Recommender Systems

Wi

Evolutionary Algorithms:
Many-Objective Optimization
for Large-Scale

Music Recommendation

& computational @3,

"Recommenders 42,
(0) r&
\;f e

B

iscussed

(7]

& knowtt;kes

n

&
~increases
Slatency

differently

4" Objectives

N

. notaion
4 Q patterns
. eighbours
s\o\.1 \

Y 2 % isually — e
- d functions “ Jehaviour —

Recommender systems
with
—volutionary Algorithms
NMany-Objective
Optimization
for Large-Scale
\usic Recommendation

by

Sharwin P. Bobde

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday July 9, 2021 at 15:30 CEST.

Student number: 5011639

Project duration: November 13, 2020 — July 03, 2021

Supervisors: Dr. Cynthia Liem and Dr. Annibale Panichella

Thesis committee: Dr. Cynthia Liem TU Delft,
Prof. Dr. Alan Hanjalic ~ TU Delft, Responsible Professor
Prof. Dr. Peter Bosman TU Delft and CWI, External

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

What lies in front of you is the distillation of nine months of effort; a study to understand and solve
the scientific and engineering challenges of an extremely niche domain at its cutting edge. Using
Evolutionary Algorithms for the Many-objective optimisation problem of user-centric recommendations
at a large scale is a scientifically underexamined application. It holds the key to new possibilities, such
as interaction design where users can configure their recommender system and thus have more control
over how they explore vast amounts of multimedia data. However, is this strategy reliable? How can
it be adapted for large amounts of data in a usable manner? Is it adversely affected by the underlying
distribution of the data that is available? These questions require attention to make sure these systems
will work well in the future. This research was carried out as part of obtaining a Master’s degree in
Computer Science with a specialization in Data Science and Technology at Delft University of Delft
(Technische Universiteit Delft). The committee that evaluated and enforced the quality of this thesis
consisted of Prof. Dr. Alan Hanjalic as the responsible supervisor and chairperson of the committee,
Dr. Cynthia Liem as the regular supervisor, and Prof. Dr. Peter Bosman as the external member of the
committee.

As a computer scientist and engineer, | love solving diverse problems that require unique solutions.
| had some background in multimedia computing which | acquired while doing my Bachelor’s in Pune,
India. | was drawn to the Multimedia Computing (MMC) research group at TU Delft, and the admission
committee was kind enough to grant me admission to the Master’s program.

On the 10™ of March, 2020, | met with Cynthia to talk about my thesis. We discussed about the
possibilities of exploring Evolutionary Algorithms to make the user-experience of Recommender Sys-
tems better for everyone. Before starting the thesis in November of 2020, and after going through the
literature, we thought “Can this actually work for real-world scenarios, where users are really diverse
and have different intentions while while using Recommender Systems?” Everything that happened
after that line of thought has culminated into this thesis report.

This entire research was conducted from my 13m? room, in a foreign land during a time when the
entire world was descending into chaos. During the thesis timeline, | could not physically meet both my
regular supervisors, Cynthia and Annibale. | am extremely glad they are two of the kindest and smartest
people | know, and never gave me a chance to question the quality of education | was receiving. They
gave me their time and attention at every point in this journey and always pushed for better quality.
They criticised me where required and guided me exceedingly well, and for that reason | am a better
version of myself today. | thank you from the bottom of my heart.

This research would not have been possible without the people and infrastructure of two extraor-
dinary research groups in Delft: the Multimedia Computing (MMC) research group and the Software
Engineering Research Group (SERG).

I would like to thank my parents who are in India during an extremely difficult time and my sister who
is acting as an exceptional doctor at the frontlines in Germany. | would like to thank my friends in India
to continue to support me from afar. | will also like to thank my friends here in the Netherlands who
have become my second family and make me feel at home. | am extremely honoured to be supported
by so many people while | can only be in contact with a few. Each one one of us has seen enough
pain, death, and sacrifice and still continue to work towards a better future.

To you, the reader, | appreciate your interest in my work. | hope the knowledge within these pages
can help you build a fairer world and advance the state-of-the-art to better serve the users.

Sharwin P. Bobde
Delft, 15t of July, 2021.

Abstract

Using Recommender Systems with Evolutionary Algorithms is an extremely niche domain. It holds the
key to enabling new user interaction designs, where users can effectively configure their experience
with a Recommender System. This thesis answers important questions about the scientific aspects of
its application to large-scale data through a rigorous experimental design. We use one of the largest
publicly accessible music listening histories dataset to analyse if the methodology works well for large
real-world tasks. The dataset has been used to simulate various real-world scenarios for the experi-
mental design.
The methodology fuses the recommendations generated by an unspecified number of recommenders.

In this study, we have used three recommenders, which have specialised goals in terms of user-centric
metrics. We use three different Evolutionary Algorithms to analyse the capability of different EA strate-
gies for generating a near-optimal set of trade-offs on user-centric metrics. We have performed elab-
orate qualitative and quantitative analyses of the system to understand how various aspects of the
system affect the final set of solutions.

Contents

Introduction 1
1.1 Music Recommendation e 1
1.2 Application Perspective e e 2
1.3 Research Questions e 2
1.4 Thesis Objectives. e e e e 3
1.5 Thesis Structuring e 3
General Background 5
2.1 Music Consumption e e e 5
2.2 Sources of Biases and their Consequences 6
2.3 UserlinteractionData. e 7
2.4 Recommendation Fusion. e 7
2.5 Many-objective Optimization and Evolutionary Algorithms 7
2.6 MaOEA for Recommender Systems: PreviousWork. 9
2.7 Distributed Computing e e 10
2.8 Performance Engineering e e e e e 10
Datasets 11
3.1 Background. e e e 11
3.1.1 MLHD . . e 11
3.1.2 Graph Database: ArangoDB. 12
3.2 MLHD Graph Representation 13
3.2.1 Critical Choice e e 13
3.2.2 DatabaseinNumbers e 14
3.3 User Activity Distributions L 16
3.4 DatasetDivision e e e e e e 17
Recommender Systems 21
4.1 Background. e e e e e e e 21
411 Collaborative Filtering e 21
41.2 Alternating Least-Squares e 22
4.2 User-centricMetrics e 22
421 MeanAverageRecall e 22
422 COVEMAGE .« v v v v ot e e e e e e e e e e 23
4.2.3 Novelty e e e 23
4.2.4 Modified Personalization. e 23
Evolutionary Algorithms 25
5.1 Pareto-Optimal Solutions. e e e e 25
5.1.1 Definitions and Notations. 25
5.2 MaOEA Considerations e e e e e 26
5.3 EAOperators. o e e e e e 27
5.3.1 Crossover. e e e 27
5.3.2 Mutation. 27
5.3.3 Selection 28
54 EAsUsed. e 28
5.4.1 NSGA-I . . o e 28
5.4.2 GDE3 29
5.4.3 SPEA2 e 30

viii Contents
5.5 Performance Measurement L 30
5.5.1 Hypervolume L e 30

552 GDandIGD. e 30

55.3 Epsilonindicator e 31

6 Methodology 33
6.1 Recommenders. L e e e 33
6.1.1 User-ltem Collaborative Filtering 33

6.1.2 User-Artist Collaborative Filtering 33

6.1.3 Tailored Recommender e 33

6.2 Recommenders with Evolutionary Algorithms. 34
6.2.1 Problem Encoding e 34

6.2.2 Optimisation Objectives 35

6.2.3 Evolutionary Algorithms e 35

7 Experiments 37
7.1 Experimental Design. e e e e e e 37
7.2 Compute Environment L e 38
7.21 Selecting200 MLHD parts. o 39

7.2.2 Recommender Hyperparameters, 39

7.2.3 Evolutionary Algorithm Hyperparameters 39

8 Results 41
8.1 Recommenders. L e e 41
8.2 EAExperiments e 44
8.2.1 Quality Indicators. e 44

8.2.2 Quantitative Significance. e 47

8.2.3 Front Objectives and Solutions Visualizations 50

9 Conclusions 55
9.1 FindingS. o o e e e 55
9.2 Contributions e e 57

10 Limitations and Future Work 59
10.1 Limitationsand Threats e 59
10.2 Future Improvements and Research Directions 60
10.21 DataUsage. o e 60

10.2.2 Dataset Enrichment And Hybrid Recommender 60

10.2.3 Recommenders and Evolutionary Algorithms. 60

10.2.4 User Experience e e e e e 61

10.2.5 Beyond Music Recommendation 61

A Appendix: User Behaviour Plots 63
B Appendix: Experiments Tables 69
C Appendix: AcousticBrainz Integration and GPU-optimised Nearest Neighbours 73
C.0.1 AcousticBrainz 73

C.1 GPU-Optimised Nearest Neighbours Search (GoNN) 74
C.1.1 RandomHyperplane LSH 74

C.1.2 Search Algorithm e 76

C.1.3 Observations e 77

C.2 GoNN Demonstration e e e 77

D Appendix: Individual Recommenders 81

Introduction

Recommender Systems (RS) have become a prominent aspect of our day-to-day life. They aim to
present us with a limited set of options that are relevant to the users or which they would like. Here, the
true meaning of ‘relevant’ and 'like’ depend on the domain of concern and the user’s desires while using
a system. For the most part, at present, users do not have a lot of say in what kind of experience their
recommendation lists provide i.e. they are not highly configurable. Research efforts in the direction
of application of Evolutionary Algorithms (EA) for recommendation tasks have attempted to diversify
the recommendations or provide multiple options to users (incorporating preference information) at the
same time [1, 2, 3].

The scientific domain of providing the user with preference-centric configurable recommendations
is extremely niche. The techniques that may enable these interfaces need a lot of interdisciplinary
research effort. The usable interfaces for such systems are on the horizon. In this Masters’ thesis, we
study a technique of late-stage fusion of different RSs i.e. combine the output lists of multiple RSs that
have specialised objectives such as maximizing recall, serving novel recommendations, being more
personalised, etc. We explore and analyse the reliability of a framework that can potentially give users
more control over the nature of the presented items by providing a set of trade-offs of the specified
objectives through Multi-objective Optimization (MOO). We specifically solve a Many-objective Opti-
mization (MaOO) problem, which is a subset of MOO problems, where the number of objectives we
try to optimise is more than three. MaOO problems are considered separately because their high-
dimensional nature makes them more difficult to solve. We will also set up an experimental design in
a manner that gives us more insight into the true inner workings of the complete pipeline that delivers
recommendations.

That being said, it is important to also consider that no matter which scientific solution we come
up with, it will be useless if it cannot be used in the industry. For many popular services that require
recommendations, the RS needs to be run on large volumes of data that comes from really diverse
users. This presents many unforeseeable engineering problems, solutions for which go beyond the
discipline of Recommender Systems. Therefore, as an appendage of the scientific task, we will explore
good engineering solutions to make such a system feasible to use for a large volume of user data with
limited computing infrastructure.

1.1. Music Recommendation

In this thesis, we will demonstrate the framework to understand the problems with large-scale Music
Recommendation. The choice of the application domain of music recommendation is apt because it
is a problem where there is a true need of a configurable, user-aware personalized recommendation.
The application domain demands new avenues for streaming services and users to escape filter bub-
bles [4]. In the 2020s, our music consumption experience will be shaped by the fact that there are
many problems with the recommendations. These arise with companies having millions of users to
serve, who have billions of interactions with the available songs. To make sure they have a reliable
service, these companies use industry-standard techniques for recommendation and data processing
that computationally scale well with growing users, but are not necessarily the best methods from a

1

2 1. Introduction

user satisfaction perspective.

Good exploration of large music collections in a reliable fashion is a multipronged problem. Solving
this problem will enable a user to find desirable, relevant, and provocative music. Users want music
socioculturally and musically related to what they have heard before while still getting novel recommen-
dations through which they can diversify taste [5, 6]. The willingness to strike this balance is different
for different users as it is extremely subjective and dynamic (something that cannot even be modelled
using their listening behaviour over time). While we try to do this, we have a very narrow window to
catch the user’s attention and have to show a limited set of items to reduce cognitive fatigue as the
user scrolls past tens of recommendations.

1.2. Application Perspective

For any developed solution that addresses the problems in Section 1.1 there will be obstacles external
to the core scientific problem. It is best to avoid doing scientific research that can never be used. Real-
world data for user interactions which shows implicit-feedback’ can sum up to tens or hundreds of
Terabytes (TiB). While one would think these problems can be solved by simply using the cloud along
with Distributed Computing to use ‘infinite’ storage and compute power, it does not work. The various
disparate facets/modules of the problem have various specialised problems, exacerbated by the nature
of the facet.

For instance, data can be stored on cloud storage or data lakes, but if individual data files are not
retrieved efficiently, it will make the cloud usage cost skyrocket. If the data is not preprocessed properly
distributed computing for pairwise comparison can take an unexpectedly large amount of time due to
the required serialization and deserialization while communicating between different nodes. We can
process an infinite amount of data and if there is a spill, we use the disk space instead of the main
memory, but we cannot do the same for the heap which is required to keep track of all objects used by
the program, and the program will terminate if we run out of the allocated space in the main memory
and swap.

1.3. Research Questions

Given the problems mentioned above — namely, the investigation of a theorised recommendation
framework, making sure it works in a computationally feasible manner, and analysing the reliability of
the framework — this thesis will answer the following research questions.

* RQ1: How to perform late-stage recommendation fusion, for large-scale user data which gives a
set of near-optimal options over user-centric recommendation quality metrics?

* RQ2: How to make the developed recommendation framework work reliably with large-scale user
data, in a manner that can be used in a practical industry scenario?

* RQ3: To what extent do variations in the user base and their listening behaviour, through time,
affect the delivered recommendations? And how?

Answering RQ1 will give a generalised framework that is capable of fusing recommendations from
an unspecified number of recommenders with specialised user-centric goals. These RSs will use im-
plicit feedback information. The framework should be able to generate a near-optimal set of fusion
solutions with a trade-off for specified user-centric objectives/quality metrics. This includes showing a
complete demonstration and validating with real-world data.

Answering RQ2 will require pushing the developed framework to its extreme limits by adding as
much user data as possible and analysing the ability of the framework to process the data efficiently
with limited computational infrastructure. This means we have to do a conceptual and practical analysis
of the system from a performance perspective. Then implement the framework in such a manner that
it avoids the bottlenecks that come with the large volume of data.

Answering RQ3 necessitates understanding the underlying distribution of users and their behaviour
as a whole, and how the recommender systems and the framework behave when presented with the
different contexts they will encounter in the real world. This will need us to identify and partition the

Timplicit-feedback, as opposed to explicit feedback, is when the preferences of a user are inferred from available data, instead
of the user giving explicit rating or rankings in the form of 5-star ratings or likes/dislikes.

1.4. Thesis Objectives 3

available data to create different scenarios to validate the operationalization of the developed frame-
work.

1.4. Thesis Objectives

To maintain the quality of the reusable research output, this thesis has a set of objectives that have
been attempted to fulfil at every step of the process. These are:

1. User-centric perspective, i.e. do not blindly use algorithms/techniques without thinking about the
user.

2. Explainable and highly configurable i.e. can be modified easily for other application domains and
systems.

3. Extendabile, i.e. future researchers can enrich methods with new techniques easily.

4. Well-developed, reproducible and reusable, i.e. Open Source, Robust (well coded and under-
standable, modular, easy to debug) and well documented

5. Scalable, i.e. usable for real-world large-scale problems

The code is separated into two public repositories. This is done because the target audience and
tasks of both projects are different. The first repository” deals with efficient preprocessing of the large-
scale dataset we use, and then transfers it to a graph database. The second repository”® contains (i)
the Scala code and Docker files for scalable recommenders. (ii) The Python code for the Evolution-
ary Algorithm experiments and visualization tasks, along with the GPU-optimised Nearest Neighbour
search algorithm described in Appendix C.

1.5. Thesis Structuring

The thesis report is structured to accommodate a broad audience. Knowledge relating to different
theoretical and application domains is presented in an isolated manner. Sections that depend on the
other have been linked across the document. External sources are provided to enrich the text and point
outward when details fall outside the scope of the thesis. That being said, the thesis is organised as
follows:

» Chapter 2 provides some background about the overarching themes of this research. Essential
terminologies and motivations that are required to understand the thesis document in detail are
provided here.

» Chapter 3 explains why and how we use the Music Listening Histories Dataset. There is also
analysis of the data distribution of the same, and information on how we split the data into usable
folds for conducting reliable experiments.

» Chapter 4 gives the background of the Collaborative Filtering strategy we will be using to generate
recommendations. The chapter also gives an overview of the user-centric metrics we use.

» Chapter 5 gives more information about the Evolutionary Algorithms domain to the uninitiated.
Furthermore, the evolutionary operators and the Evolutionary Algorithms we use are explained
here. This chapter does not delve too deep into the theory of all chosen methods, and external
resources are provided where necessary.

» Chapter 6 communicates our methodology for generating recommendations and the near-optimal
trade-off front. This includes explaining the individual Recommender Systems we use and our
motivations behind adopting them.

» Chapter 7 elaborates on the experimental design used to verify whether the recommendation
framework can reliably generate a near-optimal front. This chapter also includes the essential
details required to reproduce the results, such as the computational setup and hyperparameters
used for the framework.

2Processing the Music Listening Histories Dataset: https://github.com/sharwinbobde/MLED-
3Scalable Recommender Systems with Evolutionary Algorithms: https://github.com/sharwinl

https://github.com/sharwinbobde/MLHD-processing
https://github.com/sharwinbobde/MLHD-insights

1. Introduction

Chapter 8 presents the results of the experiments and provides visualizations to show how the
recommendation framework behaves under the hood. It also gives concise explanations of the
same.

Chapter 9, gives an overview of the findings of the experiments and lists the contributions that
were made in the process.

Chapter 10 lists and explains the possible threats to the experimental study. It also presents some
directions for future research in this niche combination of various domains.

The Appendices provide elaborate results and visualizations, which have been summarised in
an easily digestible format in the main storyline of the report. Appendix C details a research
direction we took that did not eventually meet the main storyline. This involved enriching the
listening history dataset with music features and finding the nearest neighbours for items/songs
using a GPU optimised approximate Nearest Neighbour algorithm.

General Background

In this chapter, we will broadly look at the challenges that need to be overcome and some techniques we
need to know to answer the research questions. We will first look at the problem from a data perspective
and then move on towards how we feasibly develop the recommendation framework in question. The
purpose of this chapter is to show, the importance of the problems we are trying to tackle, and the level
of challenge we face in doing so. Take note that we will look at the concepts quite broadly, for more
details, concepts and critical choices related to the data under consideration, look at Chapter 3, for
Recommender Systems, Chapter 4 and Evolutionary Algorithms, Chapter 5.

2.1. Music Consumption

How a user consumes their music depends on a lot of factors. These factors influence recommenda-
tions by influencing the data which is used to develop and test the deployed recommendation systems
(RS). The critical factors related to this thesis are listed below.

+ The set of music services available in the geographical region; example, Spotify’, YouTube?,
SoundCloud?®, LastFM* and Deezer® to name a few. Different combinations of services are avail-
able in different geographical regions because of varying laws across regions and the services’
infrastructure for content distribution.

» Each service has, broadly speaking, a different content distribution mechanism. Services, the
likes of Spotify, YouTube, Deezer, etc. rely on their own recommendation algorithm tailored by
their teams. Therefore, the user experience and interaction patterns vary significantly across
platforms.

» Users exploit different features with varying degrees on different platforms to optimise their ex-
perience [7].

» The service’s priorities during content distribution.
» The geographical and sociocultural aspects of music relevance and feeling of relatedness.

» The user’s interaction pattern based on their real-world state. This encompasses their type of
work, lifestyle, and other factors that tell when and where they consume music [8, 9].

These factors have been taken into account while analysing the data we use and for constructing a
good experimental setup for the recommendation framework. More about the same will be discussed
in Chapter 3. For now, lets consider these factors for understanding biases.

"https://www.spotify.com/
2https://music.youtube.com/
3https://soundcloud.com/
“https://www.last.fm/
Shttps://www.deezer.com/en/

6 2. General Background

2.2. Sources of Biases and their Consequences

Jiawei Chen, et al. in a 2015 study explained the various biases in Recommender Systems extremely
well [10]. The root problem of these biases is that most research that concerns recommender systems
focuses on automating presenting items to users based on the observed data by making a model that
fits user behaviour data. The problem with recommending fairly to all users is that the users in this
data are not always representative of the true cross-section of the society. Certain users’ behaviour
has more influence on how the model fits the data. The study pointed out 7 major types of biases in
recommendation systems, we mainly consider implicit user feedback in this study, so we are concerned
only with the following biases:

» Conformity Bias: When users rate an item similarly to other users in the group or listen to an item
frequently even if it goes against their personal taste.

» Exposure Bias: Users are only exposed to a subset of items, so the unobserved items do not
always represent indifferent or negative preferences.

» Position Bias: Users tend to interact with items placed higher in a list more often regardless of
relevance.

* Inductive Bias: Assumptions made by a recommendation model about the underlying data to
learn a target function.

* Popularity Bias: Popular items are recommended more often than unpopular items regardless of
relevance.

* Unfairness: Recommendation System systematically and unfairly discriminates against certain
individuals or communities.

We leave out Selection Bias because we consider only implicit feedback for this study to demon-
strate the framework for large volumes of data. In implicit feedback, users don’t rate songs they like
or dislike. Their preferences are implied (implicit) by what items they consume frequently. Therefore,
Selection Bias does not come into the picture. The various biases form a Feedback loop or Bias am-
plification loop. This has been shown diagrammatically in Figure 2.1

Data

1. Conformity Bias
2. Exposure Bias
3. Position Bias

Bias Amplification
in Loop

Q

1. Inductive Bias

User

. Model
Interaction

1. Popularity Bias
2. Unfairness

Figure 2.1: Bias feedback loop by Jiawei Chen, et al. without Selection Bias [10].

This bias in recommendations leads to filter bubbles and echo chambers [4, 11]. In the case of
music recommendation the two terms have a specialized meanings. Filter bubbles restrict the user to
expand their taste beyond a limit set of musical styles due to intentional personalization, that the user
does not have control over. Echo chambers entail that the user gets recommendations from a limited
set of musical styles which means the user’s taste is not enriched by the system. This is also something

2.3. User Interaction Data 7

the user does not have complete control over. Take note that musical styles are not musical genres,
because genres can be classified in many ways and do not have a fixed hierarchy which has a global
consensus, whereas styles are just qualitatively different to the human ear.

From the specialised meanings of the two terms, filter bubbles and echo chambers, the solution
seems obvious: give the user more explicit control over their recommendations. This might be more
easier said than done, because providing explainable and intuitive control over the recommender sys-
tem, whose impact on the resulting recommendations is obvious and consistent across sociological
and cultural differences is a difficult task.

2.3. User Interaction Data

We discussed the music consumption behaviour in Section 2.1. Now, lets see how that interaction
information translates to data. Firstly, it is important to note that when a user interacts with an item,
we can obtain more than just the user — item event. We know for music, items have artists, possible
genre tags, community associations, language information, rich features of the music itself, and so on.
Therefore, we can link a user to many nodes in a large knowledge graph with rich temporal information.

These networks, even across time slices/windows, can get very large and the interactions are dy-
namic in nature. Both these factors make processing the information an engineering challenge on top
of a scientific one. Moreover, when we develop solutions for these problems in a development envi-
ronment, they do not always reliably scale up in the production environment because of the different
distribution of data and various bottlenecks that come with BigData. In this thesis, we will demonstrate
our method on a rich dataset that poses real-world challenges with scale to show how well the system
performs.

2.4. Recommendation Fusion

As discussed in Section 2.2, Inductive Bias arises due to assumptions made by a recommendation
model about the underlying data. Different recommendation models make different types of assump-
tions, and have different pros and cons. In Chapters 4 and 6 we will see the type of recommenders we
use in detail. For now, lets say that we use diverse recommender systems (RS) which prioritise a set
of user-centric objectives differently. For instance, some RSs prioritize predicting what is relevant to a
user, while another can focus on presenting novel/unexplored items. These different recommenders
always try to provide a good user experience but have their pitfalls. No selected balance of these
values is perfect for the entire user base. Users have dynamic preferences that can not always be
anticipated. Therefore, we need a recommender fusion technique which can give the user/streaming
service multiple options to select from.

