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High-fidelity control of quantum bits is paramount for the reliable execution of
quantum algorithms and for achieving fault tolerance—the ability to correct errors
faster than they occur’. The central requirement for fault tolerance is expressed in
terms of an error threshold. Whereas the actual threshold depends on many details, a

common target is the approximately 1% error threshold of the well-known surface
code??. Reaching two-qubit gate fidelities above 99% has been along-standing major
goal for semiconductor spin qubits. These qubits are promising for scaling, as they
can leverage advanced semiconductor technology*. Here we report a spin-based
quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of
which are above 99.5%, extracted from gate-set tomography. The average single-qubit
gate fidelities remain above 99% when including crosstalk and idling errors on the
neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task
of calculating molecular ground-state energies using a variational quantum
eigensolver algorithm’®. Having surpassed the 99% barrier for the two-qubit gate
fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to
possible applications in the era of noisy intermediate-scale quantum devices.

Quantum computation involves the execution of a large number of
elementary operations that take a qubit register through the steps of
aquantum algorithm®. Amajor challenge is to implement these opera-
tions with sufficient accuracy to arrive at areliable outcome, evenin
the presence of decoherence and other error sources. The higher the
accuracy, or fidelity, of the operations, the higher the likelihood that
near-term applications for quantum computers come within reach’.
Furthermore, for most presently known algorithms, the number of
operations that must be concatenated will unavoidably lead to exces-
sive accumulation of errors, and these errors must be removed using
quantum error correction’. Correcting quantum errors faster than they
occurispossible whenthe error probability per operationis below a cer-
tain threshold, known as the fault-tolerance threshold. For the widely
considered surface code, for instance, the fault-tolerance threshold is
between 0.6% and 1%, under certain assumptions, albeit at the cost of
alarge redundancy in the number of physical qubits®>.

Among all the candidate platforms, electron spins in semiconductor
quantum dots have advantages, such as their long coherence times?,
smallfootprint’, the potential for scaling up'® and the compatibility with
advanced semiconductor manufacturing technology*. Single-qubit opera-
tionsof spin qubitsin quantum dots achieve fidelities 0f99.9% (refs. ) but
the two-qubit gate fidelities reported vary from 92% to 98% (refs. ™). This
has limited the two-qubit Bell-state fidelities to 94% (ref. ) and quantum
algorithms implemented with spin qubits gave only coarsely accurate
outcomes'®”. Pushing the two-qubit gate fidelity well beyond 99% requires
not only low charge-noise levels and the elimination of nuclear spins by
isotopic enrichment but also careful Hamiltonian engineering.

In this paper, using a precisely engineered two-qubit interac-
tion Hamiltonian, we report the demonstration of single-qubit and
two-qubit gates with fidelities above 99.5%. We use gate-set tomography
(GST) notonly to characterize the gates and to quantify the fidelity but
alsotoimprove the gate calibration. The high-fidelity gates allow us to
compute the dissociation energy of molecular hydrogen with a vari-
ational quantum eigensolver (VQE) algorithm, reaching an accuracy for
the dissociation energy of around 20 mHa, limited by readout errors.

We use agate-defined double quantum dotin anisotopically enriched
$i/SiGe heterostructure? (Fig. 1a), with each dot occupied by asingle elec-
tron (see Methods). The spinstates of the electrons serve as qubits. The spin
statesare measured with the help of asensing quantumdot (SQD), whichis
capacitively coupled to the qubit dots™. Amicromagnet ontop of the device
provides amagnetic field gradient enabling electric-dipole spin resonance®
and separates the resonance frequencies of the qubitsinthe presence of an
externalmagneticfield (-320 mT) t011.993 GHz (Q,) and 11.890 GHz (Q,).
Single-qubit X and Y gates are implemented by frequency-multiplexed
microwavessignals applied togate MW and virtual Z gates areimplemented
byaphase update of the reference frame®. The plunger gates (LP and RP)
control the chemical potentials of the quantum dots.

The native two-qubit gate for spin qubits uses the exchange interac-
tion??, originating from the wave-function overlap of electrons in neigh-
bouring dots. This selectively shifts the energy of the antiparallel spin
states and, thus, enables an electrically pulsed adiabatic conditional Z
(CZ) gate®'*>, Thebarrier gate (B) controls the tunnel coupling between the
dots, allowing the precise tuning of the exchange coupling from <100 kHz
to 20 MHz. To minimize the sensitivity to charge noise, we activate the
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Fig.1| Two-qubit device and symmetry operating point.a, Scanning
electron microscopy images of a device similar to that used here, showing the
quantum dot gate patternand the micromagnetontop (the device usedinthe
experimenthas an additional screening gate above the fine gates”). Thescale
barintheleft panel denotes 500 nm. The scalebarintheright panel denotes
100 nm. b, Control paths for determining the symmetry operation pointinthe

exchange coupling while avoiding a tilt in the double-dot potential***
(Fig. 1a). This symmetric condition can be determined accurately by
decoupled adiabatic exchange pulses inside a Ramsey sequence (Fig. 1c,
d). The tunnel barrier is controlled by simultaneously pulsing gate B and
compensating LPand RPto avoid shiftsin the electrochemical potentials®,
constitutingavirtual barrier gate. The detuning between quantumdotsis
controlled by additional offsets to the LP and RP pulses in opposite direc-
tions. As the decoupling pulses remove additional single-qubit phase
accumulation from electron movement in the magnetic field gradient,
the spin-up probability of Q, results in asymmetric chevron pattern, with
the symmetry point at the centre (Fig. 1d).

Among the various quantum benchmarking techniques, quantum
process tomography (QPT) is designed to reconstruct all details in a
target process®. Owing to the susceptibility of QPT to state preparation
and measurement (SPAM) errors, self-consistent benchmarking tech-
niques such as GST? and alternative techniques such as randomized
benchmarking® have been developed. In contrast to randomized bench-
marking, GST inherits the advantage of QPT in thatit reports the detailed
process, which allows us to isolate Hamiltonian errors from stochastic
errors and to correct for such errors in the control signals (Extended
DataFig. 5). In addition, GST accounts for gate-dependent errors. We
benchmark the fidelities of a universal gate set using GST?**® (Fig. 2a).
The gate set we choose contains an idle gate (I), sequentially operated
single-qubit /2 rotations about the X and yaxes for eachqubit (Xq , Yo,
Xq, and Yy ,) and atwo-qubit controlled-phase (CZ) gate. A total of 36
fiducial sequences containing {null, X, "%, YQ/_":L3} on each qubit,
where null (unlike the idle gate) has no waiting time, are used to tomo-
graphically measure the two-qubit state. These fiducials are interleaved
by germ sequences and their powers up toasequence depth of16. Germs
are short sequences of gates taken from the universal gate set
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charge-stability diagram. (M, N) represent the number of electrons in the dots
underneath thetip of LPand RP, respectively. a.u., arbitrary units. ¢, Pulse
sequence schematic ofadecoupled controlled-phase operationinterleavedin
aRamseyinterference sequence on Q,.d, Spin-up probability of Q, after the
Ramsey sequenceinc,asafunctionof the detuningin the double-dot potential
and the total duration of the barrier voltage pulses.

