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MODELING NONLINEAR EVOKED HEMODYNAMIC RESPONSES IN FUNCTIONAL

ULTRASOUND

Sofia-Eirini Kotti⋆∗ Aybüke Erol⋆ Borbála Hunyadi⋆

⋆ EEMCS, Delft University of Technology, Delft, The Netherlands.

ABSTRACT

Functional ultrasound (fUS) is a high-sensitivity neuroimag-

ing technique that images cerebral blood volume changes,

which reflect neuronal activity in the corresponding brain

area. fUS measures hemodynamic changes which are typi-

cally modeled as the output of a linear time-invariant system,

characterized by an impulse response known as the hemody-

namic response function (HRF), and a binary representation

of the stimulus signal as input. In this work, we quantify

the difference between a linear and a nonlinear time-invariant

HRF model in terms of data fitting and prediction perfor-

mance. Our results on fUS data obtained from two mice

reveal that: (a) including nonlinearities in the HRF achieves

a significantly more precise modeling of the fUS signal com-

pared to the linear assumption under certain stimulus con-

ditions and (b) a second-order Volterra series approximation

can be used to characterize the nonlinear model and predict

responses to stimuli.

Index Terms— Functional ultrasound, (nonlinear) hemo-

dynamic response, Volterra series.

1. INTRODUCTION

Functional ultrasound (fUS) is an emerging neuroimaging

modality that provides an indirect measure of neuronal activ-

ity by recording changes in cerebral blood volume. Similarly

to functional magnetic resonance imaging (fMRI), this is

possible through the phenomenon of neurovascular coupling

(NVC), which describes the link between fluctuations in local

neuronal activity and the resulting changes in blood flow.

The majority of studies addressing the NVC assume a

linear time-invariant (LTI) model for the hemodynamic re-

sponse, which can be described by an impulse response

known as the hemodynamic response function (HRF). Esti-

mating the HRF, and thus uncovering the dynamics of the

NVC, is a research topic in hemodynamics-based imaging

modalities for decades. Although the hemodynamic response

is known to exhibit nonlinear characteristics, linear modeling

has maintained its popularity due to its good performance and

simplicity. However, under certain circumstances, deviations

∗This work is supported by the TU Delft AI Labs programme.

from the behavior of an LTI system can become too se-

vere to neglect, examples of which include experiments with

closely repeated stimuli [1], or under changing duration [2]

or strength [3] of stimuli.

Volterra series are high order extensions of the Taylor se-

ries. A Volterra series of order one simply describes a one-

dimensional convolution operation; higher order Volterra ker-

nels, e.g., second-order kernels that describe pairwise inter-

actions of the input signal at different time instances, were

found to sufficiently capture nonlinearities of the fMRI sig-

nal caused by interactions between successive stimuli in an

auditory experiment [1].

Although research on HRF identification using fMRI data

is prolific, the corresponding research using fUS data is in-

creasing only as of recently, see e.g., [4, 5]. The contribution

of this paper is twofold. On one hand, fUS measurements on

mice during a visual experiment with long duration stimuli

were used to show and quantify under which stimulus condi-

tions the fUS data can be better approximated using a non-

linear HRF, as opposed to a linear one. On the other hand,

the applicability of Volterra series to characterize the nonlin-

ear aspects of the HRF was shown by estimating the kernels

using a series of different stimulus durations and predicting

individual responses.

2. MATERIALS AND METHODS

2.1. Theoretical background

The complexity of biological systems makes it difficult to

derive analytic equations that describe neuronal dynamics

adequately. Related work can be found in fMRI literature,

e.g., [6–8]; however, there is no such work specifically for

fUS, to the authors’ knowledge.

Alternatively, the HRF can be estimated with data-driven

approaches. When a causal LTI system with finite memory

T is assumed in discrete time, the system model is y(k) ≈∑T−1
k1=0 h

(1)(k1)u(k−k1), where y(k) is the measured hemo-

dynamic response at time instant k, h(1)(k) is the HRF and

the input u(k) is usually the stimulus signal used in the ex-

periment, represented as a binary block-type vector equal to

1 when the stimulus is on and 0 during rest periods [5, 9].