We can achieve this by weighting different RSs with different proportions and then combining the
generated recommendations. This gives us a final list of the benefits (and deficits) of the individual
RSs together. The fusion is not trivial, the recommendation quality metrics (objectives) do not change
linearly with the changes in model. Combinations of models can also lead to poor performance. Multiple
combinations can reach the same objective fitness. Thus, fusing recommendations from multiple RSs
is no trivial task.

2.5. Many-objective Optimization and Evolutionary Algorithms

Multi-objective optimization (MOO), also known as multi-criteria optimization or Pareto optimization is a
mathematical domain which deals with optimizing multiple objectives (target functions) at the same time
[12]. The name Pareto comes after the Italian economist and engineer Vilfredo Pareto. In essence,
if a problem is non-trivial, there is no single set of parameters to a problem (in the parameter-space
or solution-space) where all objectives are optimised at once (in the objective-space). Instead, for
different parameters for the given problem in question, there will be an optimal set of solutions, where
we see a trade-off for the different objectives.

An example is presented in Figure 2.2, where we see the solutions to a problem map to various ob-
jective values in the objective space, and the Pareto-optimal set of solutions are the the nondominated
solutions. Non-dominated solutions are those for whom there do not exist any other solutions with a
better fithess value for one objective function without worsening other objective functions. Or simply, a
front where the solutions have the best trade-off for the specified objectives i.e. cost/fithess functions.

8 2. General Background

A (Fl.mm, FZ.mnx)

_ Non-optimal solutions

, Pareto front

s (V\‘)

Optlrﬂﬂl SOIUtiOnS (Fl.mz\x, F2,min)

>
Fi(x)

Figure 2.2: Pareto-optimal solutions example for a problem with 2 objectives, where both objectives have to be minimized [13].

While there are 2 ways of solving Multi-objective Optimization Problems (MOPs): a priori and a
posteriori methods [14]. A priori methods require preference information about the various objectives
can be expressed before we find the solutions. This leads the search to ’find a goal’ we know should
exist, and we eliminate other solutions we will not need. A posteriori methods, on the other hand, aim
to give solutions that are Pareto-optimal. This is the direction we will be going in, because we need a
set of solutions that encapsulates all near-optimal possibilities of maximising user-centric metrics.

Popular approaches to solving MOPs in an a posteriori manner computationally are (i) Mathematical
programming programming and (ii) Evolutionary Algorithms. Mathematical programming consists of
iterative algorithms which successively improve the quality of the solutions. Some commonly used
methods under mathematical programming are e-constant methods[15], branch and bound strategies
[16], Normal Boundary Intersection (NBI) method [17, 18] and successive Pareto optimization [19].

Evolutionary Algorithms (EAs), more specifically Multi-objective Evolutionary Algorithms(MOEA)
here, on the other hand, are general metaheuristic based optimization techniques that fall under guided
randomized search algorithms [20]. EAs are family of more specialised search strategies, though this
discussion is out of the scope of this thesis. EAs are inspired by biological evolution; where a candidate
solutions start as random parameters for the problem and with increasing iterations (called generations)
become progressively better. How this is done will be explained in greater detail in Chapter 5. In this
study we will use EAs to solve Many-objective Evolutionary Algorithms (MaOEA), which aims to opti-
mize 3 or more objectives at the same time.

N
Initalization

Create population with
random solutions/genotype

. N
Evaluation
Evaluate objective values of
each individual in the
population.)

Fitness Assignment

Determine fitness of
population using the
objective values

Selection

S~
Reproduction and/or Mutation
Combine 2 individuals' genotypes Select the fittest individuals
and/or add random variations to which are allowed to
create new individuals S reproduce

Figure 2.3: General Framework for Evolutionary Algorithms (EAs) [20].

A simple organisation of a general EA is given in Figure 2.3. The variables/parameters/genotype
of individuals in the simulated population are initialised with random entries to begin with. Then the

2.6. MaOEA for Recommender Systems: Previous Work 9

objective values of each individual are computed i.e. how well each individual performs in the objective-
space. This leads us to compute the fithess score for the entire population. We now come to the solution
improvement part, where we have to select the fittest individuals in our population to allow them to go
to the next generation. The selected individuals reproduce i.e. combine their genotypes to produce
new individuals. The motivation behind this is to improve the solution by passing on ‘good genes’
of two individuals to the next generation. Additionally, we also have a mutation operator which adds
random changes to the genotype in small quantities. This is done to maintain genetic diversity in the
population, but not so much that the good solutions will be lost. These various steps together lead to
an incremental improvement of the population as the number of generations increases. This has the
following benefits:

» We have to compute the fitness of a limited number of individuals every generation.

» We do not have to do an exhaustive search of the parameter-space. Finding solutions for high-
dimensional problem space becomes more efficient.

» We can explore in multiple directions in the parameter-space.
» We can find multiple local optima.
+ Stochastic objective functions are not a problem.

* Inherently parallelizable.

2.6. MaOEA for Recommender Systems: Previous Work

Lets see the research efforts that have been undertaken in this application domain in a chronological
and categorical order. In 2014, Ning Yang, et al. a team of researchers and engineers, demonstrated
a technique to recommend highway alignment strategies using MOEA [1]. They could provide multi-
ple strategies for laying down highways with a trade-off between construction cost and environmental
impact. Although this may seem tangential to our study, the core idea of the user-system interaction
scheme remains the same: a user is presented multiple options and they choose the trade-off they
desire and see how the the outcome would be. If they are unsatisfied, they select another outcome
with minimal delay. This enables the user to explore how the trade-off feels to them and switch easily.
In [1] the users were experts and knew about the domain and selected a trade-off based on domain
knowledge, in our case the users would be the general public who select their trade-off based on their
subjective preferences, mood or other contextual settings.

Coming back to the domain of Recommendation Systems, in 2015, Bingrui Geng, et al. developed
an MOO based recommender system that diversified the output of a Collaborative Filtering model [21].
They used the Nondominated Neighbour Immune Algorithm (NNIA) to optimise Precision, Novelty,
Diversity, and Congestion (recommendation uniformity). They validated the approach on MovieLens
[22], Netflix [23] and Donation Dashboard [24] datasets. In 2019, Chonghuan Xu attempted to adapt the
same system for BigData [25]. The system was validated on MovieLens [22], Book-Crossing dataset
[26], and a real-world dataset with mobile shopping data. They used a map-reduce technique to perform
Collaborative Filtering.

In 2016, Shanfeng Wang, et al. from an intelligent perception research lab demonstrated a frame-
work to balance accuracy and novelty in Collaborative Filtering [3] to recommend more items from the
long-tail distribution i.e. unexplored items. The framework selected top-K items from the items recom-
mended to each user and fused the list with an unexplored (novel) item. They validated the system
on the MovieLens 100k [22], Jester [27] and Netflix datasets [23]. They used MOEA/D [28] as their
chosen EA for obtaining the front.

In 2018, Nour El Islem Karabadji, et al. a group of researchers from France and Algeria, attempted
to diversify recommendations by diversifying the top-K users picked in Collaborative Filtering for gen-
erating recommendations thereafter [29]. They designed a method where they picked a Pareto-optimal
set of users to go in the top-K for each user for whom they were generating recommendations. The
objectives to optimise on in their case were user similarity and diversity. This method does have a se-
rious foreseeable bottleneck for application on large systems where if we have millions of users, then
the problem being optimised becomes more complicated and the fitness evaluation also takes longer.

10 2. General Background

In 2020, Xingjuan Cai, et al. demonstrated a recommendation system where they performed late-
stage fusion of 3 different types of Collaborative Filtering approaches using MOEAs. This was done
by finding the weight for weighing different CF approaches, using EAs and using the weights to rerank
the recommendations. They aimed to find a trade-off between accuracy (recommendation-recall), nov-
elty, diversity, and coverage. They used NSGA-Ill, RVEA, GREA, and SPEA2 as the Evolutionary
Algorithms for doing the same. The system was tested using MovieLens 1M dataset [22].

All previous methods have their deficits, may it be problem encoding, foreseeable problems with
operationalization, testing only on small datasets, only sticking to Collaborative Filtering approaches,
or not validating the system properly with a well-constructed experimental design.

2.7. Distributed Computing

Processing real-world music listening data requires a tremendous amount of reliable computational
infrastructure: scalable storage, CPUs, main memory, good I/O devices, and possibly GPUs. Doing
all required tasks on one massive and expensive computer is not economically feasible for most busi-
nesses. The solution is to use several affordable computers, all of whom work together, to solve one big
problem at a time by communicating with each other and solving small parts of the problem in parallel.
This is known as Distributed High-Performance Computing.

Today, Apache Spark® (will be referred to simply as Spark) has become a popular option for pro-
cessing BigData in a distributed manner [30]. Spark has a rich set of high-level programming tools
which enable developers to process their data like SQL tables’ using Spark DataFrames. With Spark,
one can simply write a code in a development environment with limited computational resources, using
a smaller representative dataset. Once the code is tested and needs to be deployed for production, it
can be run on a compute cluster whose resources can be scaled on demand.

2.8. Performance Engineering

We discussed that dealing with large datasets is difficult and can be solved by adding more computa-
tional infrastructure and parallelizing the workload. Sadly, this is not enough to make the processing
efficient enough to be truly usable. Simply using industry-standard techniques will not guarantee the
efficient utilization of resources we already have. We therefore need another discipline under Computer
Science to make the research output of this thesis oh higher quality: Performance Engineering. The
objective of Performance Engineering is to improve the nonfunctional aspects of a software product
for improving performance, i.e. decreasing computational latency, throughput, efficient memory usage,
decreasing the computational complexity of workload, and so on. While this is not necessary to make
a working solution, it makes the solution more easily adoptable and reduces infrastructure costs in the
long term, while conserving energy and reducing a business’ carbon footprint.

In the context of this thesis, we will look at the following aspects of the system throughout the
development life-cycle to ensure high software quality:

» Reducing storage access frequency and latency.

» Conservatively using memory to eliminate the requirement for using memory-optimised compute
infrastructure.

» Use best parallelization practices wherever applicable.

» Use GPUs for shorter time frames, to avoid lengthy CPU parallelized workloads if it makes eco-
nomic sense.

» Improve the space and time complexity of algorithms.
* ldentify future system bottlenecks.

While most of these aspects will not be apparent in the report, they can be spotted through various
choices made during development which are well documented inline in the code®.

Bhttps://github.com/apache/spark

7SQL tables represent data present in a database in a columnar manner, where every field is a column and every record is a
row.

8 ttps://github.com/sharwinbobde/MLHD-insights

https://github.com/sharwinbobde/MLHD-insights

Datasets

In Section 2.2 we discussed the sources of bias which plague the present recommender systems and
why it is important to give the user control over what they are recommended. We will always be lim-
ited to using observational data to derive predictions, so let us look at how we can do predict and
recommend items for users while analysing the system well with the target of reducing biases in the
recommendation.

We will first talk about the data we have available and how we will use it. Secondly, we will look at
the distribution of users’ behaviour in the same across various time slices. Then we will discuss how
we split this data.

3.1. Background

Let us first discuss the details of the dataset that will be used in our study, along with the technologies
and software products we use to properly use it to its full extent. Because this study aims to understand
the reliability of the recommendation framework along with the generated recommendations, we have
to make sure we use extremely rich information in a great volume to make sure our analysis has good
foundations. While we could deal with datasets in a generic manner i.e. dataset — train-test split —
models — numbers, we will not! Instead, we will enrich the organisation of an existing dataset to suit
our experimental design, which takes the temporal effects of applying the framework to the provided
data. This is also why we will be going in a nontraditional direction of using a dataset with temporal
information (timestamps) as opposed to regular benchmarks such as the Million Songs Dataset [31].
This decision leads us to a path of rigorous system validation, across not only explicitly defined factor
levels but also extra-musical factors.

3.1.1. MLHD

In 2017, Gabriel Vigliensoni and Ichiro Fujinaga aggregated the largest dataset for music listening user
data that is publicly available’, and called it the Music Listening Histories Dataset (MLHD) [32]. The
dataset dwarfed other datasets that were available at the time, with data from 583,000 users resulting
in 27 Billion listening logs. Table 3.1 clearly shows the size comparison in numbers.

There is a more recent music session dataset called the Music Streaming Sessions Dataset re-
leased in 2018, maintained by Spotify’s research and development wing [33]. This dataset is more
suitable for analysing Machine Learning applications for a single session of sequential listens and is
therefore not appropriate for this study because we want to analyse a recommender system/framework.

Music listening logs in MLHD are organised as user files and distributed as compressed archives,
with around 1000 users, each tarball averaging to 1GiB. There are 576 such tarballs with one dummy
file MLHD_386.tar. Uncompressed, each tarball results in a directory = 18 GiB in size. The estimated
size of the dataset files is 10,350 GiB or 10.11 TiB.

The massive size is the reason we have chosen this dataset. This can give us a realistic scenario
of real-world music logs with several active users; a scenario that will definitely push the recommender
framework to its limits, so we can analyse its shortcomings.

TMusic Listening Histories Dataset

11

https://ddmal.music.mcgill.ca/research/The_Music_Listening_Histories_Dataset_(MLHD)/

12 3. Datasets

Dataset name Data source | users | logs | release year
Last.fm Dataset 1-K [34] Lat.fm 1K 19M 2010
MusicMicro 11.11-09.12 [35] Twitter 137K | 600K 2013
Million Musical Tweets Dataset [36] | Twitter 215K ™ 2013
#nowplaying Music Dataset [37] Twitter 42M | 50M 2014
LFM-1B [38] Last.fm 120K | 1B 2016
MLHD [32] Last.fm 583K | 27B 2017

Table 3.1: Size comparison of publicly available music listening histories datasets.

LastFM

The user logs for MLHD are collected from Last.fm?, a music recommendation website founded in 2002.
The company has a scrobbler service which logs user’s music listening activity (scrobbles). It does this
not only within its ecosystem but also and outside of it using other media players and streaming services
such as Spotify, YouTube. This encompasses 111 external music access tools Last.fm has supported
in the past. MLHD has cleaned user logs i.e. only users with a minimum of 2 years of activity and at
least 10 scrobbles a day are considered. Moreover, it is also cleaned to account for other time and
logging inconsistencies.

These properties of the MLHD ensure three things: (i) the data is well sanitised, (ii) it does not have
data from users that interact with an RS in a singular way, using a single service. Therefore, there are
diverse users, and (iii) RS have to perform well on this diverse data without knowing its origin(which
service), and the chances of overfitting to an interaction pattern to show ’better results’ should be lower.

MusicBrainz Identifier (MBID)

Each user file named with a user’s uuid® in MLHD has the columns timestamp, artist-MBID, release-
MBID, recording-MBID. Here the MBID refers to a uuid issued by the MusicBrainz project®, under the
MetaBrainz Foundation® [39]. The project aims to provide a reliable and unambiguous hierarchical
schema for music identification. Thus, each MBID is unique and links to various entities that describe
music such as artist, recordings, albums, and the music label. This information can be used for future
research tasks that necessitate dataset enrichment.

3.1.2. Graph Database: ArangoDB

Let us take a look at the Data Engineering side of this project. When presented with the use of large-
scale linked data for community-driven research, we have to take a lot of practical concerns into ac-
count; open-source software, scalable, ease of use, efficient memory and storage utilization, and of
course strong database consistency properties. We go with ArangoDB° as a solution to managing
our data storage, management and retrieval needs. AranagoDB is a performance-centric solution for
graph-data management needs, whose feature set is quite broad and covers most of our needs better
than other options like Neo4J or OrientDB [40].

ArangoDB uses RocksDB’, a persistent key-value storage optimised for fast access, to store and
retrieve the data at every database node efficiently in a distributed manner [41]. This combination of
graph-data centric organisation and access of unstructured documents with key-value pairs, stored and
managed in an efficient manner, enables a set of favourable features for solving our research problem
of dealing with large-scale data. These beneficial features are as following:

» ArangoDB’s data and indexes to be stored on disk and utilize memory conservatively.

2https:
3

www.last.fm/
universally unique identifier
4 ttps://musicbrainz.org/doc/MusicBrainz Identifier

metabr

ailnz.c

https://www.last.fm/
https://musicbrainz.org/doc/MusicBrainz_Identifier
https://metabrainz.org/
https://www.arangodb.com/
https://rocksdb.org/

3.2. MLHD Graph Representation 13

temporal

Figure 3.1: Explanation graph extracted from MLHD’s user scrobbles.

» Concurrent read-write access.

» Supports large datasets.

» Data is stored in a log-structured tree and compacted at predictable intervals.
+ Highly configurable for different workloads and compute infrastructure.

» Supports synchronous and asynchronous replication.

» Steady query performance on both read and write operations.

» Reasonably small storage requirement for database files due to compaction [42].

3.2. MLHD Graph Representation

Now, we shall discuss how we use the MLHD to create a graph representation that we store in the graph
database. Figure 3.1 shows the information we have in each user listening history log-file , scrobble,
and how we can structure it for storing it in ArangoDB. Each scrobble has the user’s uuid which forms
the user’s node.

The user — artist and user — item link the user to artist uuid and recording uuid, respectively.
Both relations also have timestamp information. In this study, we aggregate the timestamps to reveal
how many times a song was listened to (for more than 30 s) in a year. We call this listen count and
denote this by the key year 20XX in ArangoDB. The data in MLHD is available from the year 2005
until 2013. We also store a binary connection artist — item to denote a recording is associated with
the particular artist. The presence of the edge in the graph means the relation exists, otherwise not.

To reiterate what was said in Chapter 1, Introduction, the code for processing MLHD parts and
transferring them to ArangoDB are accessible through an open-source repository®. This method can
be adapted for other research endeavours easily, and the data can be easily queried or processed for
a wide array of tasks.

3.2.1. Critical Choice
We had to make some critical choices while constructing this graph to make sure our experiments
are feasible. These choices affect the storage and computing time required, but more importantly
also the quality of recommendations. Taking a different sampling strategy will change the results of this
study. For example, taking all interactions, including single listens to songs, will make recommendations
much better because we gain information about what the user does not like. Although, doing this will
entail a considerable investment in compute and storage resources, in addition to increased latency in
generating recommendations.

To explain this visually, see Figure 3.2a that shows a log-log scaled plot of listen count vs frequency
of occurrence. The number of times a listen count is observed takes form of a Power Law distribution
[43]. This means a linear-linear scaled graph will show a hyperbola. If we have two listen counts [and

8 ttps://github.com/sharwinbobde/MLHD-processing

https://github.com/sharwinbobde/MLHD-processing

14 3. Datasets

', where I' « [, then taking links that represent data that have [’ listen counts will have on average,
drastically more observations than [. We therefore cannot record interactions with very few listen counts
in the graph because they will increase the size of the dataset (without compression) drastically.

We found the listen count threshold of 20 to be appropriate for our demonstration. This means if a
user hears a song 20 times or more, each time for more than 30s, then only will it be recorded in the
graph.

count 400000

H
g
;

- 350000

‘\ - 300000

-

=
=
!

"

I 250000

108 4
- 200000

=

o,
©
!

- 150000

100000

Frequency of occurance (log-scale)
5
K

50000

100 4 N N i W Y ——

10° 10° 10t
Number of listens per item(log-scale)

(a) Example, listen-count frequency of occurrence for single year (here 2008 as an example)

6
10 2005

2006
2007
2008
2009
2010
2011
2012

10° 4

10* 4

Frequency of occurance (log-scale)

10? 10° 10* 10°
Number of listens per item(log-scale)

(b) Comparison of the same across years

Figure 3.2: Listen-count frequencies in the dataset. Note (i) log scaling for both axes. (ii) The distribution is a Power Law
distribution[43], thus, in our case users listen to songs a few times hypnotically more than many times, and the majority of the

data is about the songs, user doesn't listen often. (iii) Amount of data increases every year but the nature remains same.

3.2.2. Database in Numbers
Table 3.2 shows the comparison of the size of MLHD’s raw text data v.s. ArangoDB’s compactly stored
graph data. Note that the data that needs to be processed now has gone from a Tebibyte® scale to a

91024 Gibibyte. Do not confuse with Terabyte which is 1000 Gigabyte.

3.2. MLHD Graph Representation 15

Gibibyte scale. The reduction in storage requirement means we do not need to rely on cloud providers
and network bottlenecks. We can store the dataset on fast and local SSDs'’. One con of the size
reduction is that accessing large edge collections in ArangoDB requires great memory overhead. How
we deal with this is detailed in Chapter 7, Experiments.

Number Estimated dataset | ArangoDB
of MLHD | uncompressed size | database
parts (in TiB) size (in GiB)
26 0.46 4.3

101 1.78 14.3

201 3.53 20.3

301 5.29 28.2

400 7.03 371

575 10.11 51.8

Table 3.2: MLHD (user logs text) estimated size versus ArangoDB database files size.

We use only 201 parts of MLHD to make our experiments feasible. The reasoning for doing this even
though we can store the entire dataset has been made clear in Section 7.2.1 of Chapter 7, Experiments.

%108 x107

2.0

'S

0.5 1

users artists recordings U—1T U— A A—=1T
[count] 207927 | 290510 [2155304 | [count] 38070400 | 42648864 | 45330636 |
(a) Graph node counts (b) Graph edge counts

Figure 3.3: Barcharts for the aggregated dataset as a graph representation (for 201 parts of MLHD, of total 575 parts)

In Figure 3.3 we can see the number of nodes and edges present in the complete graph represen-
tation of MLHD. This graph consists of information from the years 2005 to 2013 in the same set of node
and edge collections.

1030lid State Drives

16 3. Datasets

3.3. User Activity Distributions

Now, we analyse the information we have. In an earlier section, Section 3.2.1, we talked about the
nature of the listen counts we see in Figure 3.2a. This entails that MLHD, or scrobbles in general, have
more information about the song people listen to less often. It is also important to consider that just
because a song is played more than 10* times in a year does not mean a user necessarily likes it.
These could be edge cases in the data where the logs are noisy or the user kept a song on repeat or
played a song in a public setting such as a bar or a gym. In Figure 3.2b, we see the same data for
different years. We see that year-on-year number of recorded user — item interactions increases.

For verifying the users — item interactions represent a genuine interest in the items, we decided to
make more detailed visualizations. We decided to investigate how listen counts in one year are related
to the following year. For this we calculate the percentile distributions of the following year’s listen count
i.e. for each unique listen count in year y, what is the p* percentile listen count in year y + 1 for the
same user. Because this is done on a really large edge collection, this needs to be done in an efficient
manner''. A small mathematical brush-up, the pt* percentile value, where 0 > p > 100 is the smallest
value in the data for which p percent of the data is less than the value. For example, at 60" percentile
value, 60% of the quantity of data is below the value.

The animation in Figure 3.4 shows the percentile value distribution over the years. The lower per-
centiles are placed over the higher percentiles, otherwise a lot of critical information is lost. We see
that a general pattern across different years is that, for any user, the increased listen count in year y is
directly correlated with increased listen count in year y + 1. One striking observation is that every year,
after a certain threshold, the lower percentiles strikingly jump up in the distribution and do not follow
the trend. This effect becomes visually stronger year by year. In many cases, the 10th percentile (90%
of the observations) are uncharacteristically high.

We can only speculate why this happens because we do not have more information to prove any
hypothesis. We speculate that this happens due to users’ listening behaviour changing because of the
extra-musical factors.

There is no way to concretely prove the above speculation. The only thing for certain is that the
listening distribution (observed listening behaviour) changes across the years. As this study aims to
check the reliability of the recommendation framework, we need to check if these varying distributions
across years affect the performance of the RSs or the quality of the generated front by the EAs.