(see Methods). They are repetitively executed to amplify different types
of gateerrorsinthegate set, suchthat SPAMerrors canbeisolated. GST
allows using a maximume-likelihood estimator to compute completely
positive and trace-preserving process matrices for each element of the
gate set®. The gate fidelity can be calculated by comparing the measured
process using the Pauli transfer matrix (PTM), M., with theideal PTM,
Migeab Fgate = (Tr(/\/l;}(p/\/l idea)) T d)/[d(d+1)], where dis the dimension
of the Hilbert space. These process matrices provide a detailed error
diagnosis of the gate set, allowing for efficient feedback calibration®
(Fig. 2a). Analysing the error generator £ = 10g(Mey,Migea) Provides
easy access to information. For example, coherent Hamiltonian errors
canbeisolated fromincoherentstochastic errors and single-qubit errors
canbe isolated from each other and from two-qubit errors™.

Figure 2b, c shows the reduced PTMs of X and Yy, operationsinthe Q
subspaceandFig. 2dshowsthe ful PTMof Y, intwo-qubitspace (Y, ® )
containing additional errors from decoherence and crosstalk on Q, while
operating Q, (see Extended Data Figs. 1and 2 for other PTMs) and from
unintentional entanglement due to a residual exchange interaction. The
average single-qubit gate fidelity is 99.72% in the single-qubit subspace
(Xq,:99.68%; Yo, 99.73%; X ,: 99-61%; Yo ,: 99.87%; see Extended Data
Fig. 2 for all error bars). Ametric that is rarely reported is the single-qubit
gatefidelityinthefulltwo-qubitspace, here 99.16% on average (see Methods
and Extended DataFig. 1). These results highlight that single-qubit bench-
markingis notsufficient toidentifyall errors occurring during single-qubit
operations. By analysing the error generators, we find that errors from
uncorrelated dephasing of theidling qubit dominate the dropinsingle-qubit
gate fidelity when characterized in the two-qubit space. Coherent,
microwave-induced phase shifts—the mainsource of crosstalk errors—have
been corrected by applying acompensating phase gate to the idling qubit
(Extended DataFig.4). The elimination ofidlingerrors and other crosstalk
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Fig.2|Gate-set tomography and single-qubitgate. a, Workflow of the GST
experiment. Coloured blocks show the input and output fiducial sequences
(Fid;and Fid,, orange) and the germ sequences (green). A few examples of
single-qubitgermsequencesare listed. The outcome is used to adjust pulse
parametersinthenextrun.b,c,PTMsof Xy, and Yy, in the subspace of Q.. The
red (blue) barsare theoretically +1(-1) and are measured to be positive
(negative). Thebrown (green) bars are theoretically 0 (0) but measured to be
positive (negative). P,,and P, are theinput and output operators, respectively.
d, Experimentally measured PTM of Yo, ® 15, in the complete two-qubitspace.
Thecolour codeisthesameasinb,c.

