universal gate set, where a transversal logical gate is
one that can be executed independently on each physical qubit. However, concatenated codes can
exploit the transversal properties of two different codes to transversally implement a universal gate
set with an additional round of error correction [23]. This approach avoids the need for extra ancillary
state preparation, such as operations like magic state distillation, to achieve universality. Additionally,
concatenated codes are also very useful for magic state distillation [51, 52].

2.2.5. From Code Concatenation to the Threshold Theorem
The idea behind code concatenation to enhance error correction capabilities is that if an error-correcting
code at a certain physical error rate p can provide a fidelity Fec(p) higher than 1 − p, then the same
code, which can also deliver fidelity above 1−p at this error rate p, can be used again to re-encode the
original code, thus achieving higher fidelity. A simple example is using the same code for one round of

2.2. Quantum Error Correction 11

code concatenation, resulting in the concatenated code having a fidelity Fconc = F (1− Fec(p)). When
p is sufficiently small, F (p) > 1 − p, and F (p) is monotonically decreasing within the range of interest,
the concatenated code will have improved fidelity.

As shown in the figure, for a small p, if Fec(p) > 1−p, then we can re-encode the physical qubits of this
code to achieve better fidelity. Conversely, if the physical error rate p is large, then the concatenated
code will have worse fidelity. By estimating the fidelity of concatenation for all physical error rates p as
shown in figure 2.6.c, we can obtain the fidelity curve of the concatenated code as depicted in figure
2.6.d.

Figure 2.6: (a) The black dashed line F represents the physical fidelity without error correction code protection, while the light
green line Fec represents the fidelity of a logical qubit protected by one layer of error correction. (b) As seen, at a lower

physical error rate p, Fec > F = 1− p. (c) When using the same error-correcting code for one round of code concatenation,
the actual error rate of the physical qubits is p (shown in the diagram as p = 0.2). Then, when these physical qubits are
encoded into ”logical” qubits, these ”logical” qubits have a higher fidelity (blue arrow pointing upwards). When using these

”logical” qubits to encode our final logical qubit, the intermediate ”logical” qubits have an effectively higher fidelity (blue arrow
bending to the left), thus the actual ”physical error rate” that the final logical qubit ”feels” is in fact lower (blue arrow bends left
then up again intersecting Fec), resulting in a higher fidelity for the final logical qubit after one round of code concatenation

(blue arrow bends right intersecting the original p dashed line). (d) By performing the operation described above for each p, we
obtain the fidelity curve for the concatenated code (dark green), and these curves intersect at a point pth. When p is below pth,

the concatenated code achieves better fidelity, otherwise, it results in worse fidelity.

From fig d, it can be seen that the physical fidelity curve F , the fidelity of a single error correction code
Fec, and the fidelity of the concatenated code Fconc all pass through a common intersection point pth.
At this critical point, the contribution of the concatenated code to fidelity is starkly different on either side.
When p is sufficiently small, less than pth, the concatenated code can provide better fidelity. However,
when p exceeds pth, the concatenated code results in fidelity that is even worse than not using error
correction at all. This critical point is known as the threshold [21] of the quantum error correction code.

2.2. Quantum Error Correction 12

Lemma 2.2.2. The threshold theorem: If a quantum computer has a physical error rate below a
specific threshold, it can use quantum error correction schemes to reduce the logical error rate to
extremely low levels.

The threshold theorem is a crucial guarantee for achieving fault-tolerant quantum computing through
quantum error correction methods, and code concatenation is one method to achieve this threshold
(among others). Additionally, as can be seen from figure2.6.d, for ”tree-like” concatenated codes using
the same type of error correction code, the threshold is actually the fixed point of the original error
correction code’s logical error rate 1− Fec(p).

2.2.6. A Concatenated Code: Shor 9-Qubit Code
The quantum repetition code described earlier can correct only one type of error, either X or Z errors.
The Shor 9-qubit code [48, 49] builds on the 3-qubit repetition code by performing code concatenation,
thereby gaining the ability to detect and correct both X and Z errors simultaneously. The state prepara-
tion for the Shor 9-qubit code involves concatenating X-type and Z-type repetition codes. By performing
such concatenation, the Shor 9-qubit code leverages the error-correcting capabilities of both types of
repetition codes for different errors. The encoding circuit is shown in the figure 2.7.

Figure 2.7: Encoding circuit for the Shor 9-qubit code, where the first qubit is in the |ψ⟩ state and the rest are in the |0⟩ state.
Initially, the first, fourth, and seventh qubits are encoded into a 3-qubit repetition code using CNOT gates. Then, these three
qubits pass through Hadamard gates before undergoing another round of quantum repetition code encoding. This process

results in the Shor 9-qubit code, which can detect and correct both X and Z type errors.

2.2.7. Stabilizer Codes and Hashing Bound
Similar to classical linear stabilizer codes, a quantum stabilizer code [49] [[n, k, d]] encodes k logical
qubits into n physical qubits, with a rate of k/n, and requires n−k auxiliary qubits to store the information
of the stabilizers. Its stabilizer S is an Abelian subgroup of the n-fold Pauli group Πn. The stabilizer S
does not include the operator −I⊗n.

Mathematical Structure of Stabilizer Codes

For a stabilizer code , the system comprised of n qubits is a Hilbert space H = (C2)⊗n/U(1), where
its corresponding Pauli operators are the direct products of n single Pauli operators Ô =

∏n
i=1⊗Ôi,

where Ôi ∈ {Î , X̂, Ŷ , Ẑ}.

All Pauli operators of length n can form a Pauli group Pn, which has the following special subgroups:

2.2. Quantum Error Correction 13

Stabilizer Group S An Abelian subgroup, generated by linearly independent generators S1, . . . , Sn−k
with −I 6∈ S.S = 〈S1, S2, . . . , Sn−k〉.

Centralizer of Stabilizer Group The centralizer of stabilizer group, generated by linearly independent
generators that commute with S. C(S) = 〈S1, S2, . . . , Sn−k, X1, Z1, . . . , Xk, Zk〉.

The structures of these subgroups is as follows in Fig.2.8.

Figure 2.8: The structure of the Pauli group: At the center is the stabilizer group S, which is an Abelian subgroup of the Pauli
group. C(S) is the centralizer of the stabilizer group, and the outermost layer represents the entire Pauli group P .

Distance of a Stabilizer Code

The weight of a Pauli operator string is the number of non-identity (non-I) operators in the string.

For a logical operator P of a stabilizer code, its operation in the logical space under the action of the
stabilizer S is equivalent, because PS|ψ〉 = SP |ψ〉. The distance of a stabilizer code is defined as the
weight of the smallest weight operator that can cause a change in the logical state starting from the
code space [38]. Therefore, for a stabilizer code, its distance is:

d = min
P∈C(S)S

|P |. (2.31)

Hashing Bound

For a Pauli channel:

ρ 7→ pIρ+ pXXρX + pY Y ρY + pZZρZ, (2.32)

where p = (pI , pX , pY , pZ) is a set of probabilities.

The Hashing Bound Theorem [53] states that for a Pauli channel, there exists a stabilizer code that
can achieve the following rate:

R = 1−H(p), (2.33)

where H(p) is the Shannon entropy of the probability distribution p = (pI , pX , pY , pZ).

2.3. Tensor Networks 14

2.2.8. From Classical to Quantum: Calderbank-Shor-Steane (CSS) Code
The Calderbank-Shor-Steane (CSS) Code is a special type of stabilizer code, constructed from two
classical linear stabilizer codes C1 [n, k1] and C2 [n, k2], with the following requirements:

1. C2 ⊆ C1

2. k2 < k1

3. If C1 and C⊺
2 can both correct errors with a maximum weight of t, then the CSS code constructed

from them will be an [[n, k1 − k2]] code capable of correcting up to one error with a weight of t.

Definition of CSS Codeword

Let N represent the total number of possible codewords for the final CSS code. Since the final CSS
code encodes k1−k2 logical qubits, the number of codewords allowed in the code space isN = 2k1−k2.
Next, select codewords x0, . . . , x2N−1 ∈ C1, and ensure:

xi + xj /∈ C2 (2.34)

Where i 6= j. Since C1/C2 is a k1 − k2 dimensional space, a suitable xi can always be found for each
element. [37]

When the above conditions are met, one can use C1 and C⊺
2 to construct a CSS code, with the code-

words defined as follows:

x ∈ C1 : |x+ C2〉 =
1√
2k2

∑
y∈C2

|x+ y〉 (2.35)

The + represents addition modulo 2. This CSS code can be represented by the set of its code space
states: {|x+ C2〉 | x ∈ C1}.

These codewords are mutually orthogonal, i.e., 〈xi + C2|xj + C2〉 = 0 for i 6= j, which is ensured by
Eq.2.34.

Stabilizer Matrix of the CSS Code

The stabilizer matrix of the CSS code is composed of the two classical parity-check matrices of C1 and
C2:

H =

[
HC⊥

2
0

0 HC1

]
(2.36)

It can be observed that the stabilizers of the CSS code contain either only X operators or only Z
operators.

2.3. Tensor Networks
Tensor networks [54, 55], in short, are networks composed of smaller tensors used to represent larger
tensors. This representation method helps reduce the number of parameters needed to store the tensor
and facilitates a more intuitive understanding of the tensor’s structural characteristics.

2.3.1. Tensor Networks: A Method for Representing Large Tensors
In many scenarios, including quantum many-body systems and high-dimensional data analysis., ten-
sors are powerful tools for representing linear mathematical structures. However, for a tensor T with
n indices and a bound dimension of χ, the total number of elements in the tensor is χn. Clearly, as
the number of indices increases, the memory cost to store a tensor grows exponentially. In practical
applications, the number of indices required for tensors can be so large that storing such a tensor on a
computer becomes impractical.

2.3. Tensor Networks 15

The good news is that if the system being dealt with has a specific structure, a large tensor can be
represented and stored as a network of several smaller tensors. This can significantly reduce memory
overhead, making it feasible to use tensors for many practical problems.

For a tensor T withN indices and a bound dimension of χ, if it has a specific mathematical structure and
can be decomposed into k smaller tensors Tele each with no more than nmax indices (where nmax < N),
then the memory cost can be reduced from χN to at most k×χnmax . When k(N), the memory overhead
for processing this system is exponentially reduced: limN→∞

k×χnmax

χN = 0. Thus, when a large tensor
has a certain structure and can be represented as a tensor network, processing it becomes memory
efficient. In fact, many real-world problems exhibit similar characteristics, where large-scale issues can
be decomposed into structures made up of several smaller units.

For example, tensor networks are particularly useful in condensed matter physics. This is because
such systems often involve entities such as spins or other more complex quantum units that are cou-
pled together, forming systems where researchers typically aim to study macroscopic properties (large
tensors) which possess specific structures (can be decomposed into tensor networks). With the aid
of tensor networks, these complex condensed matter physics issues can be efficiently solved. For
instance, Matrix Product States (MPS) can be used to describe one-dimensional quantum many-body
systems, proving highly effective for computations of ground states and low-energy states. By appropri-
ately choosing the dimensions of the matrices, one can effectively control the complexity and precision
of the calculations. For higher-dimensional quantummany-body systems, Tensor Product States (TPS)
also serve as a powerful descriptive tool, capturing complex correlations in higher-dimensional systems
and suitable for addressing issues such as quantum phase transitions.

Tensor networks are also very important in handling holographic quantum error-correcting codes, as
will be discussed next.

2.3.2. Quantum States as Tensors
For a pure quantum state, we can always express the quantum state in the following form based on its
quantum numbers [53]:

|Ψ〉 =
∑
i,j,k...

ci,j,k...|i, j, k, ...〉 (2.37)

We notice that the coefficient ci,j,k... in front of each quantum state |i, j, k...〉 can be regarded as an
element of a tensor. Collectively, these coefficients form a tensor T that can describe the quantum
state [56–58].

T = {ci,j,k...}χi×χj×χk×... (2.38)

2.3.3. State Channel Duality: Quantum Mappings as Tensors
In fact, according to the Choi–Jamiołkowski isomorphism [19, 53], there is a correspondence between
quantum states and quantum channels, also known as state-channel duality. Therefore, a quantum
channel (mapping) can also be represented as a tensor [53]. For a quantum mapM :

M̂ =
∑

i1,i2,...,im,j1,j2,...,jn

ci1,i2,...,im,j1,j2,...,jn |i1, i2, ..., im〉〈j1, j2, ..., jn| (2.39)

We can see that the coefficients ci1,i2,...,im,j1,j2,...,jn of this mapping also form a tensor T , thus we can
represent this mapping as a tensor as well.

2.3.4. Graphical Representation of Tensor Networks
For the graphical representation of a tensor network, we don’t actually need to depict every element
of the tensor. As a simplified representation, we focus more on the number of indices of the tensor.
Assuming a tensor T has n indices, we represent the tensor T graphically as follows:

2.3. Tensor Networks 16

Figure 2.9: A graphical representation of a tensor T with n indices, where the white circle represents the tensor itself. The
lines extending outward from the tensor represent indices, and these outward-extending lines are also known as tensor legs.

In the context of graphical representation of tensors, there are some terms to note: the white circle in
the figure represents the tensor itself, and the lines extending outward represent the tensor’s indices.
These lines are also referred to as tensor legs.

When we attempt to connect two tensors, we are actually performing a tensor leg contraction operation
[59]. In algebraic terms, leg contraction involves taking the trace over the indices that are connected
between the two tensors. For instance, if we perform a contraction between the first index of the
first tensor and the second index of the second tensor, algebraically, we have performed the following
operation, where it’s required that the bound dimensions χ corresponding to both indices are the same:

Tcontracted =

χ∑
i=1

Tijk...Tlmn...δil (2.40)

For example, consider two tensors, each with 5 legs, where one leg from each tensor is connected to
the other. The graph showing their contraction is as follows:

Figure 2.10: The diagram shows two tensors, each with 5 legs, undergoing contraction. The leg 3 of the tensor on the left
contracts with leg 6 of the tensor on the right, resulting in a tensor with 8 legs.

2.3.5. Quantum Error Correction Codes as Tensors
As a specific type of quantum mapping, a [[n, k, d]] quantum error-correcting code maps k logical qubits
onto n physical qubits [5]. Therefore, our quantum error-correcting code is actually a tensor with n+ k
legs [5], and since we are discussing a qubit system, the bound dimension is 2.

As illustrated in Fig.2.11, the orange indices represent logical qubits, and the white indices represent
physical qubits. The tensor in the diagram represents a quantum error-correcting code that encodes k
logical qubits into n physical qubits:

2.3. Tensor Networks 17

V =
∑
ij

ViP1 ...iPn ,jL1 ...jLk |i
P
1 . . . i

P
n 〉〈jL1 . . . jLk | (2.41)

Figure 2.11: Graphical tensor representation of a [[n, k, d]] quantum error correcting code. The mapping ViP1 ...iPn ,jL1 ...jL
k

represents a linear transformation from k logical qubits to n physical qubits, and can be represented by a tensor. The legs
where the orange dots are located represent the logical qubits, and the legs with the white dots represent the physical qubits.

This tensor represents the transformation from the logical code space to the physical code space H⊗k
d → H⊗n

d .

2.3.6. Tensor Network Representation of Code Concatenation
To represent code concatenation in the language of tensor networks, we first select a [[n, 1, d]] quantum
error-correcting code, as shown in the following figure:

Figure 2.12: Graphical Tensor Representation of a [[n, 1, d]] Quantum Error Correcting Code

We can use this [[n, 1, d]] error-correcting code as a ”building block” by connecting the physical qubit
legs of the original [[n, 1, d]] error-correcting code tensor to the logical qubit leg of additional [[n, 1, d]]
error-correcting codes. This process further encodes the original physical qubits into logical qubits
through error correction, resulting in an overall larger error-correcting code.

Looking back at the previously mentioned Shor 9-qubit code, it is actually derived from a 3-qubit repe-
tition code through concatenation:

2.4. AdS/CFT Correspondence and Holography 18

Figure 2.13: The tensor network representation of the Shor 9-qubit code is obtained by taking a 3-qubit quantum repetition
code, applying Hadamard gates to its three physical legs, and then concatenating it with three additional 3-qubit quantum

repetition codes.

2.4. AdS/CFT Correspondence and Holography
The AdS/CFT correspondence, also known as holographic duality or gauge/gravity correspondence,
links quantum field theory (QFT) and gravity [60, 61]. Specifically, it associates the quantum behavior of
strongly correlated many-body systems with the classical gravitational dynamics in an extra dimension
[22, 62, 63]. It also plays a key role in theoretical debates about black holes. Below, we will start
by introducing the theoretical challenges of extremal black hole, D-branes, and the properties of Anti-
de Sitter space, leading into an introduction of the AdS/CFT Correspondence, and its connection to
holography.

2.4.1. Thermodynamics of Black Holes
The work of Stephen W. Hawking and Jacob D. Bekenstein [64, 65] revealed that black holes, as
thermodynamic objects, possess temperature and entropy as follows:

TH =
ℏc3

8πkBGM
, SBH =

4GM2

ℏc
=
c3Ahor

4ℏG
, (2.42)

It can be observed that the entropy of a black hole is proportional to the area of its event horizon,
indicating that the information of the black hole is encoded on its ”surface” (i.e., the event horizon).
This is consistent with the holographic principle.

