
E-Compare: Automated energy
regression testing for software

applications

Master’s Thesis

Koen Hagen

E-Compare: Automated energy
regression testing for software

applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Koen Hagen
born in Leiden, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2024 Koen Hagen.

Cover picture: The logo of E-Compare, which is presented in this paper.

E-Compare: Automated energy
regression testing for software

applications

Author: Koen Hagen
Student id: 5653681

Abstract

As data centres worldwide consume more power than ever, lowering the energy
consumption of software is increasingly important. Software energy testing is
often unclear due to a lack of comparable baselines. In this paper, we look at
the use of regression testing to alleviate some of the struggles with energy test-
ing. We introduce E-Compare, a tool designed to identify energy regressions
in software updates by comparing the energy consumption of different versions
of the same project. E-Compare is cloud-based, fully automated, and can be
implemented in any project with just three lines of code. To validate its effec-
tiveness, we applied E-Compare to thirteen real-world projects, ranging from
long-established projects to newer, active ones. Over 700 code changes have
been tested. Our findings indicate that energy regression testing can identify
energy regressions missed by developers. Some of the indicated energy regres-
sions could be traced back to specific code changes, confirming the tool’s accu-
racy and relevance. However, the tool’s usability varies significantly depending
on the project, and unexpected energy regressions are relatively rare.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
Daily supervisor: Dr. L. Miranda da Cruz, Faculty EEMCS, TU Delft
Daily co-supervisor: J. Sallou, Faculty EEMCS, TU Delft
External member: Prof. Dr. M.M. Specht, Faculty EEMCS, TU Delft

Preface

I am immensely grateful to Luis Miranda da Cruz and June Sallou for guiding me
throughout the entire process, providing valuable insights and allowing me to follow
my interests. Their feedback and support helped me immensely. I am especially
thankful to them for their willingness to have weekly progress meetings during the
entire period.

Sustainable software engineering had always been my first choice as a research
direction and I am very glad that the research group accepted me and allowed me
to pick a topic after my interests.

Thank you to Arie van Deursen and Marcus Specht for finding the time as
professors to join my thesis committee and to be willing to judge my thesis.

This thesis marks the end of my academic career. It has been quite a journey
across multiple universities and countries. Nonetheless, throughout my career, I
always had a strong sense of direction culminating in this very thesis. I am ready
to dive into the next chapter of my life.

Koen Hagen
Delft, the Netherlands

June 5, 2024

iii

Contents

Preface iii

Contents v

1 Introduction 1
1.1 Background . 1
1.2 Terminology . 3
1.3 Research question . 6

2 Related Work 7
2.1 Energy Profiling . 7
2.2 Regression Testing . 9
2.3 Energy regression testing . 9

3 Approach 11
3.1 Conceptual Approach . 11
3.2 Implementation of the solution: E-compare 12
3.3 Challenges . 22
3.4 Limitations and future . 23

4 Experiments 27
4.1 Repository selection . 27
4.2 Implementation . 32
4.3 Commit comparison . 36

5 Results and Discussion 39
5.1 Overall result . 39
5.2 Per project . 42
5.3 Discussion . 55

6 Conclusions 59

v

Contents

6.1 Can automated energy regression testing contribute towards finding
energy regressions in software applications? 59

6.2 Contributions . 59
6.3 Reflection . 60
6.4 Limitations . 60
6.5 Future . 62

Bibliography 65

A Plots 69

vi

Chapter 1

Introduction

We propose and evaluate a new energy regression testing tool, with the goal of find-
ing changes is energy consumption across software updates. This paper begins by
explaining the importance of this research in the background. Then we introduce es-
sential terminology, followed by the research question. After that, we review related
research and other works. Next, we discuss E-Compare’s development, including its
concept, technical aspects, challenges, and limitations. After explaining the inner
workings of the tool, we use it in the conducted experiments, which includes select-
ing repositories, tool integration, and comparing commits. The results are presented
per selected project and general findings across all projects. Finally, we conclude
the study, discuss the limitations and suggest potential future research directions.

1.1 Background

Information and Communications Technology (ICT) consumes a significant portion
of global electricity usage, estimated at up to 3.9% in 2022[1]. This usage is expected
to increase further in the future[2][3]. Data centres, in particular, have doubled their
energy consumption over the past decade[4] and are forecasted to increase fifteen-
fold between 2016 and 2030[5]. Currently, data centres consume more energy than
the entire aviation industry[4].

Given this rise, it becomes increasingly important to explore ways to reduce data
centres’ energy consumption. Lower energy consumption would reduce operational
costs and increase the environmental impact. Reducing costs could facilitate in-
novation by making more theoretical operations economically viable. High energy
consumption also contributes to a larger carbon footprint if the electricity comes
from non-renewable sources.

Several factors contribute to this steep increase. Firstly, the necessity of data
centres has grown due to the increased global internet usage. More people are
connected to the internet than ever. An estimated 5.44 billion people are now con-
nected to the internet[6], with the average person spending 6.5 hours online daily[7].
Secondly, there is a rise in high-performance computing, including artificial intelli-

1

1. Introduction

gence (AI) and blockchain. Training complex machine learning models and running
simulations for scientific research require substantial computing power, leading to
increased energy demands. The continuous evolution of hardware capabilities, in-
fluenced by Moore’s Law[8], provides the necessary computational power for these
tasks. Globally, the high-performance computing market is expected to grow by
over 15% annually[9]. Thirdly, the adoption of high-level programming languages,
such as Python and JavaScript, contributes to increased energy consumption during
code execution compared to low-level alternatives. In 2017, 32% of programmers
reported using Python within the last twelve months, rising to 54% in 2023, accord-
ing to JetBrains[10]. Lastly, cloud computing has become essential for organisations
seeking scalability and on-demand access to computing resources, storage, and ser-
vices, significantly impacting the rise of data centres.

These data centres can be stripped down to individual programmes that get
run. Constant data streams from these programmes create heat and cost energy.
Sometimes these programmes do not behave as expected, due to updates or other
things. We call these changes in behaviour “regressions”. A regression could be, for
instance, more software bugs, higher execution speed or lower performance. Regres-
sions can be positive or negative. When a change relates to the energy consumption
of a programme, we refer to it as an “energy regression”.

Negative energy regressions pose several issues. They indicate inefficiencies in a
program’s use of CPU, memory, and other resources, resulting in unnecessary energy
consumption. Excessive energy consumption can lead to performance issues, such
as elevated device temperatures, reduced computing speeds, or even complete shut-
downs. For mobile devices like smartphones and battery-powered gadgets, energy
regressions can significantly impact battery life, tethering these devices to power
outlets more frequently. For cloud computing, energy regressions can have financial
implications, as cloud service costs are tied to application demand, making cloud-
based services more costly to maintain.