Common approaches in fMRI literature include: a) as-

suming an a priori shape of the HRF (usually the canonical
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HRF model [10]) and estimating only its amplitude, b) esti-

mating parameters that define the shape of a template HRF

(e.g., time-to-peak and duration) [11] and c) expressing the

HRF as a linear combination of several basis functions and

estimating the best regression coefficients [11]; this approach

also results in physiologically meaningful shapes with care-

fully chosen basis functions.

2.2. Data acquisition and preprocessing

For our HRF modeling on fUS data, two experiments (on

two different mice and brain slices) were conducted at the

Center for Ultrasound and Brain imaging at Erasmus Uni-

versity Medical Center (CUBE). During data acquisition,

the subject mouse was presented with randomly generated

high-contrast images (a rectangular patch of white “speck-

les” against a black background) on two stimulation screens

simultaneously. In the first experiment (Exp. 1), the stimulus

was shown with 4 different durations (1, 4, 10 and 20 sec-

onds), 10 repetitions each, in random order. Each repetition

was followed by a rest period (completely black screens) of

random duration between 20 and 25 seconds. In the second

experiment (Exp. 2), the durations were 0.25, 0.5, 1, 2, 3,

..., 10 seconds and there were 11 repetitions. For Exp. 1, we

report results on all durations; for Exp. 2, we report results on

1, 4, 8 and 10 seconds.

The time series of a pixel corresponds to its power varia-

tion across the power Doppler image (PDI) stream [5]. The

final frame rate was 4 Hz in Exp. 1 and 7.44 Hz in Exp. 2.

The region of interest (ROI) per experiment was selected as

an area of 16 pixels in the left superior colliculus, a region

known to be involved in the processing of visual stimuli [12].

Pixels with a Pearson correlation coefficient (PCC) larger than

0.3 with the stimulus are indicated in Fig. 1 for Exp. 1.

The next step of data preprocessing included standard-

izing each ROI pixel time series and averaging them over

the ROI to obtain a single time series. This signal was sub-

sequently subjected to low-pass filtering using a fifth-order

Butterworth filter with 0.3 Hz cutoff frequency, in order to

remove high frequency noise components [13]. We applied

baseline correction to each stimulus repetition separately.

In Fig. 2, the resulting signals per duration are shown for

Exp. 1, after averaging over the multiple stimulus repetitions.

The response to 1 sec stimulus shows a single peak before it

returns to the baseline level. The observed signal takes more

intricate shapes for the stimuli of 10 and 20 sec: the responses

drop after the initial peak and then increase again. This raised

the question of whether such responses can be modeled as the

convolution of an HRF with a block-type signal. A delayed

component in the response to strong inputs (high concentra-

tion odors) has also been observed in [4], where it was mod-

eled using a second linear HRF term that peaks at a late point.

However, the authors assume that the neuronal Ca2+ signal is

the driver of that LTI system, which is not block type.
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Fig. 2: Average filtered ROI response.

2.3. Volterra series

In this work, we evaluate the LTI assumption and further ex-

plore Volterra series [1] as an alternative to perform nonlinear

system identification given fUS measurements. The Volterra

series is an extension of the Taylor series to cover dynamic

systems and can represent any analytic time-invariant sys-

tem [14]. In our case, the second-order Volterra series ap-

proximation is given by

y(k) ≈ h(0) +

T−1∑

k1=0

h(1)(k1)u(k − k1)

+

T−1∑

k1=0

T−1∑

k2=0

h(2)(k1, k2)u(k − k1)u(k − k2), (1)

where y(k) for k = 1, . . . ,K is the hemodynamic response

captured in the fUS signal, h(m)(·), m = 0, 1, 2, is the m-

th order Volterra kernel and u(k) is the block-type stimulus

signal.

In order to estimate the coefficients of this expansion us-

ing linear estimation methods and ensure that the resulting

kernel shapes will not be arbitrary, we expand the kernels in

terms of L temporal basis functions bi(k), i = 1, . . . , L, fol-

lowing [1]. The kernels are expanded as

h(0) = g(0)

h(1)(k1) =

L∑

i=1

g
(1)
i bi(k1) (2)

h(2)(k1, k2) =

L∑

i=1

L∑

j=1

g
(2)
ij bi(k1)bj(k2).