2.4.2. Challenges of Extremal Black Hole and D-branes
Ashoke Sen considered a string in a highly excited state that winds many times around a compact
dimension. Such a string would be heavier than a normal string because energy is required to wrap the
string around this compact direction. Consequently, a string with a winding number of 2 in the compact
direction will be heavier than one with a winding number of 1. As the winding number of the string is
increased to a very large value, its mass also becomes very large. However, since it is confined to a
compact space, it can only be a black hole. Moreover, since the winding of the string generates charge,
such black holes are referred to as extremal black holes [66], which are a type of charged black hole.

Ashoke Sen used the Einstein field equations to calculate the area of the event horizon for these ex-
tremal black holes. Surprisingly, the result showed that the area of the event horizon vanishes to zero,

2.4. AdS/CFT Correspondence and Holography 19

which directly contradicts the holographic principle. He suggested that this might be because the field
equations do not take into account quantum fluctuations, which would expand such a black hole and
create an extended event horizon. The entropy is proportional to the area of this extended event hori-
zon.

Jin Dai, Leigh, Joseph Polchinski [67], and Hořava [68] introduced the concept of D-branes, where
open strings can end with Dirichlet boundary conditions. Thus, the ’D’ in D-branes stands for Dirichlet.
The description of D-branes includes additional dimensions, which can be either compactified or non-
compactified. Using D-branes, Andrew Strominger and Cumrun Vafa [69] combined strings and D-
branes to construct an extremal black hole with a sizable and definite classical event horizon, allowing
string theory to provide a total amount of information for extremal black holes that agrees with the
Hawking formula Eq.2.42. This highlights the crucial role of D-branes in string theory.

2.4.3. A Container for Black Holes: Anti-de Sitter Space
A d-dimensional anti-de Sitter space can be viewed as a submanifold in d-dimensional Minkowski space-
time, which satisfies the following equation:

d−1∑
i=1

(xi)
2 − (xd)

2 − (x0)
2 = −R2 (2.43)

Where R is a non-zero constant, known as the radius of the spacetime. This metric indicates that the
spatial curvature of Anti-de Sitter space is negative. As a curved spacetime, Anti-de Sitter space gen-
erates a gravitational pull towards its center, which causes any object near its boundary, including the
event horizons of black holes, to experience a gravitational force pulling them away from the boundary
and back towards the center. The ”repulsive force” between such objects and the boundary of Anti-de
Sitter space is strong enough that the event horizons of black holes cannot extend to the boundary
of Anti-de Sitter space. This makes it possible to study a non-evaporating black hole, turning Anti-de
Sitter space into a ”container” that can ”hold” black holes.

Understanding the geometric properties of Anti-de Sitter Space can be helpful by considering a 2+1-
dimensional Anti-de Sitter Space, as shown in the figure 2.14. The 2+1-dimensional Anti-de Sitter
Space appears cylindrical in the figure 2.14, with the vertical direction representing time. Slicing through
Anti-de Sitter Space at a specific time horizontally, as shown in the figure, yields a cross-section where
objects at the center appear larger, while those closer to the boundary appear smaller. Due to the
curvature of this spacetime, objects closer to the boundary of Anti-de Sitter Space experience stronger
centripetal gravitational forces. In this space, no objects can interact with its boundary, which ensures
the validity of the holographic principle in Anti-de Sitter Space, as it ensures that no objects ”pass
through” the boundary.

Figure 2.14: Illustration of 2+1-dimensional Anti-de Sitter Space, where the horizontal circles represent the two spatial
dimensions, and the vertical dimension represents time. Slicing through Anti-de Sitter Space at a specific time point yields a
two-dimensional space with negative curvature. The ”cylindrical” boundary of this Anti-de Sitter Space corresponds to a

conformal field theory. Figure from [70]

2.5. Holographic Quantum Error Correction Codes 20

Additionally, AdS space corresponds to an isometry group, which means that the metric of the mani-
fold is consistent with the metric of the embedding space, implying that AdS space possesses unique
geometric properties.

2.4.4. AdS/CFT Correspondence Conjecture
Juan Maldacena discussed the properties of open strings ending on the D3 brane, which can exist in-
dependently or as part of a stack of D3 branes. He explored the interaction rules of open strings ending
on the D3 brane, which he found to be identical to the rules governing gluons in QCD. His astonishing
discovery was that the two different-dimensional descriptions of D branes, as outlined by Maldacena,
are equivalent. One description is a 3+1 dimensional QCD that does not include gravity. The dual
description involves a 4+1 dimensional Anti-de Sitter Space. This is called AdS/CFT Correspondence
[22, 71, 72].

Initially, it seems counterintuitive: how can an Anti-de Sitter Space be equivalent to a lower-dimensional
CFT? This can be explained using the concept of the holographic principle. The extra dimension in Anti-
de Sitter Space (the fourth spatial dimension in Juan Maldacena’s example) does not correspond to
movement within the CFT, but rather to a ”scaling” operation. Thus, the information in Anti-de Sitter
Space can be equivalently described within the CFT. This is the holographic principle.

2.5. Holographic Quantum Error Correction Codes
In recent years, there has been a gradual connection established between quantum information and
the AdS/CFT correspondence. Surprisingly, these two areas have been found to mutually benefit each
other. Discussing the AdS/CFT correspondence within the context of quantum information has led to
new insights into it. Similarly, the AdS/CFT correspondence holds potential in aiding the construction
of effective quantum error-correcting codes.

2.5.1. Ryu-Takayanagi (RT) formula
A well-known formula that reveals the connection between the AdS/CFT correspondence and quan-
tum information, the Ryu-Takayanagi formula [73], establishes a representation for the entanglement
entropy of a subsystem A on a holographic CFT within the AdS space. It indicates that SA, the entan-
glement entropy of subsystem A, is proportional to the area of a d− 1-dimensional minimal surface γA
homologous to A:

SA =
|γA|
4G

, (2.44)

|γA| is the area of γA, and G is the gravitational constant in the AdS space-time. The Ryu-Takayanagi
formula is an extension of the Bekenstein-Hawking entropy [64, 74] formula in the context of quantum
information.

2.5.2. Holographic Codes
The AdS/CFT correspondence in quantum information reveals a mapping of quantum information be-
tween the two dual spaces [75–78], where information from the bulk (AdS) is mapped to the boundary
(CFT) and vice versa. More specifically, under the holographic principle, the information in an n + 1-
dimensional AdS space is holographically projected onto an (n − 1) + 1-dimensional CFT. Here, the
motions in the n − 1 dimensions are directly corresponded, while the motion in the nth spatial dimen-
sion of the AdS space is represented as scaling in the CFT. Due to the conformal invariance of the
CFT, some symmetries within the AdS space are also preserved in the CFT. Consequently, Noether’s
theorem [79] ensures the correspondence of conserved quantities and physical equivalence between
the two dual descriptions. Thus, information is equivalent under both descriptions; starting from AdS
space, information on the CFT can be derived, and starting from the CFT, information in AdS space can
be ”reconstructed.” Therefore, inspired by the AdS/CFT correspondence, tensor networks can be used
to construct toy models of the AdS/CFT duality, creating quantum error-correcting codes that mimic
the properties of the AdS/CFT duality. This type of code enables the reconstruction of quantum infor-
mation in the bulk area through the quantum information on the boundary, making such holographic
error-correcting codes a promising candidate for quantum error correction.

2.5. Holographic Quantum Error Correction Codes 21

Causal Wedge in Holography

Causality in flat spacetime can be described using light cones, while for more general spaces, the causal
wedge [80–82] is a powerful tool for describing causal relationships. They are not the same concept;
the shapes and extents of causal wedges and light cones may differ. When discussing causality in the
context of the AdS/CFT correspondence, we need to use causal wedges for description.

The concept of a causal wedge in holography can be elucidated with an example:

On a Poincaré disk with negative curvature, there exists a field operator ψ(x) in the bulk region. The
bulk region is a timeslice of AdS spacetime at a specific point in time, characterized by negative spatial
curvature.. On the CFT boundary, there are two operators OA and OB , with their corresponding causal
wedges being WA and WB . If ψ(x) is located within both WA and WB , this means that the field oper-
ator ψ(x) can be reconstructed by the boundary operators OA and OB . This is because the causality
regarding the CFT boundary operators OA and OB only exists within their causal wedges. Since the
bulk region of interest is a slice of AdS spacetime at a specific point in time, the slices of the causal
wedges are the regions WA and WB as shown in the figure 2.15. However, this does not necessarily
mean that the intersection of the boundary operators OA ∩ OB can always reconstruct ψ(x), because
ψ(x) may not lie withinWA ∩WB .

In the context of quantum information, such causal wedges are also referred to as entanglement
wedges. The core idea is that to fully reconstruct a field operator in the bulk, the entanglement wedge
of the CFT boundary operators used for the reconstruction must include this bulk field operator [83].

Figure 2.15: An example of a causal wedge: A field operator ψ(x) located in the bulk region can be encompassed by the
causal wedges of different CFT boundary operators OA and OB . Consequently, the information of ψ(x) can be independently
reconstructed by OA and OB , meaning that the information of ψ(x) is redundantly stored on the CFT boundary. It’s important

to note, however, that the causal wedges of the boundary operators OA∩B do not necessarily include ψ(x).

Constructing Holographic Codes Using Tensor Networks

2.5. Holographic Quantum Error Correction Codes 22

Figure 2.16: An example of constructing a discrete holographic code using tensor networks involves using the [[5, 1, 3]] code
as a ”building block” tensor, holographically stacking with a [p, q] = [5, 4] configuration on a negatively curved Poincaré disk,
and connecting the tensor legs of adjacent tensors. The orange circles represent the logical qubits of each ”building block”
tensor, located within the bulk space, and also serve as the logical qubits of the entire holographic network code. Their

information is redundantly stored on the boundary, represented by the white circles on the boundary as physical qubits.[3, 70]

For a field operator ψ(x) located near the center of the bulk, its reconstruction can be achieved through
multiple different wedges. This means that the removal of a boundary operator, when its correspond-
ing wedge does not penetrate deeply into the central region of the bulk, allows the information of the
field operator ψ(x) to be obtained through other CFT boundary operators that have not been removed.
Therefore, the information of the field operator ψ(x) in the bulk is redundantly stored on the CFT bound-
ary, which aligns with the properties of quantum error-correcting codes. Quantum error-correcting
codes based on this principle are known as holographic quantum error-correcting codes.

To discuss holographic error correction in discrete spaces, tensor networks serve as a useful tool for
constructing toy models of holographic quantum error-correcting codes. The network structure and
the properties of the tensors themselves (such as isometry, which will be discussed in subsequent
sections) can to some extent mimic the behavior of entanglement wedges in continuous holographic
error correction and discretely mimic fractal characteristics on the boundary.

To construct such discrete holographic quantum error-correcting codes, one starts by choosing a Poincaré
disk with negative curvature. On this disk, tensors that preserve inner product transformations (which
will be elaborated in the later HaPPY code section) are holographically stacked to form a holographic
tensor network [70]. This network represents a mapping from the logical qubits in the bulk region to the
physical qubits on the CFT boundary, thereby establishing a tensor network-based discrete holographic
quantum error-correcting code. An example is illustrated in Fig. 2.16.

The Thresholds for Holographic Codes

Thresholds are a crucial metric for any error-correcting code. Ref.[84] discusses the threshold char-
acteristics in holographic quantum error-correcting codes. They demonstrated that holographic CFTs
possess algebraic thresholds, related to the confinement-deconfinement phase transition. In the contin-
uous limit (N →∞), the logical error rate converges to a step function, indicating that, as holographic
codes, AdS/CFT has an error threshold for thermal noise consistent with the deconfinement phase
transition temperature.

2.5.3. Inflation Pattern: Vertex Inflation and Edge Inflation
Holographic codes have two different inflation patterns [70]: Vertex Inflation and Edge Inflation. Taking
the [p, q] = [5, 4] tiling as an example:

2.5. Holographic Quantum Error Correction Codes 23

Figure 2.17: Vertex Inflation and Edge Inflation

The difference between them is as follows [85]: Vertex Inflation requires that when stacking the next
layer of tensors, each tensor must share an edge with a tensor from the previous layer and also share
edges with tensors within the same layer. This ensures that all vertices inside the stack are shared
by q = 4 polygons. On the other hand, for Edge Inflation, the rule is that when adding a new layer of
tensors, we only need to extend from an edge of a tensor from the previous layer and place a new tensor
in the next layer, without ensuring that all vertices are shared by q polygons. The differences between
these two inflation patterns are illustrated in the following diagram, where different colors represent
tensors from different layers. Tiling patterns other than {5, 4} are also allowed [86].

2.5.4. HaPPY Code
As one of the most typical codes in holographic codes, the HaPPY code [3] serves as an excellent
example for understanding the properties of holographic codes. Isometries and Perfect Tensors

Figure 2.18: Tensor notation, here showing that T is an isometry

Definition of isometries: HA and HB are two Hilbert spaces, which can have different dimensions.
An isometry from HA to HB is a linear map T : HA → HB that preserves the inner product from HA to
HB .

For our construction use case of the holographic code, we assume that both HA and HB have finite
dimensions. Naturally, we can conclude that an isometry from HA to HB exists if and only if dim(A) <
dim(B). If dim(A) = dim(B), then the isometry T is a unitary transformation. Specifically, this means
that T is an isometry from HA to HB , and T † is an isometry from HB to HA.

Consider a general linear map T , which linearly maps states from HA to HB as

T : |a〉 →
∑
b

|b〉Tba. (2.45)

If T is an isometry, it must preserve the inner product, hence we have:

2.5. Holographic Quantum Error Correction Codes 24

〈a′|a〉 =
∑
b′,b

T †
a′b′Tba〈b

′|b〉 (2.46)

Hence:

∑
b

T †
a′bTba = δa′a. (2.47)

From this, we can see that when T is an isometry from HA to HB , then T †T is the identity operator on
HA.

Figure 2.19: Operator Pushing

Furthermore, when there is an isometry T from HA to HB , and we consider the correspondence of
operators between HA and HB , suppose there is an operator O in HA. The operator O is mapped by
the isometry T to an operator O′ in HB , then we have:

TO = TOT †T = (TOT †)T = O′T (2.48)

Hence:
O′ = TOT † (2.49)

Through this formula, we can determine the expression forO′. This process can be visually understood
as pushing the operator O, originally in HA, through T to HB , resulting in O′.

Definition of Perfect Tensors: For a tensor Ta1,a2,...,a2n with 2n indices, given any bipartition of these
indices into a set A and its complement Ac, satisfying |A| ≤ |Ac|, if T is proportional to an isometry
tensor from A to Ac, then T is called a perfect tensor.

We can regard the perfect tensor T as a quantum pure state within theH2n space, which can be written
as:

|ψ〉 =
∑

a1,a2,...,a2n

Ta1a2...a2n |a1a2 . . . a2n〉 . (2.50)

This quantum state, composed of 2n qubits, takes any subsystem of n qubits to be maximally entangled
with the remaining n qubits. Such quantum states are known as absolutely maximally entangled (AME)
states [87, 88]. Every perfect tensor defines an AME state, and conversely, every AME state defines a
perfect tensor.

Construction of HaPPY Code

2.5. Holographic Quantum Error Correction Codes 25

To construct the HaPPY code, we start from a [[5, 1, 3]] perfect code, which perfectly maps 1 logical qubit
onto 5 physical qubits, with a distance of 3. The stabilizer group of this perfect code has 4 generators,
denoted as S = 〈S1, S2, S3, S4〉, with the generators as follows:

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ I
S2 = I ⊗X ⊗ Z ⊗ Z ⊗X
S3 = X ⊗ I ⊗X ⊗ Z ⊗ Z
S4 = Z ⊗X ⊗ I ⊗X ⊗ Z

(2.51)

The logical operators X̄ and Z̄ of this perfect code are as follows:

X = X ⊗X ⊗X ⊗X ⊗X
Z = Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z

(2.52)

After determining the perfect tensor we use to construct the HaPPY code, we proceed to create the
required topology for the HaPPY code. We start by placing a [[5, 1, 3]] perfect code at the center of a
Poincaré disk with negative curvature. Then, we stack tensors on this Poincaré disk using a [p, q] = [5, 4]
tessellation method, as illustrated in Fig. 2.20:

Figure 2.20: The growing process of the HaPPY code from R = 0 to R = 2, following the rules of edge inflation. Place the
perfect code [[5, 1, 3]] on the negatively curved Poincaré disk. This forms a HaPPY code with radius R = 0. Then, using the
edge inflation mode, holographically stack a new layer of the [[5, 1, 3]] perfect code on the radius R = 0 HaPPY code with

[p, q] = [5, 4], resulting in the R = 1 HaPPY code. By continuing to holographically stack a layer of the [[5, 1, 3]] perfect code on
the R = 1 HaPPY code with [p, q] = [5, 4], the R = 2 HaPPY code can be obtained.