Addressing energy regressions involves identifying and resolving inefficiencies
in the software code, such as unnecessary computations, inefficient algorithms, or
resource-intensive operations. The tool presented in this paper aims to detect and
mitigate energy regressions during the development and testing phases to ensure that
software applications are energy-efficient and provide a positive user experience.

In software development, the importance of energy testing has become increas-
ingly evident. Energy testing ensures that software applications are optimised for
minimal energy consumption and that negative energy regressions are identified and
removed. This practice is not only about reducing operational costs but also about
improving other things, like overall system performance and user satisfaction.

A CI pipeline commonly includes operations related to building, testing, vali-
dating, and verifying infrastructure. Only a limited number of organisations have
incorporated energy testing into their Continuous Integration (CI) pipelines to au-
tomatically assess the energy impact of their code. This is typically applied in cloud
computing environments to optimise the energy efficiency of data centres and server
farms, ensuring that energy considerations are part of the regular development work-

2

1.2. Terminology

flow, reducing the likelihood of introducing energy bugs.
The field of energy testing is still relatively small but continues to evolve with

ongoing advancements in tools and methodologies. Various energy profiling tools
can be employed to measure and analyse the energy consumption of software ap-
plications. PowerLog1, perf (built into the Linux kernel)2, powerstat3, Nvidia-smi4,
provide basic information on energy consumption, typically from the command line.
Other tools provide a visual dashboard, like Intel Performance Counter Monitor5,
Scaphandre6. These tools provide insights into the energy usage patterns of different
system components.

However, many of these energy testing tools face challenges in terms of user-
friendliness and clarity, which are critical factors for developers considering tool
implementation. Both the readability of the reported information and the ease of
integration can influence a developer’s decision to implement such a tool in their
software. Some tools require users to clone a project twice with different latest com-
mits and compare them locally, which can be cumbersome. Regarding readability,
if a tool indicates that a piece of code emits a specific amount of Joules per second,
developers may struggle to interpret whether the figure is good or bad without a
baseline for comparison. Establishing a baseline is crucial for providing context to
the reported information and enabling developers to assess the significance of the
energy consumption metrics in their specific software context.

To address the lack of a standard baseline in energy regression testing we propose
using the previous version of the software as a baseline. By comparing the current
version with the previous one, it is easier to detect changes in energy consumption.
This enables developers to pinpoint which parts of the code or functionality changes
have led to increased or decreased power usage. Furthermore, it helps developers
evaluate whether the benefits of the changes made outweigh potential drawbacks in
energy efficiency. Previous versions also serve as historical data points for energy
consumption. Over time, this historical data can help establish trends and identify
areas where the software has become more or less energy-efficient.

To prove this concept, we implement E-Compare (the tool described in this pa-
per) that uses this approach of energy regression testing by providing users with
comparison data alongside standard energy testing data. This approach is not com-
mon in energy testing tools or frameworks.

1.2 Terminology
In this section, we introduce key terminology related to software development and
testing. This is essential for a full understanding of the work discussed in this paper.

1https://github.com/Thev2Andy/PowerLog. Retrieved April 26th 2024.
2https://perf.wiki.kernel.org/index.php/Main_Page. Retrieved April 26th 2024.
3https://github.com/ColinIanKing/powerstat. Retrieved April 26th 2024.
4https://developer.nvidia.com/system-management-interface. Retrieved April 26th 2024.
5https://github.com/intel/pcm. Retrieved April 26th 2024.
6https://github.com/hubblo-org/scaphandre. Retrieved April 26th 2024.

3

https://github.com/Thev2Andy/PowerLog
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/ColinIanKing/powerstat
https://developer.nvidia.com/system-management-interface
https://github.com/intel/pcm
https://github.com/hubblo-org/scaphandre

1. Introduction

This section serves as a foundation and can be referred back to for clarity on common
concepts.

Energy consumption Energy consumption refers to the amount of energy used
by a device or system over a period of time. It is measured in joules (J).

Power usage Power usage refers to the rate of energy consumption at a particular
moment. It is measured in watts (W).

Software testing Software testing is an essential part of building software, aimed
at finding problems or unintended events in the source code. It involves run-
ning (parts of) the code in a controlled environment. Software testing is a
broad term that includes various quality attributes such as functionality, per-
formance, and reliability. Medium to large companies often have Quality As-
surance (QA) testers who focus solely on testing software.

Energy testing Energy testing is a specific type of software testing that focuses
on the energy consumption of the project. It involves measuring the energy
consumption of software during execution to identify inefficiencies and ensure
that software is energy-efficient. The result is that the software minimises its
power usage and impact on a device’s battery life. Energy testing can be split
into hardware-based measuring and software-based measuring. This paper
focuses only on software-based measuring.

• Unit Testing Testing individual units or components of the software in
isolation.

• Integration Testing Testing the interactions between different units or
components.

• System Testing Testing the entire system as a whole.

We primarily focus on unit testing.

Testing suite The testing suite refers to all tests combined. This could include
unit tests as well as any other tests written for the project.

Testing techniques There is a variety of testing techniques that can be utilised
depending on the developer’s requirements. Important ones for us are black
box testing and regression testing.

Black Box Testing Testing the software without knowledge of its internal struc-
ture or implementation. There is no access to the underlying source code,
hence the name “black box.” The tester focuses on testing the functionality
of the software based on its inputs and outputs, typically validating a set of
output values based on their expectations.

4

1.2. Terminology

Energy regression Energy regression refers to the unintended increase or decrease
in a software’s energy consumption after changes to the source code. Through-
out the text, we might refer to energy regressions as regressions.

Energy regression testing Energy regression testing refers to finding unintended
changes in the energy consumption of software as a result of changes to the
source code. The term “energy regression testing” was inspired by Danglot et
al.[11].

This manuscript is deeply intertwined with Git terminology. Here are some basic
Git terms used:

Repository A repository is a storage space where your project’s files and revision
history are kept. It’s like a folder for your project that tracks changes over
time. GitHub allows you to run workflows accessing the repository. The term
“repository” is used similarly to “project” but in the context of Git.

Commit A commit is a snapshot of the source code at a specific point in time.
It contains changes made to files in a repository. Each commit has a unique
identifier and includes a message describing the changes made.