errors fromthe microwave drive, such as through heating effects, willbe a
crucial step toimprove the quality of the single-qubit operations further.
For ahigh-fidelity adiabatic CZ gate, precise control of the exchange
coupling, /, between the two qubits is required. Specifically, in order
to avoid unintended state transitions due to non-adiabatic dynamics,
we must be able to carefully shape the envelope of J. We characterize
Jover awide range using a Ramsey sequence interleaved by a virtual
barrier pulse withincremental amplitude v,. Figure 3a shows the meas-
ured frequency shift of each qubit as functions of the barrier pulse
amplitude and the state of the other qubit. The exchange interaction
ismodelled to be exponentially dependent onthe barrier pulse ampli-
tude J(vp) =< €28 (refs. >**?), The micromagnet-induced single-qubit
frequency shifts are approximated by linear functions within the volt-
age window of the CZ gate in the numerical simulations. By fitting the
measured datasets simultaneously to theoretical models (see Methods),
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Fig.3|Hamiltonian engineering ofexchangeinteraction. a, Frequency
detuningof each qubit conditional on the state of the other qubit as afunction of
barrier pulse amplitude. The horizontal axis shows the real voltage applied to
gate B.b, Exchange strengthas afunction of barrier pulse amplitude. The data
areextracted directly froma. ¢, T; of each qubit conditional on the state of the
other qubitasafunction ofbarrier pulse amplitude (same colour code asin a).
Eachdatapointisaveraged forabout 8 min.Byfittingthe T3 valuestoa
quasistatic noise model (solid lines, see Methods), the low-frequency amplitudes
ofthefluctuationsareestimatedaséf, =11kHz,6f, =24kHzand6v=0.4mV.
d, Shape ofthebarrier pulse, designed to achieve a high-fidelity CZ gate. e, The
cosine-shaped/envelope seen by the qubits during the pulse shownind.
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Jcan be extracted very precisely as the difference between the two
conditional frequencies of each qubit'®** (Fig. 3b). The barrier pulse
U™ Iog(A,,B(l - cos(2nt/tgate))/2)(Fig.3d) compensates the exponen-
tial dependence such that /e (1 - cos(2nt/t,,,)) follows a cosine window
function, which ensures good adiabaticity* (Fig. 3e). In addition, the
virtual gates are calibrated such that the symmetric operation point
is maintained for each barrier setting, minimizing the influence of
charge noise viathe double-dot detuning. The most relevant remaining
noise sources include charge noise, affecting / through fluctuations
in the virtual barrier gate 6v,, and fluctuating qubit frequencies 6f
and 6f from charge noise entering through artificial spin-orbit cou-
pling from the micromagnet and residual nuclear spin noise coupling
through the hyperfine interaction. By analysing the decay of the Ram-
sey oscillations at each transition frequency, individual dephasing
timesT;canbe extracted and, from there, also vy, 6f, andé‘f (Fig.3c).
Figure 4ashows anexample GST pulse sequence that contazms twice
inarowthegerm[CZ, Xa, Yo, CZ, Yo, XQl] .The PTM of the CZ gate
obtained from GST is shownin Fig. 4b. Using the detailed information
from the error generator to fine-tune the calibration parameters, we
canachieve a CZ fidelity 0f 99.65 + 0.15% (Extended DataFigs.4 and 5).
Error bars included here and elsewhere are the 20 = 95% confidence
intervals computed using the Hessian of the loglikelihood function®.
The CZ error generator reveals that, at this point, incoherent errors
dominate. The virtual barrier gate technique used here efficiently sup-
presses crosstalk errors during two-qubit gates. Therefore, we expect
the CZ fidelity to be mostly affected by dephasing errors of idling qubits
inalarger space, which canbe corrected for using decoupling pulses.
Fromthe obtained PTMs, we can numerically estimate Bell-state fidel-
ities by multiplications of the PTMs necessary to construct the cor-
responding state, giving an estimate of 97.75%-98.42%, neglecting
SPAMerrors, for the four Bell states (Fig. 4c and Extended Data Fig. 3).
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Next, we use the high-fidelity gate set in the context of an actual appli-
cation, in order to provide a quantitative benchmark for future work
under realistic conditions. Specifically, we implement a VQE algorithm
tocompute the ground-state energy of molecular hydrogen (H,) (Fig. 5a).
Ina VQE algorithm, a quantum processor is used to implement a classi-
callyinefficient subroutine (see Methods and Extended DataFig. 6). The
second quantized H, Hamiltonian can be mapped onto two qubits under
the Bravyi-Kitaev (BK) transformation H= hyll + h,Zl + h,]Z + h,ZZ + h,X
X+ hsYY.Herel, X,Y and Z are Paulioperators, for example, Zlis shorthand
forZ ® 1, and the coefficients h,~hsare classically computable functions
oftheinternuclear distance, R. Figure 5b shows the schematic of the VQE
algorithmand its circuitimplementation for aH, molecule. The qubitis
initialized in |01), which represents double occupation of the lowest
molecularorbital, corresponding to the Hartree-Fock (HF) ground state.
Aparameterized ansatzstate is then prepared by considering single and
double excitation, which, after the BK transformation, yields
l@(6)) = e"*Y|01) , with 6 the parameter to variationally optimize. By
performing partial tomography on the ansatz state with aninitial guess
6,, the expectation value of the Hamiltonian for [(6,)) can be calculated.
Aclassical computer can efficiently compute the next guess 6, as the new
input for the quantum computer. This loop is iterated until the result
converges. ForaH, molecule, thereis only one parameter 8to optimize,
thus, a scan of the entire parameter range of 21t with finite samples is
sufficient to interpolate the smoothly changing measured expectation
values. This emulates a real variational algorithm, where 6 can be esti-
mated to arbitrary precision by increasing the number of repetitions to
suppressstatistical fluctuations®. Figure 5c shows the partial tomography
result after normalization of the visibility window. The data demonstrate
high-quality phase controlinthe quantum circuits. The deviationsinthe
odd-parity expectation values indicate correlationsin the readout of the
two qubits¥. Figure 5d shows the energy curves of the H, molecule from
both theory® and the VQE experiment. We observe a minimum energy
ataround 0.72 Aand an error of approximately 20 mHa at the theoretical
bondlength 0.7414 A, mainly attributed to slow driftin the readout param-
eters. Thisaccuracy matches theresults obtained using superconducting
and trapped ion qubits with comparable gate fidelities®**.
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thesameasinFig.2.c, Left, the quantum circuit used to reconstruct the Bell state
|w*) = (|01 +|10))/+/2 based on the corresponding PTMs. Right, the real part of
thereconstructed density matrix of the |[W*) state. The colour code is the same as
inFig.2, exceptthatred (blue) barsherearetheoretically +0.5(-0.5).

Thetwo-qubitgate with fidelity above 99.5% and single-qubit gate fideli-
tiesin the two-qubit gate space above 99% on average place semiconduc-
tor spinqubitlogic at the error threshold of the surface code. Recently, a
two-qubit operationbetween nuclear spin qubitsinsilicon, mediated by
anelectronspin qubit, has been demonstrated to surpass 99% fidelity as
well, further highlighting that semiconductor spin qubits offer precise
two-qubitlogic*’. Independentstudies have shown spin qubit readout with
afidelity above 98% in only a few pis (ref. ¥'), with further improvements
underway*.. Combining high-fidelity initialization, readout and control
intoademonstration of fault tolerance poses several key challenges tobe
overcome. First, sufficiently large and reliable quantum dot arrays must
be constructed, with good connectivity between the qubits. Second, the
fidelitiesachieved in small-scale systems must be maintained across such
larger systems, which will require reducingidlingand crosstalk errors. The
same advances will allow us toimplement more sophisticated algorithms
in the noisy intermediate-scale quantum era, such as solving energies
involving excited states of more complex molecules.
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Methods

Measurement setup
The measurement setup and device are similar to those used in ref. .
We summarize a few key points and all the differences here. The gates
LP, RP and B are connected to arbitrary waveform generators (AWGs,
Tektronix 5014C) via coaxial cables. The position in the charge-stability
diagram of the quantum dots is controlled by voltage pulses applied to
LPandRP. Linear combinations of the voltage pulses applied toB, LPand
RPare used to control the exchange coupling between the two qubits at
the symmetry point. The compensation coefficients are v, ,/v; = —0.081
and vgp/vs = 0.104. A vector signal generator (VSG, Keysight E8267D) is
connected to gate MW and sends frequency-multiplexed microwave
bursts (not necessarily time-multiplexed) toimplementelectric-dipole
spinresonance (EDSR). The VSG has two I/Q input channels, receiving
1/Q modulation pulses from two channels of an AWG. I/Q modulation
is used to control the frequency, phase and length of the microwave
bursts. The current signal of the sensing quantum dot is converted to
avoltage signal and recorded by a digitizer card (Spectrum M4i.44),
and then converted into O or 1by comparing it to a threshold value.
Two differences between the present setup and thatinref. 7 are that
(1) the programmable mechanical switch is configured such that gate
MW s always connected to the VSG and not to the cryo-CMOS control
chip and (2) asecond AWG of the same model is connected to gate B,
with its clock synchronized to the first AWG.