Rate of HaPPY Code

The HaPPY code can have different rates, where the rate of a [[n, k, d]] code is defined as k/n. For
instance, in the construction of the HaPPY code we previously discussed, we built a max rate HaPPY
code because it encodes one logical qubit per tensor as input. In fact, having a logical qubit on every
tensor is not necessary. We can change the code’s rate by altering the encoding density of logical
qubits in the tensor network. As shown in the following diagram, on the left is a HaPPY code that
encodes logical qubits only at even R levels, also known as the Pentagon/Hexagon code. On the right
is a HaPPY code that encodes a logical qubit only at the central tensor, also known as the One qubit
code or zero rate HaPPY code. Because as R increases, the rate of the One qubit code tends toward
zero.

2.5. Holographic Quantum Error Correction Codes 26

Figure 2.21: Tensor network representations of the Pentagon Hexagon HaPPY code and the zero rate HaPPY code.

2.5.5. Holographic Steane Code
Beyond the HaPPY code, there are many other excellent holographic codes, where a key step is the
selection of tensors. Here, we introduce the holographic Steane code [89], which utilizes the Steane
code [90] tensor. As a type of quantum error-correcting code, the Steane code has many outstanding
features, giving us reason to expect that the holographic Steane code will possess desirable properties.

Block Perfect Tensors

When examining the tensor of the Steane code, we naturally hope that it could be a perfect tensor,
similar to the [[5, 1, 3]] tensor used in the HaPPY code, but this is not the case. However, the good
news is that the tensor corresponding to the Steane code can form an isometry mapping under some
limited bipartitions, which we refer to as block perfect tensors [89].

Recalling the concept of perfect tensors, for their index sequence J = {j1, j2, . . . , j2m}, given a bipar-
tition

{
A
∣∣A} = Π[J], where Π is any permutation, as long as |A| < |A|, it can form an isometry from

HA to HA. This requirement is quite stringent for a tensor T , and in reality, we can relax this require-
ment to obtain a broader class of tensors. These tensors can form an isometry under a limited set of
permutations, which we refer to as block perfect tensors.

Construction of Holographic Steane Code

To construct the holographic Steane code, let’s first look at the seed tensor we use: the Steane tensor.
Below are the stabilizer group generators and logical operators of the Steane tensor:

Index label: 1 2 3 4 5 6 L 7
S1 X X I I I X I X
S2 I X X X I I I X
S3 I I I X X X I X
S4 Z Z I I I Z I Z
S5 I Z Z Z I I I Z
S6 I I I Z Z Z I Z
Sx X X X X X X X X
Sz Z Z Z Z Z Z Z Z

(2.53)

The Steane tensor is not a perfect tensor because it cannot guarantee the formation of an isometry
under all permutations. However, as long as the ”input” indices of the Steane tensor are sequentially

2.5. Holographic Quantum Error Correction Codes 27

adjacent, for example, 6, L, 7, with the remaining indices serving as ”output,” it can be verified that the
Steane tensor will provide an isometry under these conditions.

By using the Steane tensor as the seed tensor and employing a [p, q] = [7, 4] tessellation method on
the Poincaré disk, holographically tessellating Steane tensors can form the holographic Steane code.
As shown in the Fig. 2.22.

Figure 2.22: Max rate holographic Steane code, following the edge inflation rule.

2.5.6. Hyper-Invariant Tensor Network (HTN) Code
Indeed, while both the HaPPY code and the holographic Steane Code are quantum error-correcting
codes proposed based on the AdS/CFT correspondence, they do not fully exhibit all the key properties
of the AdS/CFT correspondence [4]. A significant feature of the AdS/CFT duality is the correspondence
between the n-point correlation functions on the CFT and the geometry in the AdS space, such as the
direct connection between the two-point correlation functions on the CFT boundary and the geodesics
in the AdS space. A new class of holographic codes, which excellently reflect this property, is the
Hyper-Invariant Tensor Network (HTN) Code [4, 91].

The HTN code is a type of holographic quantum error-correcting code based on Vertex Inflation. Its
stacking method on the Poincaré disk can vary. We introduce a typical HTN code, the [p, q] = [4, 5]
HTN code, and explain how it is constructed.

Construction of [p, q] = [4, 5] HTN code

The [p, q] = [4, 5] HTN code uses a seed tensor that is block perfect. The generators of its stabilizer
group and the logical operators are as follows:

Index label: 1 2 3 4 L
S1 X X X X I
S2 I Z I Z I
S3 Z I Z I I
Sx I X I X X
Sz I I Z Z Z

(2.54)

Then, this seed tensor is holographically stacked on the Poincaré disk through vertex inflation, as shown
in the following Fig.2.23.

2.5. Holographic Quantum Error Correction Codes 28

Figure 2.23: The [4, 5] HTN code at L = 1 [92] , following the vertex inflation rule.

Rate of HTN Code

Unlike most other holographic codes, the HTN code has relatively strict requirements regarding the
geometric properties of the holographic stacking [92]. Therefore, when discussing non-max rate HTN
codes, we cannot simply treat the logical leg of the seed tensor as a normal leg and stack it onto the
Poincaré disk as a polygon with one more edge than the original seed tensor. Instead, when handling
non-max rate HTN codes, we first ”discard” the logical leg on some tensors. Originally, this tensor had
gauge degrees of freedom, but since we ”discard” the logical index of this tensor, the gauge degree of
freedom can be set to a logical operator. For example, if we choose the Z logical operator as the gauge
we wish to fix, we are essentially expanding the original tensor’s 〈S1, S2, S3〉 to 〈S1, S2, S3, Z〉. Thus,
we transform the original [[n, k]] = [[4, 1]] error-correcting code into a [[n, k]] = [[4, 0]] mapping tensor.

By freely choosing the tensors on which to perform gauge fixing operations (also known as projecting
onto an eigenstate of a certain logical operator), we can start with a max rate HTN code and freely
reduce the rate of the HTN code to achieve our desired code. In particular, when we project all tensors
except for the central tensor onto an eigenstate of one of their logical operators, we effectively construct
a zero rate HTN code (One qubit HTN code). More details on this can be found in [92].

2.5.7. Holographic Reed-Muller Code
In the field of fault-tolerant quantum computing, the transversality of gate operations is a highly desirable
property. For most codes, the transversality of Clifford operations is not uncommon. However, for
typical non-Clifford operations, like the T gate, most codes do not have a transversal operation to
implement a logical T gate and must resort to methods like magic state distillation to achieve logical
T gate operations. The Reed Muller code [23, 93] allows for the transversal operation of the T gate,
making it one of the codes we are interested in. We want to see if interesting properties emerge when
using it as a seed tensor to construct a holographic error-correcting code [5].

Construction of Holographic Reed Muller Code

The stabilizer group generators and logical operators used by the Reed Muller code are as follows,
which are key to constructing the seed tensor:

2.6. Quantum Lego 29

Index label: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 Z I Z I Z I Z I Z I Z I Z I Z
S2 I Z Z I I Z Z I I Z Z I I Z Z
S3 I I I Z Z Z Z I I I I Z Z Z Z
S4 I I I I I I I Z Z Z Z Z Z Z Z
S5 I I Z I I I Z I I I Z I I I Z
S6 I I I I Z I Z I I I I I Z I Z
S7 I I I I I Z Z I I I I I I Z Z
S8 I I I I I I I I I Z Z I I Z Z
S9 I I I I I I I I I I I Z Z Z Z
S10 I I I I I I I I Z I Z I Z I Z
S11 X I X I X I X I X I X I X I X
S12 I X X I I X X I I X X I I X X
S13 I I I X X X X I I I I X X X X
S14 I I I I I I I X X X X X X X X

(2.55)

With the Reed Muller code as the seed tensor, we use edge inflation to holographically stack these
seed tensors on the Poincaré disk. When aiming to create a max rate holographic Reed Muller code,
we employ a [p, q] = [15, 4] method for holographic stacking, as illustrated in the following Fig.2.24:

Figure 2.24: Holographic Reed Muller code, following the edge inflation rule.

2.6. Quantum Lego
From the examples of constructing holographic quantum error-correcting codes via tensor networks,
we can see that by assembling small error-correcting code tensors into a tensor network, we can sys-
tematically create various quantum error-correcting codes. Therefore, we can broaden our perspective
beyond holographic tensor networks to view the construction of quantum error-correcting codes through
tensor networks more widely.

”Small” tensors act like LEGO bricks, and the process of building tensor networks from these ”small”
tensors is akin to constructing a large LEGO structure from individual LEGO bricks. Hence, we aptly re-
fer to this method of constructing quantum error-correcting codes through tensor networks as quantum
LEGOs [5].

2.6. Quantum Lego 30

A crucial aspect of a tensor network is the ”flow” of operators within it. As mentioned earlier, for an
isometry, operators can be ”pushed” from one side of the isometry to the other. Thus, operators can
be ”pushed” from their original positions to other locations within the tensor network that composes a
quantum error-correcting code. Let’s first introduce the protocol for operator pushing.

2.6.1. Operator Push Protocol

Figure 2.25: (a) Operator Oi is located on the legs of tensor T1. (b) Operator Oi located on two connected tensor legs is
equivalently replaced by operator Qi on the leg of tensor T2. (c) Operator Qi within the tensor network is equivalently replaced
by operator Qj on the boundary through the application of the UPS method. (d) The trajectory of the operator being pushed

through the tensor network, forming an ”operator flow”.

Let’s limit our discussion to operators acting on the tensor network that belong to SU(2)⊗n, where n is
the total number of tensor legs in the tensor network. Thus, we can choose to represent these operators
acting on each SU(2) subspace by drawing them on the tensor legs in the tensor network, indicating
that the SU(2) operator acts on the space represented by that index in the tensor network. As shown
in Figure (a), we place the operators O1, O2, O3, and O4 on the legs of the left tensor, while the other
legs, not depicted with operators, currently represent the identity operator.

When examining the SU(2)⊗n operators acting on the depicted tensor network, we find that this SU(2)⊗n

operator actually has many equivalent forms of expression. Therefore, for practical quantum error-
correcting codes, we need all non-trivial SU(2) operators to act on the boundary of the tensor network.
Thus, we seek methods to ”push” the SU(2) operators to the boundary. We note that the O3 and O4

operators are already on dangling legs, indicating they are already at the boundary of the tensor net-
work and do not require further action. However, for O1 and O2, since they are on legs contracted with
the right tensor, we need to first ”move” O1 and O2 to the legs of the right tensor. This ”movement”
operation must follow certain rules, which we introduce as the Matching Protocol.

Matching Protocol

For a pair of contracted tensor legs, they are effectively ”glued” together into a pair of Bell pairs, entering
a maximally entangled state. The quantum state of the subsystem composed of these two tensor legs
can be written in the following form:

∣∣Φ+
〉
=

d−1∑
i=0

|ii〉 (2.56)

Assuming in this subsystem, we originally have an operator Oe on the first leg and the identity operator
on the second leg, we need to find a matching pair (Oe, Qe) such that the action of Oe ⊗ Qe on this
subsystem is trivial, as illustrated below.

2.6. Quantum Lego 31

〈
Φ+

∣∣Oe ⊗Qe = 〈
Φ+

∣∣ . (2.57)

To better understand this matching protocol, let’s considerOe andQe as Hermitian and unitary operators
(such as Pauli operators). Then, this expression can be rewritten as:

〈
Φ+

∣∣Oe ⊗ I =
〈
Φ+

∣∣ I ⊗Qe. (2.58)

Thus, by employing this matching protocol, we can find the corresponding Qe for Oe, thereby ”moving”
Oe onto another tensor. It’s worth noting that for Pauli operators, Oe and Qe are equal. This means
that for the matching protocol operation with Pauli operators, we are simply moving the Pauli operator
from one tensor along the contracted tensor leg to the corresponding tensor leg of another tensor.

Therefore, looking back at figure 2.25 (b), we use the matching protocol to move the operators O1 and
O2 to the corresponding legs of the right tensor, resulting in Q1 and Q2.

To further push Q1 and Q2 to the boundary of the tensor network, the next step is to find a way to let
Q1 and Q2 ”pass through” the right tensor to reach the boundary. To achieve this, we need to use what
are called UPS operators.

Unitary Product Stabilizer (UPS)

Definition: For any state |V 〉 ∈ H, a unitary U that satisfies U |V 〉 = |V 〉 is called a unitary stabilizer
of |V 〉. Additionally, if they also satisfy H = H⊗d

QN
for some prime d and U =

⊗
i Ui, then U is also a

unitary product stabilizer (UPS).

In the subsystem where a tensor in the tensor network resides, the action of the UPS on this subspace
is trivial with respect to the code space. Therefore, by selecting UPS that matches Q1 and Q2, and
applying it to the right tensor, we can pushQ1 andQ2 to the boundary, resulting inQ3 andQ4, as shown
in figure 2.25 (c).

Operator Flow

After the operations depicted in figures 2.25 (a), (b), and (c), we successfully find an SU(2)⊗n operator
equivalent to the initial operator, which has non-trivial operators only on the boundary of the tensor
network. Understanding this process visually, we find that the operators seem to ”flow” from their
original positions to the boundary of the tensor network. The direction of operator flow in the above
example is shown in figure 2.25 (d).

3
Methods

3.1. Quantum Lego-Based UPS Generator Program
To study the properties of a quantum error-correcting code, it’s essential first to obtain a complete ex-
pression of its stabilizer generators and the expressions for the generators of logical operators within
the corresponding centralizer group. With holographic codes, as the radius increases, the number of
physical qubits grows exponentially. This means that the number of stabilizer generators we need to
calculate, as well as the length of Pauli operators for each stabilizer generator, also increase exponen-
tially with the radius, making it a very labor-intensive task. Before this work, there was no program
capable of automatically and rapidly handling the operator pushing for quantum legos, primarily due to
the complexity of digitizing tensor networks and the intricate logic behind operator pushing.

This work developed an automated operator pushing program based on quantum legos [5] that can
generate holographic tensor networks and quickly provide a complete set of stabilizer group generators
and the corresponding centralizer group generators. It can even infer the boundary expression from
any local bulk operator.

3.1.1. Architecture Diagram of the Program
For the Tensor Network UPS Generator Program, its architecture was designed with three layers: the
Object Layer (which includes tensor legs, tensors, and tensor networks), the Operator Push Manager
Layer, and the Boundary Reading Layer, as illustrated in the following figure 3.1.

Figure 3.1: Architecture of the automated UPS generation program.

32

3.1. Quantum Lego-Based UPS Generator Program 33

As shown in the figure 3.1, the Quantum Lego-Based UPS Generator program is primarily divided into
three layers, explained as follows:

1. Object layer, which includes tensor legs, tensors, and tensor networks.
The object layer defines the components required to construct the operator push tensor network,
ranging from the smallest to largest scale: tensor legs, tensors, and tensor networks. A detailed
explanation will be in provided in the section of Tensor Legs, Tensor Classes, and Tensor Net-
works.

2. Operator Push Manager, a function that manages the order of operator pushes.
For a holographic tensor network, the Operator Push Manager first receives one or a set of local
UPS operators that need to be pushed to the boundary. It then pushes them to the boundary in a
specific order, ensuring that most tensors only need to undergo a single push operation. A more
detailed explanation will be provided in the later section on the Operator Push Manager.

3. Read Out Layer
Readout function retrieves operators on the boundary using the backtracking method and com-
piles them into the final boundary operator result. It also includes a correctness check, traversing
all internal legs of the tensor network to ensure that all operators have been pushed to the bound-
ary. More detailed explanations will follow in subsequent sections.

3.1.2. Tensor Legs, Tensor Classes, and Tensor Networks
The Object Layer defines all components necessary for operator pushing within the tensor network,
including tensor legs class, tensor class, and the tensor network itself. Numerous methods and func-
tions have been developed corresponding to these objects to facilitate the operator pushing. Below,
we introduce these classes and some of their basic methods and functions:

1. TensorLeg

Table 3.1: Tensor Leg Object’s Main Variables and Their Functions

Variables Type Description
operator String Stores the operator located on this tensor leg. Currently, only

Pauli operators (”I”, ”X”, ”Y”, ”Z”) are supported
connection Tuple (target tensor ID, corresponding target tensor leg ID). The first el-

ement indicates the ID of the target tensor to which this current
leg of the current tensor is connected, and the second element in-
dicates which leg of the target tensor this current leg is connected
to. If the current tensor leg is not connected (i.e., a dangling leg),
then this variable is set to None.

clifford_gate String Stores the Clifford gate existing on this tensor leg, such as the
Hadamard gate. ’None’ or ’I’ indicates that there is no Clifford
gate on this tensor leg.

logical Boolean Used to indicate whether this leg is a logical leg.
blocked Boolean To prevent the operator from being pushed back to the center

of the holographic code, this program blocks the corresponding
tensor leg after each push operation to prevent the operator from
being pushed back.

2. Tensor

Table 3.2: Tensor Object’s Main Variables and Their Functions

Variables Type Description
tensor_id Integer Used to store the ID of this tensor, serving as the tensor’s unique

identifier.