" Calculated using the approximate quantiles function (approxQuantile) in Spark [44]. The algorithm has a deterministic bound.
If the Spark DataFrame has N elements and if we request the percentile at probability p up to error err, then the algorithm will
return a sample x from the DataFrame so that the exact rank of x is close to (p * N). More precisely, floor((p —err)-N) <
rank(x) < ceil((p +err)-N). The Spark implementation is an improvement over the Greenwald-Khanna algorithm [45] (with
some speed optimization).

3.4. Dataset Division 17

90th percentile

80th percentile
ye ar 2 0 O 5 70th percentile

60th percentile

—

(==}
S
1

50th percentile
40th percentile
30th percentile
Q. 20th percentile

—

=
W
1

10th percentile

—

=
o
1

—
=
1

Number of listens in 2006 (log-scale)

100 .

0 7 e o % Fal =
10t 102 10° 10* 10°
Number of listens in 2005 (log-scale)

S

Figure 3.4: [Embedded Animation] Percentile distribution of favourability of items/songs the following year, depending on
listen counts across all user — item interactions. To be interpreted as, "If a song is heard °X’ times in a year, It is heard for Y’
times the following year”. Note (i) To see the animation open the PDF in native viewer and not on a web browser (ii) To interact

with controls enable PDF forms for the PDF viewer. (iii) If you cannot manage to run the animation then individual plots are

present in Appendix A.

3.4. Dataset Division

The analysis in the previous section and Chapter 2, Background, motivate our need to take temporal
factors into account. We will now suggest our method of dividing the MLHD for the recommendation
framework under study for fusing the outputs of specialised RSs using EAs. We are splitting the dataset
according to the year information of the scrobble timestamps. To give a real-world perspective, this is
equivalent to making recommendations on 31st December at 23:59:59. with data being collected from
1st January at 00:00:00 of the same year.

This manner of temporal split presents more real-world edge cases that require good performance
in production. The edge cases which might lead to fewer user — item interactions can be numerous
and unforeseeable. A non-exhaustive list of examples to show how this might occur is here:

» A user uses and has linked a Last.fm supported service which most often recommendations
items the user plays on replay. The user might not have linked other services which give diverse
recommendations.

* A user joins Last.fm later on in a year, perhaps in November, and does not have many user —
item interactions by Dec 31st of the year (when we are making the recommendations).

» A user only uses one streaming service with a particular music delivery strategy.

+ A user might simply enjoy listening to a niche genre of music to repeat even if they are exposed
to other music. This niche genre might not have the recording uuids from MetaBrainz.

The data we verify on, be it nodes such as users, artists and items, or edges between them, needs
to be fairly sampled across the users. Non-mainstream users who show more exploratory behaviour
will have less data in the train and test sets and give poor recommendations to these users [46, 47].
We organise the dataset in a manner to make user-centric metrics computed on the recommended
lists reflect a near-average perceived experienced over all users. We will consider the following points
to make sure the recommendation quality metrics calculated on these dataset slices are as close as
possible to the cross-section of real-world users.

18 3. Datasets

Year | train testgrs testgy
2005 | 4949 1599 1621
2006 | 14126 4613 4579
2007 | 28041 9206 9286
2008 | 45177 15044 14977
2009 | 64993 21533 21552
2010 | 84456 28115 28106
2011 | 93772 31222 31210
2012 | 91807 30536 30510

Table 3.3: User counts, across years, for membership in dataset splits train, testgs and testg,.

1. Test dataset(s) is large enough in proportion to training data.
2. Minimize the chances of overfitting while optimizing on the test data distribution in any manner.
3. Results do not depend on which users or interactions are picked and placed in a set.

4. Dataset division does not entail non-uniform sampling of data. For example, under-sampling
minority users.

To make sure every year’s data split has valid users, we first find subscribed users in a year i.e.
users with listen counts > 0. Then we will sample the users and split them into train and two test sets,
testps and testg,, with the percentages 60%, 20%, 20% respectively. Table 3.3 shows the number of
users in each split of the dataset by year.

The choice of two test sets testzg and testy, makes sure our results are not affected by the process
of tuning the RSs or the EAs. The set testzg can be used to test that the RSs scale well with size and
perform as expected in terms of user-centric metrics. We can decide hyperparameters for the EA, such
as population size and the number of generations, and generate the Pareto-set using The RSs’ output
on testgs. The second test set testy, is used to make sure that the generated front’s quality is not
affected by the users or interactions in a particular test set.

'
m ear 2005 train interactions ~_ :
test interactions \]
v
i
1

— 1 ——
(user — item validation
interactions
oac > : :
L [

users train testrs testpa
60% 20% 20%

\ /
[R

Figure 3.5: lllustration explaining the division of MLHD by year. Users are split into train, testrs and testg, sets. The
user — item interactions for each test set are split into 50%-50% randomly, thrice. A part of the train-interactions is used as
validation interactions to train RSs in a traditional fashion.

3.4. Dataset Division 19

We will then split the user — item interactions for each user in that particular testy set in 50%-
50% randomly into test-test and test-train interaction sets for it. We will do this thrice and denote these
interaction-sets by §;, where i € {1, 2, 3}. This strategy is adopted to make sure our user-centric metrics
do not depend on how we sample interactions from available data and is illustrated by Figure 3.5.

Sampling users first and adding interactions, instead of directly user — item, interactions will ensure
that we do not undersample the activity of users who have less number of interactions in a year.

Recommender Systems

In this chapter, we see the concepts required to understand the inner workings of the Recommender
Systems we will use later. Moreover, detailed information on the user-centric metrics we use as ob-
jectives to optimise is also provided. We also give a high-level interpretation of these metrics to make
them easy to understand for people who might not be familiar with this domain.

4.1. Background

Let us see some background about the concepts that help us build the Recommender Systems. These
techniques help us make scalable recommenders and by understanding them we uncover any under-
lying sources of threats that may affect the study.

4.1.1. Collaborative Filtering

Collaborative Filtering (CF) has proved to be a successful and well-researched method for building
Recommender Systems [48]. CF makes the assumption that if two users A and B interact with items
similarly, then they will act similarly in the future. For instance, if the two users’ interests and interaction
patterns overlap extremely well in terms of their music taste and consumption, then it would be natural
to assume A would like to hear what B has explored but they themselves have not. In essence, CF
systems look at the interaction between users and/or items to filter similar users/items and recommend
items that a user has not heard before.

In the context of the thesis, it is important to know that there are 3 types of CF. Firstly, Memory-
based CF which maintain a full matrix of interactions and find similar communities to recommend items.
These become problematic when the number of users and items increase because then you need to
maintain a really large sparse matrix. Secondly, Model-based CF use the interaction data to estimate
behaviour or learn a model to make predictions. The model can be any mathematical construct or
a parametric model that can predict interaction information such as rating data, listening counts, etc.
without storing all the interactions at once. Thirdly, Hybrid CF techniques combine regular CF with
content-based recommenders to recommend items, not only based on observed interactions, but also
based on features of the content that is being recommended, such as language for movies, genres for
music, and tags for GIFs'.

In this thesis, we are mostly concerned with a subset of Model-based CF techniques called Matrix
Factorization. These techniques try to approximate a target Y, which can be ratings, listens, views
etc. as a product of two smaller matrices [49]. Equation 4.1 shows the approximation task. Here let's
consider U € R!*X is a matrix storing the latent factors for I, users and M € RX*/ is a matrix storing the
latent factors for J, items.

UIXKMKX]zY (41)

"Graphics Interchange Format (GIF), an image format than can show animation or a series of images.

21

22 4. Recommender Systems

4.1.2. Alternating Least-Squares

Alternating Least Squares (ALS) is an iterative form to perform large-scale Matrix Factorization [50].
Spark has its own implementation of ALS which enables performing Collaborative Filtering in a dis-
tributed computing scenario. The overview of the algorithm from [50] is as follows:

» Step 1. Initialize matrix M assigning the average rating for an item as the first feature and small
random numbers for the remaining entries.

» Step 2. Fix M, solve for U by minimizing the regularised objective function.
» Step 3. Fix U, solve for M by minimizing the objective function similarly.
» Step 4. Repeat Steps 2 and 3 until the stopping criterion is satisfied.

ALS uses weighted-A-regularization regularised update to avoid overfitting on the new updates. The
choice is empirically proven to avoid overfitting the test data when the number of (latent) features or
the number of iterations is increased.

The Spark implementation enables block-wise? iterative updates using a modified ALS approach
for interactions that give implicit feedback [51, 52]. This blocked implementation, groups the users and
items into two blocks, and reduces the communication required for computing the result. It does this by
only sending one copy of each user vector to each item block on each iteration, and only for the items’
blocks that require a particular user’s feature vector. This is done by precomputing which blocks need
the update by seeing the user — item links (which blocks of items it will contribute to) and item — user
links information (which of the feature vectors it receives from each user block it will depend on). This
allows us to send only an array of feature vectors between each user block and product block, and
have the item block find the users’ ratings and update the items’ features based on these exchanged
messages.

4.2. User-centric Metrics

To optimise on how a recommender performs from a user’s perspective, we need quantitative metrics
that reflect an approximation of the quality of recommendations. For this study, we use the following
user-centric recommender performance metrics: Mean Average Recall (MAR), Coverage (Cov), Nov-
elty (Nov) and a modified Personalization (modPers) metric [53, 54, 55, 56]. In the implementation® of
calculating these metrics, a great focus is given to performance to make sure the fitness evaluation for
the EA takes less time.

To make explanation of the metrics clearer, we will be using a set of standard notations. U is the
set of all users, R is a recommended list, | - | is the cardinality of a set, and n is the intersection of two
sets.

4.2.1. Mean Average Recall

MAR@k is the average recall over all users u € U in their recommendation lists R,, of length k. It tells
on average how many entries present in a recommendation list of a particular size k are actually heard
by the user. Here, T,, denotes the items actually heard by the user u.

R,NT,

1
MAR@k = — Z fulu 4.2
U1 2, 1T “2

Although this metric is good for analysing users with different behavioural patterns and listening fre-
quencies, it is susceptible to biases. For example, finding a recommended item belonging to the user’s
items in known relevant items in the test set can overfit on how the items were presented/recommended
to the user. This is a result of the bias feedback loop in recommendations [10].

2plocks (partitions) of a Spark DataFrame
3Metrics Evaluation code available here.

https://github.com/sharwinbobde/MLHD-insights/blob/master/python-code/src/utils/MetricsEvaluator.py

4.2. User-centric Metrics 23

4.2.2. Coverage
Cov@k is the ratio of length of the set of unique item predictions made, R,, of length k, for all users Ry

to the catalogue Cat set.
Cov@k = v ncat (4.3)
ov = [Cat] .
This metric informs how well a recommender can serve the available items in the available catalogue.
From a user perspective, it informs if they have access to a broad set of recommendations or does the
recommendations instead potentially pigeonhole the user by only recommending a small portion of the
catalog.

4.2.3. Novelty

In this study, Novelty, Nov@k, is the proportion of items recommended to a user that comes from the
long tail distribution. Here the metric is the ratio is the number of items in R,, that have their total listens
below the 66" percentile value T in the catalogue, to the length of the recommendation list k, averaged
over all users u c U. Simply said, on average, how many songs recommended to the user come from
the long tail distribution: unexplored songs or songs that are new and do not have too many listens yet.

1 < RyNT
Nov@k = 17 Z - (4.4)

ueu

4.2.4. Modified Personalization
modPers@k in this study is a modified version of the Personalization/Diversity metric which tells the
recommendation similarity across users. The modifications are made to (i) consider the edge cases
caused by the recommender not being able to generate recommendations for certain problematic users
(with less listening data) and (i) to make the computation of this metric more space and compute
efficient and parallelizable.

The original description of the metric Personalization Pers@k is as follows, where R; is the 2D
matrix showing the binary item co-occurrence for users represented by rows and columns. s(m,n) is
the cosine similarity of lists of items recommended m and n for 2 different users.

Zm,nERi,mz»f:n s(m, n)

Pers=1-— 1
sIRil(Ri = 1)

(4.5)

We modify this definition to calculate it with modPers@k to compute the same for users whose
|Ry| > k and extract the list only till top k; we denote these users as Uiz, |sk- The cosine similarity
measure also becomes simpler to compute in this case, and the mathematics reduces to the following.

1 mnNn
modPers@k = 1 — Z (4.6)

|Ry 1=k L4
mMmmneRr
UlRy >k

Here we only need to compute the similarity values for an upper triangular matrix of users and the
computation for each pair of users can be parallelized. Moreover, we store the similarity values in a
space-efficient 1D upper-triangular matrix representation. Numba“ has been used to make the per-
formance optimisation for this metric. Numba is an open-source just-in-time (JIT) compiler for Python,
which converts Python code snippets to extremely fast machine code and even supports simpler par-
allelization, which is again close to machine code [57].

http://numba.pydata.org

http://numba.pydata.org/

Evolutionary Algorithms

This chapter is intended to give sufficient background specifically about Evolutionary Algorithms to
understand the subsequent chapters. Although the motivations to use EAs have been made clear in
Chapter 2, it lacks certain nuances as to the true complexity of MOO problems. This chapter will also
detail individual EAs and solution quality indicators at length, which will be simply be referenced in the
following chapters for better knowledge organisation.

5.1. Pareto-Optimal Solutions
Pareto-optimality in Multi-Objective Optimization has a specific focus on optimizing the decision variable
space (chosen objectives) for real-world problems. These are optimal solutions over the set of given
objectives when there is no solution that performs better at all given objectives at the same time. Simply
said, the set of Pareto-optimal solutions, which makes a Pareto front, is a boundary beyond which there
are no solutions (trade-offs) where an objective can be improved without sacrificing the other.

Some important considerations are which make MOO problems difficult are listed here:

1. We do not necessarily know the shape of the Pareto front before optimizing.
2. We do not always know the extent to which every single objective can be improved.

3. We can not foresee if objectives improve/worsen in a convex manner when making changes to
the parameter-space.

4. We can not foresee if objectives improve/worsen in a proportional manner with respect to each
other i.e. objectives can be influenced by factors external to the encoded problem (parameter-
space).

5. Visualization of the Pareto front generated by an EA for qualitative analysis is difficult.
5.1.1. Definitions and Notations
For our study, these points are incredibly important to take into account while analysing the quality of
the resulting solutions at the end of the EA pipeline. This will become more clear in Chapter 8, Results.
To understand further the material we will need the definition of domination [58]. Consider we want

to goal of optimization is given by equation 5.1, where X is a real-valued individual in the population.
The function f (%) consists of k individual objective functions.

maximise f(X) = (fi(%), f(X), - fie (%)) (5.1)

Given two decision vectors d (or a) and b (or b), there are these possible outcomes for the fithess
relation for MOO problems (MOPs) besides complete dominance:

e f(a) > f(E), when all objectives of d are better than that of b.

« f(b) > f(&), when all objectives of b are better than that of a.

25

26 5. Evolutionary Algorithms

12 2]
1} - Pareto-optimal front 4
O © is
e * feasible region 5] dominated
‘\
‘o~ / [e]
E / Cs. . E o
(6] s, A ° - A
0, indifferent (o}
A Y
B R B
© Y
\ dominates indifferent
- c 1 D C o
© > 1 © (&)
- f1 - f

Figure 5.1: lllustration of (i) concept of Pareto-optimality in objective space (left) and (ii) the dominance relations of solutions in
objective space (right) [58]

- £(@) = f(b), when all objectives of @ are equal to or better than that of b.
« f(b) = f(d@), when all objectives of b are equal to or better than that of a.

« f(@ = f(b) A f(b) £ f(@), when all objectives of @ are indifferent to that of b.

These cases can be seen visually in Figure 5.1 where we have an example of a two-objective MOP.
We use special notations to denote these cases for convenience. These notations are given in 5.2.

a > b (a (Pareto) dominates b) iff f(@) > f(b)
a>b (a weakly (Pareto) dominates b) iff f(d) > f(b) (5.2)
a ~b (ais indifferent to b) iff f(d) 2 f(E)

Lets wrap it all together in a simple language. Firstly, a dominates b i.e. a > b, if a performs better on
all objectives than b. Secondly, a weakly dominates b i.e. a = b, if a performs better on one or more
objectives than b, but others do not worsen. Lastly, a is indifferentto b i.e. a ~ b, if a or b perform better
on some objectives while worsening other objectives (make a trade-off).

5.2. MaOEA Considerations

While using Evolutionary Algorithms for MaOO (objectives > 3) there are some points of concern that
need to be kept in mind before strategizing the implementation(s).

1. High dimensionality: Adding more objectives increases the dimensionality of the objective-space.
This means a greater proportion of solutions found become nondominated. Thus we need a
greater set of solutions to find the true Pareto efficient set of solutions, or the selection pressure
needs to be higher to find a near-optimal representation of the Pareto front.

2. Diversity: While we can find solutions that are Pareto-optimal, another layer of complication is that
the set of solutions we obtain have to be well distributed over the front. Having many solutions

with trade-off over a few of the objectives that are easy to search, are not the same as a well-
distributed set of solutions.

3. Recombination operation: in high-dimensional space recombination of two solutions that are fit
but distant in the objective-space will result in a new distant solution. Therefore, recombination
needs to be done in a more controlled manner for steadier evolution of solutions.

5.3. EA Operators 27

4. Representation of trade-off surface: with increasing dimensionality, exponentially more points are
needed to represent the surface. This necessitates a larger population or smarter approximations
of the front.

5. Performance metrics: when the number of objectives increase, we have to invest more compute
time to calculate the value of objectives. Depending on the problem we aim to solve and the ob-
jectives this can result in exponential increase. These values are used for algorithm performance,
this causes a lot of latency for the entire algorithm. For instance, hypervolume used to see the
normalised area dominated by the Pareto front takes exponentially more computations.

These aspects make the tuning of EAs difficult to solve and analyse MOPs in a feasible amount of
time. Therefore, one must not consider that we can simply throw an EA at any problem and can solve
it effectively without much human input.

5.3. EA Operators

Evolutionary Algorithms use operators such as crossover, mutation and selection [59, 60]. These
operators are used to improve the population quality over a number of generations. They induce the
evolutionary nature of the algorithms and their selection and tuning are key to the solution convergence.
Let us discuss what these operators do and talk a little about how they tie into this study.

5.3.1. Crossover

The crossover operator is responsible for the recombination of two parent genotypes by exchanging
part of their one parent’s chromosome with the other’s to create a new offspring/solution. Crossover
boils down to being an extensive local search technique over multiple generations. This is because the
controlled crossing of two fit parents in a well-encoded EA problem should result in a good solution.

SBX Operator

Simulated Binary Crossover (SBX) for continuous real-valued search space is a very popular crossover
operator[61]. The authors of the EAs we use, NSGA-Ill and SPEA2, themselves recommend the SBX
operator [62, 63]. The motivation of the SBX approach is driven by the success of the binary crossover
operators. It works well on problems having multiple optima and problems without known bounds on
the real values. Although better, this operator is considerably computationally expensive compared to
its counterparts such as linear crossover or blend crossover.

It uses a spread factor, 8, which denotes the ratio of the difference between children and parents’
genes. With 8 > 1 leading to expansive search and 8 < 1 leading to contracting search; g = 1 leads to
no change. Both cases result in modifying the gene by sampling a value from two different distributions
which direct the search, and this is followed by making two offsprings.

5.3.2. Mutation

The mutation operator provides a mechanism for global exploration by adding random variations to off-
springs. Adding slight variations to the chromosome results in solutions that are in a solution-subspace
which might be less explored. Without controlled mutation, a population cannot explore the solution
space effectively. Both crossover and mutation will provide the diversity for new solutions. Mutation
provides better diversity, although well-distanced solutions in the solution space may drive the popula-
tion away from converged characteristics.

Polynomial Mutation Operator
We used the Polynomial Mutation [64] operator, suggested by Kalyanmoy Deb and Samir Agrawal,
for two of our chosen EAs in this study. We used the literature and recommended settings from other
studies to select this operator as it works well for real-valued problems/genotypes. In this operator,
a polynomial probability distribution is used to perturb a solution in a parent’s vicinity. The probability
distribution in the neighbourhood of a variable value is adjusted so that no value outside the specified
range [a, b] is created by the mutation operator. This operator is computationally more expensive than
random mutation but performs better.

It has two parameters that need to be tuned, namely, the probability of mutation and the distribution
index. The probability is usually set as 1/n, where n is the number of real-valued variables used for
encoding the problem. The general research practice is to set the distribution index to 20 [65, 66].

28 5. Evolutionary Algorithms

5.3.3. Selection

The selection operator has 2 roles: (i) selecting fit solutions to proceed to the next generation, and
(i) providing a driving force or selection pressure which forces convergence of the population. Thus,
this operator enables the population to evolve towards a goal. In this study, the selection mechanism
varies depending on the chosen algorithm. This is because the selection is driven by the mathematical
motivations of each algorithm. This will be discussed in Section 5.4 when we talk about the EAs relevant
to this study.

5.4. EAs Used

In Section 2.6, of chapter Background, we saw different algorithms were used by different research
groups in their research endeavours. While many chose specific algorithms because of their perceived
strength for the problems they were solving, many others simply picked a set of different algorithms.
We want to see how different EAs perform against each other, but also make sure we use a diverse
set of EAs while keeping the number of experiments limited. We decided to adopt the following EAs
because they are well used in the literature for comparison, which aim to solve the problem of MaOO
using different mathematical motivations.

To clarify, the intention of this section is not to give exhaustive information about each algorithm,
but rather to give a peek into the theory which tells how these algorithms differ from each other. In
Chapter 8, Results, we will analyse if these differences in algorithms make any significant changes to
the recommendation framework under study; they don't'.

5.4.1. NSGA-III

The Nondominated Sorting Genetic Algorithm [l (NSGA-III) [62], is an improvement over its predeces-
sor, NSGA-II [67]. Both algorithms focus on effectively preserving elites (well-performing individuals)
in every generation. NSGA-IIl has a strict focus on maintaining diversity in the population, which is
done by supplying and adaptively updating well-spaced reference points. NSGA-Il used a crowding
distance’ to preserve niche solutions across generations. The details of the crowding distance sadly
fall outside the scope of this thesis, please take a look at [67] for the same. A detailed discussion of
the NSGA-III falls beyond the scope of this thesis, but broadly speaking, NSGA-III preserves the niche
solutions and selects them for reproduction in the following manner:

1. Classification of population into Nondominated Levels: Identifying nondominated fronts [69] and
assigning membership of these levels to individuals in the population.

2. Determination of reference points: determining a set number of points on a hyper-plane that are
well distributed in the objective-space. In the original 2014 paper, [62], the authors use Das and
Dennis’ symmetric approach for determining a normalised hyperplane in the objective space and
finding well-separated points[17]. An example of the same is shown in Figure 5.2,

3. Adaptive Normalization of Population: The objective values are normalised and we take the ex-
treme vectors (maximised for each vector). These are matched with the extreme points for the
normalised hyperplane.

4. Association Operation: Each individual in the population is associated with the closest reference
point on the adapted hyperplane.

5. Niche-Preservation Operation: The associations of individuals with reference points, and the
perpendicular distance of individuals to the reference lines are used to select individuals that are
added to the population of the next generation.

The authors suggest using the SBX operator to create offsprings for the next generation because it
results in offsprings that are closer to the parents in the objective space.

"This information about the results and conclusion is placed here to give the reader a fair expectation how much they need to
know about different EAs in detail to understand the result.

2|t measures the relative isolation of % from the individuals in the population. The greater the crowding distance, the greater is
its isolation. It is used to place new points in relatively unexplored regions and as far away from the existing points as possible
[68].

5.4. EAs Used 29

Reference
point — Normalized
hyperplane

Reference
11ne

\—Ideal point

Figure 5.2: Fifteen structured reference points are shown on a normalized reference plane for a three-objective problem with
[62]

5.4.2. GDE3

Generalised Differential Evolution, version 3 (GDE3) is an EA based on the Differential Evolution (DE)
approach to solve MOO problems [70]. The principle of DE for searching the global optimum in con-
strained spaces was introduced by Storm and Prince [71, 72]. DE is a parallel direct search method
that utilizes D-dimensional parameter vectors and improves the solutions through an evolutionary pro-
cess. The performance of DE in a specific optimization problem depends largely on both the trial
vector (search direction) generation scheme and the choice of the control parameters: population size,
mutation factor, and crossover probability.