Gate calibration

In the gate set used in this work, {I, Xay Yo, Xo, Yo, CZ}, the duration
ofthelgateandthe CZ gateare setto100 ns, and we calibrate and keep
theamplitudes of the single-qubit drives fixedandinthelinear-response
regime, where the Rabifrequency s linearly dependent on the driving
amplitude. The envelopes of the single-qubit gates are shaped follow-
ing a ‘Tukey’ window, as it allows adiabatic single-qubit gates with
relatively small amplitudes, thus, avoiding the distortion caused by a
nonlinear response. The general Tukey window of length ¢, is given by

|:1 co (Zntj:|
p
Wit r)=11 T <t (1)

1 2r[(tp—t) rtp
5[1— cos ( . H t,= 5 Stst,

where r=0.5for our pulses. Apart from these fixed parameters, there
arell free parameters that must be calibrated: single-qubit frequencies
f andf ,burst lengths for single-qubit gates ¢y, and tyy,, phase shifts
caused by single-qubit gates on the addressed qubit itself ¢;; and ¢,,,
phase shifts caused by single-qubit gates on the unaddressed ‘victim
qubit’ ¢, and ¢,, (¢, is the phase shift on Q, induced by a gate on Q,
and similar for ¢,), the peak amplitude of the CZ gate A, and phase
shifts caused by the gate voltage pulses used for the CZ gate on the
qubits 6, and 6, (in addition, we absorb into 6, and 6, the 90° phase
shifts needed to transform diag(l, i, i,1) into diag(1, 1,1, -1)).

For single-qubit gates, f andf are calibrated by standard Ramsey
sequences, whichare automlaucallyzexecuted every2h, atthebeginning
andinthe middle (after 100 times the average of each sequence) of the
GST experiment. The EDSR burst times ¢, and ¢y, are initially cali-
brated by an AlIXY calibration protocol®. The phases ¢, ¢,, ¢, and
¢,, areinitially calibrated by measuring the phase shift of the victim
qubit (Q, for ¢;; and ¢,;; Q, for ¢,, and ¢b;,) in aRamsey sequence inter-
leaved by a pair of[XQi, - Xq,lgateson the addressed qubit (Q, for ¢y,
and ¢,,; Q, for ¢,, and ¢,,) (Extended Data Fig. 4).

The optimal pulse design presented in Fig. 3 gives arough guidance
of the pulseamplitude A4,,.Inamore precise calibration of the CZ gate,
anoptional t-rotationis applied to the control qubit (for example, Q,)
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toprepareitintothe|0) or|1) state, followed by aRamsey sequence on
thetarget qubit (Q,) interleaved by an exchange pulse. The amplitude
is precisely tuned to bring Q,completely out of phase (by 180°) between
the two measurements (Extended DataFig.4d, e). The phase 6, is deter-
mined such that the phase of Q, changes by zero (1) when Q, is in the
state |0) (1)), corresponding to CZ = diag(1, 1, 1, -1) in the standard
basis. The same measurement is then performed again with Q, as the
control qubit and Q, as the target qubit to determine 6, (ref. ).

In such a ‘conventional’ calibration procedure of the CZ gate, we
notice that the two qubits experience different conditional phases
(Extended Data Fig. 4). We believe that this effect is caused by
off-resonant driving from the optional m-rotation on the control qubit.
Similar effects can also affect the calibration of the phase crosstalk
fromssingle-qubit gates.

This motivates us to use the results from GST as feedback to adjust
the gate parameters. The error generators not only describe the total
errors of the gates but also distinguish Hamiltonian errors (coherent
errors) from stochastic errors (incoherent errors). We use the informa-
tiononseven different Hamiltonian errors (IX, 1Y, X1, Y1, ZI,1Zand ZZ) of
eachgatetocorrectall11gate parameters (Extended DataFig. 5), except
R, and 5, , for which calibrations using standard Ramsey sequences
arésufficiént. For single-qubit gates, ¢y, and ¢y, are adjusted according
tothelX, 1Y, XIand Ylerrors. The phases ¢, ¢, ¢, and ¢,, are adjusted
accordingtothe Zland IZ errors. For the CZ gate, 6, and 6, are adjusted
accordingtotheZlandIZerrors,and 4, isadjusted accordingtothe ZZ
error. The adjusted gates are then used in a new GST experiment.

Theoretical model

In this section, we describe the theoretical model used for the fitting,
the pulse optimization and the numerical simulations. The dynamics
oftwoelectron spinsinthe (1,1) charge configuration can be accurately
described by an extended Heisenberg model*

1
H=gﬂBBl'SI+gI~’BBz‘Sz+hf(51'sz_1jf @)

with S;= (X, Yj,Z)T/z where X;, ¥;and Z; are the single-qubit Pauli
matrices actingonspinj=1,2, uzthe Bohrsmagneton g=2theg-factor
insiliconand his Planck’s constant. The firstand second terms describe
theinteraction of the electron spinindot1and dot 2 with the magnetic
fieldsB;=(B,, 0, BZJ-)T originating from the externally applied field
and the micromagnet. The transverse components B, ;induce spin-flips,
thus, single-qubit gates if modulated resonantly via EDSR. For later
convenience, we define the resonance frequencies by th =8B,
and hf =g1:B, », and the energy difference between the qubits
AE, guB(BZ2 B. ). Thelast term in the Hamiltonian of equation (2)
describes the exchange interaction/between the spins in neighbour-
ing dots. The exchange interaction originates from the overlap of the
wave functions through virtual tunnelling events and is, in general, a
nonlinear function of the applied barrier voltage vz. We note that v,
determines the compensation pulses applied to LP and RP for virtual
barrier control. We model/ as an exponential function®*

J(wp) =] ™8, 3)

where /... =20-100 kHz is the residual exchange interaction during
idle and single-qubit operations and a is the lever arm. In general,
the magnetic fields B; depend on the exact position of the electron.
We include this in our model B, =B j(vp) =B, ;(0) +/3uB, where §;
accounts for theimpact of the barner voltage on the résonance fre-
quency of qubitj. The transition energies described in the main text
are now given by diagonalizing the Hamiltonian from equation (2)
and computing the energy difference between the eigenstates cor-
responding to the computational basis states {|00), |01), [10), |[11)}
(ref. **). We have
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where £(I€)) denotes the eigenenergy of eigenstate |§) and [0) = [V ) is
defined by the magnetic field direction.