3.1. Quantum Lego-Based UPS Generator Program 34

legs List Used to store the tensor leg objects of this tensor. The index of a
leg in the legs list corresponds to the leg ID.

ups_list List Used to store a complete set of UPS for the current tensor, treat-
ing the tensor as a state. Hence, this ups_list also includes sta-
bilizer generators and complete logical operators, i.e., a set of
generators for C(S), where each generator is stored as a string.

starting_tensor Boolean Indicates whether this tensor is the starting tensor for initiating
operator push. If true, and the current tensor is not located at
the center of the bulk, then some legs of this tensor need to be
blocked in advance to prevent pushing the operator outside the
causal wedge.

layer Integer Used to store the current tensor’s layer in the holographic tensor
network.

stabilizer_list List Used to separately store the stabilizer group generators.
logical_z_list List Used to separately store the logical Z operation operators. Typi-

cally, this list only has one element because usually, we deal with
seed tensors that only have one logical leg.

logical_x_list List Used to separately store the logical X operation operators. Simi-
larly, this list usually only has one element.

incomplete_logical Boolean For some special tensor network codes, the UPS generators are
insufficient to support complete logical operators (this occurs at
layer L=2 and beyond for the [5, 4] HTN code). In such cases,
this tensor requires special handling.

3. TensorNetworks
The tensor network object is a object used to store all tensors. Currently, a list is used to hold all
tensors in the existing code. In future versions released to the open-source community, consid-
eration will be given to replacing the list with a dictionary object to enhance performance.

For these objects, the program has developed many methods and functions to efficiently serve the
purpose of operator pushing. Here, we list some basic methods and functions and explain their func-
tions, with a more comprehensive description to be provided in the documentation for the open-source
community.

1. Basic Methods of TensorLeg Objects

Table 3.3: Basic Methods of TensorLeg Objects

Methods Description
operator_set Assigns an operator to this leg.

2. Basic Methods of Tensor Objects

Table 3.4: Basic Methods of Tensor Objects

Methods Description
add_stabilizer Add a stabilizer UPS to the tensor.

set_leg Set the information for a specific leg
add_leg Add a leg to this tensor
apply_ups Apply a UPS to this tensor, where the single Pauli operators in

the UPS act sequentially on the corresponding tensor legs
pauli_push Push the operator to the next tensor’s leg according to the proper-

ties of the tensor leg and its connected corresponding tensor leg,
following the matching protocol

3.1. Quantum Lego-Based UPS Generator Program 35

get_connections Obtain the connection information of all tensors connected to the
current tensor

ups_decision In the process of using UPS to push operators, appropriately se-
lect the suitable UPS from the UPS group to cancel the Pauli op-
erators on the input legs

operator_push_decision In this program, tensors are programmed to autonomously decide
which method to use for effective operator pushing; this is a push
decision function

3. Basic Functions for TensorNetworks

Table 3.5: Basic Functions of TensorNetworks

Functions Description
get_tensor_from_id Given a tensor ID, return the tensor corresponding to that tensor

ID.
remove_tensor Given a tensor ID, remove this tensor from the tensor network

and update the topological information of the tensor network.

Above are the three main types of objects used in this program, along with some of the most basic and
commonly used methods and functions.

3.1.3. Programmatic Construction of Holographic Tensor Networks
The number of tensors in a holographic tensor network grows exponentially with the radius, making
manual input of the tensor network’s topological structure into the program highly inefficient. Therefore,
the program also needs an automated method to generate specific topological structures.

In this program, there are two methods to generate arbitrarily large holographic tensor networks: one
uses the external package Hypertiling to generate max rate holographic codes, and the other uses
a method developed in-house to generate tensor networks with any q = 4 edge inflation. The lat-
ter allows for the creation of holographic codes of various rates and also permits the construction of
heterogeneous holographic codes.

For the first approach, which involves obtaining topological information from an external hypertiling
package and constructing a tensor network, the logic is relatively simple. However, it is important to
pay attention to the order of the legs and their connection directions. Below is the pseudocode for
obtaining topological information from an external hypertiling package and constructing a holographic
tensor network (usually only for max rate codes):

Algorithm 1 Importing Topology from External Hypertiling Package
1: procedure Import_Topology_from_Hypertiling(p, q, n)
2: hypertiling_obj ← hypertiling(p, q, n) # Create hypertiling object
3: topology ← hypertiling_obj.get_nbr() # Get neighbors information of all tiling objects
4: tensor_network ← [] # Create an empty TensorNetwork object
5: # Set the TensorNetwork’s topology using Hypertiling’s topology
6: for connection in topology do
7: create_connection(connection, tensor_network)
8: end for
9: #Reorder leg sequence according to the requirements of the actual holographic code
10: for tensor in tensor_network do
11: sort_leg_order(tensor, tensor_network)
12: end for
13: return tensor_network
14: end procedure

3.1. Quantum Lego-Based UPS Generator Program 36

For the second method, which does not rely on any external package and creates arbitrary q=4 tiling,
it is broadly applicable to various non-max rate holographic codes. The pseudocode for this method is
as follows:

Algorithm 2 Create q = 4 Layer for Tensor Network
1: procedure Create_q_eq_4_Layer_for_Tensor_Network
2: # This function adds a new layer of tensors to a given TensorNetwork with q = 4 tiling
3: Create a new_tensor
4: Connect the new_tensor with the first dangling_leg of the first tensor of the outermost_tensors
5: Connect the new_tensor with the last dangling_leg of the last tensor of the outermost_tensors
6: for current_tensor in outermost_tensors do
7: for dangling_leg in tensor do
8: Create a new_tensor connected with the dangling_leg of the current_tensor
9: if new_tensor’s connection is with the last dangling_leg of the current_tensor then
10: Connect the new_tensor to the corresponding neighbor_tensor
11: end if
12: end for
13: end for
14: end procedure

The function described above can holographically grow one more layer of tensors (q = 4) on the outer-
most layer, given a holographic tensor network with q = 4 edge inflation. Of course, the initialization of
the holographic tensor network, such as the tensors of the 0th layer and the growth of the 1st layer, re-
quires special handling. With this function, we can freely generate any q = 4 edge inflation holographic
code and can vary the types of connected tensors as well as the encoding rate.

3.1.4. Self-Push Operators: Autonomous Tensors

Figure 3.2: (a) When non-identity operators appear only on the tensor’s dangling legs and all connected legs are already
blocked, no action is required on the tensor. (b) When there are non-identity operators on connected but unblocked legs, and
only identity operators exist on connected and blocked legs, use the matching protocol to push operators at that time, and block
these connected legs after pushing. (c) When the tensor has at least one blocked leg with a non-identity operator, prioritize

applying UPS, then consider whether to use the matching protocol.

3.1. Quantum Lego-Based UPS Generator Program 37

As mentioned in the tensor lego section, the operator push process requires the use of the matching
protocol and local UPS methods. If these operations are performed directly at the level of the tensor
network, the code logic becomes very complex. Therefore, we opt to let tensor objects possess the
ability to execute local operator pushes on their own, which we refer to as: Autonomous Tensors.

For an autonomous tensor, the main focus is on the operators and connections on its own legs, as
shown in the Figure 3.2. An autonomous tensor needs to take different actions depending on various
situations.

1. Non-identity operators appear only on the tensor’s dangling legs and all connected legs
are already blocked: In this case, no action is required on the tensor.

2. When there are non-identity operators on connected but unblocked legs, and only identity
operators exist on connected and blocked legs: Use the matching protocol to push operators
at that time, and block these connected legs after pushing.

3. When the tensor has at least one blocked legwith a non-identity operator: Prioritize applying
UPS, then consider whether to use the matching protocol.

Based on the above rules, an autonomous tensor can manipulate the operators on its legs and the
state of its legs to locally handle operator pushes. Of course, the actual program considers additional
rules and features, such as unblocking a leg and arranging for a tensor to undergo another round of
local operator pushes. These extra rules are related to the specific tensor network structure and the
stabilizer group of the seed tensor.

3.1.5. Operator Push Manager
For the entire tensor network, although each tensor is now an autonomous tensor capable of handling
localized operator pushes, there still needs to be an Operator Push Manager to manage the initiation
sequence of these autonomous tensor operator pushes.

The main function of the Operator Push Manager is to place one or several local UPS operators that
are waiting to be resolved into boundary representations on a fully initialized tensor network, and to
reasonably arrange the initiation sequence of the autonomous tensors to ensure that all operators are
pushed to the boundary. Therefore, the Operator Push Manager needs to call the autonomous tensors
in an effective order.

For the tensor network of a holographic code, the Operator Push Manager first calls the central tensor,
allowing the central autonomous tensor to make a round of operator push decisions. Then, using meth-
ods defined in the tensor class, the Operator Push Manager retrieves the neighbor tensors connected
to the central tensor and adds these neighbor tensors to a queue, which stores the autonomous tensors
that will be called in the next round. As the Operator Push Manager processes the autonomous tensors
passed from the previous round, it records the neighbors of each tensor being called that have not yet
been called and places them in the queue for the next round of calls.

The general logic of the Operator Push Manager is as follows:

Algorithm 3 Operator Push Manager
1: procedure Operator_Push_Manager
2: Call the central tensor Tc, and add Tc to a set Processed_Tensors
3: Retrieve neighbors of Tc and add these neighbors {Tnbr} to a queue Q
4: while not Q.empty() do
5: Call autonomous tensor T ← Q.pop(), and Processed_Tensors.add(T)
6: for each neighbor Tnbr of T do
7: if Tnbr not in Q and Tnbr not in Processed_Tensors then
8: Q.add(Tnbr) ▷ Add to queue if not already included
9: end if
10: end for
11: end while
12: end procedure

3.2. Erasure Decoder 38

3.1.6. Boundary Operator Readout and Correctness Verification
After completing the operator push, there are two main modules for reading boundary operators. The
first module reads the boundary operators using a backtracking method, while the second module
traverses all internal legs to check whether the operator push has been correctly completed.

For boundary operators readout, a backtracking method is used to sequentially traverse the operators
on each dangling leg along the boundary, ultimately returning the Pauli operators for the entire boundary.
The reason for using the backtracking method instead of directly traversing each tensor leg is to ensure
that the order of the read Pauli operators corresponds to the geometry of the holographic code.

Figure 3.3: A schematic diagram of the Backtracking Boundary Operator Reading Algorithm illustrates the process of
traversing each tensor using the backtracking method. Every time a boundary tensor is encountered, the logical operators on

the dangling legs of the boundary tensor are read.

3.2. Erasure Decoder
In quantum communication and computing, the information stored in qubits can be lost. In the context of
quantum error correction, this loss of quantum information is referred to as an erasure error. Quantum
error-correcting codes combat erasure errors by creating redundancy, allowing the original quantum
information to potentially be reconstructed from the remaining quantum information. Let’s first introduce
the quantum erasure channel.

3.2.1. Recoverability of Logical Information under Erasure Channel
When a string of qubits passes through a quantum erasure channel, we receive information about which
qubits have been erased. Our primary focus is on the positions of these erased qubits. When assessing
the recoverability of quantum information for a certain logical qubit, we typically need to determine if
this logical information can be reconstructed using the qubits that have not been erased. This problem
is equivalent to whether we can obtain an equivalent set of complete logical operators {Lx,Lz} through
the stabilizer group of the entire error-correcting code 〈S1, S2, ..., Sn−k〉, such that the support of this
complete set of logical operators {Lx,Lz} on the erased qubits is trivial [89] (i.e., {Lx,Lz} acts as the
identity operator on the positions of the erased qubits).

3.2.2. Erasure Vector and Filtered Pauli Strings
In our Monte Carlo simulations, we need to randomly generate quantum erasure errors with certain
probabilities and express these erasure errors mathematically using an erasure vector. Given a quan-
tum error-correcting code with n physical qubits, our random erasure vector is also a binary symplectic
vector [94] of length n. For the ith element of the erasure vector, if it is 1, it means that the ith qubit
has experienced a quantum erasure error; conversely, if this element is 0, it indicates that no quantum
erasure error has occurred at this position.

Since our criterion for judging the recoverability of logical information is whether there exists an equiv-

3.2. Erasure Decoder 39

alent logical operator whose support on the erased qubits is trivial, we are more interested in the sub-
space of erased qubits. Therefore, we need to filter our error-correcting code’s logical operators and
stabilizer group generators through the erasure vector [89].

The filtering rule is as follows: for the ith qubit, if the ith bit of the erasure vector is 1, then retain the
operator at the ith position of the logical operator and stabilizer group generators. If the ith bit of the
erasure vector is 0, then delete the operator at the ith position of the logical operator and stabilizer
group generators. Thus, for an erasure vector of weight m (containing m ones), we filter the original
logical operators and stabilizer group generators of length n into shorter ones of length m (m ≤ n). An
example of the filtering process is illustrated in the diagram.

Figure 3.4: An example of Pauli operator filtering: given the Pauli string XZZXI and the erasure vector 01011, the filtered
Pauli string according to the filtering rules is ZXI.

3.2.3. Binary Representation of Pauli Strings
Before actually assessing the recoverability of a quantum error-correcting code under an erasure chan-
nel using an erasure decoder, we first need to convert the Pauli strings into binary vector form to
facilitate subsequent mathematical processing [94].

Given a Pauli string Sp of length l, composed of single Pauli operators (I,X, Y, Z), we convert each
single Pauli operator into a binary vector of length 2, as follows:

Pauli Operator: Binary Representation
I (0, 0)
X (1, 0)
Y (1, 1)
Z (0, 1)

(3.1)

For a Pauli string of length l composed of single Pauli operators, we create its binary vector represen-
tation in the following way:

1. Create an empty vector SBinary of length 2l.
2. For i ranging from 1 to l, for the ith single Pauli operator in the original Pauli string, we follow

the rule for converting single Pauli operators into binary vectors. We place the first bit of the
binary vector representing this single Pauli operator at the ith position of SBinary, and the second
bit of the binary vector at the (i + l)th position of SBinary, continuing until the entire traversal is
completed.

3.2.4. The Mathematical Method for Judging the Recoverability of Logical Infor-
mation

Once we have the filtered logical operators {X filtered, Z filtered} and the similarly filtered complete set of
stabilizer generators {Sfiltered1 , . . . , S filtered

n−k }, the judgment of the recoverability of logical information is
equivalent to finding whether there exists a set of combinations of stabilizer generators {λi} that make
the following equation hold:

ℓ(filtered) +
∑
i

λiS
(filtered)
i = 0 mod 2. (3.2)

where ℓ(filtered) is either X filtered or Z filtered.

3.3. Integer Optimization Decoder 40

The question of the existence of solutions for this Boolean linear equation system can be transformed
into a matrix form. We can write the augmented matrix corresponding to this set of equations:

M = ({S(filtered)
i }|{ℓ(filtered)j }) (3.3)

Where {ℓ(filtered)j } is the set of logical operators whose recoverability we wish to assess.

Thus, the problem of the Boolean equation system having a solution is transformed into a matrix trans-
formation problem for the augmented matrix. We use binary mod-2 Gaussian elimination to transform
the matrix M into Reduced Row-Echelon Form (rref), and then we compare the rank of the stabilizer
matrix S and the augmented matrixM . If the ranks are equal, then the equation system has a solution,
and the logical information is recoverable. If they are not equal, then the equation system does not
have a solution, and the logical information cannot be recovered.

3.2.5. Architecture of the Erasure Decoder
Overall, our quantum erasure error decoder is primarily used for determining recoverability and needs
to natively support multiple Monte Carlo simulations to obtain the recoverability probability Prec at a
specific erasure probability Pe. Therefore, in a single Monte Carlo simulation, we first generate an
erasure vector of length n according to the erasure probabilityPe, then use this erasure vector to perform
filtering operations on the logical operators and stabilizer generators. Next, we use Boolean linear
algebra methods to judge the recoverability of logical information under this erasure error. Through
multiple Monte Carlo simulations, we tally the number of successful recovery instances nsucc and the
total number of simulations N , to estimate the recoverability probability Prec = nsucc/N .

3.3. Integer Optimization Decoder
For decoding Pauli errors, the minimum weight decoder is a viable option. This minimum weight de-
coder selects and returns the lowest weight element from the set of all possible Pauli strings that could
cause a given syndrome γ. The integer optimization decoder [95] is a minimum weight decoder based
on integer optimization methods and can be applied to the decoding of any stabilizer code.

3.3.1. From Syndrome to possible Errors: Pseudoinverse Matrix
First, let’s explore how to infer the Pauli errors that can cause the same syndromes from the syndromes
obtained by stabilizer measurements. Initially, our binary form of the Pauli error vector is e0, which
results in the syndrome γ when acted upon by the stabilizer matrix S.

γ = Se0 (3.4)

We know that the stabilizer matrix S is not a square matrix. So, in the strict sense of linear algebra, it
does not have an inverse matrix. However, we can generate a pseudoinverse matrix F of the stabilizer
matrix S such that SF equals the identity matrix I. In this case, our guess for the Pauli error e that can
cause the same syndrome can be written as:

e = Fγ (3.5)

So that:

Se = SFγ = γ (3.6)

From this, we can see that our guessed Pauli error e will cause the same syndrome as the actual error
e0.

3.3. Integer Optimization Decoder 41

3.3.2. Generation of the Pseudoinverse Matrix for Holographic Codes
When it comes to calculating the pseudoinverse matrix, methods such as the Moore–Penrose inverse
might come to mind first. Unfortunately, since the elements within our binary representation of the S
matrix are not integers but Boolean values, and the elements of S commute with each other, we cannot
directly use existing pseudoinverse formulas to solve for the F matrix directly. Moreover, the S matrix in
holographic tensor network codes is usually huge, making it impractical to search for the pseudoinverse
matrix through brute force. In the actual decoding process, we need to cleverly generate the columns
of the pseudoinverse matrix using the operator push program mentioned earlier.