Branch A branch is a parallel version of a repository’s code. It allows developers
to work on separate features or fixes without affecting the main development
code. Branches are commonly used for feature development, bug fixes, or
experiments. A typical workflow is to build new code additions in a separate
branch and merge them into the main branch when completed.

Head branch The head branch is the current branch where development or spe-
cific changes are being actively made. It is typically a feature branch or a
topic branch created from the main branch. Developers use the head branch
to implement new features, fix bugs, or experiment with changes. Once the
changes are tested and reviewed, the head branch is usually merged back into
the main branch.

Base branch The base branch is the branch against which a new branch is com-
pared and into which it will be merged. It is typically the main or master
branch, but it can be any branch that serves as the foundation for develop-
ment. When creating a pull request, the base branch is the target branch
where changes from the head branch will be integrated.

Pull Request (PR) A pull request is a request to merge changes from one branch
into another. It allows developers to review, discuss, and collaborate on code
changes before merging them into the main branch. E-Compare uses these to
show its results.

5

1. Introduction

1.3 Research question
Based on the problems identified in section 1.1, we phrase our research question as
follows:

Can automated energy regression testing contribute towards finding energy regres-
sions in software applications?

This research question is true if the following two criteria are met:

1. Energy regression testing can find energy regressions in software applications

2. After initial setup, energy regression can be tested automatically, without any
manual interaction from the developer.

To answer this research question, we first create an energy regression testing
tool that reports its findings to the developer making changes to their software
application. Then, we apply this tool to several open-source projects. For each of
these projects, we retroactively apply the tool to previous code changes, simulating
as if the code change was new. The findings of all these code changes are then
compared and checked for any energy regressions that could potentially be mitigated
had the developer been aware of their existence.

“Automated” means testing without manual interaction from the developer,
typically done using Continuous Integration / Continuous Development (CI/CD)
pipelines.

6

Chapter 2

Related Work

Energy regression testing is a relatively unexplored domain in computer science.
This chapter discusses previous research related to this study, providing a foundation
for our own work. We can subdivide it into energy testing and regression testing,
which we will discuss individually first.

2.1 Energy Profiling

Power usage measurement can be conducted using software-based or hardware-based
approaches. In this paper, we focus exclusively on software-based approaches, con-
sidering hardware-based approaches out of scope.

Research on energy consumption of software is limited compared to research on
general computational speed. While higher computational time often correlates with
higher energy consumption, this is not always the case and definitely not a one-to-
one relationship. There are instances where energy consumption is reduced without
a significant impact on execution speed[12].

There are many different tools that can be used for measuring energy consump-
tion of software. However, due to differences in hardware and operating system,
specific tools apply to specific use cases. Cruz gives an overview of six commonly
used tools and in what kind of situation someone would apply them[13]. On Linux,
when you have an AMD processor, the PowerTOP can be used as an energy pro-
filer. Otherwise, if you use an Intel CPU, PowerStat, Perf or Likwid can be used.
On Windows or MacOS, PowerGadget or Intel PowerLog can be used. Though,
these profilers only work with Intel CPUs. GPU-intensive programmes can be best
measured with Nvidia-smi if the system uses a Nvidia GPU. More recently, EnergiB-
ridge, strives to solve this platform-dependent landscape by creating a cross-platform
energy profiling tool[14].

Several frameworks have been developed to profile and enhance the energy effi-
ciency of computing systems. These frameworks focus on identifying design patterns
within applications to optimise performance effectively. For instance, the GEOPM
model is an energy management framework designed for extendability, allowing for

7

2. Related Work

future energy management strategies[15]. The POSE model enables developers to
evaluate the benefits of decreased energy consumption in their applications, helping
identify opportunities for power optimisation[16]. Maranthos et al.[17] provide a
framework that uses static analysis to estimate the performance and energy con-
sumption of applications.

Multiple models for energy consumption estimation tools have been proposed.
These tools utilise AI to estimate energy consumption. An older model[18] lays
the groundwork for measuring large, complex systems, identifying cooling as the
most energy-intensive operation within enterprise data warehouses. This depends
massively on the database size; I/O subsystems consume the most power for smaller
databases, while CPUs use the most power for larger databases[18]. The CHAOS
model is a linear regression model using various features, validated on six different
server hardware configurations[19]. Kim et al. propose a model[20] that utilises
time-dependent variables, such as the number of occurring events. GreenOracle[21]
provides a pre-trained model for estimating energy consumption through training on
data from a wide range of applications. By the same people, GreenScaler introduces
a software energy model that estimates CPU utilisation based on randomly generated
or developer-specific tests[22].

Energy models often focus on battery-powered devices, such as mobile phones[22].
This focus is logical, as the consequences of high energy consumption are easily ob-
served in reduced battery life and slower processing speeds.

In cloud environments, measuring energy consumption accurately is more chal-
lenging since conventional measurement methods, such as RAPL, are often unavail-
able. Interact[23] is a tool that uses machine learning to predict energy consumption,
achieving an 8% error rate for average power estimation. The Green-coding team
also developed a machine learning model for predicting energy consumption based
on Interact[24]. GreenFlow[25] measures the energy consumption of data stream
processing systems in the cloud. The model is tested on multiple common data
streaming platforms, such as Apache Flink and Apache Kafka. GreenFlow uses
Scaphandre under the hood.

Research has been done towards measuring energy consumption in a CI environ-
ment. [26] broadly outlines the requirements for incorporating energy consumption
measurements in a CI pipeline. Eco-CI[27] allows a developer to estimate energy
consumption in GitHub and GitLab workflows by positioning itself in the CI pipeline.

To estimate the energy consumption of active programs, the energy consumed
when the server is idle must be subtracted from the total energy consumption of
the server. Quesnel et al. propose a model to calculate the idle state energy
consumption[28]. TEEC is a model that estimates changes in power at runtime
based on software execution, considering CPU, memory, and disk metrics[29].

Despite the availability of several tools and methods, many developers are un-
aware of how to measure the energy consumption of their code[30][31]. However,
some developers express a willingness to sacrifice certain features to reduce energy
consumption[31].

Addressing code does influence power usage. Research shows that minor changes

8

2.2. Regression Testing

in data handling can lead to significant changes in energy consumption[32]. Other
code-based solutions have also been shown to decrease energy consumption, such as
compressing infrequently accessed data and reusing software services[33].

2.2 Regression Testing

Regression testing ensures that recent code changes do not introduce new defects
or negatively impact existing functionality. This is crucial in maintaining software
reliability and performance. Compared to energy testing, performance testing is
much more widely adopted. Regression testing frameworks and models function
similarly to their energy testing counterparts, thus we can look at them to get
inspired.