Inthe presence of noise, qubits start to lose information. Insilicon,
charge noise and nuclear noise are the dominating sources of noise.
Inthe absence of two-qubit coupling and correlated charge noise, both
qubits decohere largely independently of each other, giving riseto a
decoherence time set by the interaction with the nuclear spins and
charge noise coupling to the qubit via intrinsic and artificial (via the
inhomogeneous magnetic field) spin-orbit interaction. We describe
thiseffectby f, >f, +6&f, and f, >f, +d8f, ,wheredf, andf, are

. ¢1 1 1 2. 2 2 . 1 e 22
the single-qubit frequency fluctuations. Charge noise can additionally
affect both qubits via correlated frequency shifts and the exchange
interaction through the barrier voltage, which we model as v, > vy + 6vg.
Inthe presence of finite exchange coupling, one can define four distinct,
pure dephasing times, each corresponding to the dephasing of asingle
qubit with the other qubit in a specific basis state. In a quasistatic
approximation, the four dephasing times are then given by
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Fitting qubit frequencies and dephasing times
The transition energies in equations (4)-(7) are fitted simultaneously
to the measured results from the Ramsey experiment (see Fig. 3a).
For the fitting, we use the NonLinearModelFit function from the soft-
ware Mathematica with the least squares method. The best fits yield
the following parameters: =121+ 0.05V?, 8,=-2.91+ 0.11MHz V?,
B,=67.2+0.63MHz V?,y=1.20 + 0.01andJ,, = 58.8 + 1.8 kHz.
Thedephasing times inequations (8)-(11) are fitted simultaneously
to the measured results from the Ramsey experiment (see Fig. 3¢) using
the same method. The best fits yield the following parameters:
6U=0.40+0.01mV, (‘)‘fQ1 =11+0.1kHzand 6];22 =24+0.7kHz.

Numerical simulations
Forallnumerical simulations, we solve the time-dependent Schrédinger
equation

ih S 10(0) = HI9(0) 12)

and iteratively compute the unitary propagator according to

Ue+At) = e 5789y p),

where i = h/(2m)is the reduced Planck’s constant. Here H(t + At) is dis-
cretized into N segments of length At such that H(¢) is constant in the
time interval [¢, ¢ + At]. All simulations are performed in the rotating
frame of the external magnetic field (B,, + B,,)/2 and neglecting the
counter-rotating terms, making the so-called rotating-wave approxima-
tion. This allows us to choose At =10 ps as a sufficiently small time step.

For the noise simulations, we included classical fluctuations of
]51 —>le + 6fQ , 152 ész + 6sz and vy > v + 6vz. We assume the noise
coupling to the résonance frequencies &f. ) and 6];22 to be quasistatic
and assume 1/f noise for vy, which we describe by its spectral density
Syy(@) = 6vg/w , where w is the angular frequency. To compute time
traces of the fluctuation, we use the approach introduced in refs. *4¢
to generate time-correlated time traces. The fluctuations are discre-
tized into N segments with time A¢ such that 6vy(¢) is constant in the
timeinterval [¢, ¢ + At), with the same At as above. Consequently, fluc-
tuations thatare fasterthan f = A—ltare truncated.

CZgate

We realize a universal CZ = diag(1, 1, 1, -1) gate by adiabatically puls-
ing the exchange interaction using a carefully designed pulse shape.
Starting from equation (2), the full dynamics can be projected on the
odd-parity space spanned by |01) and [10). The entangling exchange
gate is reduced in this subspace to a global phase shift, thus, the goal
is to minimize any dynamics inside the subspace. Introducing a new
set of Pauli operatorsin this subspace g, = |01)10| + [10)¢01|, o, = —i|01)
(10| +i[10)¢01| and g, = |01){01| - [10)¢10], we find

Hyy(0) = %( (D) + AE, 0, + W (0(0) ). (14)

In order to investigate the adiabatic behaviour, it is convenient to

switch into the adiabatic frame defined by ; = ¢ 2" Do, The
Hamiltonian accordingly transforms as
Had = U;rd(t)Hsub(t)Uad(t) - thZ;d(t) Uad(t) (15)
1 Ky
~—(- - 16
2( K (vg(D)) + AE,0, AL, ), (16)

where the first termis unaffected and describes the global phase accu-
mulation due to the exchange interaction, the second term describes
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the single-qubit phase accumulations and the last term,
f)= hzj/(4T[AEZ), describes the diabatic deviation proportional to
the derivative of the exchange pulse. From equation (15) and equa-
tion (16), we assumed a constant AE,(t) = AE,and h/(t) < AE,. The tran-
sition probability from state |t V) to [V 1) using a pulse of length ¢, is
then given by**

) 2
pAEt e (17)
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=S,(f(0)). (18)

From the first to the second line, we identify the integral by the
(short-timescale) Fourier transform, allowing us to describe the
spin-flip error probability by the energy spectral density S, of the input
signal f(t). Minimizing such errorsis, therefore, identical to minimizing
the energy spectral density of a pulse, awell-known and solved problem
from classical signal processing and statistics. Optimal shapes are com-
monly referred to as window functions W(t) due to their property of
restricting the spectral resolution of signals. A high-fidelity exchange
pulse is consequently given by J(0) =/(¢,) and

j; dg(wg(0) =1/4, (19)

while setting J(¢) = A, W(t)/,, (ref.>*), with a scaling factor 4, thatis

res
tobe determined. In thlS work, we have chosen the cosine wmdow

1 2t
W(t)= 2{1 - cos(tpﬂ

fromsignal processing, which has a high spectral resolution. The ampli-
tude A, follows from condition equation (19). For a pulse length of
t,=100 ns and a cosine pulse shape, we find AypJres =10.06 MHz. As
explained inthe main text, owingto the exponential voltage-exchange
relation, the target pulse shape for J(¢) must be converted to a barrier
gate pulse, following*

(20)

V() = Iog(A,,B w®). (1)

Our numerical simulations predict an average gate infidelity
1- Fpe <107 without noise and 1 - F= 0.22 x 10 with the inclusion of
noise through the fluctuations 6fQ 6f and évg, discussed in the previ-
ous section. The measured PTMs reveal much higher rates ofincoher-
ent errors, which we attribute to drifts in the barrier voltage on a
timescale much longer than the timescale on which 6]5 6fQ and évg
were determined.