Understanding GDE3 requires some additional concepts. Firstly, for a real-valued nonlinear pro-
gramming (NLP) problem, a solution that satisfies the following equality and inequality constraints and
the above variable bounds is called a feasible solution[64]. Other solutions are called infeasible. Note
that we have | number of greater-than inequality constraints, K number of equality constraints, N real-
valued parameters in the genotype, and x;, x,, are the lower and upper bounds for the genes, respec-
tively.

 Minimizing f (%), the objective function.
» Subject to:

— greater than inequality constraints g;(x¥) > 0 where j = 1...J
— equal to inequality constraints hy (X) = 0 where k = 1..K
— real-value limits x; < x; <x, i =1..N

Furthermore, we need the concept of constraint domination. Here, ¥; constraint dominates ¥, i.e.
X1 > X, iff any of the following conditions are met.

. X, is feasible and %, is not.
- X, and ¥, are infeasible and ¥; > X, in constraint violation space.
- ¥; and %, are feasible and ¥, > X, in objective-space.

The first version of GDE improved on DE by modifying the selection rule; replacing an old vector
with a trial vector for the next generation if it weakly dominates the old vector. The second version of
GDE was modified to decide based on the crowdedness when the trial and the old vector were feasible
and nondominating each other. GDE3 improved on the previous GDEs by changing the following in
the selection rule:

* In the case of infeasible vectors (breaking constraints), the trial vector is selected, if it weakly
dominates the old vector in the constraint violation space, otherwise the old vector is selected.

30 5. Evolutionary Algorithms

* In the case of feasible and infeasible vectors, the feasible vector is selected.

- If both vectors are feasible, then the trial is selected if X;;0; >c X4 in the objective-space.
IfX,14 >¢ Xiria: then the old vector is selected. If neither vector dominates the other, then both
vectors are selected for the next generation.

Besides these small specialisations in selection and mutation operators, GDE boils down to the original
DE methodology. It has two parameters of DE as the control parameters as well; Crossover rate CR
and mutation scaling factor F. The parameter CR controls the crossover operation, as it represents the
probability that an element for the %,,;4; is chosen from a linear combination of 3 randomly chosen ¥;
instead of ¥,;,. It precipitates to CR controlling the rotational invariance of the search. The parameter
F controls the speed and robustness of the search through the amount of mutation.

5.4.3. SPEA2

The original Strength Pareto Evolutionary Algorithm (SPEA) was designed in 1999 [73]. The EA fo-

cused on three main aspects. Firstly, approximating the set of Pareto-optimal trade-offs in a single

generation using clustering. Secondly, finding the fitness of individuals dependent on the number of

nondominated points that dominated it. Lastly, preserving population diversity by archiving solutions
The improvements made by Strength Pareto Evolutionary Algorithm (SPEA2) [63], in 2001 are as

follows:

» Improved fitness assignment with relation to other individuals, both nondominated and dominated.

» nearest-neighbour density estimation for a better guided search process. It is an adaptation of
kt"nearest neighbour algorithm [74], where the density at any point is a (decreasing) function of
the distance to the k" nearest data point.

* New archival method that keeps an archive of constant size and the archive is truncated in a
manner to preserve boundary solutions.

5.5. Performance Measurement

To evaluate the quality of the population/Pareto front, we will look at the following quality indicators. We
have taken these varied indicators to measure the front quality because they all have their caveats®, and
gating more information about the front will lead to better statistical analysis with the same experimental
design.

5.5.1. Hypervolume

Hypervolume (HV), a.k.a. Lebesgue measure [75], is a well-favoured metric by many EA practitioners
to measure the volume of the objective space that is dominated by the Pareto front. Generally, the
hypervolume is favoured because it captures in a single scalar both the closeness of the solutions
to the optimal set and, to some extent, the spread of the solutions across the objective space. The
hypervolume of a given set of points S is the size of the portion of objective space that is dominated
by at least one point in S, with respect to a reference point. Unfortunately, hypervolume is costly to
calculate for MaOO problems (> 3 objectives).

For our purpose, we use an improved method of computing this metric called the dimension-sweep
algorithm [76]. It is a recursive algorithm that avoids repeated dominance checks and recalculation of
partial hypervolumes. Note that in this study, we will calculate the volume of the region dominated by
the generated front, therefore the higher HV is better.

5.5.2. GD and IGD

The Generational Distance (GD) and Inverse Generational Distance (IGD) are widely used quality indi-
cators to analyse the distance of a generated front, measured from a reference front (known as near-
optimal front) [77]. Take into account for d objective functions we will have a d — 1 dimensional surface
as the generated front and reference front. To check the quality of different runs of the algorithm, we
need to check how close both fronts are to each other. The GD [78] and IGD [79] are given by the

3These caveats will not be discussed as they lie outside the scope of the thesis.

5.5. Performance Measurement 31

following equations 5.3 and 5.4 respectively. Here, consider a candidate generated front A = a4, .., ay
and the reference front F = y,, .., yy. Note that M does not necessarily need to be equal or even close
to N. dl?’ is the minimal p-norm distance from a; to any pointin F. df’ is the minimal p-norm distance
from y; to any point in A. In our case, both distances are Euclidean.

N 1
GD(A) = %(Z d?)? (5.3)
i=1
1,0 2
IGD(A) = M(z ar)” (5.4)

i=1

In essence, the difference between GD and IGD is that GD is the average minimum distance of
the generated front from the reference front, whereas IGD is the average minimum distance of the
reference front from the generated front. This distinction is important because in most cases M # N.

Observing both quality indicators is important because we do not want our conclusions to be affected
by variations in the number of points in the generated or reference fronts.

5.5.3. Epsilon Indicator

We use the Additive Epsilon indicator (EP) [80] that measures the smallest value to be added to a
point in the candidate generated front, A, to make it non-dominated with respect to some point in the
reference front, F. It is therefore the smallest value € € R s.t. for any solution in F, there is at least one
solution in A that is worse by € [81]. In this thesis, we will refer to it as EP. The EP informs us about the
nature of the generated front in terms of relative equivalence or improvement over the reference front.
Keep in mind that if sets A = F or it dominates F the € is 0, otherwise it is positive.

Methodology

To reiterate what was said in Chapters 1 and 2, the recommendation framework we plan to study takes
an unspecified number of independent Recommender Systems (RSs) with specialised user-centric
goals. It then combines the recommendations generated by these using Evolutionary Algorithm(s)
(EAs). The EAs weigh the RSs in different ways and see how they perform on the user-centric recom-
mendation metrics. The EAs efficiently search this problem space (weights) to search for a set of near
Pareto-optimal solutions (combinations of weights) which give a trade-off over the different metrics.

For understanding the division of the dataset into train, testzg and testg, please read Chapter 3,
Section 3.4. Here, when the information on whether the test dataset is testyg testy, does not matter,
we use the notation testy.

6.1. Recommenders

Let us see the RSs we used to generate recommendations and the motivations behind them. We
will talk about the expected behaviour of each RS given our dataset. The RSs are implemented in
Spark and meant to be scalable solutions for handling large amounts of data. More details about the
implementation can be derived through reading Chapter 4, Recommender Systems and Chapter 7,
Experiments.

6.1.1. User-ltem Collaborative Filtering

Firstly, we use a simple User-ltem Collaborative Filtering (CF) approach. We denote this by the notation
RSy_,;. Given the set of users in the train set with all their user — item interactions, we generate
recommendations for users in testy using their train interactions. If the recommendation works well,
the recommended items should contain items in the test interactions of testy.

6.1.2. User-Artist Collaborative Filtering

Secondly, we take a nontraditional approach by using CF to recommend artists to users. After we have
the user — artist recommendations, we use an expansion method on the list to link artist — item.
We will use the notation RSy,_,, for this recommender .

The motivation behind this method is that artists are loyal to their musical styles, and collaborative
recommendations rooted in musical styles instead of the popularity of individual items may make the
recommendations more diverse. We particularly attempt to sample items uniformly from the recom-
mended set of artists for each user. This way, artists who are ranked lower still see their music appear
in the recommendations if they are deemed to be relevant. The items for a particular artist (that they
are associated with) are sampled in a random fashion.

6.1.3. Tailored Recommender
Lastly, we use a tailored approach to recommend items based on user’s test interactions. We will use
the notation RSy for this approach. Provided with the user — item interactions in testy, we do the

" Although the notation RS, 4_,; would be more appropriate, we will go with the shorthand RSy, 4.

33

34 6. Methodology

following:

* Observe their item — artist relation to recommend other items from the artist the user has
already heard. The artists are sorted by user’s listening counts for each artist within the given
time window (one year in this study).

* Like the previous recommender RS;;_, 4, items are sampled uniformly across the artists, we know
the user like, and all items are sampled randomly from the artists’ known set of items.

The motivation behind this approach is that a simple logical expansion, knowing the user’s observed
listening behaviour, contrasts the highly generalised nature of the CF approaches that are rooted in
Machine Learning disciplines. Moreover, recommending without generalising over other users may
improve the personalisation of the recommended list and provide the user with novel items.

6.2. Recommenders with Evolutionary Algorithms

Let us now see how we use the RSs along with EAs from a technical perspective in this study. This
includes formalising the problem encoding, selecting the objectives to optimise, and listing which EAs
we use to solve the MaOO

6.2.1. Problem Encoding

To use the EA we need to mathematically encode the problem under consideration. We need to com-
bine the outputs of n RSs and find the weights w; for each RS, where i € {1, 2,..,n}. These weights
are used to rerank the recommendation lists, after which they can be combined and simply sorted in
descending order to get the processed list R,,,.. We take the maximum list size of each RS’s recom-
mendations as k, combine them, and trim to remove duplicated items with higher rank. We keep the
resulting list of maximum size K. For this study, we have kept k = K. Figure 6.1 illustrates how this
looks from a broad view. For our problem, with 3 recommenders, the resulting recommendations will
be made using 3 weighing coefficients, as shown in equation 6.1:

RPTOC = trim(desc({wl X RSU_ﬂ} U {WZ X RSU—)A} U {W3 X RST})) (61)
: S
/ : \
{ RSu | 3 A
| @
N :
1 (@) . 3
: EA-based e ;
: -base | 5
RSu Sa |:(> z |:'\> weighing :{> o ... 6
7 strategy. ° o Z
: ° s
RSt :) o ©
N : / >
: -/
8
9

Figure 6.1: Diagram showing fusion of recommendation lists using an EA to generate a set of solutions that result in a
near-optimal objective front (with 2 objectives as an example).

In 2020, Xingjuan Cai, et al. [2] used real-valued array of length n — 1 to encode the problem. They
encoded such a way that sum of the ¥ w; = 1. They calculated the last n*" weight could be found using

w,=1- Z::ll w;. This was done to reduce the number of variables in the problem encoding.

6.2. Recommenders with Evolutionary Algorithms 35

We go in a different approach and have n variables and no constraints on)’ w;. This adds an extra
dimension to the solution space, but this makes the optima easier to identify in the solution space. This
is done because the dimension should help propagate information about the last recommender during
crossover more easily.

The value for each weight is bounded between 0.001 and 1.0. This is done because (i) it bounds
the search space, (ii) the lower bound becoming negative (w; < 0) would flip the order of items in the
list, and (iii) the lower bound becoming 0 (w; = 0) would give the same rank to all items in a particular
RS’s list and descending sort will become meaningless.

6.2.2. Optimisation Objectives
In Section 2.6, of chapter Background, we saw what types of objectives were used by different re-
search groups in their endeavours. The user-centric recommendation metrics we use as objectives to
maximise use are Mean Average Recall (MAR), Coverage (Cov), Novelty (Nov) and a modified Per-
sonalization (modPers) metric. These metrics have been described in detail along with the motivations
for their use in Section 4.2. All these objectives theoretically range from 0 to 1, but practically each of
them has different bounds for real-world tasks, and they vary in range.

To summarise the referred Section 4.2, we calculate these metrics over the set of all users u € U,
on their recommendation lists R, of length k. Here, T,, denotes the items actually heard by the user u,
obtained from the test interactions. The catalogue Cat is the set of all items that can be recommended
in a year. Ujg, |5k denotes users whose recommendation lists are of size greater than k.

1 R, NT,

MAR@k = — g vt
|U| Tyl

ueu

RynCat

Cov@k = Cat|

(6.2)

Nov@k = L ZRunF
ov —|U| k
uey

dPers@k = 1 ! Z mAn
mo ers = -
U|Ru|>k k

m,neRUlR“Dk

6.2.3. Evolutionary Algorithms

We use three different EAs to study how effectively we can obtain the near-optimal set of solutions.
In this section, we will not go into too much detail about each of the algorithms. For a more detailed
description of each algorithm, please look at Section 5.4. We use these algorithms because they take
different mathematical approaches for solving MOPs.

NSGA-III (Nondominated Sorting Genetic Algorithm 1l1) [62] is a reference direction guided search
EA. These reference directions/points need to be provided when the algorithm is initialized. NSGAIII
prioritises adding offsprings to unexplored directions. Each reference direction seeks to find a well-
distributed front of non-dominated solutions.

GDE3 (Generalised Differential Evolution) [70] is an EA that relies on the mathematical foundations
of Differential Evolution (DE). It has optimisations which make it well suited for solving MaOO problems.
In essence, it searches for a global optima or the Pareto-optimal set by creating trial vectors which are
individuals with small randomised perturbations, while keeping track of good solutions.

SPEA2 (Strength Pareto Evolutionary Algorithm) [63] searches for the Pareto-optimal set by ap-
proximating the shape of the front. It makes sure the offsprings move in a direction where the front is
approximated to be. It estimates the shape of the front using a density estimation algorithm and keeps
track of diverse solutions while doing so.

Experiments

In this chapter, we will talk about how we structure the experiments for reliable validation of the rec-
ommendation framework. We will also discuss the computing environment that we used to show what
it takes to reproduce this study. We also note the hyperparameters for the different modules of this
project to make any discrepancies relating to performance and results clearer for the readers of this
thesis document.

7.1. Experimental Design

We decided to study 3 different factors that may affect the performance of the recommendation frame-
work. These factors are listed in Table 7.1 with the considered levels for a full-factorial experimental
design [82]. Here is the motivation for choosing them along with the questions we aim to answer.

* Year: the year of the MLHD user data. The experiment is designed in such a way that we have
data available for one year and we make recommendations at midnight of the New Year’s Eve
(31st Dec, 23:59:59). We want to investigate if the change in user base and interaction patterns
across different years, which we saw in Chapter 3, affect the recommender systems and/or the
quality of the generated fronts by the EAs.

» Test set type: the test set we tune on, testgg, vs an independent test set testy,. Itis important to
investigate if given a similar distribution of data, user-base, and interaction patterns, does simply
testing the system on a new set of users affect the results? If so, then to what extent?

Algorithm: these are the different EAs we have considered in the methodology. The motivation
for these particular algorithms is given in Chapter 5. We want to investigate if given a similar data
distribution, does simply using a different EA change the quality of the generated front? If so,
then in what way?

Factors Levels

Year 2005 2008 2012
Test set type testy, testgps
Algorithm NSGA-IlIL GDE3 SPEA3

Table 7.1: Factors considered for the full factorial experimental design, along with levels for each.

We will quantitatively analyse the performance of different EAs using the front quality indicators
and the time required to finish the specified number of generations of the EA (Time). The quality
indicators are: Generational Distance (GD), Inverse Generational Distance (IGD), Additive Epsilon
indicator (EP), and Hypervolume (HV). These indicators have been described in Chapter 5, under

37

38 7. Experiments

Section 5.5, Performance Measurement. Furthermore, we will qualitatively analyse the values for user-
centric metrics achieved by different recommenders and performance indicator values for the EAs,
across the different factors under study.

In Chapter 3 we explained that while preprocessing MLHD, besides making two test sets (testy, and
testps), we also made 3 different interaction sets for each. This was done by splitting every test users’
user — item interactions 50-50%, 3 times, randomly. This was done to make sure that our results for
our RS metrics and EA generated fronts are not sensitive to how we sample the user interactions each
year. Lets denote these interaction sets for each of the 3 test sets by §.

To make sure we have good randomization for the experiments besides the § we will also take 3
repetitions, r, to make sure we have sampled enough randomized starts for each combination of levels
for the factors. The final number of experiments are given by the mathematical working 7.1. That
makes a total of 162 runs.

Npyy = |year| - [testy| - lalgo| - (|8] -)
=3-2-3-(3:3)
=3-2-3:9
=162 runs

(7.1)

It is important to note that GD, IGD and EP require a reference front to compute the distance from.
We do not know what is the optimal solution for every unique problem. We take a union of the Pareto
sets of all solutions, find the Pareto set of this union, and use it as the reference front. A unique
(real-world) problem here is the combination of (year,testy), where year € {2005,2008,2012} and
testy € {testgs, testg,}. For each unique problem, there exist 3 randomised sampling sets of edges
which result in 3 sets of train-test interactions, &, and 3 repetitions of every EA on it, just to make sure
our results are not affected by the various critical choices we make in this study. Therefore, every
(year,testy, EA) combination has 9 runs in total.

7.2. Compute Environment

It is important to explain the computing environment in detail for the good reproduction of this research.
Although the software output for this thesis is extremely modular and configurable, reproducing it on
another computational setup will lead to different results. In many cases, without the proper setup, one
would not be able to perform many intermediate actions the system requires.

Group Property Local Setup Server

CPU Intel(R) Core(TM) i7- | Intel(R) Xeon(R) CPU E5-

9750H CPU @ 2.60GHz | 2650 v3 @ 2.30GHz

Compute | CPU count 1 2

Total #CPU cores 6 10

Total #threads 12 40

Main — Memory | 1658 DDR4, 2667MHz | 128GiB
Memory | Amount

Swap used/needed 40GiB 8GiB

(greater number)

Network attached SSD

Storage Storage Type SSD RAID

Amount required < 512GiB < 128GiB

Table 7.2: Hardware setup details for better insight into experiment execution choises.

The setup details are given in Table 7.2. Many critical decisions were motivated by the available
compute infrastructure. ArangoDB’ was hosted on the local setup because of the available SSD? stor-

Trefer to Section 3.1.2 for background.
2Solid State Drive

7.2. Compute Environment 39

age, as opposed to the server’s Network-attached SSD RAID®. Querying data from ArangoDB collec-
tions does require a lot of memory to access the collection indexes and other bookkeeping necessities
for streaming the data to Spark applications to the server. ArangoDB took up at most 15GiB main
memory and 40 GiB of swap memory to reliably send records to the Spark jobs. The time for the same
is recorded in Table 7.3, which is collected from the Spark history server.

ArangoDB collections)
Recommender Time
user | artist | items | user — item | user — artist | artist — item
RSy v v v 22 min
RSy_a Ve v v v v v 35 min
RSt ve v v v v v 29 min

Table 7.3: ArangoDB collections required for each RS and the time required to fetch data before actual compute begins. Note
the collections with — are edge collections, otherwise node collections.

7.2.1. Selecting 200 MLHD parts
The MLHD data is split into 575 parts, each containing about 1000 user log files. We cannot use all 575
parts because the number of runs of different recommenders and algorithms our experimental design
requires is too great. Using the entire MLHD would take exponentially more time for all runs. For a
clearer picture, we need to generate recommendations using 3 different RSs for 3 different data splits
by year, each having 2 types of test sets (testz4 and testgs), each having 3 numbered sets. After that,
we need to run the Evolutionary Algorithms according to the experimental design.

We performed a heavy analysis on MLHD_000.tar to understand the data, thus we are not blind
to its biases and need to take additional 200 parts. Thus, we used only 201 MLHD parts of the 575
parts for this study. With 201 MLHD parts, all Spark jobs took 414.2 minutes (6hr 54 min). The EA jobs
took 3963.7 minutes (66hr, 4min). This totals up to 4377.9 minutes, or a little over 3 days of compute
usage. This does not even account for weeks of setting up the testbed to make sure the experiments
will run reliably and complete within 1 week. We do this by scaling up from smaller to larger sizes of
the dataset, to detect and eliminate any bottlenecks.

7.2.2. Recommender Hyperparameters

We wanted to keep the parameters for the Alternating Least Squares Collaborative Filtering [50] similar
across different runs of the experiment. This is because we did not want our experiments to be affected
by excessive hyperparameter tuning [83]. To reiterate, we move from a smaller dataset to a larger one
while deciding the parameters. We need to select the parameters for the collaborative filtering aspects
of the RSs. We decided to set enough model flexibility to accommodate the largest problem sets (year-
split 2012) with 50 MLHD parts and stop when we see no improvement in RMSE* on the interactions
in all three validation sets. We adopt these parameters and simply run on the larger set of data, which
is supposed to scale well without any human intervention.

As the user — artist interactions are less than user — item we decided to adopt the settings tuned
for RSy, _,;, for the RS;_ 4. These values are 10 latent factors, a maximum of 10 iterations of CF, and the
regularizing parameter and alpha as 1.0. The only parameter we had to change across the year-splits
was the numBlocks, due to the memory limitations. The numBlocks were set to 10, 28, and 48 for the
years 2005, 2008, and 2012, respectively.

7.2.3. Evolutionary Algorithm Hyperparameters
Table 7.4 shows the hyperparameters set for the EAs for the performed experiments. As noted in the
methodology, Section 6.2.1, we take k items from the recommendations of each RS and combine them
to get a list of size K. For these experiments, we kept k = K = 10.

We use NSGA-IIl and SPEA2 with Polynomial mutation and SBX crossover which have been de-
scribed in Chapter 5. GDE3 used the recommended setting for CR and F were set as 0.5 [66]. NSGA-III

3Redundant Array of rexpensive/Independent Disks
4Root mean square error

40 7. Experiments

requires the reference point generation method as an input. We kept it the same as NSGA-III’s original
paper [62], where they use a Das and Dennis’s method of sampling well-spaced points on a symmetric
hyperplane [84]. We decided to go with 35 points, which symmetrically fit on a hyperplane®. This meant
our population had to be greater than 35. Our computational setup could handle a population of 40
while using memory optimally on the largest unique problem i.e. utilized up to 112 GiB out of 128 GiB
of memory to calculate the fitness of every individual in the population.

EA Hyperparameter Hyperparameter specification | Value
- "
Polynomial Mutation p.rob.abll.lty) &
distribution index 20
NSGA-III ili
SBX (Crossover) p.rob.abll.lty . 1
distribution index 20
Reference Points [84] number of points 35
-]
Polynomial Mutation p.rob.abll.lty) v
distribution index 20
SPEA2 ili
SBX (Crossover) p.rob.abll.lty . 1
distribution index 20
Offspring population size | - 40
GDE3 Crc?ssover .Rate (CR) - 0.5
Mutation Scaling factor (F) | - 0.5

Table 7.4: Hyperparameters for the Evolutionary Algorithms used in the experimental setup.

5Using the formula H = (MJ';"l), where M is the number of objectives and p is the number of partitions in the hyperplane edge.
By taking M = 4,p = 4 we get 35 points.

Results

In this chapter, we see the results of the conducted experiments and more importantly the interpre-
tations of these. We will first analyse how the Recommender Systems (RS) perform individually on
user-centric metrics. Then we will see how RSs compare to each other under different contexts. This
will show us the capabilities of different RSs and how they handle situations external to the recom-
mendation task. We will then analyse the performance of the Evolutionary Algorithms (EA) in a similar
manner and then proceed to the quantitative tests to see which factors affect the quality of the generated
front, and how they are affected.

At the end of this chapter, we will see some insightful visualizations. First, ‘4D’ plots and parallel
coordinate plots to see the objective fronts generated by different EAs. Then we will see how the
different RSs are weighed to solve every unique problem case i.e. (year, testy) combination.

8.1. Recommenders

Let us analyse the behaviour of the Recommender Systems we use before going into how well they
combine. It is important to understand how these models behave to properly understand what the EAs
are working on to generate near-optimal fronts. It will also enable us to fathom to what extent can EAs
balance potentially temporally unstable recommenders to still create good solutions.