Using the one-dimensional convolution of the input u(k) and

the basis functions bi(k), we can define a new set of response

variables xi(k) as xi(k) =
∑T−1

k1=0 bi(k1)u(k − k1). Substi-

tuting this into Eq. (1) gives

y(k) ≈ g(0) +
L∑

i=1

g
(1)
i xi(k) +

L∑

i=1

L∑

j=1

g
(2)
ij xi(k)xj(k). (3)

Stacking all y(k) into the observation vector y ∈ R
K×1

and the L′ explanatory variables 1, xi(k) and xi(k)xj(k) as
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columns of a design matrix X ∈ R
K×L′

, we obtain the model

y = Xg + e, (4)

where the error vector e ∈ R
K×1 includes possible measure-

ment noise and uncaptured higher order dynamics. The vector

g ∈ R
L′

×1 includes all unknown coefficients g(0), g(1), and

g(2) from which the kernel coefficients h(m)(·), m = 0, 1, 2,

can be calculated using Eq. (2).

The basis functions in this work were chosen to follow the

linear HRF form assumed in [4, 5], that is

b(k;θ) = θ1(Γ(θ2))
−1θθ23 kθ2−1e−θ3k, (5)

for k ≥ 0, where θ = [θ1, θ2, θ3]
T and θ1, θ2, θ3 > 0 con-

trol the response height, the delay and the dispersion of the

function [5]. The parameters of the basis functions were fixed

so that the functions peak during different possible compo-

nents of the hemodynamic response, i.e., early, intermediate

and late components, and were not optimized for.

The following optimization problem is used to estimate ĝ

minimize
g

∥Xg − y∥2 + λ∥g∥1

subject to
∑L

i=1 g
(1)
i bi(k) ≥ 0 ∀k.

(6)

The ℓ1-norm regularization is used to promote sparsity in the

solution, so that interpretable shapes for the HRF can be ob-

tained, given the number of columns in the design matrix. The

parameter λ controlling the regularization was set empirically

to 10−4 (for unit energy X and y). The constraint requires

that the first order kernel h(1)(k) be positive for all k, as the

linear fUS HRF is assumed to be always positive [4, 5].

3. RESULTS

3.1. Training per stimulus duration

In order to evaluate and compare the potential of a linear and

a nonlinear HRF to describe the obtained fUS measurements,

we solve (6) assuming a maximum Volterra order M = 1
(linear) and M = 2 (nonlinear) per each stimulus duration

separately. Given the estimated coefficients ĝ, we then recon-

structed the observation vector y as ŷ = Xĝ.

The mean squared error (MSE) achieved by the recon-

struction for M = 1 and M = 2, is given in Tables 1 and

2, for the two experiments respectively. The difference in the

reconstruction achieved by the two in the case of stimulus of

1 sec is rather low. The MSE improvement is much larger

for longer stimuli. Focusing on the 4 sec stimulus, in Exp. 2

the MSE improvement achieved when incorporating second-

order kernels is comparable to that achieved for 1 sec stimu-

lus. In Exp. 1 the improvement factor is much larger. This

difference does not come as a surprise, as it is known that the

hemodynamic response can differ per subject. These results

show that the responses to longer stimuli can be reconstructed

more faithfully when a maximum Volterra order M = 2, thus

a nonlinear HRF, is used. The above observation is justified

by the fact that a binary stimulus in combination with an LTI

hemodynamic system cannot account for responses that de-

part from the form of the 1 sec response in Fig. 2.

Table 1: Reconstruction MSE - Exp. 1.

Stimulus MSE [×10−5] Improvement

duration [sec] M = 1 M = 2 factor [×103]

1 9.014 0.0931 0.097

4 64.672 0.005 12.992

10 31.868 0.007 4.569

20 19.239 0.003 7.746

Table 2: Reconstruction MSE - Exp. 2.

Stimulus MSE [×10−6] Improvement

duration [sec] M = 1 M = 2 factor [×103]

1 1.845 0.293 0.006

4 31.183 0.081 0.385

8 290.847 0.005 62.371

10 436.196 0.004 98.407

3.2. Training and testing across stimulus durations

After confirming that the Volterra series can be used to model

hemodynamic responses to long durations of this visual stim-

ulus, the next step was to investigate whether kernels trained

on multiple durations can predict the responses to individual

stimuli. Fig. 3 shows the 8 basis functions that were used;

their peaks were spaced at 2 seconds.
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Fig. 3: Basis functions.