Gate-set tomography analysis

WedesignedaGST experimentusingthegateset{l, Xay Yor Xay Yo, CZ},
wherelisal00-nsidle gate, Xq, (Yo,) and X, (Yo ) are single-qubit /2
gates with rotation axis X (y) on Q, and Q,, with durations of 150 ns
and 200 ns, respectively, and CZ = diag(1, 1,1, -1). A classic two-qubit
GST experiment consists of a set of germs designed to amplify all types
of error in the gate set when repeated and a set of 36 fiducials com-
posed by the 11 elementary operations {null, Xq , Xq Xq, Xq,Xq,Xq,
Yo, Yo,Ya,Ya, Xa, Xa,Xay Xa,Xa,Xa, Yar Yo,Ya,Ya,} requxred to
carry out quantum process tomography of the germs*®. We use a set
of16 germs{l, Xo,, Yo, Xa, Yo, CZ Xo, Yo, Xa,Ya, XoXo,Ya, Xo,Xa,
Yo, Xq,¥o,CZ, CZXq X Xq, Xo X0, Yo Xq Yo, Yo, Xq Yo Xo,Yo Xo X,
CZXq,Yo CZYQ Xa, Yo Xq,Yo,Xa X0, Xq,Yo, Yo, } (ref ) Note that the
null gate is the instruction for domg nothing in zero time, different
from the idle gate. Simple errors such as errors in the rotation angle

of a particular gate can be amplified by simply repeating the same
gate. More complicated errors such as tilts in rotation axes can only
be amplified by acombination of different gates. The germs and fidu-
cialsarethen compiledinto GST sequences, such that each sequence
consists of two fiducials interleaved by a single germ or power of
germs™ (asillustrated in Fig. 2a). The GST sequences are classified by
theirgermpowersintolengths. =1,2,4,8,16..., whereasequence of
length n consists of n gates plus the fiducial gates. We note that the
sequences used in GST are shorter than the sequences involved in
other methods to self-consistently estimate the gate performance,
such asrandomized benchmarking. As aresult, GST suffers less from
drift in qubit frequencies and readout windows induced by long
sequences of microwave bursts.

After the execution of all sequences, a maximume-likelihood esti-
mation is performed to estimate the process matrices of each gate
in the gate set and the SPAM probabilities. We use the open source
pyGSTi Python package**° to perform the maximum-likelihood
estimation, as well as to design an optimized GST experiment by
eliminating redundant circuits and to provide statistical error bars
by computing all involved Hessians. The circuit optimization allows
us to perform GST with a maximum sequence length .., = 16 using
1,685 different sequences in total. The pyGSTi package quantifies the
Markovian-model violation of the experimental data, counting the
number of standard deviations exceeding their expectation values
under the x> hypothesis®. This model violation is internally translated
intoamore accessible goodness ratio from 0 to 5, with 5being the best*,
where we obtain a4 out of Srating, indicating remarkably small devia-
tions from expected results. The total number of standard deviations
exceeding the expected results for each L, as well as the contribution
of each sequence to this number, can be found in the pyGSTireport,
along with the supporting data.

From the GST experiment, we have extracted the PTM M, describ-
ing each gate in our gate set 1, Xay Yo Xa, Yar CZ}. The PTMis iso-
morphically related to the conventionally used y matrix describing a
quantum process. A completely positive, trace-preserving, two-qubit
PTM has 240 parameters describing the process. To obtaininsightinto
theerrorsofthe gatesin the experiment, we first compute the errorin
the PTM given by £ = M, M., Where we have adapted the conven-
tion to add the error after the ideal gate. The average gate fidelity is
then conveniently given by

Tr(M;}(pMideal) +d

d(d+1) 22
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Itis related to the entanglement fidelity vial-F,, = d”(l Fgate)
(ref. "), where d is the dimension of the two-qubit Hilbert space.
Although the PTM M perfectly describes the errors, itismore intuitive
to analyse the corresponding error generator £ = log(E) of the pro-
cess®. Theerror generator Lrelates to the error PTM Ein asimilar way
as a Hamiltonian H relates to a unitary operation U= e, The error
generator can be separated into several blocks. A full discussion about
the error generator can be found in ref. *°. In this work, we have used
the error generator to distinguish the dynamics originating from coher-
ent Hamiltonian errors, which can be corrected by adjusting gate
parameters (see Extended Data Fig. 5), and from noisy/stochastic
dynamics, which cannot be corrected easily. The coherent errors can
be extracted by projecting £ onto the 4 x 4-dimensional Hamiltonian
space H. In the Hilbert-Schmidt space, the Hamiltonian projection is
given by*

Hmn=

i
A T{(PLOP®1,- 1,0, OB L), 23)

where L, is the error generator in Liouville superoperator form,
P, e{l,X,Y,Z}arethe extended Paulimatriceswithm,n=0,1,2,3,1,is



the d-dimensional identity matrix and d = 4 is the dimension of the
two-qubit Hilbert space. Toimprove the calibration of our gate set, we
use the information of seven different Hamiltonian errors (IX, 1Y, XI,
Y1,Z1,1Zand ZZ). To estimate coherent Hamiltonian errors and incoher-
ent stochastic errors, two new metrics are considered®: the
Jamiotkowski probability

e/(£) == Tr(p(L)IWXW), (24)

which describes the amount of incoherent error in the process, and
theJamiotkowski amplitude

6(2) = |1- W) Wwip, (25)

which approximately describes the amount of coherent Hamiltonian
errors (Extended Data Table 1). Here p (£) = (L ® ldz)[|U/><lIJ|] isthe
Jamiotkowskistateand |W)isa maxnmaIJIy entangling four-qubit state
that originates from the relation of quantum processes to states in a
Hilbertspace twice the dimension via the Choi-Jamiotkowskiisomor-
phism?®2. For small errors, the average gate infidelity can be approxi-
mated by>°

(26)

1- Fpe = &(L) +6(L)2].
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For acomparison of the performance of the single-qubit gates with
previous experiments reporting single-qubit gate fidelities, we com-
pute the fidelities projected to the single-qubit space from the PTMs
ortheerror generators. InFig. 2and Extended DataFig. 2, single-qubit
gate fidelities are estimated by projecting the PTMs onto the corre-
sponding subspace. Let 7;be the projector on the subspace of qubit/,
then the fidelity is given by

Tr(’PjM;}(P’PjMideal) + (d/Z)

= 27
Fouo @/2)(d/2)+1) @

Error bars for the fidelity projected to the subspace are computed
using standard error propagation of the confidence intervals of M.,
provided by the pyGSTi package. Amore optimistic estimation for the
fidelities in the single-qubit subspace is given by projecting the error
generators instead of the PTMs.