First, we identify from which tensor the stabilizer UPS in the jth row of the S matrix originates and find
the local UPS expression slocali of this tensor’s stabilizer, where i indicates which stabilizer generator
this is for the tensor. Since this local tensor is much smaller compared to the entire tensor network, we
then search for a Pauli string f locali of size matching the local tensor. This Pauli string f locali is chosen
such that it anti-commutes only with the selected local stabilizer and commutes with the rest of the
stabilizers of this tensor. We refer to this f locali as the anti-commuter solely for slocali . Next, we use
the operator push program to push this local anti-commuting operator to the boundary to obtain its
boundary expression fboundaryj , and then we insert this fboundaryj as the jth column into the F matrix.

The reason why choosing a local tensor’s anti-commuter and pushing it to the boundary can obtain
an anti-commuter for the entire tensor network is because, when searching for the anti-commuter, we
need to consider the commutativity with stabilizer generators other than the selected one. During the
process of pushing operators to the boundary, we also use local UPS for operator pushing. Thus, in
the process of pushing operators from local to global, we ensure the preservation of commutativity and
anti-commutativity.

3.3.3. Combinatorial Optimization Problem: Minimizing the Weight of Possible
Errors

After obtaining our guessed error e through the pseudoinverse matrix, it’s important to clarify that this
error e may not be equivalent to the original, actual error e0. For simplicity, let’s assume a certain error-
correcting code encodes only one logical qubit. The errors that can produce the same syndrome as e0
actually belong to different cosets of the stabilizer subgroup S: e0S, Xe0S, Y e0S, Ze0S. Therefore, we
need to select the most likely coset among these as the final output of the decoder.

Based on the common depolarizing error model, the probability of a Pauli error occurring on a qubit is
p, with the occurrence probabilities of the three Pauli errors X, Y , and Z each being p/3. We consider
a single Pauli error as having a weight, and it’s clear that Pauli errors with lower weights are more likely
to occur than those with higher weights because pn > pn+1 (with 0 < p < 1).

Therefore, the most likely Pauli error to occur in the entire system would be the one among those that
can cause the same syndrome but has the smallest weight.

We can act on our guessed Pauli error e0, inferred through the pseudoinverse matrix, with the entire
tensor network’s stabilizer generators and logical operators to obtain a new optimization target e′. Then,
we find the optimal combination that minimizes the weight of e′. Therefore, the decoding problem
becomes a combinatorial optimization problem:

e′ = e+
∑
ℓ

λℓsℓ +
∑
m

µmLm, (3.7)

The optimization task is to find the appropriate combinations of {λℓ} and {µm} such that the weight of
e′ is minimized.

3.3.4. From Combinatorial Optimization Problems to Integer Optimization Prob-
lems

As is well-known, combinatorial optimization problems are exceedingly challenging because the most
naive approach, brute-force search, requires exploring 2n combinations for n Boolean parameters. This
is particularly daunting for holographic codes, which inherently scale exponentially. Therefore, at this
step, we need to leverage external integer optimization decoders that employ smarter strategies to

3.4. Code Distance Calculator 42

significantly save on optimization time. In this work, we chose to use the Gurobi optimizer. To this end,
we need to equivalently transform the combinatorial optimization problem into a mixed-integer linear
optimization problem for Gurobi to optimize.

First, we set the coefficients {λℓ} and {µm} required for the combinatorial optimization. For the jth
element of our optimization target e′ in its binary vector form, we select every element {sij}n−ki=1 from
the jth row of the matrix composed of binary stabilizer vectors {si}n−ki=1 and every element {Lmj}2km=1

from the jth row of the matrix composed of binary logical operators {Lm}2km=1, and multiply them by the
coefficients {λℓ} and {µm}, respectively, to obtain {λisij}n−ki=1 and {µmLmj}2km=1. Then, we sum these
elements to get the optimization variable corresponding to the jth element of e′ in its binary vector form.

It’s important to note that each optimization variable corresponding to an element of e′ in its binary vector
form is a sum of values, and hence, these optimization variables are not binary. This is inconsistent
with our mod-2 addition. Therefore, in the integer optimizer, for each optimization variable to be able
to represent a Boolean value, we need to introduce an additional variable and add some constraints to
ensure that the output is a Boolean vector.

Ultimately, since we consider the weight of each Pauli error as 1, our final optimization objective is:

Obj =

n∑
j=1

{or(
n−k∑
i=1

{λisij}+
2k∑
m=1

{µmLmj} mod 2,

n−k∑
i=1

{λisi(j+n)}+
2k∑
m=1

{µmLm(j+n)} mod 2)} (3.8)

By optimizing this objective with Gurobi and then returning the corresponding coefficients, we can
calculate the minimum weight possible Pauli error, min(e′).

3.3.5. Judging the Success of the Decoding Result
The minimum weight possible error min(e′) we obtain may be the same as or different from the original,
actual error e0. The method to determine whether they are equivalent in logical space is to check if
min(e′) can be obtained from e0 through the combined action of stabilizer generators.

This problem is equivalent to whether the following equation has a solution:

min(e′) =
∑
i

λisi + e0 (mod 2) (3.9)

Upon rearranging this equation, we find that it is equivalent to the problem of solvability of the Boolean
linear equation system we previously encountered in the context of the quantum erasure decoder:

0 =
∑
i

λisi + e0 +min(e′) (mod 2) (3.10)

We only need to use a portion of the code from the quantum erasure decoder to determine whether
this equation has a solution. If a solution exists, then the decoding attempt by the integer optimization
decoder is considered successful; otherwise, it is deemed a failure.

3.4. Code Distance Calculator
For a quantum error-correcting code of the form [[n, k, d]], its stabilizer group possesses n − k gener-
ators, and the logical space has 2k logical operators. The code distance d can sometimes be directly
inferred from the properties inherent in the code’s construction. However, the code distance d is not
always so intuitively obtainable. For holographic codes, to date, no particularly expedient method has
been found to calculate the code distance. Therefore, this work has developed a more universally
applicable code distance calculator based on integer optimizers to compute the code distances of holo-
graphic codes.

For a given stabilizer group S =< s1, s2, ..., sn−k > and a given logical operator ℓ, we obtain a logical
operator ℓ′ equivalent to ℓ by combining the stabilizers:

3.5. Variable Weight Integer Optimization Decoder 43

ℓ′ = ℓ+
∑
i

λisi (3.11)

Here, λi are variables considered in the combinatorial optimization. We then input this combinatorial
optimization problem into the minimization optimization process mentioned in the previous section on
integer optimization decoders. This process yields an ℓ′ with the minimum weight. The weight of this
minimal weight operator is the smallest weight that can perform the logical operation within the logical
space, which corresponds to the distance of this logical operation.

3.5. Variable Weight Integer Optimization Decoder
This is another original method in this work besides the tensor network operator push program. In
traditional integer optimization decoders, the decoder only uses stabilizer measurement results (syn-
dromes) to infer the most likely errors. Under depolarizing noise, such decoding strategies are effective.
However, for decoding under biased noise channels, traditional integer optimization decoders may not
fit the noise model well under biased noise since they consider all types of Pauli errors to have equal
weight. To achieve better decoding performance and threshold behavior under biased noise models,
this work improved the integer optimization decoder by flexibly defining the weights of X, Y , Z errors
according to different noise biases rx, ry, rz, thereby achieving better decoding results.

3.5.1. From Biased Noise Models to Weights
Before discussing the relationship between weights and noise models, let’s look at a specific example.

For a noise model where Py = P 2
x = P 2

z , we can consider that the probability of a Y error occurring on
a qubit is equivalent to the simultaneous occurrence of two X errors or two Z errors. Therefore, in the
integer optimization representation, the weight of Y , wt(Y), is twice that of X or Z: wt(Y) = 2wt(X) =
2wt(Z).

From the above example, it’s evident that the weights and the probabilities of various Pauli errors under
a noise model have an exponential relationship.

Pi ∝ exp(wt(i)), 0 < base < 1 (3.12)

To generalize this relationship, we choose a common base Pbase and then link the weights with Px, Py,
and Pz:

Px = P
wt(X)
base , (3.13)

Pz = P
wt(Z)
base , (3.14)

Py = P
wt(Y)
base (3.15)

By selecting Pbase appropriately, we can align the probability of each type of Pauli error with its respec-
tive weight in the error model. This allows us to tune the decoder to the specific characteristics of the
noise, which is essential for optimizing the decoding under biased noise conditions.

We know the total probability of a Pauli error occurring on a qubit is:

Ptotal = Px + Py + Pz (3.16)

And the probability of each Pauli error in relation to the bias is:

Px = rxPtotal, (3.17)

Py = ryPtotal, (3.18)

Pz = rzPtotal (3.19)

3.6. Tensor-Network Decoder 44

In order for the weights wt(X), wt(Y), wt(Z) to return to 1 when the noise model reverts to a depolar-
izing model, we choose:

Pbase =
Ptotal
3

(3.20)

Thus, we derive the following relationships from the noise model to the weights:

wt(X) = log Ptotal
3

(rxPtotal), (3.21)

wt(Z) = log Ptotal
3

(rzPtotal), (3.22)

wt(Y) = log Ptotal
3

(ryPtotal) (3.23)

3.5.2. From Variable Weights to Integer Optimization Models
Now that we understand how to determine the weights of each Pauli error from the noise model, we
can describe how to reflect these weights in the optimization objective of the integer optimizer.

We know that the original binary Pauli error vector is actually composed of two parts: the first part
represents a binary vector for X errors, and the second part represents a binary vector for Z errors:

e⃗ = {e⃗x|e⃗z}

Thus, we can consider e⃗x and e⃗z separately, and similarly, we can have a binary vector e⃗y representing
Y errors. According to Boolean algebra, we know that the elements of e⃗y can be obtained from the
elements of e⃗x and e⃗z:

e⃗yi = and(e⃗xi, e⃗zi) = e⃗xi + e⃗zi − or(e⃗xi, e⃗zi)

Therefore, we set the optimization objective as:

OptObj =

n∑
i=1

(cxe⃗xi + cz e⃗zi + cy e⃗yi)

We can derive the relationship between the weights and the coefficients cx, cy, cz as follows:

cx = wt(X) (3.24)

cz = wt(Z) (3.25)

cy = wt(Y)− wt(X)− wt(Z) (3.26)

In this way, we can integrate the weights with the mathematical expression of the optimization objective
inside the integer optimization decoder, thereby obtaining an integer optimization decoder with variable
weights.

3.6. Tensor-Network Decoder
The previous chapters introduced decoders based on integer optimization and their variants. The
advantage of such integer optimization decoders is that they save memory, but their computational
complexity grows exponentially with the number of physical qubits O(2n). For holographic codes, the
number of physical qubits, n, grows exponentially with the radius R. Therefore, decoding holographic
codes with large radii often requires considerable computational time. As a result, this work also em-
ploys tensor network decoders [2, 96–98] to decode holographic codes, whose computational time

3.6. Tensor-Network Decoder 45

complexity is O(n log n), which significantly speeds up the decoding process, and it is an approxima-
tion of the maximum-likelihood decoder. The trade-off is a larger memory overhead compared to the
integer-optimization decoders from previous sections.

As a type of tensor network code, holographic codes are naturally suited to being decoded using tensor
network decoders. Next, we introduce the basic principles of tensor network decoders and how to apply
tensor network decoders on holographic codes.

3.6.1. Maximum-Likelihood Decoding Based on Tensor Networks
For a Pauli error e occurring on physical qubits, we can obtain its corresponding syndrome s⃗ through
stabilizer checking. Then, based on this syndrome, we use the pseudo-inverse matrix F of the stabilizer
matrix S to find a pure error e(s⃗) that causes the same syndrome as the original Pauli error e. In fact,
the pure error e(s⃗) is obtained by mapping the original Pauli error e to the orthogonal complement of
the column vectors of matrix S through the matrix FS. Thus, the possible space for the pure error e(s⃗)
can be divided into several subspaces, which are the cosets formed by the stabilizer group and logical
operators multiplied by the Pauli error e.

The task of the decoder is to find the pure error e(s⃗) so that e(s⃗)e resides in the S space. In this case the
pure error e(s⃗) can be obtained from e through the action of some stabilizers, making them equivalent
in the logical space.

The maximum likelihood decoder needs to return a pure error e′(s⃗) that is most likely to return the
system to the code space among all logical subspaces. We apply different logical operators L to the
original pure error e(s⃗) obtained via the pseudo-inverse matrix to place it in different logical subspaces.
Therefore, we want to calculate the probability of the occurrence of the pure error e(s⃗) within a coset
SL:

χ(L, s⃗) =
∑
S∈S

Prob[e(s⃗)|SL] (3.27)

In this equation, the syndrome s⃗ is given, and L ∈ L., so the decoder actually needs to find L̄ that
maximizes χ(L, s⃗), that is, L̄ = argmaxL χ(L, s⃗). It is worth noting that χ as a probability is normalized:

∑
L∈L

∑
s⃗

χ(L, s⃗) = 1 (3.28)

We denote the four Pauli operators as σ0 = I, σ1 = X, σ2 = Y , and σ3 = Z. In this work we have only
considered the case of single Pauli errors. Therefore, we assume that all Pauli errors are independent
events, and hence we have:

Prob(σa1 ⊗ · · · ⊗ σan) =
n∏
i=1

p(σai), (3.29)

where

p(σai) =

1− p if ai = 0

prx if ai = 1

pry if ai = 2

prz if ai = 3.

(3.30)

Where p is the probability of a Pauli error occurring, and rx, ry, rz are the probability weights for Pauli
X, Y, and Z errors occurring, respectively, satisfying rx + ry + rz = 1.

Next, we need to construct a mapping from the Pauli errors and their noise model in the physical qubits
space to the corresponding probability χ(L, s⃗) in the logical space. As holographic codes are stabilizer
codes based on tensor networks, this mapping can be intuitively represented using tensor network

3.6. Tensor-Network Decoder 46

methods. Initially, stabilizer codes can be represented as tensors. In tensor network decoders, their
corresponding tensor representation is as follows:

T (L)(g1,...,gn) =

{
1 if σg1 ⊗ · · · ⊗ σgn ∈ LS
0 otherwise,

(3.31)

It is worth noting that, unlike the tensors mentioned earlier that represent quantum states andmappings,
the tensor T (L) here is not an isometry but rather represents the structure of different logical subspaces.
This is very useful when calculating probabilities.

When decoding codes based on tensor networks, we can conveniently contract these T 1(L) seed
tensors with some seed tensors T 0 that do not contain logical qubits, thereby obtaining the structure of
the logical subspaces of the entire tensor network code.

Figure 3.5: Diagram of a zero rate holographic code under a tensor network decoder.

Now, assuming we have obtained the tensor T (L) that represents the logical subspace structure of the
entire code, the corresponding χ(L, s⃗) can be expressed as:

χ(L, s⃗) =
∑

r1,...,rn∈{0,1,2,3}

T (L)(r1,...,rn)

n∏
i=1

p(σeiσri), (3.32)

Where p(σeiσri) is a one-dimensional tensor with a bound dimension of 4, which is a vector:

p(σeiσri) =

(1− p, prx, pry, prz) if σei = I

(prx, 1− p, prz, pry) if σei = X

(pry, prz, 1− p, prx) if σei = Y

(prz, pry, prx, 1− p) if σei = Z

(3.33)

These p(σeiσri) vectors are connected to the i-th physical qubit of the code, thus the tensor network
representation of χ(L, s⃗) is illustrated as follows in the diagram:

3.6. Tensor-Network Decoder 47

Figure 3.6: To obtain χ, the p vector is connected to each boundary dangling leg and contracted, thus the final result of this
contraction is χ.

Since the number of physical qubits n is typically not small, directly representing the entire code’s T (L)
is impractical. Therefore, we can represent T (L) through the contraction of seed tensors within the
original tensor network of the holographic code. Take the HaPPY code with R = 1 as an example.:

T (L)(r1,...,r25) = T 1(L)(g1,...,g5)T
0
(g1,r1,...,r5)

. . . T 0
(g5,r21,...,r25)

(3.34)

By appropriate tensor contraction, we can obtain the final result χ(L, s⃗) with reasonable memory over-
head.

3.6.2. Backtracking Contraction Algorithm
For the contraction of a large tensor network, the order of contraction is often very important because we
aim to avoid generating excessively large tensors during the contraction process. This work proposes
a contraction algorithm based on backtracking, which can keep the size of intermediate tensors within
a reasonable range during the contraction process of holographic codes.

First, let’s introduce the traditional backtracking method. For a simple tree structure, we start from the
root node and perform a depth-first search until we reach the bottom-most nodes of the tree. Then, we
backtrack to the previous level node, recording information about the edges passed during this return.
If there are any lower-level nodes that haven’t been visited yet, we perform depth-first searches on
them, repeating the process described above.

Figure 3.7: Backtracking algorithm for simple tree structures.