Independent Behaviour

It is important to understand how the recommenders behave in a normal setting where we simply push
out items and see how well they perform on user-centric metrics. In the methodology, Chapter 6, we
gave an expectation for the behaviour of the RSs. Each RS has a slightly specialised goal which
should lead to differences in user-centric metrics. In addition, recall that these metrics are not equal
i.e. although they all range from 0 to 1, they have different practical bounds and these bounds change
depending on the distribution of the underlying data.

Figure 8.1 shows an example of the 3 different RSs’ comparative performance on the user-centric
metrics for the year 2008. We see the performance at difference list size k to see how RSs prioritise
these metrics and how do they converge. All figures from this analysis are provided in Appendix D.

From the provided figures, here and in the appendix, we can note the following:

+ All recommenders have a really low MAR. This depends on the underlying data the RSs tries
to model and is averaged over really diverse users, while not removing users who have fewer
observations. As we preserve a lot of minority users this low value is expected.

* RSy_,; while showing consistent behaviour on MAR, performs abysmally on coverage and novelty.
Especially in 2012, we see that Novelty becomes extremely poor and unstable. It also shows con-
sistent performance on the personalisation metric at different list sizes i.e. personalisation does
not improve or worsen much visually as the list size increases and more items are considered.

* RSy_4 shows steady behaviour in terms of MAR. It clearly prioritises personalisation and we
see it fall as more items are considered. It steadily recommends novel items and the coverage
increases and converges as the list size increases.

41

42

8. Results

* RS shows extremely tailored personalisation. We cannot see personalisation on the plots be-

cause the plots are logit-scaled and personalisation approaches the value 1.0 (maximum), which
means it cannot be mapped on the plot. Coverage and MAR increase and converge as the list
size increases. Novelty is always steady.

These points being made, we cannot do a side-by-side comparison of different models using this
visualization method. We need a better way to analyse the comparative behaviour of these models.

FEEH

10 15 20 25 5 10 15 20
Recommendation list size Recommendation list size

(a) Recommender System RSy_,; (b) Recommender System RSy, 4

°

t scale)

0.80

logil
o

C

3 0.40
020

metric vall
°

°

10 15 20
Recommendation list size &

(c) Recommender System RSy

Figure 8.1: Example of different recommenders’ metrics achieved on testrg. Here example year is 2008, for all the 3 years

under study see the appendix, Appendix D.

Comparison Across Recommenders

We analyse the behaviour of the RSs compared across different recommenders to understand how
individual metrics are valued and prioritised by each recommender. Again, We see the performance
at different list sizes k, but also across different years to see how the models perform under the same
distribution of data. We can see the visualisation of the same in Figure 8.2. From the data we can
observe that:

The trends for Coverage remain consistent across recommenders. Coverage of RS;_,; is less
than that of RS;_ 4, which is less than RS;.

The trend for MAR is inconsistent. RS;;_ 4 always performs worst. In 2005 and 2012, RSy performs
better than RS;,_,;, but in 2008 the pattern is reversed.

The trend for Novelty is regular but changes through time. RS; always performs better than
RSy_ 4, Which always performs better than RS;_,;. The inconsistency is in the amount by which it
performs better; we see the performance gap between RS;_ ,—RS; and RS, _, ,—RS equalising
as we move forward in time.

The comparative trend for Personalisation is consistent. RS;_,; always performs worse than the
other RSs. The rate at which the performance of RS,_,; degrades is also much worse than the
others.

8.1. Recommenders

43

0.050 4

0.025 4

0.000 4

year = 2005 — metric = Cov

0.004 4

0.003 4

0.00:

5
!

0.001 4

0.000 1

year = 2005 — metric = MAR

0.4 4

0.3

0.2

0.19

0.0 1

year = 2005 — metric = Nov

1.00

0.98 1

0.96

0.94 1

0.92 4

year = 2005 — metric = modPers

0.05

0.00 1

T T

year = 2008 — metric = Cov

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

T T

year = 2008 — metric = MAR

T T

year = 2008 — metric = Nov

1.00

0.99 1

0.98 4

0.97 4

0.96 1

0.95

0.94

0.93 1

T T

year = 2008 — metric = modPers

T T

year = 2012 — metric = Cov

0.004 4

0.003 4

0.002 1

0.001 4

0.000

T T

year = 2012 — metric = MAR

0.20 4

0.15 1

0.10 4

0.05 1

0.00

T T

year = 2012 — metric = Nov

1.00

0.98 4

0.96

0.94 4

0.92 1

0.90 1

T T

year = 2012 — metric = modPers

RSy1
RSy
RSy

Figure 8.2: Recommender Systems’ comparison of performance across recommenders. Note (i) X-axis has list sizes k going
from 2 to 26 with increments of 2 (ii) compare vertically (starting from, go top-down) (iii) y-axis limits different for all subplots.

Comparison Across Years
Recall that we take 3 different years under study, and in Section 3.3 we saw that the data distribution and
usage behaviour change across years. It would be natural to theorise a change in how different RSs
model the distribution at any given time point to make recommendations. We can see the visualisation
of the same in Figure 8.3. In the visualisations we can observe that:

» Coverage of RS;;_,; decreases starkly as the years progress i.e. simple collaborative filtering rec-

ommends less proportion of items as we move forward in time. Coverage of both RSy;_,, and RSy
increases as we move in time and more data is available.

The changes in MAR for the three RSs are observably different. RSy _,; performs quite similarly
across different years, but in general improves over years. MAR of RS, _,, worsens going from
2005 to 2008 but improves when we move to 2012. The MAR for RSy, as well, worsens going
from 2005 to 2008 but improves when we move to 2012, but unlike RSy _ 4, the MAR for 2012 is
greater than 2005.

The Novelty across the years behaves observably differently for the three models. The novelty of
RSy_,; sharply drops across all list sizes as the years go on, and the shape of the curves shows
near-zero novelty for years 2008 and 2012 for lower list sizes. RS,_,, and RSy both show a drop
in novelty as the years progress, but the comparative gap for RSy is smaller.

The Personalisation of RS, _,; drops consistently across all list sizes as the years go on. That of
RSy _ 4 firstincreases from 2005 to 2008, and then slightly decreases. The personalisation of RSy
consistently increases as years go on.

44 8. Results

model = RSy;_,; — metric = Cov model = RSy;_,; — metric = MAR model = RSy _,; — metric = Nov model = RSy;_,; — metric = modPers
0.0040 0.96 4
0.006
0.0035 0.020 4 0.95
0.005
0.0030 51 0949
0.004 0015
g 0.93 1
153 25 4 .
£ 0.0034 00025 0.010
0.92
0.002 0.0020 4
0.005
0.91
0.001 / 0.0015 4
P D —]
0.000 T T T T T T 0-90 T T
model = RSy, 4 — metric = Cov model = RSy, 4 — metric = MAR model = RSy, 4 — metric = Nov model = RSy, 4+ — metric = modPers
25 4 1.000 4
0.00025 0.35]
0.10 4
20 - 0.999
0.00020 0.304
0.08 1
g 0.00015 0251 0.998 1 2005
€ 0.06 4 - —— 2008
— 2012
0.04 4 0.00010 4 / 0.20 4 0.997
0.02 1 0.00005 - i 0.996
0.15
T T T T T T T T
model = RS — metric = Cov model = RSy — metric = MAR model = RS — metric = Nov model = RSt — metric = modPers
0.0045 4 0.42 1.0000 4
0.25 1
0.0040 4 0.40 0.9999 4
0.20 o |
0.0035 0384 0.9998 -
< 54 0.0030 -
@ 0.15 .9997 4
g 0.36 1 09997
0.0025
] o 0.9996
0.10 0.34
0.0020 4
0.9995
0.05 1 32 1
5 0.0015 4 0.32
-_ 0.9994 4
T T T T T T T T
10 20 10 20 10 20 10 20
k k k k

Figure 8.3: Recommender Systems’ comparison of performance across years. Note (i) X-axis has list sizes k going from 2 to
26 with increments of 2 (i) compare vertically (top-down, left-right) (iii) y-axis limits different for all subplots.

8.2. EA Experiments

We have seen how starkly different the RSs perform under different temporal contexts, and in relation to
each other under those contexts. Now let us move on to see how well Evolutionary Algorithms perform
while weighing these recommenders to generate a near-optimal front to maximise the user-centric
metrics.

In Section 7.1 we described the experimental design used to reliably verify how well different EAs
can solve the aforementioned MaOO problem. We will first analyse the obtained results visually to
note any obvious trends or uncharacteristic variations we see. Then we will move on to the quantitative
significance test to analyse empirically how different factors in the experiment affect the targets (front
quality and run-time).

8.2.1. Quality Indicators
We will again make visualizations to analyse the results across factors. First across different EAs, then
across the temporal context, and lastly across test sets (testgs, testg,). For these, visualizing swarm-
plots’ seemed to be fitting because we can show the distribution of the data without any quantitative
summarization (which would mean loss of information) and we do not need to worry about overlapping
data points.

For understanding certain observations, recall that we do 3 different samplings with 3 repetitions
(3 x 3 = 9) for every unique problem set. Every year presents 2 unique problems which give the
reference front used to calculate the GD, IGD, and EP (¢). Therefore, if an EA solves the problem
consistently across different runs, then it is natural to see 3 clusters of 3 points each in a quality metric.

A categorical scatterplot with non-overlapping points. For each category, points are translocated to match the value on the
numerical axis as close as possible to the original without any data-point overlap.

8.2. EA Experiments 45

Comparison Across Algorithms

In Figure 8.4 we can see the different algorithms coloured differently. The year increases from top to
bottom, and each column shows a different quality indicator. We can observe the following from the
data:

» The GD values of the three EAs (NSGA-IIl, GDE3, and SPEA2) are very similar every year.

» The IGD values for GDE3 and SPEA2 are quite consistent. NSGA-IIl shows variation in IGD
compared to other EAs. This may be because of the number of reference point hyperparameter
settings of the algorithm.

» The Epsilon value (EP) is consistent across the three EAs for 2005. The years 2008 and 2012
have NSGA-IIl showing slight variation in observations compared to others.

» The Hypervolume (HV) is consistent for the three EAs every year.

» The comparative Time required for the EAs to complete their runs varies a lot as the years change
(problems change). SPEA2 takes much longer than the others in 2005, observably more by 27s
on average (18% increase). GDES3 takes longer than others in 2012, observably more by 2min
30s on average (4% increase).

Year = 2005 — Indicator = GD Year = 2005 — Indicator = IGD Year = 2005 — Indicator = EP Year = 2005 — Indicator = HV Year = 2005 — Indicator = Time
0.005 . . oor ace ooe oo
° . 0.008 4 0944 180
0.0041 e s oee 0.005 4
0.007
0.943 1704
0.003 0.006 4 0.004
E . 0.942
~ 0002 | 00059 o 0.003 ose oo 160
haad oo 0.941 4
0.004 ,
0.001 0.002 B e °
o
hd o 0.003 0.910 4 i.- L'
o oo 4
1 o4 e
0000 eee b 0.002 " ee0 0.001 oo o T ooe : .
Year = 2008 - Indicator = GD Year = 2008 — Indicator = IGD Year = 2008 — Indicator = EP Year = 2008 — Indicator = HV Year = 2008 — Indicator = Time
00107 gen aoe ase . eee ooe 9604 o
o o .. 0.00150 0.952
0.008
oo oo . 'Y
0.008 - 0.00125 4 0.950 940
0.006 -
0001001 0.948 90 .
£ 0.006 4
:] 0.00075 0.946
£ 0.004 T 6 900
oo
000id e 0.00050 0.944 4
0.002 . . 8580
0.00025 0.942
» %ot o 4 e
0o000{ 38 %o0ae® 0.002 secose 0.00000 ase o0l eee vee s0{ & .
Year = 2012 — Indicator = GD Year = 2012 — Indicator = IGD Year = 2012 — Indicator = EP Year = 2012 — Indicator = HV Year = 2012 — Indicator = Time
0.0074 vy 7] e . o ose .
oeo 0.00° .) 0.928 4 5] 35004 :
0.006 N ooe 0.0012 4 <
0.006 0927 | -
0.005 . 0.0010 450
0.005 - . 0.9% 4 3450 o
2 0004]
£ 0.004 0-0008 0.925
* 0.003 4 3400
w 0.0031 eee 0.0006 0.924
00021 o
< o] o ;
0.002 e o000ed oo 0.923 a0 °
0.001 4 . ° -
0.001) o 0.9224 %
0000 %* L o 000021 qop ooe oo ose
T T T T T T T T T - - - 3300 - - T
NSCAIIl GDE3 SPEA2 NSGAIIl ~ GDE3 SPEA2 NSGAII ~ GDE3 SPEA2 NSGAII ~ CGDE3 SPEA2 NSCAIIl GDE3 SPEA2

Algorithm Algorithm Algorithm Algorithm Algorithm

Figure 8.4: Swarmplots of EA quality indicator values for comparison across different EAs, for runs on testgg

Comparison Across Years

In Figure 8.5 we can see observations from different years coloured differently. The algorithms change
from top to bottom, and each column shows a different quality indicator. We can observe the following
from the data:

» The GD for each year shows slight variations, with one of 2008’s problems having a particularly
high GD. Overall, all algorithms seem to show consistent trends in GD.

» The IGD, like the GD, shows slight variations across years and every year observably has one
problem which performs comparatively worse than the others.

46

8. Results

The EP steadily reduces as the years go on i.e. the minimum required shift of a point to make
the point nondominated (better) compared to a point in the reference front lowers. It gives single-
point information and should be taken with a grain of salt. Moreover, recall that all metrics have
different practical bounds.

The HV for the year 2012 is lower than 2005 and 2008 i.e. dominated region (volume) by the front
reduced in 2012. Thus, we cannot achieve similar performance with the three RSs across time.

The Time required for a single run of an EA increases as the years go on i.e. more user data is
available, and the fitness function takes longer to compute.

Algorithm = GDE3 — Indicator = GD Algorithm = GDE3 — Indicator = IGD Algorithm = GDE3 — Indicator = EP Algorithm = GDE3 — Indicator = HV Algorithm = GDE3 — Indicator = Time
0.008 o oo oo 0050] 3500
1950
0.008 - 0.005 4 1
e . 3000
. 945 o oo
0.006 7 0.004 4 2500 4
0.006 4 oo
0.940 eoe
. . ooe 2000 4
Zoo]| ° 0.003 2000
g 7 oo -
0.004 0985 1500
0.002
0.002 4 oo oo 0.930 1 1000 codthoe®
0.002 ®e® sescen 00014 eea
P ooo 0.925 500
0.000 eee %%e0e® 0.000 4 L R
T T 0.920 T T T 0 T
Algorithm = NSGAII — Indicator = GD Algorithm = NSGAII — Indicator = IGD Algorithm = NSGAIII — Indicator = EP Algorithm = NSGAII — Indicator = HV _ Algorithm = NSGAIII — Indicator = Time
0.0104 3500 1
0.008 oo oot oo o050 e
. 0.005 - 3000
0.008
. . 09151 ese 2500 4
0.006 4 0.004 4 2500
oco
g . 0.006 4 09407 ooe ooe 2000 4
T 00044 e . 00034
g o el 0.935 1 1500 4
0.004 . 0.002
00024 . ece 0.930 1000 codtost
o 0.001 4 o
oee 0002 ® %ee oot ™ 0925 4 500 4
00001 eee 3 o sescosase
: T T 00001 T 0.920 T T T 0 T
Algorithm = SPEA2 — Indicator = GD Algorithm = SPEA2 — Indicator = IGD Algorithm = SPEA2 — Indicator = EP Algorithm = SPEA2 — Indicator = HV Algorithm = SPEA2 — Indicator = Time
< oo ooe oo 3500 4
] 050 4 ooe
0.008 0.008 4 0.005 0950 3000
oo 0.945
19451 oee 2500 4
0.006 4 0.004 2500
0.006 oosnd oo
. ooo 2000
2 o 0.003 4
£ 0.004 4 oo ar |
0.004 0.935 1500 4
0.002
ece 0.930 1
0.002 oo 1000 cedtoce
0.002 4 b ®eee®® 0.0011 ooe
ose ooe 0.925 500
ot
00001 eee 3% 0.000 oo0 escoseece
T T T T T T T T T 0.920 T T T T T T
2005 2008 2012 2005 2008 2012 2005 2008 2012 2005 2008 2012 2005 2008 2012
Year Year Year Year Year

Figure 8.5: Swarmplots of EA quality indicator values for comparison across different years, for runs on testpg

Comparison Across Test Sets

In Figure 8.6 we can see two different test sets (testyg, testg,) coloured differently. This analysis is
important to note if the performance changes when we test the framework with different users. The
visualization pattern is the same as the analysis across years in Figure 8.4, but with more data points
and different implications. Ideally, clusters (of 3 points) for different test sets should be nearby each
other. The year changes from top to bottom, and each column shows a different quality indicator. We
can observe the following from the data:

The GD for both test sets shows visually similar behaviour for the three years and the three
algorithms.

While the IGD for testg, is comparatively lower than testgg in 2005, it increases in comparison
over years. The algorithm-wise inconsistency for NSGA-IIl is presented for both test sets.

The EP for 2005 and 2008 showed similar behaviour for the two test sets. The trend changes
in 2012 where the EP for test;, (unseen users) is on average higher than that for testys (users
optimised for) i.e. performance is comparatively worse for unseen users.

The hypervolume is visually much lower (worse) for testz, (unseen users) than testgs for the
year 2005. Years 2008 and 2012 have mixed performances.

The time required to finish the runs is similar for the two test sets.

8.2. EA Experiments 47

Year = 2005 — Indicator = GD Year = 2005 — Indicator = IGD Year = 2005 — Indicator = EP Year = 2005 — Indicator = HV Year = 2005 — Indicator = Time

0.005 0.9430
0.008 804
0004 0.005 4 0.9425 180
0.007 4
- 0.004 4 0.9400 1704
0.003 0.006
< 9375
= 0.005 4 0.003 4 0.9375 160 4
” 0.002 09350
0.004 0.002 4 35
; 150
0.001 0.003 4 0.0325
0.001
0.002 |
0.000 0.9300 140
0.000
Year = 2008 — Indicator = GD Year = 2008 — Indicator = IGD Year = 2008 — Indicator = EP Year = 2008 — Indicator = HV Year = 2008 — Indicator = Time
00107 0.004 0.9550 960
0.008
1 0.9525 940 -
0-008 0.003
0.006
0.9500 920 4
2 0.006 4 : 3
= 0.002 4 75 RS
£ 0.004 0.9475 900
: EA
09450
0.002 00044 0.001 880
00425
860 o
0.000 00029 0.000 0.9400
Year = 2012 — Indicator = GD Year = 2012 — Indicator = IGD Year = 2012 — Indicator = EP Year = 2012 — Indicator = HV Year = 2012 — Indicator = Time
0.007
0.007 0.0074 0998
0.006 4 3500 4
0.006 0.006 1
5 0.005 0.926
0.005 0.005 1 3450
< 0.004 0.004 4
E 1 0.924
E 0.004 3400
= 0.003 ; 0.003
0.003 0.922
0.002 0.002 3350 4
0.002
0.001 0.001 4 0.920 -
0.001 3300 4
0.000 0.0004
NSGAII ~ GDE3 SPEA2 NSGAII ~ GDE3 SPEA2 NSGAIIl GDE3 SPEA2 NSGAII ~ GDE3 SPEA2 NSGAII ~ GDE3 SPEA2
Algorithm Algorithm Algorithm Algorithm Algorithm

Figure 8.6: Swarmplots of EA quality indicator values for comparison across different test sets (testgs, testg,)

8.2.2. Quantitative Significance
Now we elicit which differences in the achieved quality indicator values are actually significant, through
quantitative analysis of the experiment runs.

We go with the Mann Whitney U Test (Wilcoxon Rank Sum Test) paired statistical significance test
[85, 86], used with Bonferroni correction[87]. We chose the Wilcoxon test because of 3 reasons: (i)
The normalcy assumptions for the more popular parametric methods such as ANOVA do not stand
true with our observations, (ii) we go with groupwise paired tests to observe the median shift instead of
assuming the observations come from a set distribution, and (iii) the Wilcoxon test is commonly used
to perform quantitative performance comparison for EAs [88]. The Wilcoxon-Mann-Whitney test has
the following hypotheses:

H,: The two populations are equal (if p > «).
H;: The two populations are not equal (if p < a).

The Bonferroni correction is a multiple-comparison correction used when several dependent or
independent statistical tests are being performed simultaneously. When making multiple comparisons,
the alpha value may be appropriate for each individual comparison, but it is not appropriate for the set
of all comparisons. To avoid excess spurious positives, the alpha value needs to be lowered to account
for the number of comparisons being performed.

We use the Pairwise Vargha and Delaney’s A (VDA) and Cliff’s Delta (CD) for effect size. These are
usually adopted in cases where a Wilcoxon-Mann-Whitney test is used [89]. VDA ranges from 0 to 1,
with 0.5 indicating stochastic equality, and 1 indicating that the first group dominates the second. CD
ranges from -1 to 1, with 0 indicating stochastic equality, and 1 indicating that the first group dominates
the second.

The table containing the p-values for the Wilcoxon-Mann-Whitney test, and the table containing
the values for VDA and CD for significant interactions is presented in Appendix B. To make the results
clearer, we have summarised the interpretations of the numbers in Table 8.1. The table is colour-coded
for ease of understanding.

8. Results

"(uoneurwop ybiis) 0
0] 8s0J0 AJaA uaym umoys Ajuo anjea @2 () ‘Ajleanoadsal (siojeaipul Ayjenb 10j)) S}es-1$8) Usasun pue uaas ay) usamiaq ysinbunsip Ajises 0} papoo-1nojod ale pue S¥3s27 (1) ‘100 > d
S9)edIpul/ / pue ‘so°0 > d sajealpul 2 (1) 9)oN "Xipuaddy 8y} ul Z'g pue |'g S9|qe)} Ul papJodal a1 yoiym sonsiels o pue ‘yYaa ‘1581 ASUlYp-UUBIA-UOXOD|IAN JO uonejaldiajul :|'g s|qel

$¥1521 2102 L,/ Stsarzioz S/ $¥1521 2102 z1oe
$¥15218002 /' / $¥1521 8002 ’rr S¥1501 2102 S¥1521 8002
$¥15218002 // $¥1521 8002 L/ S¥isa1800C L~/ ZLoz $%15212 8002
800z // 8002 rr $¥1521 2102 8002
800z // 8002 rr ziLoz 8002
800z // 41521 8002 8002
S¥1s21 600/ $¥1591 GOOT £, Sfasarzioe 2/ S¥1s01210C S¥1521 G0OT
S¥15216002 L/ $¥1521 G002 rr ZLoz $¥15212 6002 adA] 198 : JBBA
S¥15016002 L/ $¥1521 8002 L/ Stisa1gooc £/ $¥1521800C S¥1521 G00T
s¥15016002 L/ 8002 rr 800z // 800z %1521 6002
so0z // 5002 L,/ Stsarzioz S/ 00z /| 15212102 5002
00z // 5002 Irr 00z // zLoz 5002
so0z // $¥1521 800C L’ so0z 00z /| Y1521 8002 5002
00z // 8002 ’rr 00z / 00z // 8002 5002
$¥1521 GOOT r, so0z // G00z /| *¥15216002 5002
S]09yJ9 Hcmo_tcm_w ON ®Q>._. 189S Er_:._om_<
Zvads / Zvads NIVOSN
Zvads €309 wyobly
€3do rr NIVOSN €309
S¥)597 Y 1 S¥3597 adA] 198
8002 ’rr 8002 rr z1oz 8002
G002 ’rr G002 ’rr z1oz G002 Jes
6002 ,/ | (800 =an)so0z 8002 L’/ G002 , 8002 G002
(18mo)) Jonaq d (4aybiy) Jenaq d (18mo]) wuoyul d (1amo)) Jon9q d (18mo)) Jonaq d
awl] AH d3 asi as uosuedwo) Buidnolio
Jojeolpu|

48

8.2. EA Experiments 49

In the table, we see important interactions of factors. Note that although we analysed, we have
not listed the Algorithm:Year interactions and the three-way interaction between Algorithm:Year:Test
Set. These values are mostly significant when we compare an EA of one year with another and not
appropriate. This because when we change the unique problem, the reference front changes and we
know the hypervolume across the year changes. This data does not give any valuable information for
analysing the experiment.