Variational quantum eigensolver

We follow the approach of ref. * to using the VQE algorithm to com-
pute the ground-state energy of molecular hydrogen, after mapping
this state onto the state of two qubits. We include this information
here for completeness. The Hamiltonian of a molecular system in
atomic unitsis

Z
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where R;, M;and Q; are the position, mass and charge, respectively, of
theithnucleiandr;is the position of thejth electron. The first two sums
describe the kinetic energies of the nuclei and electrons, respectively.
The last three sums describe the Coulomb repulsion between nuclei
and electrons, nuclei and nuclei, and electrons and electrons, respec-
tively. Aswe are primarily interested in the electronic structure of the
molecule, and nuclear masses are a few orders of magnitude larger
thanthe electron masses, the nuclei are treated as static point charges

under the Born-Oppenheimer approximation. Consequently, the
electronic Hamiltonian can be simplified to

vi Q by !
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Switchinginto the second-quantization representation, described
by fermionic creation and annihilation operators, a;r,and a, actingon
afinite basis, the Hamiltonian becomes

H.= Z hpg@hag+ 3 h

pars

Tt
pars@ pdqdrds, (30)

wherep, g, randslabel the corresponding basis states. The antisymme-
try under exchange is retained through the anticommutation relation
ofthe operators. The weights of the two sums are given by the integrals

\ Q.
hpg= [ dow;(@) 5 -3 i 1 (0, 31
P (a)Y; (Gz)ll)s((’ﬂll),(oz)
hpqrszj‘doldoz £ q|r1_r2| , (32)

where g; = (r;, s;) is amulti-index describing the position r,and the spin
s;of electron i. Such a second-quantized molecular Hamiltonian can
be mapped onto qubits using the Jordan-Wigner (JW) or the BK trans-
formation®. The JW transformation directly encodes the occupation
number (0 or1) of the ith spin orbital into the state (|0) or 1)) of the ith
qubit. The number of qubits required after JW transformationis, thus,
the same as the number of spin orbitals that are of interest. The BK
transformation, on the other hand, encodes the information in both
the occupation number and parities, whether there is an even or odd
occupationin a subset of spin orbitals.

Taking molecular hydrogen in the HF basis as an example, we are
interestedininvestigating thebonding (|0, 1),|0,¥)) and the antibond-
ing orbital state (|0,1), |0,¥)). The initial guess of the solution is the
HF state in which both electrons occupy the |0,) orbital. The JW trans-
formation encodes the HF initial state as [1100), representing
[N, No,+No,No,+) fromleft to right, where N, ¢ is the occupation of
the O,S spin orbital with S= 1, V. The BK transformation encodes the
HF initial state as [1000), where the first and the third qubits (counting
from the right) encode the occupation number of the first and third
spinorbitals (Noﬁ =land No,r= 0), the second qubitencodes the par-
ity of the first two spin orbitals ((NOIT + NOH)mod 2=0)andthefourth
qubit encodes the parity of all four spin orbitals
((N01¢ +Np +No, 1+ No,,Jmod2 = 0). Withthestandard transforma-
tionrules for fermionic creation and annihilation operators, the system
Hamiltonian becomes a four-qubit Hamiltonian

Hw= 8,1 +8,2,+8,2,+8,3+t8,Z,
+8. 0,7, + 8, 5,73+ 8,717,
+83Zy3+ 8oLy L4t 810054
+g1, X oX3Yy + 81, o X5X
+gXiXoYaYy + g1, X Yo Y3Xy,

(33)

Hygk= 8l + 82, 8,2,+ 8,75
+8, 02, + 8.0\ 1+ 8. 7,7,
8,01yl + 8\ 374 + 8y 1,757,
+810LZy L4+ 81 X4 LoXs
+8, o Ya+ 83 XiZXsZ s + 81 W5 52 .

(34)
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Thesubscripts are used to label the qubits. We see that, owing to the
symmetry of the represented systemin Hy, qubit 2and qubit 4 are never
flipped, allowing us to reduce the dimension of the Hamiltonian to

HE = hol + hyZy+ hyZ, + hyZiZ,
+hy XX, + hsYYoh,
+hZ1+ hylZ + hy77
+hy XX +hsYY,

(35)

where qubit 1 has been relabelled as qubit 2 and qubit 3 has been rela-
belled as qubit1. The HF initial state is, therefore, reduced to |01) and the
Hamiltonianis rephrased to be consistent with the partialtomography
expressionin Fig.5. Thisreduced representationrequires only two qubits
to simulate the hydrogen molecule. We emphasize that such a reduc-
tion of the BK Hamiltonian is not a special case for the H, molecule but
is connected to symmetry considerations to reduce the complexity of
systems, in ascalable way.

VQE is amethod to compute the ground-state energy of the Hamil-
tonian. The total energy can be directly calculated by measuring the
expectation value of each Hamiltonian term. This can be done easily by
partial quantum state tomography. All the expectation values are then
added up withaset of weights (h, through h;). The weights are only func-
tions of theinternuclear separation (R) and can be computed efficiently
by aclassical computer. Here we use the OpenFermion Python package
to compute these weights’.

Themaintask of the quantum processor s, then, toencode the molecu-
lar spin-orbital stateinto the qubits. The starting point is the HF initial state,
whichisbelievedto largely overlap with the actual ground state. Inorder
tofind theactual ground state, theinitial state needs to be ‘parameterized’
into an ansatz to explore a subspace of all possible states. We apply the
unitary coupled cluster (UCC) theory to the parameterized ansatz state,
whichis used to describe many-body systems and cannot be efficiently
executed on a classical computer®, The UCC operator has aformat

2 (Th(8)-T(8))

Upec(®) = €5 , (36)
with
7(0)=) 0"ala, 37)
m,i
@)= Y 6""alalaa (38)

m,n,ij

representingsingle and double excitation of the electrons. The indices
iandjlabel the occupied spin orbitalsand mand nare thelabels of the
unoccupied spin orbitals. The vector 0 is the set of all parameters to
optimize. Inthe case of aH, molecule, the UCC operator is transformed
into a qubit operator as