3.6. Tensor-Network Decoder 48

For holographic codes, the structure is not a simple tree; some nodes may have more than one parent
node, but this does not affect the logic of backtracking. In fact, for the special tree-like structure of
holographic codes, it is only necessary to ensure that each backtracking edge is the same as the one
previously used to reach that node. Additionally, each search towards the boundary should only visit
nodes that have not been visited before.

Figure 3.8: Backtracking algorithm for holographic tree structures.

Given a holographic tensor network structure, the pseudocode for the Backtracking Contraction Algo-
rithm is as follows. It implements iterative calls to sequentially return edges, allowing subsequent tensor
contractions to be performed in the order of these edges:

Algorithm 4 Backtracking Contraction Algorithm
1: procedure CollectEdges(tensor_network, starting_tensor_id)
2: edges← []
3: visited← set()
4: RecurseCollect(tensor_network, starting_tensor_id,None, visited, edges)
5: return edges
6: end procedure

7: procedure RecurseCollect(tensor_network, current_id, prev_id, visited, edges)
8: current_tensor ← tensor_network(current_id)
9: visited.add(current_id)
10: for neighbor_id in neighbors of current_tensor do
11: if neighbor_id /∈ visited and neighbor_tensor.layer > current_tensor.layer then
12: RecurseCollect(list, neighbor_id, current_id, visited, edges)
13: end if
14: end for
15: if prev_id is not None then
16: edges.add(edge from prev_id to current_id)
17: end if
18: end procedure

For holographic codes, tensor contractions are performed according to the edge order obtained from
the previously described Backtracking Contraction Algorithm. The maximum number of tensor legs in
the intermediate process tensors grows linearly with the radius of the holographic code, significantly
reducing memory overhead.

3.7. Biased Noise Threshold Study 49

3.7. Biased Noise Threshold Study
The threshold of holographic codes under biased noise is a key focus of this research. Two represen-
tative types of holographic codes have been thoroughly tested for thresholds under biased noise in
this work: one is the HaPPY code, which is based on non-CSS perfect tensors, and the other is the
holographic Steane code, based on self-dual CSS block perfect tensors.

3.7.1. Selection of Data Points for Biased Noise
We select the distribution of rx, ry, rz combinations on a ternary plot. Initially, we consider the typical
depolarizing noise point, which is located at the center of the ternary plot, meaning rx = ry = rz. The
distribution of other biased noise points is shown in the diagram:

Figure 3.9: Distribution of bias points (rx, ry, rz) tested in the biased noise threshold study.

Hashing Bound Comparison Data Points

This work plans to experiment with different bias in a specific bias direction (η = rz/(rx + ry) with
rx = ry) and compare them to the hashing bound. The selected biases are η = 1/2, 1, 3, 10, 30, 100,
300, 1000, and∞.

3.7.2. Arrangement of Monte Carlo Experiments
To obtain the threshold of holographic codes at each biased noise point, this work employs Monte Carlo
experiments to estimate the recovery probability prec for holographic codes of different sizes at various
error probabilities p. Curves are then plotted to derive threshold estimates for each biased noise point.

Monte Carlo experiments using a tensor-network decoder.

1. Large-Granularity Rapid Search: Monte Carlo experiments are conducted only for holographic
codes atR = 0 andR = 1, with 10, 000Monte Carlo trials. This approach provides an approximate
range of thresholds, facilitating a more focused and precise search in the next step.

2. Localized Fine-Granularity Precision Verification: In this part of the precise, small-range
search, Monte Carlo experiments are conducted within the range of [thapprox−0.10, thapprox+0.10]
with a step size of pstep = 0.01. Tests are carried out for holographic codes of sizes R = 0, R = 1,

3.8. Threshold Study of HTN Codes 50

R = 2, and R = 3. The number of Monte Carlo trials for each size of the holographic code is
consistent, with NMC = 50, 000.

For each combination of biased noise parameters (rx, ry, rz) at a specific error probability p, our work-
flow primarily involves the following steps in each Monte Carlo cycle: Randomly generate errors ac-
cording to the parameters (p, rx, ry, rz), then generate syndromes based on the stabilizer matrix. The
syndromes and bias parameters are then fed into the decoder. The result of the decoding is passed to
a layer that judges whether the decoding was successful. If the decoding is successful, it is counted
as a successful decode. After N Monte Carlo simulations, the total number of successful decodings,
Nsucc, is counted. This count is then used to estimate the recovery probability, Prec.

For a holographic code of a given size, we test all bias noise points. For each bias noise point, we
increment the error probability p from pstart to pend in steps of pstep, thereby plotting the Prec vs. p curve.

This work plans to conduct the aforementioned tests on HaPPY codes and holographic Steane codes
with radii R = {0, 1, 2, 3}.

3.8. Threshold Study of HTN Codes
Prior to this work, while there were some preliminary results regarding the erasure noise threshold for
HTN codes, there hadn’t been any particularly comprehensive large-scale threshold testing for HTN
code. The main difficulty was the lack of an automated process capable of performing operator push
operations before this work, making it challenging to scale the codes sufficiently to observe threshold
behavior. With the operator push program developed in this work, studying the thresholds of HTN
codes under various noise models has become feasible.

The research on HTN is divided into several main parts. The first part involves studying the threshold
of the [5, 4] HTN code under quantum erasure errors. The second part examines the distance of the [5,
4] HTN code at different sizes. The third part investigates the threshold of the [5, 4] HTN code under
depolarizing noise and pure Pauli noise.

3.8.1. Study of the Threshold of HTN Codes under Quantum Erasure Channels
This work investigates the [5,4] HTN codes, categorized by rate, including the max rate HTN, zero rate
HTN (gauge fixing), and constant rate HTN.

Max Rate HTN

The previous chapters introduced the max rate HTN code and its construction methods. We placed this
code under a quantum erasure channel and then calculated the recoverability of the qubits encoded
by the central tensor, thus investigating the existence of a threshold for the maximum rate HTN code.

Zero Rate HTN

For the zero rate HTN codes, this work utilizes the original max rate HTN code, projecting the logical
legs of all non-central tensors onto the eigenvalues of a specific logical operator (X,Y, Z) to fix the
gauge, thereby obtaining zero rate HTN codes. Consequently, this study examines the recoverability
performance of the logical qubits encoded in the central tensor of theX gauge fixed HTN code, Z gauge
fixed HTN code, and Y gauge fixed HTN code under a quantum erasure channel, and investigates the
existence of thresholds.

Constant Rate HTN

For the constant rate HTN codes, this work tested a type of constant rate HTN code proposed in Ref.[92].
The logical qubit encoding rule for this constant rate HTN code starts from the central tensor, which
occupies two geodesics. These two geodesics are highlighted, and then the process moves into the
next layer of tensors to encode the logical qubits. If two unhighlighted geodesics intersect at a tensor, a
logical qubit is encoded on that tensor; otherwise, the gauge degrees of freedom of that tensor are fixed.
This procedure ensures that each logical qubit is supported independently by four physical qubits at
the boundary. This constant rate HTN code can be referred to as the “geodesic type” HTN. Additionally,
this work also reduced the rate on the basis of the ”geodesic type” HTN by projecting half of the logical
qubits onto the eigenstate of a specific logical operation (gauge fixed), creating the “geodesic 1/2 type”

3.9. Threshold Study of Holographic Reed Muller Code 51

HTN. We will investigate the existence of thresholds under quantum erasure channels for these in
subsequent studies.

3.8.2. Study of HTN Code Distances
Prior to this work, there was no research on the code distances of the [5,4] HTN codes. This work uses
an operator push program to obtain the complete stabilizer group generators and logical operators for
HTN codes at various sizes. Then, using a code distance calculator based on integer optimization, it
calculates the minimum weight representation of each logical operator to determine the code distances,
and further research and discussion are conducted.

3.8.3. Study of the Threshold of Zero Rate HTN under Pauli Errors
This work places the gauge-fixed zero-rate HTN codes under depolarizing and pure Pauli noise chan-
nels, using a variable-weight integer optimization decoder to determine their thresholds.

3.9. Threshold Study of Holographic Reed Muller Code
Prior to this work, there had been no threshold studies on holographic Reed Muller codes. Therefore,
this work only conducts some basic research on holographic Reed Muller codes, including: obtaining
the complete stabilizer generators and logical operators for zero rate holographic Reed Muller codes
from R = 0 to R = 4 through an operator push program; placing zero rate holographic Reed Muller
codes under a quantum erasure channel to study their thresholds.

3.10. Heterogeneous Holographic Codes Threshold Study
Study of heterogeneous holographic codes permits the use of different seed tensors within a homo-
geneous holographic framework. By incorporating various tensors into a homogeneous holographic
code, a heterogeneous holographic code can be obtained. For heterogeneous codes, since different
codes possess different transversal gate operations, it is expected that the number of transversal gate
operations can be expanded (with an extra round of error correction [23]), extending to heterogeneous
concatenated codes. Previous work [23–25] has demonstrated that concatenated codes, achieved
through tree-like concatenation of Steane codes with Reed Muller codes that possess a transversal
T gate, have thresholds and can execute transversal T gates, albeit with the necessity of error cor-
rection after each transversal T gate operation. Therefore, studying the thresholds of heterogeneous
holographic codes under erasure error channel is meaningful.

3.10.1. The Heterogeneous Codes Studied and Their Construction
This study constructs heterogeneous codes primarily using three types of codes as seed tensors:
HaPPY code, Steane code, and Reed Muller code.

1. HaPPY code + Steane code

3.10. Heterogeneous Holographic Codes Threshold Study 52

Figure 3.10: HaPPY+Steane

For the first attempt at working with heterogeneous holographic codes in this study, the choice
to combine HaPPY code and Steane code is not aimed at expanding the number of transversal
gate operations, but rather to use this as a case study to preliminarily understand the threshold
behavior of heterogeneous holographic codes under quantum erasure noise. For this heteroge-
neous holographic code, we have placed HaPPY code in odd layers and Steane code in even
layers, forming a max rate heterogeneous HaPPY+Steane holographic code.

2. HaPPY code + Reed Muller code

Figure 3.11: HaPPY+qRM

The second attempt in this study at working with heterogeneous holographic codes involves com-
bining HaPPY code and Reed Muller code to form a heterogeneous holographic code. In this
configuration, HaPPY code is placed in odd layers, and Reed Muller code is placed in even lay-
ers, with the structure assembled according to a q = 4 edge inflation stacking method to create
the heterogeneous holographic code.

3. Steane code + Reed Muller code

3.10. Heterogeneous Holographic Codes Threshold Study 53

Figure 3.12: Steane+qRM

The third attempt in this study at working with heterogeneous holographic codes involves com-
bining Steane code and Reed Muller code to form a heterogeneous holographic code. In this
arrangement, Steane code is placed in odd layers, and Reed Muller code is placed in even lay-
ers. Similarly to the previous configurations, this heterogeneous holographic code is assembled
using a q = 4 edge inflation stacking method.

4
Novel Results

4.1. Holographic Codes under Biased Noise Channel
This work investigated the thresholds of the HaPPY code and the holographic Steane code under dif-
ferent biased noise conditions (rx, ry, rz) using a tensor network decoder. And, in the rx = ry direction,
the bias η is defined as η = rz/(rx + ry). The thresholds of the HaPPY code and the Steane code
under different biases η in this direction are compared with the Hashing Bound.

4.1.1. HaPPY Code under Biased Noise

Figure 4.1: Thresholds of the zero-rate HaPPY code under biased noise.

The threshold performance of the Zero rate HaPPY code under biased noise is illustrated in the figure
4.1. It has a threshold of about 16.3% under the depolarizing channel [95], and as the bias increases,

54

4.1. Holographic Codes under Biased Noise Channel 55

its threshold also gradually increases (this threshold figure agrees with previous work on the same
code) [95]. Under pure Pauli noise channels, the Zero rate HaPPY code can achieve a 50% threshold,
consistent with its threshold performance under quantum erasure error channels.

Figure 4.2: (a) The recovery rate curve of the zero rate HaPPY code under the depolarizing noise channel. (b) The recovery
rate curve of the zero rate HaPPY code under pure X Pauli noise, with a threshold of ∼ 50%. (c) The recovery rate curve of the

zero rate HaPPY code under pure Y Pauli noise, with a threshold of ∼ 50%. (d) The recovery rate curve of the zero rate
HaPPY code under pure Z Pauli noise, with a threshold of ∼ 50%.

Figure 4.2 shows the recoverability versus error rate curves for the Zero rate HaPPY code under pure
Pauli noise channels. It is observed that when using the tensor network decoder, the Zero rate HaPPY
code under pure Pauli errors maintains a minimum recoverability of 50%. This minimum is only reached
when the error rate is exactly 50%, which aligns with the quantum no-cloning theorem. Additionally, the
graphs clearly illustrate that the Zero rate HaPPY code has a 50% threshold under pure Pauli noise.

4.1.2. Holographic Steane Code under Biased Noise
The threshold performance of the holographic Steane code under biased noise channels is depicted
in the figure 4.3. Under the depolarizing channel, the threshold of the holographic Steane code is
approximately 19%. As the bias increases towards pure Pauli noise, the threshold gradually decreases,
with the threshold under pure Pauli noise being about 10%. Interestingly, if the bias increases not
towards a single type of Pauli noise but towards a mix of two types, such as (rx, ry, rz) = (0.5, 0, 0.5),
the threshold of the holographic Steane code gradually increases with the bias, reaching a maximum
of about 21.9%.

4.1. Holographic Codes under Biased Noise Channel 56

Figure 4.3: Threshold of the holographic Steane code under biased noise.

The reason for the threshold decrease of the holographic Steane code with increasing bias is under-
standable. The holographic Steane code is a self-dual CSS code, whose stabilizer group can be sym-
metrically divided into Sx and Sz. Sx contains only X operators, while Sz contains only Z operators,
and the stabilizer matrices for Sx and Sz are identical within their respective subspaces. Under pure X
or Z errors, only half of the stabilizers could potentially be triggered, while the other half provides no
useful information, hence the anticipated drop in threshold. Under pure Y errors, Sx and Sz would give
the same syndrome, thus beyond informing the decoder that this is a Y error, no additional information
is provided, making it understandable why the threshold under pure Y noise is as low as under pure X
or Z noise.

4.1.3. Comparison to the Hashing Bound
We fix the direction of increasing bias from the depolarizing point (rx, ry, rz) = (1/3, 1/3, 1/3) to the
pure Z error bias point (rx, ry, rz) = (0, 0, 1). Thus, our bias ratio η is defined as η = rz/(rx + ry),
where rx = ry. We then test the thresholds of the HaPPY code and the holographic Steane code at
biases of η = 1/2, 1, 3, 10, 30, 100, 300, 1000,∞ and compare these thresholds with those achievable by
random coding according to the Hashing Bound. [1, 53, 99–101]. The results are as shown in figure
4.4.

From the figure, it can be observed that the threshold of the zero rate HaPPY code surpasses the
hashing bound starting at η = 30, whereas, in contrast, the threshold of the holographic Steane code
decreases as η increases.

4.2. Distance and Threshold of HTN Codes 57

Figure 4.4: Comparison of thresholds for the HaPPY code and holographic Steane code under different biases η with the
hashing bound.

4.2. Distance and Threshold of HTN Codes
This work has obtained the quantum erasure threshold results for the {5,4} HTN code under various
rates and different methods of gauge fixing, as well as the threshold results for the zero rate HTN code
under Z gauge fixing in depolarizing channels and pure Pauli noise channels.

4.2.1. Distance of HTN Codes
This work used integer optimizers to calculate distances, obtaining the bit distance and word distance
of the central tensor qubit of the {5,4} HTN code (Max Rate), as well as the distances for the X gauge
fixed zero rate HTN code, Z gauge fixed zero rate HTN code, and Y gauge fixed zero rate HTN code.

Max Rate HTN central qubit (bit) Max Rate HTN central qubit (word)
L n dz dx dz dx
0 4 2 2 2 2
1 20 6 2 2 2
2 76 14 6 2 2
3 284 36 16 2 2
4 1060 92 42 2 2

Table 4.1: Distances of Max Rate HTN

4.2. Distance and Threshold of HTN Codes 58

Zero Rate X Gauge Fixed Zero Rate Z Gauge Fixed Zero Rate Y Gauge Fixed
L n dz dx dz dx dz dx
0 4 2 2 2 2 2 2
1 20 2 2 6 2 6 2
2 76 2 2 10 6 9 6
3 284 2 2 14 14 14 14
4 1060 2 2 30 26 32 16

Table 4.2: Distances of Gauge Fixed Zero Rate HTN

Figure 4.5: Distances in HTN codes are as follows: (a) Under max rate HTN, the bit distance of the central logical qubit (the
weight of the minimum weight operator needed to change the state of the central logical qubit while keeping other logical qubits

unchanged) increases with n as d(n) ≈ n0.558 and ≈ n0.658, while the word distance (the weight of the minimum weight
operator needed to change the state of the central logical qubit) remains constantly at 2. (b) For the X gauge fixed zero rate
HTN code, obtained after fixing the X gauge of all tensors except the central tensor, the distance remains constant at 2. (c) For
the Y gauge fixed zero rate HTN code, obtained after fixing the Y gauge of all tensors except the central tensor, the distance is
d(n) ≈ n0.385 and ≈ n0.476. (d) For the Z gauge fixed zero rate HTN code, obtained after fixing the Z gauge of all tensors

except the central tensor, the distance is d(n) ≈ n0.463 and ≈ n0.48.