By analysing the values for the groupings in Table 8.1, we can interpret the following:

Single factor grouping
» The year does not affect the IGD of the generated front. The GD worsens from the year 2005
to 2008 (p < 0.05) but no significant change after that. The Epsilon (EP), like the IGD, worsens
from the year 2005 to 2008 (p < 0.01) but no significant when moving to 2012. The Hypervolume
(HV) is always better (p < 0.01) for the earlier year, this was also discussed in the visual analysis.
The time required to complete runs increases significantly (p < 0.01) as we when we move on to
later years.

» The change in test set type (testys, testg,) entails testing on unseen users. By doing so, only
the GD is affected (p < 0.05) and we see that the unseen users perform better. Likewise, the EP,
which gives an indication about single points on the front, improves on average (p < 0.01).

» Considering the three different EAs, we see that both GDE3 (p < 0.01) and SPEA2 (p < 0.05)
perform better on IGD, compared to NSGA-IIl. There is no significant difference between the
performances of NGDE3 and SPEAZ2.

Interaction grouping
+ Algorithm and test set type do not have significant interaction i.e. quality of the front, based on
any quality indicator, is not affected significantly by using the EAs on unseen users. This entails
that the system is robust against variation in users and is reliable for practical usage.

» The interaction between year and test set type is significant across the board. Lets break this
down:

— GD is always better for the year 2005 with testz, (p < 0.01) when a different year or testgg
is considered.

— IGD is better for the year 2005 with testg, in most cases, except when year 2012 with testgg
is considered.

— Epsilon (EP) is usually worse at a later year and in most cases worse on testgs.

— Hypervolume (HV) shows significance in changes but there is no stable trend, except for the
fact that 2012 is always worse when compared to 2005 or 2008.

— Time required for runs is always significantly lower (p < 0.01) for the earlier year. For some
reason, during the 2008 experiment run, changing the test set to testg4 significantly reduced
the run time. We are not aware as to why this happened.

50 8. Results

8.2.3. Front Objectives and Solutions Visualizations

To analyse the quality of the Pareto front to spot relations, EA practitioners resort to visualising the
solutions on the front. These relations might not be very clear through the numerical indicators. In
Figure 8.8 we see the Pareto fronts generated at the end of the runs of different EAs plotted on a
parallel coordinate plot. The fronts are divided by the year and test set ((year, testy)), the divisions we
call unique problems.

Animation 8.7, gives an example of how this front looks in a multidimensional space. It shows a
‘4D’ visualization where Nov, Cov, and modPers form the 3 dimensional Euclidean space, and MAR is
on the 4" dimension, denoted by the colour of the markers.

In Figure 8.8, we can see that the trend of different objective values of the front across different
years is similar, although there are some small differences that can be identified if we look too closely.
Note that the value range of the objectives is different every year because the problem changes. We
also see that the quality of the front is consistent for the same year when we move from testyg to testy,
i.e. the front does not visually when the users are different.

We can also visualise how the EAs weigh different recommenders to reach these objective fronts. In
Figure 8.9, we can see the relative weights interpreted for the different unique problem sets. The unique
problems have the same colourmaps as their counterparts in Figure 8.8. These interpreted weights for
each recommender are obtained through the equation 8.1. We see that the trend of weighting different
models per year and depending on the test users (testgs, testg,) is not the same and shows striking
differences in many cases. That being said, we know that the Pareto front is not observably different,
besides in terms of hypervolume. This means the EAs are able to deal with changing contexts that
affect the RSs and weigh the RSs such that they still generate near-optimal fronts that are consistent
across seen and unseen users.

wt(Ry)

VR = S ower)

(8.1)

8.2. EA Experiments 51

0.0016
0.0014
0.0012
0.35
~ 0.0010
0.30 X =
% =<
* 0.0008 ~
0.25 . " - .
%
0.20 0.0006
Nov
.
0-15 0.0004
0.10
0.0002
0.05
0.01 0.02 0.03 0.04 0.05
Cov

NEERBERRE

Figure 8.7: [Embedded Animation] Example 4D’ plot for Pareto fronts visualization in objective-space for year 2005 on the
testg,. Note (i) the 4t" dimension is colour. (i) To see the animation open the PDF in native viewer and not on a web browser
(iii) To interact with controls enable PDF forms for the PDF viewer.

52 8. Results
MAR Cov modPers Nov MAR Cov modPers Nov
o 0.0016
00015 07 020 0.20
04 = 010 oot 002 0.10
0.0005 “\
oo o0 0.0002 1 - 0.05
(a) Year 2005, testgs (b) Year 2005, testg,
modPers Nov modPers Nov
0.99. o
- 0100
o ——
(c) Year 2008, testgs (d) Year 2008, testg,
MAR Cov modPers Nov MAR Cov modPers Nov
0.0035- ‘L 016 .
— — i 008
00015 o 0015 s 008
‘“‘”\ 0.06 ——— 006

(e) Year 2012, testgs

o

(f) Year 2012, testg,

Figure 8.8: Unions of objective-space positions of Pareto front solutions found by different EAs (NSGA-IIl, GDE3, SPEA2)
across different runs and test sets, split by year and year and test-set type. Fronts with the same year shown with the same

colour-map to check consistency of quality. Note that the axes are normalised (check axis values).

8.2. EA Experiments 53

(a) Year 2005, testgs (b) Year 2005, testg,
RSy-a RSy RSy RSya RSyt RSy

(e) Year 2012, testgs (f) Year 2012, testg,

Figure 8.9: Union of Recommender reranking weights interpreted from the genotype of Pareto fronts found by different EAs
(NSGA-IIl, GDE3, SPEA2) across different runs and test sets, split by year and year and test-set type. Weights from the same
year shown with the same colour-map to check the consistency of quality. Note (i) the axes are normalised (check axis values)

(i) lower weight means smaller rank and placed higher in recommendation list i.e. lower means more influence.

Conclusions

With the quantitative results presented in the previous chapter, we can now summarise the findings
from the experiemnts to answer the research questions that were posed in Chapter 1, Introduction. We
will also separately list the contributions that were made in the process of doing this research.

9.1. Findings

Let us categorise the conclusions we reach according to the research questions to answer the critical
scientific and practical concerns in a targeted fashion.

RQ1: How to perform late-stage recommendation fusion, for large-scale user data which
gives a set of near-optimal options over user-centric recommendation quality metrics?

We have presented a methodology for the recommender framework, well-rooted in theory, whose
outputs have been qualitatively and quantitatively verified using a robust experimental design. We
demonstrated the methodology on one of the largest public music listening histories dataset. The
large-scale data in combination with the experimental design presented various real-world scenarios.
We made the demonstration particularly for the task of music recommendation, although this strategy
is suitable for a wide array of application domains that use large-scale data.

RQ2: How to make the developed recommendation framework work reliably with large-scale
user data, in a manner that can be used in a practical industry scenario?

We used state-of-the-art engineering solutions to make this framework work well with large-scale
data. This involves making Recommender Systems work in the format of distributed computing to gen-
erate recommendations for large volumes of data. The EA pipeline is also parallelised and well suited
for performance-tuned compute environments. The implementation has been made open-source for
industry use and can be configured and modified easily.

RQ3: To what extent do variations in the user base and their listening behaviour, through
time, affect the delivered recommendations? and how?

The individual Recommender Systems perform very differently under different temporal contexts.
This is because of changing user base and user behaviour patterns. The Recommender Systems
fit on these different data distributions differently to recommend items, and thus perform variably on
user-centric metrics. The recommender framework with Evolutionary Algorithms is able to fuse the
recommendations from these Recommender Systems, showing high variability across different tempo-
ral contexts, to generate near-optimal fronts.

These fronts, when analysed over different EAs with quality indicators such as the Generational
Distance (GD) and Inverse Generational Distance (IGD) computed within their own temporal context,
perform quite well. This means the year does not affect the performance of these metrics. It performs
poorly on the Hypervolume indicator (the volume of objective space that is dominated) across tem-
poral contexts because the combined capabilities of these recommenders do not warrant consistent

55

56 9. Conclusions

reach through time for the nondominated region i.e. as years go on, the recommenders we use cannot
maximise the objectives in the same manner as previous years.

This implies that although this combination of Recommender Systems and Evolutionary Algorithm is
a good strategy to generate fusion solutions. However, practitioners should be cautious while deploying
these methods, as they are not a cure-all for the problems that plague the domain of Recommender
Systems.

9.2. Contributions 57

9.2.

Contributions

Enabling the scientific rigour and practicality of this research requires working on modules that go
beyond the main storyline of generating reliable Pareto sets for weighing different recommenders. Here
we list our contributions that relate to this thesis report.

The recommendation framework methodology under study that combines the disciplines of Rec-
ommender Systems and Evolutionary Algorithms.

Making the Music Listening Histories Dataset (MLHD), more usable by translating its information
to a scalable graph database.

Analysis of MLHD to uncover user behaviour patterns, and subsequently a dataset division strat-
egy for reliable validation of Recommender Systems and Evolutionary Algorithms on the dataset
under changing contexts.

Demonstrating the variation of different scalable recommenders on MLHD under different situa-
tions and making qualitative and quantitative comparisons in terms of user-centric metrics.

Performance optimisations in various parts of the implementation which are the reason for being
able to complete these experiments feasibly.

10

Limitations and Future Work

Now that we have concluded the study, we will take a critical look at the system. We will first point
out the possible limitations and threats of the experimental design. Then we will look at what research
endeavours can be undertaken in the future regarding improving the recommendation framework or
applying it in different application domains.

10.1. Limitations and Threats

It is important to look at our own work critically and give others a peek into the limitations. The research
about reliability of the recommendation framework ironically has notable threats that can make its op-
erationalization problematic for real-world usage. There are several modular aspects that build up the
system and there are things that can go wrong if it is adopted without any modifications. Here are some
critical factors or choices we made to look out for in our study:

1. The sampling we threshold chose (listening count > 20) to consider which edges we put in the
user interaction graph described in Section 3.2.1 may affect the results considerably. Setting
the threshold lower means significantly increasing the size of the graph data, but making the
information much more richer.

2. In Section 7.2.1 we discussed why we selected 200 (201 with MLHD_000.tar). We wanted make
our 162 runs of the experiment finish in a feasible amount of time. Taking all 575 parts would mean
more compute time for getting the recommendations from the three RSs and much longer fitness
evaluation time for the EAs, especially for year 2012 which has the most amount of data. We
tested the scalability of the framework by incrementally increasing the dataset size and making
optimizations until the largest problem size required around 1hr of compute time. A threat may be
that we do not see some problems which may lie ‘beyond the horizon’ when we add more data.

3. In Chapter 7 we present our experimental design. This is how we take the levels for factors: from
the available set of years (2005-2012) we take three years, use three EAs, and two sets of users
(testg, and testgg). Only after thorough analysis did we internally decided these levels for the
factors were justified to understand the variations in the workings of this framework with sufficient
depth. There could be a possibility that we miss nuanced changes from one year to the next.

4. We did not do extensive hyperparameter optimisation for the Collaborative Filtering for the recom-
menders RSy _,; and RSy _,4. This was because of three reasons: (i) extensive optimization could
in principle overfit for one of the test sets (testgs) and we would get poor results, (i) We wanted to
see how the recommenders behave across years so we kept the same hyperparameters across
years to make sure we see the evolution of these recommenders without human intervention,
and (iii) In real-world, with larger amount of data, extensive hyperparameter optimisation for CF
would not be possible and we would give sufficient amount of parameters and frust the system
works (without a validation with scientific rigour possible).

59

60 10. Limitations and Future Work

5. We selected for metrics which are considered as user-centric according to literature, see Section
4.2 for more. These are Mean Average Recall, Novelty, Coverage and Personalisation. We in no
way mean to suggest that these capture all objectives the user wants to be optimised. Although
we would have liked to investigate more metrics, it would make make the fitness evaluation more
compute intensive and increase the compute requirement for the experiments.

6. The metrics are also chosen because they are theoretically bounded between 0 and 1. We say
that the practical bounds are very different. This means that optimisation of each objectives
does not present equivalent growth in indicators. In this study we still consider the comparative
growth/decline of Pareto front quality indicators so it should not be an issue because the .

7. Possible data imbalance may be at play in the experiments, we investigated the dataset to confirm
this was not the case. We know how the distribution of users and their behaviour changes across
years in MLHD. We split the dataset temporally according to the years. When we run metrics we
average over all users to find the the metric at a particular list level. We investigated the standard
deviation for the metrics at various list levels across years and it was minimal. Yet there could be
some aspects the variations of users have that affect the metrics in unforeseen ways.

8. We selected the EAs’ hyperparameters which affect the compute significantly, to optimally utilise
the compute infrastructure (40 compute threads with 128 GiB memory). These were the popula-
tion size and the number of generations. We get observably consistent performance across the
board with differently sampled interactions and repetitions. That being said, changing compute
infrastructure will change the results significantly and fitness evaluation may not even be possible
with lower memory.

10.2. Future Improvements and Research Directions

The study of Evolutionary Algorithms and Multimedia Recommendations is an extremely niche domain.
A majority of the audience of this thesis report will not have each disciplinary background to understand
every aspect. Thus, here we will discuss possible future directions to improve various modules of this
research in a categorical manner.

10.2.1. Data Usage

To improve how data is retrieved efficiently from ArangoDB, one can investigate the use of arangodb-
spark-datastore’. This new connector for spark enables pushing the Spark DataFrame operations,
such as filter, down to ArangoDB query used to fetch the data. This ensures only relevant data is fetched
from ArangoDB and the entire collection of nodes and edges need not be fetched for performing any
task related to recommendation. This functionality is currently under development by the engineers at
ArangoDB, and is open to open-source contributions.

10.2.2. Dataset Enrichment And Hybrid Recommender

We investigated enriching the MLHD with features for songs using AcousticBrainz. The idea was to
use these features to perform graph-based recommendation or a nearest-neighbour recommendation.
A considerable amount of time during the thesis period was used to do this. This did not work out
because of a few unforeseeable reasons and did not eventually converge into the main storyline of this
thesis. We came up with a novel strategy to deal with the large volume of AcousticBrainz features to
find the nearest neighbours. See more about this in Appendix C

10.2.3. Recommenders and Evolutionary Algorithms
We tried to incorporate recommenders in this study which have diverse goals. This was a study mainly
about an interdisciplinary application and rigorous resting thereof, with a limited duration of 9 months.
The study can benefit by going investigating the results with the same or similar experimental design
with more diverse Evolutionary Algorithms.

More rigorous computation in terms of EAs would also be beneficial. Running more EAs for a longer
time and seeing how each EA converges and which EAs are better for which .

"https://github.com/arangodb/arangodb-spark-datasource

10.2. Future Improvements and Research Directions 61

10.2.4. User Experience

This study was about the scientific problem of MaOO in user content delivery. We do optimisation and
tests to make sure we are modelling the problem with little biases and it would benefit the user. An
MOO multimedia content delivery system has never actually been studied with real users. Thus, we
do not know how well users will receive it and if they find it useful.

Extensive user studies are required to give researchers a direction in terms of what users desire
regarding MOO multimedia content delivery systems. Do users find this system useful? Do they want
to be presented sliders to indicate their preferences or give predefined categories which map to the the
Pareto front? What metrics do users want to be optimised?

10.2.5. Beyond Music Recommendation

We decided to go with the MaOO problem of music recommendation because of its importance as we
analysed it and the collective knowledge set and skills we have. It would be interesting to use the same
methodology for large-scale recommendations for other application domains such as recommendations
for movies of different genres, news articles with various topical objectives, online retail stores for
relevance objectives, etc.

Appendix: User Behaviour Plots

In this Appendix lie the plots referenced in Chapter 3, Datasets, for understanding the changing dis-
tribution of user — item interactions. These plots are used to make explain that the changing data
distribution across time needs to be taken into account while reliably validating that the recommenda-
tion framework under study works well.

90th percentile
80th percentile

=

=)
W
!

70th percentile
60th percentile
50th percentile
40th percentile
30th percentile

20th percentile
10th percentile

102 A P
.:"‘.\M

=
L

Number of listens in 2006 (log-scale)

0]
0]

04 T —TSST T,
e —— L L R 3 \ X

T T T
10? 10° 10*
Number of listens in 2005 (log-scale)

Figure A.1: Year 2005 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard "X’ times in a year, It is heard for Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10t percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

63

64 A. Appendix: User Behaviour Plots

90th percentile
80th percentile
70th percentile
60th percentile
50th percentile
40th percentile
30th percentile
20th percentile
10th percentile

= =
=) =)
© T
! !

H
<
A

Number of listens in 2007 (log-scale)

—

=)
=)
!

(TS — e wwrm YT VY () OO ()
R e R —— WA S T3 "0 L

=}
!

10? 10°
Number of listens in 2006 (log-scale)

Figure A.2: Year 2006 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard "X’ times in a year, It is heard for Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10" percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

90th percentile
104 4 80th percentile

70th percentile
60th percentile

= 50th percentile

- 40th percentile

2 10° . .

0 30th percentile

é’/ 20th percentile

© 10th percentile

=1

S 02

= 10° 4

]

3] o

2

8

3 10" A

=

2

E

z

10° 4
04 T ————— YV (T o
T T T
10? 10° 10*

Number of listens in 2007 (log-scale)

Figure A.3: Year 2007 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard "X’ times in a year, It is heard for Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10t percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

65

90th percentile o)
" 80th percentile
1074 70th percentile o o
60th percentile
= 50th percentile
E] 5 40th percentile
:3) 10° 1 30th percentile
\2/ 20th percentile
=) 10th percentile
2
02
E 10° 4
7]
5]
151
2
2
3 10" A
=
131
=
g
=]
Z
10° 4
04 T S WSS X7 7774, T (CYTERTTTO, () o
R —— - $ ORI O O ORE - R R O ©

107 10° 10*
Number of listens in 2008 (log-scale)

Figure A.4: Year 2008 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard °X’ times in a year, It is heard for 'Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10" percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

90th percentile o
80th percentile
104 70th percent?le o

60th percentile

o> 50th percentile

@ 40th percentile

& 103 4 30th percentile o

é’/ 20th percentile

= 10th percentile

=

o

Q

& 107 1

7]

2 M

15 g@

=

B 1ot .

- 107 1

51

2

g

=

Z

100 4
0 e e — o=~
T L T
107 10° 10*

Number of listens in 2009 (log-scale)

Figure A.5: Year 2009 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard °X’ times in a year, It is heard for 'Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10t percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

66 A. Appendix: User Behaviour Plots

5]
10 90th percentile [o)
80th percentile
70th percentile o (e]
10% 4 60th percentile
= 50th percentile
E] 40th percentile
;ﬁ) 30th percentile
2 10° A 20th percentile
— 10th percentile
—
o
Q
£ g2 2
o ..
2
s -
= 10! A
131
2
g
=]
z
100 4
0 e e AR G O—— OO
e e ——r, . _ | C
T T T T
102 103 104 10°

Number of listens in 2010 (log-scale)

Figure A.6: Year 2010 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard "X’ times in a year, It is heard for Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10" percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

10° 4
90th percentile o
80th percentile
70th percentile
10% 4 60th percentile =
> 50th percentile o
Tg 40th percentile
bll)o 30th percentile
k=) 10° A 20th percentile
~ 10th percentile
—
=]
(]
=
= 102 4
- 10 W—
=1
: i
£
]
= o -
T
=~ 10" A
<
=}
E
=
Z
100
04— o0 0O O Do
o ———— OO OO O @O
T T T T
10 103 10* 10°

Number of listens in 2011 (log-scale)

Figure A.7: Year 2011 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard "X’ times in a year, It is heard for Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10t percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

67

90th percentile o
80th percentile o

70th percentile
60th percentile
50th percentile
40th percentile
30th percentile
20th percentile

—

=3
S
!

—

=)
T
!

10th percentile

Number of listens in 2013 (log-scale)
= =

—

=)
=)
!

C]
o)

———————————— —————— " T)
-

=}
!

10? 10 10
Number of listens in 2012 (log-scale)

Figure A.8: Year 2012 percentile distribution of favourability of items/songs the following year, depending on listen counts
across all user — item interactions. To be interpreted as, "If a song is heard X’ times in a year, It is heard for 'Y’ times the
following year”. Note (i) Max (100" percentile) and Min (0" percentile) are removed. (i) Points have alpha < 1.0 and are

superimposed from 90" to 10t percentile (backwards to forwards). (iii) Observe the qualitative change of percentile
distribution across years.

Appendix: Experiments Tables

In this appendix lie the tables with the recorded observations for the quantitative analysis of the ex-
periments. Table B.1 shows the Wilcoxon-Mann-Whitney Test’'s summary of p-values, and Table B.2
shows the Vargha and Delaney’s A (VDA) and Cliff's delta (CD) for the significant entries in the earlier
table.

The interpretation of these tables is presented in Chapter 8, Results, in Table 8.1 where it should
be understandable by the general audience of this thesis report.

69

B. Appendix: Experiments Tables

70

‘p1oq ul pajybiybiy ase (G0°0 > d) senjea-d juesiiubig "sonsiels anjea-d ‘Uuoijoa.I0d 1uoLIBUOYg UM 1S9) (1S WING Yuey UOXOD|IAN) ASUHUYAA-UUBIA-UOXOD|IA :L°g S|9el

L Z1086.%00°0 80-3€9°¢ L Z.E¥900°0 | “¥159121L02 z1oe
60-3¥S 'V 60-3¥S¥ /SG€9166.5°0 L L | S915022102 *¥1521 8002
60-3¥S'V 60-3¥S'y G£509.900°0 L L ZLoz °¥1521.8002
v1-39S°1 y1-395°1 1126160 L L | S¥1s21 2102 8002
v1-3vs°L v1-3vs°L G9/€9/7°0 L L zLoz 8002
€0-319'C L0-3G¥'S L Ll ¥26126G°0 | 91521 8002 8002
v1-39S°L 60-38v'v 80-3£2°C LEVB66L°0 ¥¥ZeLL9°0 | *¥1sa12ZL0Z Y1521 6002
v1-39S°L 60-38Y'v L L I zLoz 915216002 adA] 1es : Jesp
60-3¥S'¥ €0-380°. G0-318°C L L | $92522800C *¥1521 G002
y1-3vS°L S0-3St°1L €0-3£9°9 L L 8002 Y1521 6002
v1-39S°L 60-3Lv'y TLSSYLLOO I 86¥8500°0 | °¥1591Z1L0C G00Z
v1-39S°L 60-3LV'y GSL6EYZS0 65181160070 b zLoz G002
60-3¥S ¥ 60-3.Lv'y 2S989/9/°0 86.¥L¥LO0 8ZLLL00'0 | °¥1597 8002 G002
v1-3vS°L 60-3Lv'vy /GS6/9.°0 691991200 9¥LLL00O 8002 G002
I 60-30V'Yy ¥S¥9002S°0 L09ZLY00'0 SL0LL00'0 | *¥7522 G002 G002
sanjen jueayiubis oN adA] 189S : wyoby
1£GG690°0 L I 168195100 b Zv3ads NI-YOSN
L I L I I Zvads €309 wyyobly
L L L 9855800°0 L | NI-YOSN €309
6.£8€°0 2990800 S0¥0.,00°0 8S¥0€2€'0 91¥69010°0 S¥1507 adA] jes
81-310°L 81-310°L L L L z1oz 8002
8L-310°'L 81-310°'L 20-3¥6'S L €lL2/6v2l0 zLoz G002 Jeap
81-310°'L €1-3£6°C G0-3SL'V LLGPOP'0 €181£20°0 8002 G002
awi] AH dq ani an
uosLiedwo) buidnouo
Jdojeaipuj

71

‘anjeA-d 18] wng juey uoxodjip (G0'0 > d) Jueoyiubis Ajaaizeyjuenb yyim siojoey jo siied 1oy sonsiels (ao) enap sD pue (VaA) v s.Asuejeqg pue eybiep :z'g s|qeL

9GGG'0- 22220 | 90560 €G/6°0 S¥1521 2102 zLoz
b- 0 L L S415012L02 Y1521 8002
b= 0 L l | 9665°0- 22220 zLoz °¥1s218002
b= 0 L L S¥1521 2102 8002
b= 0 L | zLoz 8002
8965°0- 91020 41521 8002 8002
b= 0 L L | ¥€S6'0 1960 S¥1s212102 91522 G002
b= 0 L L ZL0Z S¥1521600Z | 9dA] 108 : JEBA
b- 0 | 9966°0- 22220 | 0€G.°0 G9/8°0 415218002 °¥1521 G002
b= 0| 84420~ LLLL'O | 99650 811170 8002 Y1521 6002
b= 0 L L | 80650 ¥S9.°0 8€9G°0- 18120 | *¥15212102 5002
b= 0 L L 9v¥G'0- 11220 zLoz 5002
b= 0 b= 0 ¥GZG'0- €1€2°0 | 9565°0- 2ZZZ0 | S¥1521 8002 G002
b= 0 b= 0 290G°0- 69¥2°0 | 9565°0- 2ZZZ0 8002 5002
b- 0 02.G°0- 0¥LZ0 | 9565°0- 22ZZZ0 | *¥1521 G002 5002
0ZLE'0 09590 Zvads HI-VOSN
Zv3ads €309 wyyLiobly
Yeee’0- €€€€0 HI-YOSN €309
ZS¥2’0 92290 ¥2€2°0- 8€8€0 S¥1597 adA] jes
b= 0 L L zLoz 8002
b= 0 b L zLoz G002 Jesp
b- 0| €€800 ¥I8Y0 | ¥I8Y0 L0¥VL0 9/62°0- Z2LSE0 8002 G002
ao Van as VYan as Van as Van as Vvan
swi] AH dd ani an uosuedwon Buidnoug

Jojeaipuj

Appendix: AcousticBrainz Integration
and GPU-optimised Nearest Neighbours

A significant portion of the thesis timeline involved the investigation of enriching MLHD with features
from another dataset. The idea was to use these features for graph-based recommendation or a nearest
neighbour strategy. These endeavours failed because of two reasons (i) lack of time and (ii) the sparsity
of annotations when we use only 200 MLHD pieces with listen counts = 20. Nevertheless, this work
can be useful for the next wave of research in this domain. The contributions made here relate to
processing a large volume of music descriptors (features) to annotate the MLHD and then find the
approximate nearest neighbours for items with features.