We find that recent research into performance regression testing moves away from
measuring every change. Instead, opting for predicting the emergence of performance
regressions to limit the testing time. Perphery[34] is an performance prediction
model that runs much faster that regular performance regression tests. Perphecy
can identify 85% of code modifications that impact performance while saving up to
83% of benchmarking time. It uses eight different performance indicators that range
from “The number of deleted functions” to “the length of the changed functions”.
An alternative model to Perphery is PRICE [35], which aims to predict performance
regressions by creating a prediction model that uses some other static and dynamic
metrics such as “the percent overhead of the top most called function that was
changed”. This model was comparable with the Perphecy model, with a slightly
lower hit rate but a slightly higher dismiss rate compared to Perphecy.

PefImpact[36] is a programme that automatically traces back performance regres-
sions to specific code changes. It identifies code changes likely causing performance
regressions by using a genetic algorithm to find inputs that slow down execution
in the new release. These kinds of tools could potentially be adapted for use with
energy regressions.

In general, looking at the scientific landscape of regression testing could give us
an insight in where energy regression testing in currently lacking, as well as where
the field might be heading in the future.

2.3 Energy regression testing

Energy regression testing is a relatively unknown term. Research on the subject is
limited or did not use the same terminology.

Though, some research towards energy regression testing has been conducted.
We find the first occurrence of the term in a paper by Danglot et al.[11]. They
demonstrate that energy regressions can be measured stably and accurately based on
studies involving seven Java projects. They trace back multiple energy regression to
pieces of code that were added in commits analysed. Their tool, called “diff-JJoules”,
is able to measure the energy consumption of commits by measuring locally on the

9

2. Related Work

developer’s computer. This requires some manual labour on part of the developer.
Other paper that do not use the term are also relevant. A paper by Hindle et
al. proposes a methodology that relates software source code changes to energy
consumption[37]. Instead of running the testing suite, they measure the energy
consumption at actual use of the software. One interesting finding of theirs is that
a single version update to Firefox contributed to a decrease in power usage of the
monthly power use of ninety American households per hour, assuming everyone
upgraded to the new version. This further emphasises the importance of energy
efficient code.

In conclusion, while energy regression testing is still a developing field, the ex-
isting research provides a solid foundation for further exploration. Our study aims
to build upon these findings to create a robust tool for detecting energy regressions
in software applications.

10

Chapter 3

Approach

In this chapter, we discuss our approach to the problems with the final goal to
answer the research question. This approach is built upon previous research stated
in Chapter 2 and aims to address as many issues that arise with current approaches
to energy testing and regression testing.

First, we look at our approach from a conceptual level, only discussing the fun-
damental workings without discussing any technical aspects. Then, we go more
in-depth into our proposed solution, where we break down the created tool on a
technical level. After that, we discuss some of the challenges that came up through-
out development. Finally, we talk about the limitations of this approach and some
future directions that the tool can be taken.

3.1 Conceptual Approach

A potential solution for improving software tests will involve measuring the energy
consumption during test runs using a wrapper around the testing suite. This ap-
proach ensures that the tool does not interfere with the actual testing logic while
still providing information. This wrapper will track energy usage for every code
change and generate data when the developer is about to implement changes to
production and report that. These reports will aid developers in making informed
decisions about whether to approve or deny code changes. The reports can aid the
developer in three different ways: detect code changes that significantly increase en-
ergy consumption and may require optimisation, confirm that changes intended to
improve efficiency are having the desired effect, and ensure that new code maintains
or improves upon the energy efficiency of the existing production code.

Ideally, implementing the tool will be straightforward and accessible for anyone
integrating it into their projects. Comprehensive documentation will provide a clear
guide on integration, customisation, and other useful information, helping users
understand the tool’s inner workings. There will be no user registration required,
and settings changes will be minimal. Changes to the testing suite will also be
kept as low as possible. However, implementing this solution may necessitate some

11

3. Approach

inevitable changes to the original test workflow. The tool will need specific trigger
moments to function correctly, which could result in tests being run under different
conditions.

The developer is free to use any type of test to measure the energy consumption
of, such as unit tests, integration tests, functional tests, acceptance tests, etc. They
have to use their own judgement to decide whether their tests fit, as some testing
types might not be impacted by changes in the source code. Some testing types will
also introduce more overhead compared to others. Typically higher-end tests, like
end-to-end tests, are less stable than lower-end tests, like smoke tests or unit tests.

The quality and coverage of the tests significantly affect the usefulness of the
results. Low test coverage increases the risk of missing energy regressions in untested
code. Any energy regressions in code that is not being tested will not be found.
Conversely, with low coverage, any detected regressions may appear more significant
than they are. Developers must evaluate whether this tool and similar tools are
appropriate for their projects and whether the results align with their tests and
source code.

To allow for the widest applicability, we will use a black-box approach, testing any
command that can be run in a GitHub Runner environment. This approach’s main
advantage is its versatility, allowing the testing of various commands and scenarios
without needing specific knowledge of the tested commands’ internals. This ensures
that the tool remains adaptable and capable of testing new technologies without
requiring constant updates.

Energy consumption is inherently non-deterministic and influenced by various
factors, both internal and external. Hardware variability, background processes,
and environmental conditions can all impact energy consumption, meaning running
tests twice could yield different results. For some tests, this fluctuation may be
more pronounced. This may cause insurmountable issues for some projects. Further
discussion on this topic can be found in section 3.4.

3.1.1 Example scenario

Consider a scenario where a developer introduces a new feature that involves com-
plex data processing. The wrapper records an increase in energy consumption by
10% compared to the production code. The report highlights this increase in red,
prompting the developer to review the changes. Upon investigation, the developer
identifies an inefficient algorithm and optimises it, reducing the energy consump-
tion back to acceptable levels. The final report shows a minor 2% increase, which is
within the acceptable range, allowing the developer to proceed with the deployment.

3.2 Implementation of the solution: E-compare

To address the problems with energy testing, we propose E-Compare. E-Compare
is an energy estimation tool that creates comparisons between different versions of

12

3.2. Implementation of the solution: E-compare

software. In this chapter, we explain our approach from a conceptual level, and
then, discuss the inner workings of E-Compare from a technical point of view.

The source code can be found on GitHub1. This can be used to replicate the ex-
periments. Documentation and implementation guides can be found on its website:
https://koenhagen.github.io/E-Compare/.

The name E-Compare is short for “energy compare”, reflecting the tool’s primary
function of comparing energy consumption. The first three letters, “eco”, are green
and bolded to highlight the tool’s ecological focus.