4.2. Distance and Threshold of HTN Codes 59

4.2.2. Erasure Threshold of Zero Rate Gauge-Fixed HTN Codes

Figure 4.6: (a) The recovery rate of the logical qubit for the central tensor in a max-rate HTN code varies with the error rate p.
It can be observed that there is no threshold. (b) The recovery rate of the logical qubit for an X gauge-fixed zero-rate HTN
code (where all X gauges except the central tensor are fixed) varies with the error rate p, and there is no threshold. (c) The
recovery rate of the logical qubit for a Y gauge-fixed zero-rate HTN code (where all Y gauges except the central tensor are

fixed) varies with the error rate p, and the threshold is pth = 49.83%± 0.09%. (d) The recovery rate of the logical qubit for a Z
gauge-fixed zero-rate HTN code (where all Z gauges except the central tensor are fixed) varies with the error rate p, and the

threshold is pth = 49.95%± 0.01%.

First, as a comparison, Fig.4.6 (a) shows that the central logical qubit of a max-rate HTN code does not
have a threshold. Next, for three different gauge-fixed zero-rate HTN codes, the Y gauge-fixed and Z
gauge-fixed zero-rate HTN codes have a saturation erasure threshold of approximately 50%, while the
X gauge-fixed zero-rate HTN code does not have a threshold. It is worth noting that the recovery rate
curve does not change with the increase in the code radius of the HTN code.

The erasure thresholds for different zero-rate HTN codes are summarized in the table 4.3 below:

Table 4.3: Erasure Threshold of Zero Rate Gauge-Fixed HTN Codes

Code Type Erasure Threshold Code Rate
X gauge-fixed HTN code No threshold ∼ 0%
Y gauge-fixed HTN code ∼ 50%(49.83%± 0.09%) ∼ 0%
Z gauge-fixed HTN code ∼ 50%(49.95%± 0.01%) ∼ 0%

4.2. Distance and Threshold of HTN Codes 60

4.2.3. Erasure Threshold of Constant Rate Gauge-Fixed HTN Codes

Figure 4.7: (a) The recovery rate of the logical qubit for the central tensor in a max-rate HTN code varies with the error rate p,
showing that there is no threshold. (b) The recovery rate of the logical qubit for the central tensor in an X gauge-fixed geo-half

HTN code varies with the error rate p, showing that there is no threshold. (c) The recovery rate of the logical qubit for the
central tensor in a Y gauge-fixed geo-half HTN code varies with the error rate p, with a threshold of pth = 44.02%± 2.89%. (d)
The recovery rate of the logical qubit for the central tensor in a Z gauge-fixed geo-half HTN code varies with the error rate p,

with a threshold of pth = 39.24%± 0.60%.

As a constant rate HTN code, the geo-half HTN code exhibits different threshold behaviors under dif-
ferent gauge fixings. Fig4.7 (b) shows the recovery rate prec curve of the logical qubit for the central
tensor in an X gauge-fixed geo-half HTN code under erasure errors, indicating that it does not change
with the code radius. Fig4.7 (c) and Fig4.7 (d) show the Y gauge-fixed and Z gauge-fixed geo-half
HTN codes, respectively, with erasure thresholds of pYth = 44.02%± 2.89% and pZth = 39.24%± 0.60%.

Table 4.4: Erasure Threshold of Constant Rate Gauge-Fixed HTN Codes

Code Type Erasure Threshold Code Rate
X gauge-fixed geo-half HTN code No threshold ∼ 12.5%
Y gauge-fixed geo-half HTN code 44.02%± 2.89% ∼ 12.5%
Z gauge-fixed geo-half HTN code 39.24%± 0.60% ∼ 12.5%

4.2. Distance and Threshold of HTN Codes 61

4.2.4. Threshold of Zero Rate Z Gauge-Fixed HTN Codes under Pauli Noise Chan-
nel

Figure 4.8: (a) The recovery rate curve of the Z gauge-fixed zero-rate HTN code under depolarizing noise, with a threshold of
pth = 19.10%± 0.94%. (b) The recovery rate curve of the Z gauge-fixed zero-rate HTN code under pure X noise, with a

preliminary estimated threshold of ∼ 50%. (c) The recovery rate curve of the Z gauge-fixed zero-rate HTN code under pure Y
noise, with a preliminary estimated threshold of ∼ 50%. (d) The recovery rate curve of the Z gauge-fixed zero-rate HTN code

under pure Z noise, with a preliminary estimated threshold of ∼ 50%.

In this work, three types of gauge-fixed zero-rate HTN codes (X gauge-fixed, Y gauge-fixed, Z gauge-
fixed) were subjected to depolarizing and pure Pauli noise (pure X, pure Y , pure Z) to study their
threshold behaviors. It was found that the X gauge-fixed and Y gauge-fixed zero-rate HTN codes do
not have thresholds under Pauli noise. Only the Z gauge-fixed zero-rate HTN code exhibits a threshold.

Since the HTN code’s tensor network includes Hadamard gates, a tensor network decoder has not
yet been adapted for this purpose. Therefore, Pauli error decoding for HTN was performed using a
variable-weight integer optimization decoder.

As shown in Fig 4.8 (a), the Z gauge-fixed zero-rate HTN code has a threshold of pth = 19.10%±0.94%
under depolarizing noise. Additionally, as shown in Fig 4.8 (b), (c), and (d), due to the performance
limitations of the variable integer optimization decoder, only the recovery rate curves for HTN codes
with up to three different radii can be obtained. Therefore, it can only be preliminarily concluded that
the Z gauge-fixed zero-rate HTN code has an approximate threshold of 50% under pure X, pure Y ,
and pure Z Pauli noise.

A notable point of discussion is the recovery rate curve of the Z gauge-fixed zero-rate HTN code under
pure Z noise. It can be observed that the recovery rates for the Z gauge-fixed zero-rate HTN codes
with sizes L = 0 and L = 1 are essentially the same under pure Z noise. The current qualitative

4.3. Erasure Threshold of Holographic Reed Muller Codes 62

explanation for this phenomenon is that the fixed Z gauge at the L = 1 layer does not anti-commute
with Z errors, thus it cannot provide effective error correction information. However, for the HTN code
with a radius of L = 2, the Z gauge at the L = 1 layer has undergone a Hadamard gate and starts to
anti-commute with Z errors, leading to an improvement in the recovery rate.

The results are summarized as follows:

Table 4.5: Threshold of Zero Rate Z Gauge-Fixed HTN Codes under Pauli Noise Channel

Code Type Noise Type Threshold
Z gauge-fixed geo-half HTN code Depolarizing noise 19.10%± 0.94%
Z gauge-fixed geo-half HTN code Pure X noise Preliminarily estimated ∼ 50%
Z gauge-fixed geo-half HTN code Pure Y noise Preliminarily estimated ∼ 50%
Z gauge-fixed geo-half HTN code Pure Z noise Preliminarily estimated ∼ 50%

4.3. Erasure Threshold of Holographic Reed Muller Codes
The seed tensor of the holographic Reed Muller code has 16 legs, one of which is a logical leg. This
determines that the operator push workload for the holographic Reed Muller will be substantial. This
work used an automatic operator push program to obtain the stabilizer group generators and complete
logical operators for the holographic ReedMuller code up toR = 3. The holographic ReedMuller codes
for R = 0, R = 1, and R = 2 were then tested under a quantum erasure noise channel to determine
their thresholds. The results are shown in the following figure 4.9:

Figure 4.9: Erasure Threshold of Holographic Reed Muller Codes

We preliminarily determined that the threshold of the holographic Reed Muller code under a quantum
erasure channel is approximately 19.24%± 0.12%.

4.4. Threshold of Heterogeneous Holographic Codes
In this work, we placed several heterogeneous holographic quantum error-correcting codes under a
quantum erasure channel to observe how their threshold behaviors compare and contrast with those
of homogeneous holographic quantum error-correcting codes. We found that for holographic codes
with tensors arranged heterogeneously according to the parity of the layers, the thresholds are no
longer unique but instead display distinct even and odd thresholds.

4.4. Threshold of Heterogeneous Holographic Codes 63

Figure 4.10: (a) The recovery rate curve for the HaPPY+Reed Muller heterogeneous holographic error-correcting code, where
even layers contain HaPPY code tensors and odd layers contain Reed Muller code tensors, indicates a preliminary threshold
with an odd-even effect: peventh = 46.38%, poddth = 46.78%. (b) The recovery rate curve for the HaPPY+Steane heterogeneous

holographic error-correcting code, where even layers contain HaPPY code tensors and odd layers contain Steane code
tensors, indicates a preliminary threshold with an odd-even effect: peventh = 24.64%, poddth = 25.68%. (c) The recovery rate
curve for the Steane+Reed Muller heterogeneous holographic error-correcting code, where even layers contain Steane code

tensors and odd layers contain Reed Muller code tensors, indicates a preliminary threshold with an odd-even effect:
peventh = 25.95%, poddth = 36.65%.

For the three types of heterogeneous holographic codes, the seed tensors for odd and even layers are
of different types (HaPPY, Steane, Reed Muller). Therefore, it is intuitive that they have two different
thresholds for odd and even layers. Monte Carlo experiments have preliminarily verified this, showing
that all these heterogeneous holographic codes exhibit two distinct thresholds for odd and even layers.
Due to limited computational power, the heterogeneous holographic codes involving Reed Muller could
not be extended to sufficiently high radii, so only preliminary conclusions can be given here.

5
Conclusion

This thesis has studied the principles and error-correction properties of holographic quantum error
correction codes. We have made here several notable contributions to the larger error-correction com-
munity:

◦ We have proposed and developed an automated holographic code operator generation program
based on the quantum lego operator push [5], and in conjunction with various decoders [2, 95],
has studied the thresholds of holographic codes under several different noise channels, notably
erasure, depolarizing, and biased-noise channels.

◦ We executed a full biased-noise study of the zero-rate HaPPY and holographic Steane codes
using the tensor network deocder. We confirmed that the zero-rate HaPPY code exhibits a maxi-
mum threshold of 50% under pure Pauli noise and that its threshold exceeds the Hashing bound
under conditions of high bias, which is very similar to the XZZX and XY surface codes [1, 99]. In
contrast to the HaPPY code, the threshold of the holographic Steane code decreases under high
bias, and a straightforward explanation for this behavior is intuitively provided.

◦ Furthermore, the depolarizing noise and erasure thresholds for the HTN code have been deter-
mined, showing very promising resilience of the code against both error channels, roughly aligning
with the known theoretical and numerical estimates for Toric and traditional CSS surface codes
[102–104]. These codes also support weight-2 transversal logical operations in the logical-X
gauge [92].

◦ Finally, we have developed a range of heterogeneous holographic codes to explore the creation
of larger fault-tolerant logical gate sets. Due to the substantial size of the check and logical
operators, we conducted our initial studies using the erasure decoder. While these results are
preliminary, they intriguingly suggest a high resilience to erasure that predominantly depends on
whether the concatenation layer tested is even or odd.

There are many potential future research directions:

1. Extension for constant-rate holographic codes. It would of course be useful and interesting to
investigate whether constructions of constant-rate holographic codes can exceed or attain the
Hashing bound.

2. Biased-noise explorations of the HTN code, as well as other holographic codes. This thesis did
not give enough time to fully investigate other holographic code constructions and their resilience
to biased noise; principle among these lies the HTN code, for which a specialized tensor network
decoder will need to be designed in order to perform constractions with the Hadamard gates on
the edges, as well as for storing the very large stabilizers in the vertex-inflated HTN code.

In conclusion, we have demonstrated here that holographic quantum codes indeed exhibit many useful
and desirable properties for practical quantum computing However, much more exploration is needed
to see precisely in what architectural conditions a holographic quantum code could prove useful.

64

References

[1] J Pablo Bonilla Ataides et al. “The XZZX surface code”. In: Nature communications 12.1 (2021),
p. 2172.

[2] Terry Farrelly et al. “Parallel decoding of multiple logical qubits in tensor-network codes”. In:
Physical Review A 105.5 (2022), p. 052446.

[3] Fernando Pastawski et al. “Holographic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence”. In: Journal of High Energy Physics 2015.6 (2015), pp. 1–55.

[4] Matthew Steinberg, Sebastian Feld, and Alexander Jahn. “Holographic codes from hyperinvari-
ant tensor networks”. In: Nature Communications 14.1 (2023), p. 7314.

[5] ChunJun Cao and Brad Lackey. “Quantum lego: Building quantum error correction codes from
tensor networks”. In: PRX Quantum 3.2 (2022), p. 020332.

[6] Peter W Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Pro-
ceedings 35th annual symposium on foundations of computer science. Ieee. 1994, pp. 124–
134.

[7] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[8] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 212–219.

[9] Richard Feynman. “There’s plenty of room at the bottom.” In: Resonance: Journal of Science
Education 16.9 (2011).

[10] Richard P Feynman. “Simulating physics with computers”. In: Feynman and computation. CRC
Press, 2018, pp. 133–153.

[11] Richard Feynman. “Quantum mechanical computers”. In: Optics news 11.2 (1985), pp. 11–20.
[12] Davide Castelvecchi. “Quantum computers ready to leap out of the lab in 2017”. In: Nature

541.7635 (2017).
[13] Colm A Ryan et al. “Hardware for dynamic quantum computing”. In: Review of Scientific Instru-

ments 88.10 (2017).
[14] Lieven MK Vandersypen and Mark A Eriksson. “Quantum computing with semiconductor spins”.

In: Physics Today 72.8 (2019), pp. 38–45.
[15] Medina Bandic, Sebastian Feld, and Carmen G Almudever. “Full-stack quantum computing sys-

tems in the NISQ era: algorithm-driven and hardware-aware compilation techniques”. In: 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2022, pp. 1–6.

[16] Salonik Resch and Ulya R Karpuzcu. “Quantum computing: an overview across the system
stack”. In: arXiv preprint arXiv:1905.07240 (2019).

[17] Michael Brooks. “Beyond quantum supremacy: the hunt for useful quantum computers”. In: Na-
ture 574.7776 (2019), pp. 19–22.

[18] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quantum 2 (2018), p. 79.
[19] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-

bridge university press, 2010.
[20] Menno Veldhorst et al. “A two-qubit logic gate in silicon”. In: Nature 526.7573 (2015), pp. 410–

414.
[21] Daniel Gottesman. “An introduction to quantum error correction and fault-tolerant quantum com-

putation”. In: Quantum information science and its contributions to mathematics, Proceedings
of Symposia in Applied Mathematics. Vol. 68. 2010, pp. 13–58.

65

References 66

[22] Juan Maldacena. “The large-N limit of superconformal field theories and supergravity”. In: Inter-
national journal of theoretical physics 38.4 (1999), pp. 1113–1133.

[23] Tomas Jochym-O’Connor and Raymond Laflamme. “Using concatenated quantum codes for
universal fault-tolerant quantum gates”. In: Physical review letters 112.1 (2014), p. 010505.

[24] Christopher Chamberland, Tomas Jochym-O’Connor, and Raymond Laflamme. “Overhead anal-
ysis of universal concatenated quantum codes”. In: Physical Review A 95.2 (2017), p. 022313.

[25] Christopher Chamberland, Tomas Jochym-O’Connor, and Raymond Laflamme. “Thresholds for
universal concatenated quantum codes”. In: Physical review letters 117.1 (2016), p. 010501.

[26] Edward Witten. “Anti de Sitter space and holography”. In: arXiv preprint hep-th/9802150 (1998).
[27] Martin Bossert. Channel coding for telecommunications. John Wiley & Sons, Inc., 1999.
[28] Rodger Ziemer and William H Tranter. Principles of communications: system modulation and

noise. John Wiley & Sons, 2006.
[29] Richard W Hamming. “Error detecting and error correcting codes”. In: The Bell system technical

journal 29.2 (1950), pp. 147–160.
[30] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting

codes. Vol. 16. Elsevier, 1977.
[31] Dave K Kythe and Prem K Kythe. Algebraic and stochastic coding theory. CRC Press Boca

Raton (FL), 2012.
[32] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university

press, 2003.
[33] Todd K Moon. Error correction coding: mathematical methods and algorithms. John Wiley &

Sons, 2020.
[34] Amin Shokrollahi. “LDPC codes: An introduction”. In: Coding, cryptography and combinatorics.