C.0.1. AcousticBrainz

The AcousticBrainz project’, is under the MetaBrainz Project, talked about in Chapter2. It is an open
community-driven database of music descriptors of music files using a multitude of Music Information
Retrieval Algorithms [90]. It provides high and low level information about music which also has MBIDs.
The feature extraction for the same is primarily done using on Essentia”, an open-source command-line
music feature extractor[91].

Using the AcousticBrainz API, one can obtain music features in a JSON® format. Note that although
the response has a fixed schema, not all features are recorded for different songs because of the natural
evolution of the services and features being added at different points of time.

temporal

Figure C.1: Explanation graph extracted from MLHD’s user scrobbles and annotated with AcousticBrainz (ABz) features.

Furthermore, it should be noted from a Data Science perspective that although music descriptors
from AcousticBrainz can give information about how the music sounds, these features are not always

11\\;?: acousticbrainz.org

2;ttpP: essentia.upf.edu/streaming extractor music.html
3JSON (JavaScript Object Notation) is a human-readable textual data-interchange format.

73

https://acousticbrainz.org/
https://essentia.upf.edu/streaming_extractor_music.html

74 C. Appendix: AcousticBrainz Integration and GPU-optimised Nearest Neighbours

reliable when we talk about ground truth. In 2020, Chris Mostert, et al. in a Masters thesis and a
subsequent paper demonstrated that certain descriptors in AcousticBrainz show unexpected behaviour
on unseen, ’in the wild’, data [92, 93]. The high-level features may have some conceptual problems
,and all features in general were susceptible to problems because of the different contexts under which
the features were extracted.

The AcousticBrainz team is working on annotating MLHD. Their code” for fetching AcousticBrainz
features for recording MBIDs present in MLHD.

The use of JSONs leads to the raw dataset size to be 257.7 GiB. We clean the dataset (2 million
records) and keep only 1366 feature columns that are common in most records. The partitioned and
compressed dataset in ORC® format sums up to 44.8 GiB in size.

C.1. GPU-Optimised Nearest Neighbours Search (GoNN)

The many system limitations while querying k-nearest neighbours on large datasets (millions of sam-
ples) with samples having thousands of features, led to the development of a custom solution. GPU-
optimised Nearest Neighbours Search or GoNN, conveniently pronounced as ‘gone’, combines efficient
feature transformation and a distributed randomised directed search algorithm for approximate nearest
neighbour search. The development of this algorithm has the following goals with the following goals:

* Reduce the number of compute and I/O operations required for finding a sortied list of nearest
neighbours.

» Near-constant space requirement of main memory and graphics memory.
* Reduce ftrivial calculations; because disty, %] dlStx]—Ucl

» Guarantee eventual convergence to the true solution, even if the approach is grounded in ap-
proximation.

We developed an algorithm during this study using custom CUDA kernels. These kernels were
developed in Python using numba’s® open source just-in-time (JIT) CUDA compiler. It enables writing
CUDA kernels in Python, instead of traditional C or C++. This is done to remain close to the Python
aspect remaining code of the developed framework [57, 94].

C.1.1. Random Hyperplane LSH

This is the first step of GoONN. As GPUs have less memory, we need to use some tricks to make large
datasets fit on a single GPU device. Binary hashing using random hyperplanes with bias helps us with
this. This technique preserves the Euclidean distance between data points well, given a large number
of hashing bits (hyperplanes) [95]. It also outperforms many other state of the art hashing techniques.
The explanation of this is given in Figure C.2. We see the provided data points that are uniformly
distributed in a 2D space. The hypervolumes between Every data point has a binary array where each
bit corresponds to a hyperplane’s hash bit. The bitis 0 or 1 depending on which side of the hyperplane
the point is on. In the figure, points with the same binary sequence are labelled the same. It would be
natural to realise that increasing the number of hyperplanes increases the resolution of the hashing.

It is important to note why we are using a binary representation. We reduce the size of the features
significantly by storing a string of 32 hash bits as an integer. This makes the computation on the GPU
space-efficient. Moreover, computing Hamming distance as the distance metric is computationally
much faster than computing the traditional Euclidean distance.

For a small theoretical demonstration, we will compare the CPU clock cycles for Euclidean dis-
tance of the floating point feature array compared to the equivalent Hamming distance with efficiently
stored random hyperplane LSH bits. The formula for Euclidean distance is given by equation C.1. The
algorithm for Hamming distance is provided in Algorithm 1.

d(®,q) =+ ®o — 40)* + (1 — q1)% + - + (P — qn)? (C.1)

4SCFIpt on GitHub: https://github.com/MTG/acousticbrainz-labs/tree/master/mlhd

5The Optimized Row Columnar (ORC) file format prowdes a highly eff|0|ent Way to store Hlve data An ORC file contains groups
of row data called stripes, along with auxiliary information in a file footer. At the end of the file a postscript holds compression
parameters and the size of the compressed footer.

6} ttp://numba.pydata.org/

https://github.com/MTG/acousticbrainz-labs/tree/master/mlhd
http://numba.pydata.org/

C.1. GPU-Optimised Nearest Neighbours Search (GoNN)

75

1.0
1.0
oo :... ° .o.‘.. Oo. LN .o.' Q. o
Jo S ome § e e o oo 08 \e A®
0.8 o8 & 'Y}
o o % o % o ') ° (]
°) J ® LTS
o % .00' e 0@ %0 o
N A AP IR XY,
o 8 2° * "% oo '.r .S ()
° o 0 8 ®lee% 9e°°
0.4 1 ° o "o e S o 0.4
:.r....° 35..0..‘ °
0.24 °% o o0 * e PYOA
’ o i ® 0.2
- ., .'.o. &, ‘.\"\ v’
004 ® % e *® e o 0 o) oo
0.0 02 04 06 08 10 "0.0
(a) 2D uniformly distributed data (b) LSH-bias hyperplanes superimposed on the data
1.0 ®
¢ ° :. ¢° ..‘0. ~' ® ..o' “o
o, ©
08y * © tee ‘o“. %
° o o0® % (]
®e % e,
061 g0 o g% o . e
o .. se o$~ oo e o®
° ° ® o ...
0.4 4 ° (1} .' ° &
° o Pooo H e, S
0.2 1 °e . o*° ° ° . e
'.g.. &, ‘ ,\
0.0 o 0 © e o °

0.0

(c) Resulting labels after LSH, items in the same hypervolume have
the same labels/colour

Figure C.2: Caption

We will take the operation clock cycle values from the instruction set for AMD Ryzen 5000, Zen3
micro-architecture’, which is a 64bit CPU [96]. Note that the comparison will miss a lot of nuances
around different architectures, the presence of hyper-threading, parallelization, etc, but will still be
useful while comparing properties that will affect throughput and latency. The comparison is given
in Table C.1. We see that Hamming distance has much lower CPU latency and uses faster operations

in general.

Euclidean distance for m float features

Efficient Hamming distance for n int (n*32 bits)

operation required count Op-count latency | operation required count Op-counts latency
FSQRT 1 1 25 XOR n 1 1
ADD/SUB 2m-1 1 6to7 | AND 5xn 1 1
FMUL m 3 - SHR 5%xn 1 1
ADD/SUB 6xn 1 1

Table C.1: Clock cycles comparison for Euclidean distance with floats vs hamming distance on integer bits.

The Population Count (popcount) algorithm is used for counting the flipped bits (crossed hyper-
planes) and the Hamming distance. It is taken from Henry S. Warren’s book "Hacker’s Delight’[97]. It
follows a divide-and-conquer strategy, shown in Figure C.3, in which the original problem (summing
32 bits) is divided into two problems (summing 16 bits), which are solved separately, and the results
are combined (added, in this case). The strategy is applied recursively, breaking the 16-bit fields into
8-bit fields, and so on. For a 32 bit integer, it can be completed in log,(32) = 5 steps. Each step takes
logical operations, addition and subtraction only.

7Instruction table available here

https://www.agner.org/optimize/instruction_tables.pdf

76 C. Appendix: AcousticBrainz Integration and GPU-optimised Nearest Neighbours

ic111100011000110011 1111011111111
0 1(1 o)1 010 O[0 1|0 1{0 01 OO 1{1 0|1 O[O 1|1 Of1 Of1 0|1 0
00T HHOO0OTO001000T1T0(0O0OT IHOOT 1HOTOOOT OO0
00000101H00000100(0O0OC0CO0CO0OTT1TOIO000T1000
0000000000001 001HO0OC0ODO00ODO0ODOODOO0OT1ITT1O
0000000000000000000000000001011°1

Figure C.3: Population count divide and conquer steps example [97]

Algorithm 1: Hamming distance: dist(a, b)

Input: 32 bit integer arrays a and b with every bit as LSH hash bit.

Result: hamming distance between two binary hashes, with hash value in each bit of two
integer arrays.

Initialise len as size(a) = size(b);

Initialise d as 0

for i « 0 to len do

// XOR to find flipped bits (crossing hyperplanes)

x = ali] @ bli]

// popcount: counting number of 1s

x-=x»1& 1431655765

X = (x & 858993459) + (x » 2 & 858993459)

X=X+ (x»4) & 252645135

X+=x»8

X+=Xx» 16

d+=x & 63
end

returnd

C.1.2. Search Algorithm

The search algorithm as a whole uses the concepts of Distributed Algorithms and Curriculum Learning
[98]. In every iteration, every data point (i) searches for its nearest found neighbours in a pseudo-
random manner and then updates the known neighbours and distance to neighbours, then (ii) It looks
at its neighbour’s set of neighbours and memorises them for its next search. These two steps are called
the search step (Algorithm 3) and update step(Algorithm 4) respectively. Both steps are run by several
processors for different data points in parallel.

The search step is followed by an update step in every iteration and after starting each step, the CPU
waits for all computations of the GPU to finish. Algorithm 2 gives the overview of the complete nearest-
neighbour search algorithm. Lets consider that we have N points and H¥*" contains the hashes of h
integers containing the string of LSH bits. We take the total curriculum size C, which tells the number
of points added in each curriculum and [iterations per curriculum.

Running the algorithm requires the following data structures:

C.2. GoNN Demonstration 77

» search; isan N X SEARCH_SIZE integer array stores the index of items to look at in an iteration.
Left half of it is filled with neighbours of neighbours in the update() step. The right half maintains
pseudo-random numbers which do not change. Every iteration for getting random numbers a
different row’s right half is used.

* archive; stores the row index of the nearest neighbour neighbours. These indexes are always in
a sorted order (by distance) and when an item is inserted in the array, it is inserted in the correct
place to keep it sorted.

* archive, stores the hamming distance to the neighbours in archive,. It is used to find where to
insert the neighbours in archive;.

Algorithm 2: Overall GoNN flow: GoNN()
Input: self;, search;, archive;
Result: updated search;, with first half having neighbours of closest neighbours.
FLAG_tempering = False for curriculum_level— 0 to int(N/C) + 2 do
rows = int(C x(curriculum_level + 1));
if rows 2ROWS_MAX then
rows = ROWS_MAX;
FLAG_tempering = True;
if FLAG_tempering is True then

| =1 x5;

for itr < Oto /do
search();
sync();
update();
sync();

end

end

C.1.3. Observations

Because of the archive, the solution (quality of neighbours) cannot get worse until the new curriculum
starts. Because of curriculum learning, each data point in the early curriculum can understand the
distribution of data and find the solutions fast because the number of data points to search through
is small. The points introduced in the later curriculum piggyback off the improvement of the earlier
curriculum.

Points in the earlier curriculum always have a better solution than the later ones. Therefore, we use
a tempering phase at the end which lasts longer than the set inter-curriculum iterations.

The distribution of the data does affect the performance. Data derived from a well spread out uniform
distribution performs much better than that of several tightly clustered Gaussians. This is because the
tight nature of the clusters entails fewer implied neighbour links to points which are in their own cluster.
This means pseudo-random search takes longer to direct the solution.

C.2. GoNN Demonstration

Here you will see the demonstration of the GoNN algorithm applied to 10,000 data points with 200
features that come from three different distributions. The task in every case is the same. Find the
nearest 20-neighbours. In every iteration, every data point looks at 200 other data points to add to its
archive. In every case, GoNN is able to find the nearest 50 neighbours in the set. These runs do not
last very long and take

78

C. Appendix: AcousticBrainz Integration and GPU-optimised Nearest Neighbours

percentage non-trivial neighbours found

percentage non-trivial neighbours found

percentage non-trivial neighbours found

100%

80%

60%

0%

20%

100%

80%

60%

40%

20%

100%

80%

60%

0%

20%

Ll

25 35
known neighbours (50 = nearest 0.5% samples in dataset)

17250

17000

16750

quality indicator value

16500

6250

16000

15750

15500

—— curriculum start

quality indicator
mean with std.

o 20 40 100 120 140

60 80
absolute iteration number

Figure C.4: GoNN on samples with uniformly distributed features.

i

known neighbours (50 = nearest 0.5% samples in dataset)

quality indicator value

1950

1900

1850

1800

1750

1700

1650

1600

1550

— curriculum start

quality indicator
mean with std.

o 20 a0 60 80 100 120 140
absolute iteration number

Figure C.5: GoNN on samples drawn from 3 dense and tight Gaussians.

i

25 35
known neighbours (50 = nearest 0.5% samples in dataset)

quality indicator value

1150

1100

1050

1000

g

quality indicator

‘ —— curriculum start
mean with std.

120

100 140

60 80
absolute iteration number

Figure C.6: GoNN on samples drawn from 10 dense and tight Gaussians.

C.2. GoNN Demonstration 79

Algorithm 3: Neighbour Search step: search()
Input: H, self;, search;, archive;, archive,
Result: updated archive; and archive, with nearer neighbours
for i« 0 to SEARCH_SIZE do
if i < SEARCH_SIZE then
| s; = searchy[self;,i] mod C;
else
x = (self; + ABSOLUTE_ITERATION_NUM) mod C;
s; = search;[x,i] mod C;
end
d =dist(H[self;,], H[si,:])
// Now that we know the distance, find the insert location
FLAG_new_neib = True;
insert; =0
while archive,[x,insert;] <= dist & insert; < ARCHIVE_SIZE do
if archive;[x, insert;] == search; then
FLAG_new_neib = False;
break;
insert;+ =1 end
// Check if archive is full or neighbour already exists
if insert; < ARCHIVE_SIZE ;
& FLAG _new_neib then
if archive;[self;,insert;] == —1 then
// add in an empty space
archive;[x, insert;ndex] = search;ndex archivey[x, insert;ndex] = dist
else
// insert item and move other items right
temp;,, tempy, = archive;[self;, insert;], archivey[self;, insert;]
archive;[x, insert;ndex] = s;
archive4[x, insertindex]| = d
itr = insert; + 1
while itr < ARCHIVE_SIZE do
temp;,, temp,, = archive;[self;, itr],archivey[self;, itr]
archive;[self;,itr] = temp;,
archiveg[self;,itr] = tempgy
temp; 1, tempy, = temp;,, tempg,
itr +=1;
end
end

end

Algorithm 4: Update Step: update()

Input: self;, search;, archive;
Result: updated search;, with first half having neighbours of closest neighbours.
// number of neighbours of neighbours to copy
update_window = int(SEARCH_SIZE +2 +UPDATE_SUPPORT_NEIGHBOURS);
for i< 0 to UPDATE_SUPPORT_NEIGHBOURS do

neib = archive;[self;, i] for j < 0 to update window do

| search;[self;, int(i X update_window + j)] = archive;[neib, j]

end

end

Appendix: Individual Recommenders

Following are the various RS’s performance on testys for chosen user-centric metrics at various various
list sizes.

81

D. Appendix: Individual Recommenders

—#— Mean Average Recall

¥ modified Personalization

—#— Novelty
0.99 4 —@&— Coverage
1 ¥

= 095 A v ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 4
g
= 0.80 1
&0
£ 0.60 1
£ 0.40
<
2 0.20 1
=
g

0.05

0.01 A

5 10 15 20 25
Recommendation list size k&
(@) RSy
v
¥ v
¥
¥ ¥
¥ v ¥ ¥ ¥ v v
0.99 4

0.95 4

0.80

oo

=]

SR
P

0.20 A

metric value (logit scale)

o

=3

&
L

0.01 4§

—#%— Mean Average Recall
¥~ modified Personalization

—A— Novelty
—#— Coverage — — - . . -
— T — T T T T
5 10 15 20 25

Recommendation list size k

(b) RSy-.4

—#— Mean Average Recall
¥~ modified Personalization
—A— Novelty

0.99 4 —&— Coverage

0.95

0.80 A

0.60
0404 &b——h—h——h——h——h ——h———h———h———h———h—A

0.20 A

metric value (logit scale

0.05 1

0.01 A

e

5 10 15 20 25
Recommendation list size k

(c) RSt

Figure D.1: Different recommenders’ metrics achieved on testyg, for year 2005

—*— Mean Average Recall
¥ modified Personalization
—A— Novelty
—&— Coverage
0.99 4
©0954 ° ¥ ¥
% ¥ ¥ ¥ v ¥ v ¥ ¥ ¥ L 4
o
12
= 0.80 1
[=
2 0.60 -
S 0.40 4
©
> 0.20 A
Q
©
€ 0.05 4
0.01 5
5 10 15 20 25
Recommendation list size &
(@) RSy
\ 2
v ¥
¥ ¥
¥ = v = £5 - . .
0.99 §
)
S 0.95
12}
S 0.80
£ 0,60
3 0.40 -
C020] A—A—A—h —Ah A —Ah ——h——h——h——Ah———A——A
2 - ° o o °
5 0.05 3 /4’——0—40_—‘—"'7
£
0.01 3
—*— Mean Average Recall
¥ modified Personalization
—A— Novelty
—&— Coverage — - - -
5 10 15 20 25
Recommendation list size &
(b) RSy-.4
—#— Mean Average Recall
¥ modified Personalization
—#A— Novelty
0.99 7 —&— Coverage
0.95 1
o
©
o
2 0.80
k=)
2 0.60 A
$ 0.40 4
g A—A——A———A———h———h———h———h———h——h——Ah——h—A
S 0.20
©
£
0.05 4
0.01 3

5 10 15 20 25
Recommendation list size k&

(c) RSt

Figure D.2: Different recommenders’ metrics achieved on testyg, for year 2008

84

D. Appendix: Individual Recommenders

metric value (logit scale)

metric value (logit scale)

metric value (logit scale

—#— Mean Average Recall
¥ modified Personalization
—A— Novelty
—&— Coverage
0.99 9
0.95 1 v o ¥ ¥ ¥ ¥ ¥ ¥ ¥ v ¥ ¥ v
0.80 -
0.60 -
0.40 4
0.20 -
0.05
0.01 3
I S C— & % S T
5 10 15 20 25
Recommendation list size k
(@) RSy
¥
v ¥
= ¥
¥ v ¥ v L - - .
0.99 9
0.95 §
0.80 -
0.60 -
0.40

0201 , A A A A A A A A A A A A

0.05 W

0.01 5

—#— Mean Average Recall

¥ modified Personalization
—A— Novelty
—a— Coverage ——— - *
— T T T T T
5 10 15 20 25
Recommendation list size &
(b) RSy—a
—#— Mean Average Recall
¥ modified Personalization
3 —A— Novelty

0.99 —&— Coverage
0.95 1
0.80 -
0.60 -
0.40
0.20 A
0.05 4
0.01 3

5 10 15 20 25
Recommendation list size k&

(c) RSt

Figure D.3: Different recommenders’ metrics achieved on testgg, for year 2012

Bibliography

[1]1 Ning Yang, Min Wook Kang, Paul Schonfeld, and Manoj K. Jha. “Multi-objective highway align-
ment optimization incorporating preference information”. In: Transportation Research Part C:
Emerging Technologies 40 (2014), pp. 36—48. ISSN: 0968090X. DOI: 10.1016/7.trc.2013.
12.010.

[2] Xingjuan Cai, Zhaoming Hu, Peng Zhao, Wen Sheng Zhang, and Jinjun Chen. “A hybrid recom-
mendation system with many-objective evolutionary algorithm”. In: Expert Systems with Applica-
tions 159 (Nov. 2020). ISSN: 09574174. DOI: 10.1016/7 .eswa.2020.113648.

[3] Shanfeng Wang, Maoguo Gong, Haoliang Li, and Junwei Yang. “Multi-objective optimization for
long tail recommendation”. In: Knowledge-Based Systems 104 (July 2016), pp. 145-155. ISSN:
09507051. DOI: 10.1016/7 . knosys.2016.04.018.

[4] Eli Pariser. The filter bubble: What the Internet is hiding from you. Penguin UK, 2011.

[5] Markus Schedl, Sebastian Stober, Emilia Gomez, Nicola Orio, and Cynthia C S Liem. “User-
Aware Music Retrieval”. In: 3 (2012). DOI: 10.4230/DFU.Vo13.11041.135.

[6] Markus Schedl, Arthur Flexer, and Julian Urbano. “The neglected user in music information re-
trieval research”. In: Journal of Intelligent Information Systems 41 (3 Dec. 2013), pp. 523-539.
ISSN: 09259902. DOI: 10.1007/510844-013-0247-6.

[71 Anja Nylund Hagen. The Playlist Experience: Personal Playlists in Music Streaming Services.
Oct. 2015.DOI: 10.1080/03007766.2015.1021174.