U%Ec(e) — e—i@XY,

where @is a single parameter to variationally optimize.
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Extended DataFig.1| Two-qubit processes. Average gate infidelities, process matrices (PTMs) and error generators of the six quantum gates in the chosen gate
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inthe subspace of theindividual qubits. The individual PTMs are calculated from the PTMs in the two-qubit space (see Methods).
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Extended DataFig.3|Bellstates predicted from the quantum processes. Top
panelsshow thereal part of the reconstructed density matrices of the four Bell
states|W") = (I01) +[10))/+/2 (a),|W™) = (101) ~ [10))/+/2 (b),I0" = (100) + [11))/~/2
(c)and|®) = (/00) - |11))/+/2 (d). The colour code is the same as in Fig. 4. Bottom
panels show the quantum circuitused toreconstruct the Bell states. Zé,- isa
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virtual-rotation around the £ axis on the ith qubit, which is executed by aphase
update onthe microwave reference clock of the qubit and, therefore, is
error-free. We numerically estimate the state fidelities to be 98.42% for the |W*)
and |W") statesand 97.75% for the |®*) and |®") states.
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Extended DataFig. 4 |Initial gate calibrations. a, Decomposition of Ramsey interference sequence.d, e, Calibration of phase corrections oneach
single-qubit and two-qubit gates. After each microwave burst for single-qubit qubit after the CZ gate, using Q, (d) and Q, (e) as the control qubits,
rotations, acorresponding phase correctionis applied to each qubit. The CZ respectively. When theamplitude of the barrier pulseis perfectly calibrated,
gateisimplemented by abarrier voltage pulse applied to gate B (orange) and the two curvesineach experiment should be out of phase by 180°. However,
negative compensation pulses applied to gates LP (blue) and RP (red), with the whenthebarrier pulseamplitude s calibrated such that one of the two
same shapeasthebarrier pulse. Single-qubit phase corrections are then experiments shows a180° phase difference (d), the phase differenceinthe
applied on each qubit to compensate the frequency detuning induced by other calibration experiment always deviates by a few degrees. One possible
electron movementin the magnetic field gradient. b, ¢, Calibration of phase explanationis that the optional -rotation applied to the control qubitinduces
correctionson Q,induced by asingle-qubit gate applied on Q, (¢,;,b) andon Q, asmall, off-resonance rotation on the other qubit, causing an additional phase
(¢y1, ). Arelative phase shift, 2¢,, (2¢,,), is determined by interleaving the onthetarget qubittoappearinthe measurement due to the commutation

target gate (am/2rotation) anditsinverse (a—t/2 rotation)onQ,(Q,)ina relation of the Pauli operators.



Extended DataFig. 5| Pulse optimization.a,b, Fullerror generators foraCZ
gate calibrated by conventional Ramsey sequences (a) and afterimproving the
calibration using the information extracted froma (b), resulting in fidelities of
97.86% and 99.65%, respectively.c,d, Seven Hamiltonian errors (IX, 1Y, X1, Y1, 1Z,
Zland ZZ) extracted fromtheerror generatorsshownina(c) and b (d). Owing
tothe crosstalk-induced additional phases shownin Extended DataFig. 4,
errorslZ,Zland ZZ occur systematically in conventional calibrations. Error
barsindicate the 2o confidence intervals computed using the Hessian of the
loglikelihood function. e, f, Shapes of the barrier pulses (e) and their
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corresponding/envelopes (f) foraCZ gate before and after being corrected by
GST. Since the Hamiltonianto generateaCZ gateis H= (Il +1Z + Z1 - ZZ)/2, the
positive ZZ error shownin cis corrected by increasing the amplitude of the
pulse.ThelZand Zl errors are corrected by decreasing the phase shifts 8,and 6,
after the CZ gate. Hamiltonian errorsin single-qubit gates are corrected
similarly. The results presentedinb and dare achieved in four loops of

correction, witheachloop correcting the parameters by approximately 70% of
the measured deviation.
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Extended DataFig. 6 | Workflow of the variational quantum eigensolver
algorithm. The qubit Hamiltonian s typically transformed from the molecular
Hamiltonian by JW transformation or BK transformation by a classical
processor (see Methods). A HF initial stateis encoded into the qubit states
accordingtoJW or BK transformation and then transformed by the quantum
processorintoaparameterized ansatz state by considering single and double

Suml
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excitationinthe molecule using the UCC theory. The expectation value of each
individual Hamiltonian termis directly measured by partial state tomography.
Theexpectation of the total energy is then calculated by the weighted sum of
theindividual expectations. Theresultis fed into a classical optimizer, which
suggests anew parameterized ansatzstate for the next run. This process is
repeated until the expectation of the total energy converges.



Extended Data Table 1| Gate metrics

lngate lstub €J 6.] D || : ||<>
Q1: 0.0075 £ 0.0033

I 0.017 £0.012 Q2: 0.0111 + 0.0039 0.021 |0.0097| 0.024 £0.015 [0.038 £0.019

Xq1(0.0088 £0.0023| 0.00320 £ 0.00073 | 0.010 | 0.027 | 0.032 +0.022 |0.047 £ 0.035
Yq1 |0.0059 £ 0.0029 0.0027 £+ 0.0057 0.0069| 0.022 [0.0256 £ 0.0073|0.034 £ 0.022

Xq2/0.0119 £+ 0.0023 0.0039 £ 0.0068 0.014 | 0.028 | 0.035£0.030 [0.044 £ 0.041
Yq2 |0.0067 £ 0.0023| 0.00131 £ 0.00025 |0.0079| 0.022 |0.0265 £ 0.0080(0.034 + 0.014
cz [0.0035 +£ 0.0015 — 0.0042| 0.016 | 0.018 £0.014 |0.023 £0.010

Detailed overview of important metrics of the gate set {I, Xq1, Yq1 X2, Yqo. CZ}: the average gate fidelity F,.. (see equation (22)) and the fidelity reduced to the single-qubit subspace F, (see
equation (27)), the Jamiotkowski probability ¢, (see equation (24)), the Jamiotkowski amplitude 6, (see equation (25)), the trace distance D(Migeal. Mexp) = I Mideal = Mexplli/2 and the diamond

norm|l Migeat, Mexpllo = max gll(Migeal ®1dz)p ~(Mexp ®1dz)pl\1/2.




	Quantum logic with spin qubits crossing the surface code threshold

	Online content

	﻿Fig. 1 Two-qubit device and symmetry operating point.
	﻿Fig. 2 Gate-set tomography and single-qubit gate.
	﻿Fig. 3 Hamiltonian engineering of exchange interaction.
	Fig. 4 High-fidelity two-qubit gate.
	﻿Fig. 5 Variational quantum eigensolver.
	Extended Data Fig. 1 Two-qubit processes.
	Extended Data Fig. 2 Single-qubit processes.
	Extended Data Fig. 3 Bell states predicted from the quantum processes.
	Extended Data Fig. 4 Initial gate calibrations.
	Extended Data Fig. 5 Pulse optimization.
	Extended Data Fig. 6 Workflow of the variational quantum eigensolver algorithm.
	Extended Data Table 1 Gate metrics.