Springer. 2004, pp. 85–110.
[35] Larry Hardesty. “Explained: Gallager codes”. In: MIT News (2010).
[36] Robert Gallager. “Low-density parity-check codes”. In: IRE Transactions on information theory

8.1 (1962), pp. 21–28.
[37] John Watrous. Lecture 17: General quantum errors; CSS codes. 2006. url: https://cs.uwate

rloo.ca/~watrous/QC-notes/QC-notes.17.pdf.
[38] Barbara M Terhal. “Quantum error correction for quantum memories”. In: Reviews of Modern

Physics 87.2 (2015), p. 307.
[39] Karl Kraus. “Lecture notes in physics”. In: States, Effects and Operations. Fundamental Notions

of Quantum Theory 190 (1983).
[40] Benjamin Schumacher. “Sending entanglement through noisy quantum channels”. In: Physical

Review A 54.4 (1996), p. 2614.
[41] Charles H Bennett, David P DiVincenzo, and John A Smolin. “Capacities of quantum erasure

channels”. In: Physical Review Letters 78.16 (1997), p. 3217.
[42] Markus Grassl, Th Beth, and Thomas Pellizzari. “Codes for the quantum erasure channel”. In:

Physical Review A 56.1 (1997), p. 33.
[43] James L Park. “The concept of transition in quantum mechanics”. In: Foundations of physics

1.1 (1970), pp. 23–33.
[44] Asher Peres. “Reversible logic and quantum computers”. In: Physical review A 32.6 (1985),

p. 3266.
[45] Emanuel Knill andRaymond Laflamme. “Concatenated quantum codes”. In: arXiv preprint quant-

ph/9608012 (1996).
[46] Benjamin Rahn, Andrew C Doherty, and Hideo Mabuchi. “Exact performance of concatenated

quantum codes”. In: Physical Review A 66.3 (2002), p. 032304.

https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.17.pdf
https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.17.pdf

References 67

[47] John Preskill. “Reliable quantum computers”. In: Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 454.1969 (1998), pp. 385–410.

[48] Peter W Shor. “Scheme for reducing decoherence in quantum computer memory”. In: Physical
review A 52.4 (1995), R2493.

[49] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Tech-
nology, 1997.

[50] Bryan Eastin and Emanuel Knill. “Restrictions on transversal encoded quantum gate sets”. In:
Physical review letters 102.11 (2009), p. 110502.

[51] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal Clifford gates and
noisy ancillas”. In: Physical Review A 71.2 (2005), p. 022316.

[52] Sergey Bravyi and Jeongwan Haah. “Magic-state distillation with low overhead”. In: Physical
Review A 86.5 (2012), p. 052329.

[53] Mark M Wilde. Quantum information theory. Cambridge university press, 2013.
[54] Román Orús. “A practical introduction to tensor networks: Matrix product states and projected

entangled pair states”. In: Annals of physics 349 (2014), pp. 117–158.
[55] Jacob Biamonte and Ville Bergholm. “Tensor networks in a nutshell”. In: arXiv preprint arXiv:1708.00006

(2017).
[56] Pietro Silvi et al. “The Tensor Networks Anthology: Simulation techniques for many-body quan-

tum lattice systems”. In: SciPost Physics Lecture Notes (2019), p. 008.
[57] Román Orús. “Advances on tensor network theory: symmetries, fermions, entanglement, and

holography”. In: The European Physical Journal B 87 (2014), pp. 1–18.
[58] Jacob C Bridgeman and Christopher T Chubb. “Hand-waving and interpretive dance: an intro-

ductory course on tensor networks”. In: Journal of physics A: Mathematical and theoretical 50.22
(2017), p. 223001.

[59] Richard L Bishop and Samuel I Goldberg. Tensor analysis on manifolds. Courier Corporation,
2012.

[60] Hora�iu Năstase. Introduction to the ADS/CFT Correspondence. Cambridge University Press,
2015.

[61] Martin Ammon and Johanna Erdmenger. Gauge/gravity duality: Foundations and applications.
Cambridge University Press, 2015.

[62] Ofer Aharony et al. “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their
gravity duals”. In: Journal of High Energy Physics 2008.10 (2008), p. 091.

[63] Alfonso V Ramallo. “Introduction to the AdS/CFT correspondence”. In: Lectures on Particle
Physics, Astrophysics and Cosmology: Proceedings of the Third IDPASC School, Santiago de
Compostela, Spain, January 21–February 2, 2013. Springer. 2015, pp. 411–474.

[64] Jacob D Bekenstein. “Black holes and entropy”. In: Physical Review D 7.8 (1973), p. 2333.
[65] Stephen W Hawking. “Particle creation by black holes”. In: Communications in mathematical

physics 43.3 (1975), pp. 199–220.
[66] Ashoke Sen. “Extremal black holes and elementary string states”. In: Modern Physics Letters

A 10.28 (1995), pp. 2081–2093.
[67] William A Bardeen et al. “Study of the longitudinal kink modes of the string”. In: Physical Review

D 13.8 (1976), p. 2364.
[68] Itzhak Bars and Andrew J Hanson. “Quarks at the Ends of the String”. In: Physical Review D

13.6 (1976), p. 1744.
[69] Andrew Strominger and Cumrun Vafa. “Microscopic origin of the Bekenstein-Hawking entropy”.

In: Physics Letters B 379.1-4 (1996), pp. 99–104.
[70] Alexander Jahn and Jens Eisert. “Holographic tensor network models and quantum error cor-

rection: a topical review”. In: Quantum Science and Technology 6.3 (2021), p. 033002.

References 68

[71] Sean A Hartnoll, Andrew Lucas, and Subir Sachdev. Holographic quantum matter. MIT press,
2018.

[72] Jan Zaanen et al.Holographic duality in condensedmatter physics. Cambridge University Press,
2015.

[73] Shinsei Ryu and Tadashi Takayanagi. “Holographic derivation of entanglement entropy from the
anti–de sitter space/conformal field theory correspondence”. In: Physical review letters 96.18
(2006), p. 181602.

[74] Horatiu Nastase. String theory methods for condensed matter physics. Cambridge University
Press, 2017.

[75] Fernando Pastawski and John Preskill. “Code properties from holographic geometries”. In:Phys-
ical Review X 7.2 (2017), p. 021022.

[76] Xi Dong, Daniel Harlow, and Aron C Wall. “Reconstruction of bulk operators within the entan-
glement wedge in gauge-gravity duality”. In: Physical review letters 117.2 (2016), p. 021601.

[77] Ahmed Almheiri, Xi Dong, and Daniel Harlow. “Bulk locality and quantum error correction in
AdS/CFT”. In: Journal of High Energy Physics 2015.4 (2015), pp. 1–34.

[78] Daniel Harlow. “Jerusalem lectures on black holes and quantum information”. In: Reviews of
Modern Physics 88.1 (2016), p. 015002.

[79] E. Noether. “Invariante Variationsprobleme”. ger. In: Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918), pp. 235–257. url:
http://eudml.org/doc/59024.

[80] Bartłomiej Czech et al. “The gravity dual of a density matrix”. In: Classical and Quantum Gravity
29.15 (2012), p. 155009.

[81] Raphael Bousso, Stefan Leichenauer, and Vladimir Rosenhaus. “Light-sheets and AdS/CFT”.
In: Physical Review D 86.4 (2012), p. 046009.

[82] Veronika E Hubeny and Mukund Rangamani. “Causal holographic information”. In: Journal of
High Energy Physics 2012.6 (2012), pp. 1–35.

[83] Masamichi Miyaji, Tadashi Takayanagi, and Kento Watanabe. “From path integrals to tensor
networks for the AdS/CFT correspondence”. In: Physical Review D 95.6 (2017), p. 066004.

[84] Ning Bao, ChunJun Cao, and Guanyu Zhu. “Deconfinement and error thresholds in holography”.
In: Physical Review D 106.4 (2022), p. 046009.

[85] Latham Boyle, Madeline Dickens, and Felix Flicker. “Conformal quasicrystals and holography”.
In: Physical Review X 10.1 (2020), p. 011009.

[86] Alexander Jahn, Zoltán Zimborás, and Jens Eisert. “Central charges of aperiodic holographic
tensor-network models”. In: Physical Review A 102.4 (2020), p. 042407.

[87] Wolfram Helwig et al. “Absolute maximal entanglement and quantum secret sharing”. In: Phys-
ical Review A 86.5 (2012), p. 052335.

[88] WolframHelwig. “Absolutelymaximally entangled qudit graph states”. In: arXiv preprint arXiv:1306.2879
(2013).

[89] Robert J Harris et al. “Calderbank-Shor-Steane holographic quantum error-correcting codes”.
In: Physical Review A 98.5 (2018), p. 052301.

[90] Andrew Steane. “Multiple-particle interference and quantum error correction”. In: Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
452.1954 (1996), pp. 2551–2577.

[91] Matthew Steinberg and Javier Prior. “Conformal properties of hyperinvariant tensor networks”.
In: Scientific Reports 12.1 (2022), p. 532.

[92] MatthewSteinberg et al. “QuantumError Correction with Hyperinvariant Tensor-Network Codes”.
In: In Preparation (2024).

[93] David EMuller. “Application of Boolean algebra to switching circuit design and to error detection”.
In: Transactions of the IRE professional group on electronic computers 3 (1954), pp. 6–12.

http://eudml.org/doc/59024

References 69

[94] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”. In: Physical
Review A 70.5 (2004), p. 052328.

[95] Robert J Harris et al. “Decoding holographic codes with an integer optimization decoder”. In:
Physical Review A 102.6 (2020), p. 062417.

[96] Andrew J Ferris and David Poulin. “Tensor networks and quantum error correction”. In: Physical
review letters 113.3 (2014), p. 030501.

[97] Christopher T Chubb. “General tensor network decoding of 2d pauli codes (2021)”. In: arXiv
preprint arXiv:2101.04125 ().

[98] Terry Farrelly et al. “Tensor-network codes”. In: Physical Review Letters 127.4 (2021), p. 040507.
[99] David K Tuckett et al. “Tailoring surface codes for highly biased noise”. In: Physical Review X

9.4 (2019), p. 041031.
[100] David K Tuckett, Stephen D Bartlett, and Steven T Flammia. “Ultrahigh error threshold for sur-

face codes with biased noise”. In: Physical review letters 120.5 (2018), p. 050505.
[101] Arpit Dua et al. “Clifford-deformed surface codes”. In: PRX Quantum 5.1 (2024), p. 010347.
[102] Sergey Bravyi, Martin Suchara, and Alexander Vargo. “Efficient algorithms for maximum likeli-

hood decoding in the surface code”. In: Physical Review A 90.3 (2014), p. 032326.
[103] Thomas M Stace, Sean D Barrett, and Andrew C Doherty. “Thresholds for topological codes in

the presence of loss”. In: Physical review letters 102.20 (2009), p. 200501.
[104] Héctor Bombin et al. “Strong resilience of topological codes to depolarization”. In: Physical Re-

view X 2.2 (2012), p. 021004.
[105] Delft High Performance Computing Centre (DHPC).DelftBlue Supercomputer (Phase 2). https:

//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

Acknowledgement

Fifteen years ago, I naively watched Michio Kaku’s popular science program on quantum computing.
The seeds of aspiration planted in my youth seemed to subconsciously guide me to where I truly wanted
to be, doing what I wished to do.

Over the two years at TU Delft, I’ve undergone many changes—from knowing just a few basic quantum
logic gates before starting school to now achieving surprising results. I have so many people and so
many serendipitous encounters to be thankful for.

Before I joined the Feld group, I was going through a long period of confusion, not knowing how I
could expand my capabilities or contribute in the fields I was passionate about. By chance, I saw some
information about the QML group while walking through the corridors of QuTech, and decided to just
give it a try. I must say, from my first conversation with Sebastian, I realized this would be a great group
with a positive atmosphere, and I found a topic that intrigued me. Naturally, I ended up joining.

The truth is, I made the right choice. In these past eight months, with everyone’s support, I’ve learned
a lot of really cool stuff and found effective ways to utilize my skills to solve problems.

I want to thank Sebastian Feld for giving me tremendous support in the projects and directions I wanted
to pursue, for allowing me the greatest freedom in my research, and for the friendly, family-like atmo-
sphere in the group. All of these have been incredibly important to me. :)

And then a huge, huge thank you to Matthew Steinberg. You’ve given me so much support—from
selecting topics and discussions at the beginning, carefully teaching me some of the concepts of this
subject, to suggesting really cool research directions, involving me in numerous collaborations and
discussions, and meticulously helping me revise my thesis, and so much more. There’s almost too
much to thank you for. Also, your research area is really cool; maybe we can gradually prove that
these cool studies are not just crazy. Plus, I wish you all the best after your PhD graduation. :)

I also want to express my gratitude to Barbara Terhal. It was your QEC course in 2023 that sparked
my passion for this broad field. Even though I was still feeling lost and down at that time, looking back
now, it was a significant turning point during my time at TU Delft. :)

Regarding cool code and a fun atmosphere, I must extend my thanks to Aritra Sarkar, Roberto Tur-
rado Camblor, and Pablo Le Henaff. You’ve supported me in developing coding thinking and aesthet-
ics, and I’ve learned a lot from you. :)

I’d also like to thank everyone in the group— Medina, Nikiforos, Boran, Sibasish, Joris. etc. You’re
all doing really cool stuff, and I appreciate the encouragement and support you’ve given me. Working
with you has been a great learning experience.

Finally, regarding computational resources, I would like to thank Delft Blue [105] for providing the HPC
resources.

Junyu Fan
Delft, November 2024

70

A
Data and Code Availability

The code and data used in this work will be made available in the open-source community, along
with some other preliminary results and performance overhead analysis: https://github.com/FJY08/
HQEC

71

	Summary
	Introduction
	Research Background and Motivation
	General Research Goals
	Structure of the Thesis

	Background
	Classical Error Correction
	Majority Vote: Classical Repetition Codes
	Space-Saving: Parity Check
	Principle of Inclusion-Exclusion: Classical Hamming Code
	Classical Linear Stabilizers Codes

	Quantum Error Correction
	Error Modeling
	No Simple Majority Vote: Quantum No-cloning Theorem
	Entangled Majority Vote: Quantum Repetition Code
	To Enhance Error-Correcting Performance: Code Concatenation
	From Code Concatenation to the Threshold Theorem
	A Concatenated Code: Shor 9-Qubit Code
	Stabilizer Codes and Hashing Bound
	From Classical to Quantum: Calderbank-Shor-Steane (CSS) Code

	Tensor Networks
	Tensor Networks: A Method for Representing Large Tensors
	Quantum States as Tensors
	State Channel Duality: Quantum Mappings as Tensors
	Graphical Representation of Tensor Networks
	Quantum Error Correction Codes as Tensors
	Tensor Network Representation of Code Concatenation

	AdS/CFT Correspondence and Holography
	Thermodynamics of Black Holes
	Challenges of Extremal Black Hole and D-branes
	A Container for Black Holes: Anti-de Sitter Space
	AdS/CFT Correspondence Conjecture

	Holographic Quantum Error Correction Codes
	Ryu-Takayanagi (RT) formula
	Holographic Codes
	Inflation Pattern: Vertex Inflation and Edge Inflation
	HaPPY Code
	Holographic Steane Code
	Hyper-Invariant Tensor Network (HTN) Code
	Holographic Reed-Muller Code

	Quantum Lego
	Operator Push Protocol

	Methods
	Quantum Lego-Based UPS Generator Program
	Architecture Diagram of the Program
	Tensor Legs, Tensor Classes, and Tensor Networks
	Programmatic Construction of Holographic Tensor Networks
	Self-Push Operators: Autonomous Tensors
	Operator Push Manager
	Boundary Operator Readout and Correctness Verification

	Erasure Decoder
	Recoverability of Logical Information under Erasure Channel
	Erasure Vector and Filtered Pauli Strings
	Binary Representation of Pauli Strings
	The Mathematical Method for Judging the Recoverability of Logical Information
	Architecture of the Erasure Decoder

	Integer Optimization Decoder
	From Syndrome to possible Errors: Pseudoinverse Matrix
	Generation of the Pseudoinverse Matrix for Holographic Codes
	Combinatorial Optimization Problem: Minimizing the Weight of Possible Errors
	From Combinatorial Optimization Problems to Integer Optimization Problems
	Judging the Success of the Decoding Result

	Code Distance Calculator
	Variable Weight Integer Optimization Decoder
	From Biased Noise Models to Weights
	From Variable Weights to Integer Optimization Models

	Tensor-Network Decoder
	Maximum-Likelihood Decoding Based on Tensor Networks
	Backtracking Contraction Algorithm

	Biased Noise Threshold Study
	Selection of Data Points for Biased Noise
	Arrangement of Monte Carlo Experiments

	Threshold Study of HTN Codes
	Study of the Threshold of HTN Codes under Quantum Erasure Channels
	Study of HTN Code Distances
	Study of the Threshold of Zero Rate HTN under Pauli Errors

	Threshold Study of Holographic Reed Muller Code
	Heterogeneous Holographic Codes Threshold Study
	The Heterogeneous Codes Studied and Their Construction

	Novel Results
	Holographic Codes under Biased Noise Channel
	HaPPY Code under Biased Noise
	Holographic Steane Code under Biased Noise
	Comparison to the Hashing Bound

	Distance and Threshold of HTN Codes
	Distance of HTN Codes
	Erasure Threshold of Zero Rate Gauge-Fixed HTN Codes
	Erasure Threshold of Constant Rate Gauge-Fixed HTN Codes
	Threshold of Zero Rate Z Gauge-Fixed HTN Codes under Pauli Noise Channel

	Erasure Threshold of Holographic Reed Muller Codes
	Threshold of Heterogeneous Holographic Codes

	Conclusion
	References
	Acknowledgement
	Data and Code Availability