3.2.1 Tool breakdown

E-Compare operates as a reusable GitHub Actions workflow. GitHub was chosen
for its status as the leading platform for software storage and sharing and its exten-
sive free CI platform. The tool is called as a reusable workflow2 from a standard
YAML file. YAML files are used on GitHub to define your workflow configuration.
These reusable workflows function as if you refer to another workflow from another
location. This other workflow is our tool E-Compare. E-Compare requires some
extra parameters where the developer can pass through extra information to the
tool. Most importantly, the run parameter is used where the developer can pass
through the command that they want to measure the energy consumption of. This
will typically be the command that runs the testing suite. Instead of one command,
the developer can also pass a pipeline of commands or multiple commands divided
by a semi-colon, in the run parameter. Instead of running the command directly, it
is now run by the tool while its energy consumption is measured.

The developer has to trigger the tool through push and pull requests, each per-
forming different actions. Other triggers will result in undocumented behaviour.
Every push generates an energy report for the specific version of the software pushed
to GitHub. The report will include details such as test duration (in seconds), energy
consumption (in joules), and power (in watts). It will also provide comparative data
between the new and existing production codes, highlighting the percentage change
in energy consumption. Significant changes will be highlighted in the report as green
or red to indicate positive or negative regressions, respectively. A change is deemed
significant if it is exceeding 5% or below falling -5%. When a pull request is made,
E-Compare compares the latest energy report of the head branch with that of the
base branch (typically main/master). This comparison is visualised and reported to
the developer through a GitHub comment on the pull request. When a new push
is made to a branch that already has an open pull request a new comment is made
with the updated information. Figure 3.1 shows an example of such a comment on
a pull request.

Other than the run parameter, there is one more parameter that E-Compare
requires. This is the GITHUB_TOKEN parameter. This token is required by E-Compare

1https://github.com/koenhagen/E-Compare
2https://docs.github.com/en/actions/using-workflows/reusing-workflows. Retrieved

May 30th 2024.

13

https://koenhagen.github.io/E-Compare/
https://github.com/koenhagen/E-Compare
https://docs.github.com/en/actions/using-workflows/reusing-workflows

3. Approach

Figure 3.1: Example of a GitHub comment generated with E-Compare.

to obtain the necessary permissions regarding access to the repository. There are
also other parameters available, but those are all optional.

Figure 3.2 shows a breakdown of the different external applications used by
E-Compare. Zooming into the striped box from Figure 3.2, the inner workings of E-
Compare are detailed in Figure 3.3 and Figure 3.4. The tool breakdown is split into
two figures because the push and pull_request triggers function differently within
the tool. Generally, the push trigger creates energy reports, while the pull_request
trigger creates the visualisation shown to the end user. However, the push trigger
may also create the visualisation if a pull request already exists. We now describe
both applications of the tool:

Push A push triggers the most complicated part of the tool. When a commit is
pushed to the repository, E-Compare starts running the test command that
gets passed through. Before that, it starts its CPU usage measurement service.
Once the tests are complete, the tool stops the measurement service to ensure
accurate results by ensuring no other functions are run between the start and
end of the measurement period. The CPU usage data is then processed by the
energy estimation AI, which, combined with static hardware data, provides
an energy consumption estimate. Then, a report is generated containing the
AI results, test duration, and power consumption. This report is then stored
in the energy branch of the project’s repository. If the energy branch does
not yet exist (if this is the first created report), the tool will create it. After
generating the report, the tool checks if the push is part of a pull request. If

14

3.2. Implementation of the solution: E-compare

Figure 3.2: Breakdown of how E-Compare interacts with external applications.

so, the tool informs the developer about the commit’s energy consumption,
following the same process as for a pull request, described below:

Pull request The process triggered by a pull request is simpler than that triggered
by a push. The pull request trigger aims to provide the developer with infor-
mation collected during pushes. It does this by identifying the commit where
the branch was branched off (the fork point). It then retrieves the energy
report from the energy branch for both the fork point commit and the current
commit. If all data is correctly retrieved, the tool compares the two reports.
This comparison data, along with data on the latest commit, is then reported
to the developer through a comment on the pull request.

3.2.2 Detailed Implementation and Rationale

GitHub runs all its workflows on the Azure cloud. One limitation of this cloud-based
approach is that E-Compare does not have access to detailed hardware information.
Namely, power usage numbers are not available. To remedy this, E-Compare esti-
mates energy consumption based on accessible information, such as CPU load. For
this part we import a third-party artificial intelligence model created by Green Cod-
ing Berlin3. Specifically, we use their XGBoost model. The accuracy of this model

3https://github.com/green-coding-berlin/spec-power-model. Last retrieved 1 June 2024.

15

https://github.com/green-coding-berlin/spec-power-model

3. Approach

Figure 3.3: Flowchart of the inner workings of E-Compare in the case of a push.
Every push will trigger the tool to start making measurements of the specified tests.
After these are done and processed with the AI tool, an energy report is generated
and stored on the GitHub repository. If a branch for the reports does not exist yet
it creates it. If the push is already tied into an existing pull request, it runs similar
code to the pull_request trigger.

16

3.2. Implementation of the solution: E-compare

Figure 3.4: Flowchart of the inner workings of E-Compare in the case of a pull
request. First, the tool has to figure out which commits to compare. It does this by
finding the latest commit in the head branch and then finding its fork point with the
base branch. After retrieving both energy reports, it compares the two after which
the findings can be placed in a comment on the pull request.

17

3. Approach

ranges between 0% and 9% depending on the hardware[38].
The main part of E-Compare is written in JavaScript, though as said in Chap-

ter 1, JavaScript is a high-level programming language that creates a lot of energy
overhead. To minimise this overhead, E-Compare uses a C-language program for
measuring CPU load. C is a low-level programming language that compiles di-
rectly to machine code, avoiding runtime interpretation. This contributes to faster
and more efficient execution. C provides a high degree of control over hardware
and system resources. This level of control allows E-Compare to optimise code for
performance and minimise unnecessary overhead.