Using the data of Exp. 1, the temporally averaged re-

sponses to the stimulus durations of 1, 4, 10, and 20 seconds

(one time series per duration) were concatenated, as well as

the stimuli themselves. It should be noted that the energy

of each response was matched to the energy of the corre-

sponding stimulus, to alleviate differences between responses

to different durations. During the training phase, a single

set of Volterra kernels was obtained by solving 6 using the

concatenated signals (70% of the repetitions were averaged)

for M = 1 and M = 2 separately. These kernels were then

used on the testing set (30% of the repetitions) to predict
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individual responses to stimuli of 1, 4, 10 and 20 seconds.

The performance was evaluated against the average of the

repetitions in the testing set, and also against the individual

repetitions. The prediction results can be found in Fig. 4. In

Tables 3 and 4 the PCC between the true response and the

predicted response is given, for the average data and each

repetition separately.
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Fig. 4: Training, testing and predicted signals for maximum Volterra order

M = 1 and M = 2 in Exp. 1, for stimulus duration 1 sec (a), 4 sec (b), 10
sec (c) and 20 sec (d), when all durations are used to estimate the kernels.

The testing data shown is the average.

Notable is the underestimation of the first peak in the re-

sponses for M = 1 in Fig. 4, compared to M = 2, and the

noncapture of the dip after the peak, although the overall du-

ration of the response is correctly predicted. Contrary to [4],

where HRF amplitude can vary based on the stimulus, we as-

sume a fixed amplitude for the kernels over all durations. This

leads to M = 2 being able to capture amplitude differences

in the responses better than M = 1. When it comes to the

PCC results, there is improvement in all durations (averaged

or individual data) when kernels are trained with M = 2.

Training with M = 1 using all durations seems to provide

rather insufficient kernels for the 1 sec stimulus.

Table 3: PCC between the actual and the predicted responses, M = 1.

Stimulus Testing data Testing Testing Testing

duration [sec] average data 1 data 2 data 3

1 0.773 0.740 0.681 0.830

4 0.826 0.733 0.735 0.858

10 0.876 0.859 0.662 0.783

20 0.914 0.868 0.877 0.839

The estimated kernels for M = 2 are shown in Fig. 5.

It is clear that the first-order kernel is mostly concentrated

in the first 5 seconds, but also shows fluctuations in the tail.

This is a result of training on all durations and using basis

Table 4: PCC between the actual and the predicted responses, M = 2.

Stimulus Testing data Testing Testing Testing

duration [sec] average data 1 data 2 data 3

1 0.928 0.898 0.890 0.875

4 0.880 0.773 0.825 0.870

10 0.944 0.901 0.675 0.920

20 0.961 0.897 0.918 0.905

functions that extend in time. This will, in turn, affect the

prediction for the shorter durations, which are overfitted in

the tail (Fig. 4(a), (b)). The second-order kernel is also mostly

concentrated in the first 5 seconds. The negative values in this

area suggest that if the stimulus has been on in the last few

seconds, the hemodynamic response will be suppressed. The

estimated kernels in Exp. 2 are not included, but overall agree

that the larger part of the hemodynamic response is contained

within the first 5 seconds.
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Fig. 5: Estimated kernels h(1)(·) (a) and h
(2)(·) (b), for maximum Volterra

order M = 2 in Exp. 1.

4. CONCLUSIONS

The aim of this work was to complement ongoing modeling

efforts in the fUS domain. We drew attention to the fact the

nonlinearities in the responses due to stimulus interactions

over time can be significant and should be considered when

designing experimental paradigms and modeling the hemody-

namic system. Including nonlinearities in the model is always

expected to better fit the hemodynamic response in general,

since the complexity of such a model is higher. In this work,

we reported the improvement in the data fitting MSE achieved

for longer stimuli compared to shorter stimuli in two experi-

ments. This difference is because the hemodynamic response

tends to follow a more complex shape in case of longer stim-

uli, which cannot be justified by the combination of an LTI

system and a binary input signal. Finally, the results show

that a Volterra series approximation can be used to model the

nonlinear character of the HRF. When trained using the re-

sponses to stimuli of different durations, it is possible to pre-

dict individual responses to stimuli with good accuracy.
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