[8] Sergey Volokhin and Eugene Agichtein. “Towards intent-aware contextual music recommenda-
tion: Initial experiments”. In: Association for Computing Machinery, Inc, June 2018, pp. 1045—
1048. ISBN: 9781450356572. DOI: 10.1145/3209978.3210154.

[9] Sergey Volokhin and Eugene Agichtein. “Understanding music listening intents during daily ac-
tivities with implications for contextual music recommendation”. In: vol. 2018-March. Association
for Computing Machinery, Inc, Feb. 2018, pp. 313-316. ISBN: 9781450349253. DOI: 10.1145/
3176349.3176885.

[10] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. “Bias and
Debias in Recommender System: A Survey and Future Directions”. In: (Oct. 2020). URL: http:
//arxiv.org/abs/2010.03240.

[11] Axel Bruns. “Filter bubble”. In: Internet Policy Review 8.4 (2019).

[12] Kaisa Miettinen. Nonlinear multiobjective optimization. Vol. 12. Springer Science & Business Me-
dia, 2012.

[13] Anastasios Sextos and Panagiotis Mergos. Multi-objective optimum selection of ground motion
records with genetic algorithms. 2018. URL: https: //www.researchgate.net/publication/
329870692,

[14] C-L Hwang and Abu Syed Md Masud. Multiple objective decision making—methods and appli-
cations: a state-of-the-art survey. Vol. 164. Springer Science & Business Media, 2012.

[15] George Mavrotas. “Effective implementation of the e-constraint method in multi-objective mathe-
matical programming problems”. In: Applied mathematics and computation 213.2 (2009), pp. 455—
465.

[16] George Mavrotas and Danae Diakoulaki. “Multi-criteria branch and bound: A vector maximiza-
tion algorithm for mixed 0-1 multiple objective linear programming”. In: Applied mathematics and
computation 171.1 (2005), pp. 53—71.

[17] Indraneel Das and John E Dennis. “Normal-boundary intersection: A new method for generating
the Pareto surface in nonlinear multicriteria optimization problems”. In: SIAM journal on optimiza-
tion 8.3 (1998), pp. 631-657.

85

https://doi.org/10.1016/j.trc.2013.12.010
https://doi.org/10.1016/j.trc.2013.12.010
https://doi.org/10.1016/j.eswa.2020.113648
https://doi.org/10.1016/j.knosys.2016.04.018
https://doi.org/10.4230/DFU.Vol3.11041.135
https://doi.org/10.1007/s10844-013-0247-6
https://doi.org/10.1080/03007766.2015.1021174
https://doi.org/10.1145/3209978.3210154
https://doi.org/10.1145/3176349.3176885
https://doi.org/10.1145/3176349.3176885
http://arxiv.org/abs/2010.03240
http://arxiv.org/abs/2010.03240
https://www.researchgate.net/publication/329870692
https://www.researchgate.net/publication/329870692

86 Bibliography

[18] James K Guest. “Imposing maximum length scale in topology optimization”. In: Structural and
Muiltidisciplinary Optimization 37.5 (2009), pp. 463—473.

[19] Daniel Mueller-Gritschneder, Helmut Graeb, and UIf Schlichtmann. “A successive approach to
compute the bounded Pareto front of practical multiobjective optimization problems”. In: SIAM
Journal on Optimization 20.2 (2009), pp. 915-934.

[20] Pradnya A. Vikhar. “Evolutionary algorithms: A critical review and its future prospects”. In: Institute
of Electrical and Electronics Engineers Inc., June 2017, pp. 261-265. ISBN: 9781509004676.
DOI: 10.1109/ICGTSPICC.2016.7955308.

[21] Bingrui Geng, Lingling Li, Licheng Jiao, Maoguo Gong, Qing Cai, and Yue Wu. “NNIA-RS: A
multi-objective optimization based recommender system”. In: Physica A: Statistical Mechanics
and its Applications 424 (2015), pp. 383-397.

[22] Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan, and John Riedl. “Movielens
unplugged: experiences with an occasionally connected recommender system”. In: Proceedings
of the 8th international conference on Intelligent user interfaces. 2003, pp. 263—266.

[23] James Bennett, Stan Lanning, et al. “The netflix prize”. In: Proceedings of KDD cup and workshop.
Vol. 2007. Citeseer. 2007, p. 35.

[24] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. “Eigentaste: A constant time
collaborative filtering algorithm”. In: information retrieval 4.2 (2001), pp. 133—151.

[25] Chonghuan Xu. “A big-data oriented recommendation method based on multi-objective opti-
mization”. In: Knowledge-Based Systems 177 (Aug. 2019), pp. 11-21. ISSN: 09507051. DOI:
10.1016/7.knosys.2019.03.032.

[26] Cai-Nicolas Ziegler. Book-Crossing dataset. URL: http: //www2.informatik.uni-freiburg.
de/~cziegler/BX/.

[27] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. “Eigentaste: A constant time
collaborative filtering algorithm?”. In: information retrieval 4.2 (2001), pp. 133—151.

[28] Qingfu Zhang and Hui Li. “MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition”. In: JEEE Transactions on Evolutionary Computation 11 (6 Dec. 2007), pp. 712—731. ISSN:
1089778X.DOI: 10.1109/TEVC.2007.892759.

[29] Nour El Islem Karabadji, Samia Beldjoudi, Hassina Seridi, Sabeur Aridhi, and Wajdi Dhifli. “Im-
proving memory-based user collaborative filtering with evolutionary multi-objective optimization”.
In: Expert Systems with Applications 98 (May 2018).
, pp. 153—-165. ISSN: 09574174. DOI:
10.1016/j.eswa.2018.01.015.

[30] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,
Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. “Apache spark: a
unified engine for big data processing”. In: Communications of the ACM 59.11 (2016), pp. 56—65.

[31] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. “The million song
dataset”. In: (2011).

[32] Gabriel Vigliensoni and Ichiro Fujinaga. “The Music Listening Histories Dataset.” In: ISMIR. 2017,
pp. 96-102.

[33] Brian Brost, Rishabh Mehrotra, and Tristan Jehan. “The music streaming sessions dataset”. In:
The World Wide Web Conference. 2019, pp. 2594—-2600.

[34] Oscar Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

[35] Markus Schedl. “Leveraging microblogs for spatiotemporal music information retrieval’. In: Eu-
ropean Conference on Information Retrieval. Springer. 2013, pp. 796—799.

[36] David Hauger, Markus Schedl, Andrej KoSir, and Marko Tkalcic. “The million musical tweets
dataset: What can we learn from microblogs”. In: Proc. ISMIR. 2013, pp. 189-194.

[37] EvaZangerle, Martin Pichl, Wolfgang Gassler, and Glnther Specht. “# nowplaying music dataset:
Extracting listening behavior from twitter”. In: Proceedings of the first international workshop on
internet-scale multimedia management. 2014, pp. 21-26.

https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1016/j.knosys.2019.03.032
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1016/j.eswa.2018.01.015

Bibliography 87

[38]
[39]
[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Markus Schedl. “The Ifm-1b dataset for music retrieval and recommendation”. In: Proceedings
of the 2016 ACM on International Conference on Multimedia Retrieval. 2016, pp. 103—110.

Aaron Swartz. “Musicbrainz: A semantic web service”. In: IEEE Intelligent Systems 17.1 (2002),
pp. 76-77.

Diogo Fernandes and Jorge Bernardino. “Graph Databases Comparison: AllegroGraph, ArangoDB,
InfiniteGraph, Neo4dJ, and OrientDB.” In: DATA. 2018, pp. 373-380.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. “Characterizing, modeling, and
benchmarking rocksdb key-value workloads at facebook”. In: 18th {USENIX} Conference on File
and Storage Technologies ({FAST} 20). 2020, pp. 209-223.

Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael
Strum. “Optimizing Space Amplification in RocksDB.” In: CIDR. Vol. 3. 2017, p. 3.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-law distributions in empir-
ical data”. In: SIAM review 51.4 (2009), pp. 661-703.

DataFrameStatFunctions. URL: https://spark.apache.org/docs/2.4.7/api/scala/
index.html#org.apache.spark.sgl.DataFrameStatFunctions

Michael Greenwald and Sanjeev Khanna. “Space-Efficient Online Computation of Quantile Sum-
maries”. In: SIGMOD °01. Santa Barbara, California, USA: Association for Computing Machin-
ery, 2001, pp. 58-66. ISBN: 1581133324. DOI: 10 .1145/375663.375670. URL: https :
//doi.org/10.1145/375663.375670.

Roger Zhe Li, Julian Urbano, and Alan Hanjalic. “Leave No User Behind: Towards Improving
the Utility of Recommender Systems for Non-mainstream Users”. In: (Feb. 2021). DOI: 10 .
1145/3437963.344176910.1145/3437963.344176910.1145/3437963.34417609.
URL: http://arxiv.org/abs/2102.01744%20http://dx.doi.org/10.1145/
3437963.3441769%2010.1145/3437963.3441769%2010.1145/3437963.34417609.

Yong Zheng, Mayur Agnani, and Mili Singh. “Identification of grey sheep users by histogram
intersection in recommender systems”. In: International Conference on Advanced Data Mining
and Applications. Springer. 2017, pp. 148-161.

Xiaoyuan Su and Taghi M Khoshgoftaar. “A survey of collaborative filtering techniques”. In: Ad-
vances in artificial intelligence 2009 (2009).

Gabor Takacs, Istvan Pilaszy, Bottyan Németh, and Domonkos Tikk. “Investigation of various
matrix factorization methods for large recommender systems”. In: 2008 IEEE International Con-
ference on Data Mining Workshops. IEEE. 2008, pp. 553-562.

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. “Large-scale parallel col-
laborative filtering for the netflix prize”. In: International conference on algorithmic applications in
management. Springer. 2008, pp. 337-348.

Alternating Least Squares (ALS) matrix factorization. URL: https://spark.apache.org/
docs/2.4.7/api/scala/index.html#org.apache.spark.ml.recommendation.
ALSs.

Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative filtering for implicit feedback datasets”.
In: 2008 Eighth IEEE International Conference on Data Mining. leee. 2008, pp. 263—-272.

Pearl Pu, Li Chen, and Rong Hu. “Evaluating recommender systems from the user’s perspective:
Survey of the state of the art”. In: User Modeling and User-Adapted Interaction 22 (4-5 Oct. 2012),
pp. 317-355. ISSN: 09241868. DOI: 10.1007/511257-011-9115-7.

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy: evaluating rec-
ommender systems by coverage and serendipity. 2010, pp. 257—-260.

Tao Zhoua, Zoltan Kuscsik, Jian Guo Liu, Matis Medo, Joseph Rushton Wakeling, and Yi Cheng
Zhang. “Solving the apparent diversity-accuracy dilemma of recommender systems”. In: Pro-
ceedings of the National Academy of Sciences of the United States of America 107 (10 Mar.
2010), pp. 4511-4515. ISSN: 00278424. DOI: 10.1073/pnas.1000488107.

Saul Vargas, Sandoval Supervisor, and Pablo Castells Azpilicueta. Novelty and Diversity En-
hancement and Evaluation in Recommender Systems. Aggregate Dlversity

. 2012.

https://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions
https://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions
https://doi.org/10.1145/375663.375670
https://doi.org/10.1145/375663.375670
https://doi.org/10.1145/375663.375670
https://doi.org/10.1145/3437963.3441769 10.1145/3437963.3441769 10.1145/3437963.3441769
https://doi.org/10.1145/3437963.3441769 10.1145/3437963.3441769 10.1145/3437963.3441769
http://arxiv.org/abs/2102.01744%20http://dx.doi.org/10.1145/3437963.3441769%2010.1145/3437963.3441769%2010.1145/3437963.3441769
http://arxiv.org/abs/2102.01744%20http://dx.doi.org/10.1145/3437963.3441769%2010.1145/3437963.3441769%2010.1145/3437963.3441769
https://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.ml.recommendation.ALSs
https://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.ml.recommendation.ALSs
https://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.ml.recommendation.ALSs
https://doi.org/10.1007/s11257-011-9115-7
https://doi.org/10.1073/pnas.1000488107

88

Bibliography

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]

[72]

[73]

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based Python JIT Com-
piler’. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC.
LLVM ’15. Austin, Texas: Association for Computing Machinery, 2015. ISBN: 9781450340052.
DOI: 10.1145/2833157.2833162. URL: https://doi.org/10.1145/2833157.
2833162.

Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applications.
Vol. 63. Citeseer, 1999.

John Henry Holland et al. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

Xin-She Yang. “Chapter 2 - Analysis of Algorithms”. In: Nature-Inspired Optimization Algorithms.
Ed. by Xin-She Yang. Oxford: Elsevier, 2014, pp. 23—44. ISBN: 978-0-12-416743-8. DOl: ht tps:
//doi.org/10.1016/B978-0-12-416743-8.00002-6. URL: https :/ / www .
sciencedirect.com/science/article/pii/B9780124167438000026.

Kalyanmoy Deb, Ram Bhushan Agrawal, et al. “Simulated binary crossover for continuous search
space”. In: Complex systems 9.2 (1995), pp. 115-148.

Kalyanmoy Deb and Himanshu Jain. “An evolutionary many-objective optimization algorithm us-
ing reference-point-based nondominated sorting approach, Part |: Solving problems with box
constraints”. In: IEEE Transactions on Evolutionary Computation 18 (4 2014). NSGA-III, pp. 577—-
601. ISSN: 1089778X.DOI: 10.1109/TEVC.2013.2281535.

Eckart ; Zitzler, Marco ; Laumanns, Lothar Thiele, Eckart Zitzler, and Marco Laumanns. “SPEA2:
Improving the strength pareto evolutionary algorithm”. In: (2001). DOI: 10 . 3929 /ethz - a -
004284029. URL: https://doi.org/10.3929/ethz-a-004284029.

Kalyanmoy Deb and Samir Agrawal. “A niched-penalty approach for constraint handling in genetic
algorithms”. In: Artificial Neural Nets and Genetic Algorithms. Springer. 1999, pp. 235-243.

Kalyanmoy Deb and Debayan Deb. “Analysing mutation schemes for real-parameter genetic al-
gorithms”. In: International Journal of Artificial Intelligence and Soft Computing 4.1 (2014), pp. 1-
28.

Antonio Benitez-Hidalgo, Antonio J Nebro, Jose Garcia-Nieto, Izaskun Oregi, and Javier Del Ser.
“iMetalPy: A Python framework for multi-objective optimization with metaheuristics”. In: Swarm
and Evolutionary Computation 51 (2019), p. 100598.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II”. In: IEEE transactions on evolutionary computation 6.2
(2002), pp. 182-197.

Sushant S. Garud, Iftekhar A. Karimi, and Markus Kraft. “Smart Adaptive Sampling for Surro-
gate Modelling”. In: 26th European Symposium on Computer Aided Process Engineering. Ed.
by Zdravko Kravanja and Milo§ Bogataj. Vol. 38. Computer Aided Chemical Engineering. El-
sevier, 2016, pp. 631-636. DOI: https://doi.org/10.1016/B978-0-444-63428 -
3.50110-7. URL: https://www. sciencedirect .com/science/article/pii/
B9780444634283501107.

Vira Chankong and Yacov Y Haimes. Multiobjective decision making: theory and methodology.
Courier Dover Publications, 2008.

Saku Kukkonen and Jouni Lampinen. GDE3: The third Evolution Step of Generalized Differential
Evolution. GDES3.

KV Price, RM Storn, and JA Lampinen. “Differential Evolution-A Practical Approach to Global
Optimization,] Springer-Verlag”. In: Berlin (2005).

Rainer Storn and Kenneth Price. “Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces”. In: Journal of global optimization 11.4 (1997), pp. 341—
359.

Eckart Zitzler and Lothar Thiele. “Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach”. In: IEEE transactions on Evolutionary Computation
3.4 (1999), pp. 257-271.

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00002-6
https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00002-6
https://www.sciencedirect.com/science/article/pii/B9780124167438000026
https://www.sciencedirect.com/science/article/pii/B9780124167438000026
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/https://doi.org/10.1016/B978-0-444-63428-3.50110-7
https://doi.org/https://doi.org/10.1016/B978-0-444-63428-3.50110-7
https://www.sciencedirect.com/science/article/pii/B9780444634283501107
https://www.sciencedirect.com/science/article/pii/B9780444634283501107

Bibliography 89

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]

[84]

[85]
[86]
[87]

[88]

[89]

[90]

[91]

Bernard W Silverman. “Density Estimation for Statistics and Data Analysis”. In: (1986).

Lyndon While. “A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume”.
In: Evolutionary Multi-Criterion Optimization. Ed. by Carlos A. Coello Coello, Arturo Herndndez
Aguirre, and Eckart Zitzler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 326-340.
ISBN: 978-3-540-31880-4.

Carlos M Fonseca, Luis Paquete, and Manuel Lopez-lbanez. “An improved dimension-sweep
algorithm for the hypervolume indicator”. In: 2006 IEEE international conference on evolutionary
computation. IEEE. 2006, pp. 1157-1163.

Oliver Schuetze, Xavier Equivel, Adriana Lara, and Carlos A Coello Coello. “Some comments
on GD and IGD and relations to the Hausdorff distance”. In: Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation. 2010, pp. 1971-1974.

David Allen Van Veldhuizen. Multiobjective evolutionary algorithms: classifications, analyses, and
new innovations. Tech. rep. 1999.

Carlos A Coello Coello and Nareli Cruz Cortés. “Solving multiobjective optimization problems
using an artificial immune system”. In: Genetic programming and evolvable machines 6.2 (2005),
pp. 163—190.

Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Viviane Grunert Da Fon-
seca. “Performance assessment of multiobjective optimizers: An analysis and review”. In: IEEE
Transactions on evolutionary computation 7.2 (2003), pp. 117-132.

Sergio Garcia and Cong T Trinh. “Comparison of multi-objective evolutionary algorithms to solve
the modular cell design problem for novel biocatalysis”. In: Processes 7.6 (2019), p. 361. DOI:
10.3390/pr7060361.

Raj Jain. The art of computer systems performance analysis: techniques for experimental design,
measurement, simulation, and modeling. john wiley & sons, 1990.

Gavin C Cawley and Nicola L C Talbot. On Over-fitting in Model Selection and Subsequent Se-
lection Bias in Performance Evaluation. 2010, pp. 2079-2107.

Indraneel Das and John E Dennis. “Normal-boundary intersection: A new method for generating
the Pareto surface in nonlinear multicriteria optimization problems”. In: SIAM journal on optimiza-
tion 8.3 (1998), pp. 631-657.

Henry B Mann and Donald R Whitney. “On a test of whether one of two random variables is
stochastically larger than the other”. In: The annals of mathematical statistics (1947), pp. 50-60.

Fiona McElduff, Mario Cortina-Borja, Shun-Kai Chan, and Angie Wade. “When t-tests or Wilcoxon-
Mann-Whitney tests won’t do”. In: Advances in physiology education 34.3 (2010), pp. 128-133.

Carlo E Bonferroni. “Il calcolo delle assicurazioni su gruppi di teste”. In: Studi in onore del pro-
fessore salvatore ortu carboni (1935), pp. 13-60.

Carlos Garcia-Martinez, Pablo D Gutiérrez, Daniel Molina, Manuel Lozano, and Francisco Her-
rera. “Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress
and comparative analysis’s weakness”. In: Soft Computing 21.19 (2017), pp. 5573-5583.

Harold D Delaney and Andras Vargha. “Comparing several robust tests of stochastic equality
with ordinally scaled variables and small to moderate sized samples.” In: Psychological Methods
7.4 (2002), p. 485.

Alastair Porter, Dmitry Bogdanov, Robert Kaye, Roman Tsukanov, and Xavier Serra. “Acous-
ticbrainz: a community platform for gathering music information obtained from audio”. In: Miller
M, Wiering F, editors. ISMIR 2015. 16th International Society for Music Information Retrieval Con-
ference; 2015 Oct 26-30; Malaga, Spain. Canada: ISMIR; 2015. International Society for Music
Information Retrieval (ISMIR). 2015.

Dmitry Bogdanov, Nicolas Wack, Emilia Gémez Gutiérrez, Sankalp Gulati, Herrera Boyer, Oscar
Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Zapata Gonzalez, Xavier Serra, et al.
“Essentia: An audio analysis library for music information retrieval”. In: Britto A, Gouyon F, Dixon
S, editors. 14th Conference of the International Society for Music Information Retrieval (ISMIR);
2013 Nov 4-8; Curitiba, Brazil.[place unknown]: ISMIR; 2013. p. 493-8. International Society for
Music Information Retrieval (ISMIR). 2013.

https://doi.org/10.3390/pr7060361

90

Bibliography

[92]
[93]

[94]

[99]

[96]

[97]
[98]

Cynthia CS Liem and Chris Mostert. Can’t Trust the Feeling? How Open Data Reveals Unex-
pected Behavior of High-Level Music Descriptors. 2020.

C Mostert. More than a feeling? Reliability and robustness of high-level music classifiers. URL:
http://repository.tudelft.nl/..

Lena Oden. “Lessons learned from comparing C-CUDA and Python-Numba for GPU-Computing”.
In: 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP). 2020, pp. 216-223. DOI: 10.1109/PDP50117.2020.00041.

Mohammad Rastegari, Shobeir Fakhraei, Jonghyun Choi, David Jacobs, and Larry S. Davis.
Comparing apples to apples in the evaluation of binary coding methods. 2014. arXiv: 1405.1005

[cs.CV].

Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs. Mar. 2021.

Henry S Warren. Hacker’s delight. Pearson Education, 2013.

Jeffrey L Elman. “Learning and development in neural networks: The importance of starting
small”. In: Cognition 48.1 (1993), pp. 71-99.

http://repository.tudelft.nl/.
https://doi.org/10.1109/PDP50117.2020.00041
https://arxiv.org/abs/1405.1005
https://arxiv.org/abs/1405.1005

	Introduction
	Music Recommendation
	Application Perspective
	Research Questions
	Thesis Objectives
	Thesis Structuring

	General Background
	Music Consumption
	Sources of Biases and their Consequences
	User Interaction Data
	Recommendation Fusion
	Many-objective Optimization and Evolutionary Algorithms
	MaOEA for Recommender Systems: Previous Work
	Distributed Computing
	Performance Engineering

	Datasets
	Background
	MLHD
	Graph Database: ArangoDB

	MLHD Graph Representation
	Critical Choice
	Database in Numbers

	User Activity Distributions
	Dataset Division

	Recommender Systems
	Background
	Collaborative Filtering
	Alternating Least-Squares

	User-centric Metrics
	Mean Average Recall
	Coverage
	Novelty
	Modified Personalization

	Evolutionary Algorithms
	Pareto-Optimal Solutions
	Definitions and Notations

	MaOEA Considerations
	EA Operators
	Crossover
	Mutation
	Selection

	EAs Used
	NSGA-III
	GDE3
	SPEA2

	Performance Measurement
	Hypervolume
	GD and IGD
	Epsilon Indicator

	Methodology
	Recommenders
	User-Item Collaborative Filtering
	User-Artist Collaborative Filtering
	Tailored Recommender

	Recommenders with Evolutionary Algorithms
	Problem Encoding
	Optimisation Objectives
	Evolutionary Algorithms

	Experiments
	Experimental Design
	Compute Environment
	Selecting 200 MLHD parts
	Recommender Hyperparameters
	Evolutionary Algorithm Hyperparameters

	Results
	Recommenders
	EA Experiments
	Quality Indicators
	Quantitative Significance
	Front Objectives and Solutions Visualizations

	Conclusions
	Findings
	Contributions

	Limitations and Future Work
	Limitations and Threats
	Future Improvements and Research Directions
	Data Usage
	Dataset Enrichment And Hybrid Recommender
	Recommenders and Evolutionary Algorithms
	User Experience
	Beyond Music Recommendation

	Appendix: User Behaviour Plots
	Appendix: Experiments Tables
	Appendix: AcousticBrainz Integration and GPU-optimised Nearest Neighbours
	AcousticBrainz
	GPU-Optimised Nearest Neighbours Search (GoNN)
	Random Hyperplane LSH
	Search Algorithm
	Observations

	GoNN Demonstration

	Appendix: Individual Recommenders

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