Other than CPU load, the AI model utilises other internal variables to make
energy estimations. There are the MODEL_NAME, TDP, CPU_THREADS, CPU_CORES,
CPU_MAKE, RELEASE_YEAR, RAM, CPU_FREQ, CPU_CHIPS, VHOST _RATIO. All of these
variables can be retrieved from the Azure cloud environment. The next part explains
some of these variables. The model name is used, which specifies which machine is
used for the workflow. This could be any of the six models that Microsoft Azure
uses (on which GitHub is hosted)[24]. The thermal design power (TDP) specifies the
maximum amount of heat generated by the server that is supported by the cooling
system. CPU cores are physical processing units, while CPU threads are virtual
virtual sequences of instructions given to a CPU. Threads and cores do not have
to be equal, due to hyperthreading. CPU MAKE specifies whether the CPU is from
AMD or Intel. The release years are the years that the specific model is released.
The RAM is the amount of RAM in GBs. The CPU frequency is the CPU clock
speed in GHz. 1 GHz would execute 1 billion cycles per second. The CPU chips
are the number of chips that are installed on the motherboard. In our case, all
machines have only one chip installed, as GitHub only uses machines with one chip.
vHost ratio is put in place for shared cloud servers. It specifies the ratio of threads
available to the user. If only half of the threads are available this variable would be
0.5. All hardware data was collected from the SPEC[39] benchmark database4.

Storing the energy reports generated by the tool within the GitHub repository
ensures both accessibility and security. Reports are placed in the .energy folder
within the designated energy branch, making them easily accessible alongside the
source code. This allows developers and team members to easily review them. The
integration with Git facilitates tracking changes, reviewing historical data, and cor-
relating energy metrics with specific code revisions. An example of an energy report
is shown in Listing 3.1

4https://www.spec.org/power_ssj2008/results/power_ssj2008.html. Retrieved January
23rd 2024.

18

https://www.spec.org/power_ssj2008/results/power_ssj2008.html

3.2. Implementation of the solution: E-compare

Listing 3.1: Energy report example
1 {
2 "total_energy": 645.6717832225576,
3 "power_avg": 0.45889963270970685,
4 "duration":140.7
5 }

From a security perspective, local storage within the GitHub repository en-
hances data security by keeping potentially sensitive information within the version-
controlled environment. This approach mitigates risks associated with storing sen-
sitive energy-related details on external or unfamiliar servers.

E-Compare requires specific GitHub permissions to function correctly. The work-
flow’s existing permissions may suffice. contents: write is necessary for storing
data on the energy branch and creating new branches. pull-requests: write is
required for commenting on pull requests. For private repositories, actions: read
is necessary for the workflow to access the GitHub token that is passed to the tool.
This token is used to make the necessary API calls.

Setting permissions: write-all will also work, though it is not recommended
because it grants overly broad permissions that can pose security risks. This set-
ting grants the workflow access to write to all repositories within an organisation,
potentially allowing other called reusable workflows to make unintended or harmful
changes across this and other projects.

By default, E-Compare runs expect Unix shell commands or shell scripts (suffix
.sh). If users instead would like to run bash, they can do that by setting the isBash
parameter to true when passing variables to E-Compare in the workflow YAML.
This parameter is set to false by default and only accepts true or false.

As said in 3.1, the results could be different despite testing the same code twice
due to the non-deterministic nature of the tool. Developers can mitigate this through
the count parameter in E-Compare. The count parameter specifies the amount of
times E-Compare needs to run the unit test. Setting the parameter to ten will make
E-Compare run the tests ten times and return the average of these. Developers
have to decide for themselves what would be a good number for their projects.
More stable projects do not require a high count compared to projects with a lot of
fluctuations. In most cases, it is okay to allow some tolerance for inaccurate results.
This parameter only accepts a number.

3.2.3 Finding a common ancestor

Sometimes, the base branch may have updated since the head branch was created,
resulting in merge conflicts that need to be resolved. In such cases, a comparison
between the latest version of the base branch with the head branch can be inaccurate,
as changes in the base branch can affect energy consumption. The goal of the tool
is to report the change in energy consumption of the code in the head branch. To

19

3. Approach

circumvent this, E-Compare compares the latest version of the head branch with the
fork point of the two branches. The fork point is the most recent commit where the
two branches were the same (the “common ancestor”) or the commit from which
the head branch was created.

Let’s show some examples. The listings represent a timeline where older commits
are further to the left. Every point (o, A, B, etc.) represents an update to the code
(commit). Every parallel horizontal line is a unique branch. The slashes show spots
where a new branch was created, while backslashes show merges of two branches.

1. Take a look at Figure 3.5, where we have one main branch ending in point A
and two other branches ending in points B and C. If we want to merge point
B or point C with point A, the fork points will be 1 and 2 respectively because
that is where the branches split off. These points are the common ancestors.

Figure 3.5: Fork point example 1

2. Now let’s say we have merged point B into point C resulting in point M, the
common ancestor of this would be point 1. If we were to merge point M into
the main branch, the common ancestor would be point 2, despite point 1 also
being a common ancestor. This is because point 2 is a newer common ancestor
than point 1.

20

3.2. Implementation of the solution: E-compare

Figure 3.6: Fork point example 2

3. When a branch is updated with a new version of the main branch, as shown
in Figure 3.6, the fork point updates. In this case, the new latest common
ancestor will be point 2.

Figure 3.7: Fork point example 3

4. It is not always possible to find a fork point. This can happen, for instance,
when cherry-picking or when a criss-cross merge occurs, as illustrated in Fig-
ure 3.7. In such cases, E-Compare cannot find a common ancestor and will not
create a pull request comment. Comparing the head branch with either point
1 or 2 would lead to a faulty comparison and could misinform the developer.

21

3. Approach

Figure 3.8: Fork point example 4

3.3 Challenges

This section discusses some challenges encountered while developing E-Compare.
These challenges are documented to showcase our development journey and to allow
other developers to understand the reasoning behind some functions in the source
code of E-Compare, to learn from it, and avoid similar pitfalls.

Integration issues Developing E-Compare posed several engineering challenges,
notably the inexplicable failures encountered when applying the tool to certain
projects. Given its versatile nature, E-Compare needs to seamlessly integrate with
diverse project stacks, making these failures particularly frustrating but understand-
able. While some issues were resolved, others persisted.

Buffer overload One issue was a buffer overload when tasks took too long to run.
Using a high count often meant that the CI environment crashed. Due to how the
tool works, any output normally printed in the console is now saved until the entire
process is done and then printed to the console. This limits the energy required for
the print function but requires more memory if the printing buffer becomes lengthy
and sometimes even causes crashes. The solution involved increasing the buffer
length to prevent tool crashes caused by a lengthy stdout stack. As the tests ran,
the stdout stack increased. If the tests continued for too long, the entire tool could
crash, failing to measure energy consumption.

Package versioning Another common issue had to do with package versioning.
This occurred when the project CI used the same Python packages but different
versions. This sometimes caused clashes in dependencies resulting in crashes. Some-
times imported functions work differently causing unexpected behaviour. The solu-
tion was to create a separate virtual environment tailored specifically for E-Compare.
This means that a new virtual environment is created within the virtual environ-
ment that GitHub sets up. In this new environment, all languages and packages
required by the tool have to be reinstalled to ensure smooth functionality without
disrupting the project processes.

22

3.4. Limitations and future

Arbitrary functioning The seemingly arbitrary functioning of the tool depend-
ing on the project hinders the usability of the tool. When testing the tool on
different types of projects, the tool often fails without explanation. Some projects
broke across different versions of the runtime environment, with no other changes
to the settings or source code.

Automating backtracking A significant amount of time was spent trying to
automate a backtracking process. This process involved gathering data for older
commits from before the tool was imported into a project, allowing the developer to
see data from earlier commits and get comparison data from newer branches split off
from these commits. The idea was to have a historic parameter that backtracks
a certain number of commits automatically depending on the developer’s specifica-
tions. The tool would then create separate branches for all previous commits and
create pull requests with the main branch. This system could have alleviated much
of the work from the experiments in Chapter 4. The problem was that pull requests
done through an automated action did not trigger the pull_request workflow trig-
ger. This means that there is no way to automatically trigger E-Compare without
manual interaction with GitHub.

3.4 Limitations and future

In this section, we discuss the limitations of the current implementation and design
of E-Compare. These limitations range from practical constraints, like hardware
limitations, to conceptual issues. These limitations are inherent issues that arise be-
cause of the core concept and implementation of the tool and they are different from
the challenges described in section 3.3 that discuss problems faced during develop-
ment and the solutions that were found. We also explore potential improvements to
the tool that could be made in the future.

3.4.1 Technical limitations

It is important to recognise that E-Compare, like any tool, has its limitations. In
this section, we’ll highlight these limitations to provide a balanced view of its util-
ity. Additionally, we’ll explore potential future directions for refining energy testing
methodologies, aiming to address the shortcomings of E-Compare.

Limited measurability The main limitation of E-Compare is its inability to mea-
sure the energy consumption directly from the machine hardware. This limitation
can largely be overcome by using an AI model that estimates energy consumption in-
stead. In the worst case, this can lead to inaccuracies in identifying energy-intensive
software components or inefficiencies, potentially resulting in misguided optimisation
efforts.

23

3. Approach

Overhead from instrumentation While E-Compare tries to minimise disrup-
tions and maintain a consistent testing environment, it’s important to acknowledge
that any instrumentation or monitoring tool, including E-Compare, may introduce
some level of overhead. This overhead has the potential to impact the accuracy
of energy consumption measurements and, consequently, influence the results to a
certain extent. E-Compare consumes additional system resources (CPU, memory,
etc.) while collecting energy data. This utilisation could impact the availability of
resources for the software under test and affect overall execution time, potentially
impacting its energy efficiency.

Server overhead Besides the overhead from E-Compare, the server may also in-
troduce overhead. This is especially important to keep in mind as there are multiple
machine types that GitHub utilises to run workflows. Each of these machines shows
different characteristics. Research by Green Coding shows that energy variability
can range from 0% to 9% depending on which machine is used[38]. CPU types
8272CL and 8370C perform with nearly no variability, while CPU type E5-2673v4
performs the most inconsistently with 9 percent variability. Unfortunately, GitHub
does not allow the developer to specify a specific CPU type when starting the work-
flow.

Operating system limitations A notable limitation of the tool is that its test-
ing and validation have focused on the Ubuntu-latest servers provided by GitHub
Actions, which are running on Ubuntu 22.04. While it has demonstrated usefulness
in this environment, this does not mean that the tool performs the same on MacOS
or Windows servers. E-Compare’s performance on MacOS or Windows servers has
not been systematically tested or validated. As different operating systems exhibit
unique characteristics, the tool’s compatibility and reliability in diverse server en-
vironments remain an area for exploration and potential improvement. Since the
underlying energy estimation AI is exclusively trained on Ubuntu servers, we have
to assume that the results will be inaccurate. Future iterations and developments
could include testing across multiple operating systems to ensure broader applica-
bility. Though Linux being the most common operating system for servers, the tool
already offers wide usability.

Time reporting limitation Another limitation of E-Compare is that the tool
only reports full seconds. This is due to the way the underlying CPU load measure-
ment tool functions. It reports the CPU load every second until it gets deactivated.
This limitation may be a problem when the unit tests are very short and fractions
of seconds might have a large percentage difference. However, as tests get more
expansive and cohesive, this limitation becomes less of an issue.

Reusable workflow incompatibility E-Compare cannot be integrated into ev-
ery testing set-up. As E-Compare uses a reusable workflow system, it is incompatible

24

3.4. Limitations and future

with tests that already use reusable workflows. GitHub does not allow reusable work-
flows to call each other, so this limitation cannot be resolved as long as E-Compare
uses reusable workflows. A reusable workflow is a workflow that uses the keyword
uses: instead of run: and then refers to a location instead of a shell command.

No trigger filter A typical workflow has a couple of trigger filters implemented
so that it does not trigger when it is not needed. A common filter is updated to .md
files (readme files), for which tests are typically not needed. These filters interfere
with E-Compare when the tool tries to compare a commit with a skipped commit.
The main downside of this limitation is that the developer is forced to run tests for
unnecessary commits, resulting in unnecessary time and energy costs.

3.4.2 Conceptual limitations

Conceptual limitations refer to the fundamental limitations of E-Compare. Un-
like technical limitations, which stem from hardware, software, or implementation
constraints, conceptual limitations are caused by the underlying principles and as-
sumptions of the tool.

Testing frequency mismatch One important consideration is that energy test-
ing does not have a one-to-one equivalence with real-world use. For instance, with
unit tests, the aim is to test every possible input for every function once. However,
some functions or inputs may be used more frequently than others. A clear example
is a log-in and register function. Logically, the register function is triggered only
once per account, while the log-in function may be used much more often. Energy
testing will not differentiate based on frequency of use.

Developer procedures Another conceptual limitation is that E-Compare re-
quires a specific procedure from the developer. Developers have to utilise branches
and merges, tests have to be run from the CI/CD environment, and commits have
to be done manually. Otherwise, the tool does not work. While these are best
practices, not everyone deems them necessary, and not every project benefits from
this specific procedure. Getting such projects to use E-Compare can only be done
through behavioural change, which is a tall order and too much to ask for many.
Projects sometimes even have to be changed beyond tool implementation. Workflow
triggers might need to be changed, which could interfere with the current process.

3.4.3 Future

If development on E-Compare were to continue, there are several directions that
could benefit the tool.

Enhanced reporting Starting with the reporting part, currently, the results are
fairly limited, showing only one percentage number to indicate the difference between

25

3. Approach

the two software versions. The tool could show more useful information to the end-
user. For instance, when using the count variable, E-Compare could show all the
results instead of providing just the average. Outlier detection could help obtain
a more natural average. Providing a standard deviation next to the average could
tell the developer a lot about the consistency of the results. More reporting could
involve developing interactive dashboards, charts, and graphs that visually represent
energy consumption data over time, across different code changes, and in relation
to other performance metrics.

Detect changes in tests Relating to this, another useful feature would be to
identify if the tests have been modified in the commit. A modification to the tests
will almost always be reflected in E-Compare’s results. If more tests are added, the
total energy consumption of all tests will be higher, but this will not translate to
the actual energy consumption of the project in deployment.

Cross-platform versatility In the future, E-Compare should work on its versa-
tility across different platforms and projects. Theoretically, due to the black-box
principle, the tool should work with any setup. In practice, however, there are many
unexplainable hitches that prevent the tool from working. Ironing these out will
increase the usefulness of E-Compare as it becomes more widely applicable. Related
to this, adapting the tool to work on MacOS and Windows is another great way to
make the tool more versatile.

Other CI platforms Furthermore, in the future, E-Compare could be adapted to
other CI platforms besides GitHub. Functionality for GitLab would be a logical next
step for the tool, especially as the underlying AI is already trained on the machines
that GitLab runs its servers on.

26

Chapter 4

Experiments

The primary goal of these experiments is to shed light on whether automated energy
regression testing can effectively identify energy regressions in software applications.
The results will provide valuable insights, like the benefits and limitations, for re-
searchers and practitioners in the field of energy-aware software development. We
do this by conducting a retrospective analysis of historical commits to the code of
selected projects on GitHub. This part can be done instantly for a project as the
data is already available.

The tool is wrapped around the existing unit tests of the tested software. Unit
tests were chosen because they are a commonly used method of testing code. Due
to the nature of unit tests, being tests that test tiny pieces of code or functions,
they would logically be fairly consistent across multiple iterations. Other tests such
as integration tests, system tests or acceptance tests can also be used, but they are
less common and potentially less consistent.

The procedure consists of Repository selection, Tool integration and then Com-
mit comparison.

4.1 Repository selection

To select repositories, we need to create an objective selection method. We settle
on two different methods: First, we look at a list of the most starred reposito-
ries on GitHub. For this, we leveraged EvanLi’s GitHub-Ranking website1, which
dynamically compiles and updates a list of the most-starred repositories for each
programming language. Second, we look at the top trending repositories, provided
by GitHub2, which publishes a weekly list of currently trending repositories based
on some undisclosed variables.

For both lists, we specifically look at the list from January 2024. Any potential
changes in ranking that the list went through after that are disregarded. With the
most-starred list, we look at the first hundred repositories, which is all that is being

1https://evanli.github.io/Github-Ranking. Last retrieved 1st of January 2024
2https://github.com/trending. Last retrieved 1st of January 2024

27

https://evanli.github.io/Github-Ranking
https://github.com/trending

4. Experiments

tracked. With the trending list, we look at the list for each week of January 2024,
which comes down to twenty-five repositories per week. Specifically, we look at the
lists released on the 1st, 8th, 15th, and 22nd. Historically data on the trending list
can be found on horiguchi.net3. Removing duplicates (repositories that are trending
multiple weeks) we end up with 90 (25 + 22 + 21 + 21) repositories.

4.1.1 Most stars

Looking at the most starred repositories brings several advantages.
Firstly, the star count is a good indicator of community interest and approval. A

repository garners stars when developers find it noteworthy or valuable, signifying
a level of trust and credibility within the programming community.

Secondly, these repositories often encapsulate best practices, innovative solu-
tions, and robust coding standards. By selecting highly-starred repositories, we
position ourselves to scrutinise codebases that exemplify excellence, offering a rich
ground for assessing the efficacy of our energy measurement tool in real-world, high-
quality software projects.

Moreover, the most-starred repositories are likely to attract diverse contributors
and undergo continuous improvement. This dynamic nature ensures a varied land-
scape of commits and updates, providing a thorough testing ground for our energy
measurement tool across different development scenarios and practices.

This selection of repositories may introduce bias as it favours more widely recog-
nised projects. The average projects that might use the tool in the future will most
likely be less popular. This bias might impact the representativeness of the sam-
ple. Thus, we utilise a second methodology of repository selection: the trending
repositories tab.

4.1.2 Trending

While the most-starred repositories on GitHub serve as an indicator of popularity
and community acclaim, it’s not a good selection to represent the average GitHub
project.

Most-starred repositories often belong to established, widely recognised projects,
such as programming languages, frameworks, or tools. This concentration might
skew the representation towards specific domains. In contrast, the GitHub trend-
ing list captures a more dynamic snapshot, including a broader range of projects,
reflecting a balance between current trends and older technologies.

Trending repositories often signify active engagement from the developer com-
munity. Projects that make it to the trending list are likely to receive contributions,
updates, and feedback, providing a more dynamic and current representation of on-
going development efforts. In turn, analysing these projects and finding results would
signify that energy regression testing could benefit these kinds of active projects.

3https://horaguchi.net/github-trending-history/. Last retrieved 27th of March

28

https://horaguchi.net/github-trending-history/

4.1. Repository selection

The GitHub trending list provides a complementary perspective to the most-
starred list. Combining insights from both sources could offer a more comprehensive
and representative set of projects for our experiments.

4.1.3 Inclusion Criteria

Not all projects are fit for our experiments. To streamline our selection further, we
implement a couple of inclusion criteria.

1. A repository must have a suite of unit tests. Otherwise, there would not be
anything that the tool can test the energy usage of.

2. Repositories have to permit free access to the repository and/or creating forks.
This is because, for this part of the experiments, we implement the tool in a
fork to avoid interference with the main repository. Repositories that are
archived are excluded as well

3. The repositories also have to have a long enough revision history to perform
the analysis. If a repository is early development stage then there is not enough
data from which the energy regressions can be determined. We set the bar to
a minimum of 100 commits.

4. Repositories have to use GitHub-hosted runners. Some repositories use self-
hosted runners to run their unit tests. As we do not have access to the servers
that these runners are hosted on from a fork, we can not adequately test
these repositories, nor do we have the necessary hardware information of these
servers to make an accurate estimation of the energy consumption.

5. Tests need to be able to run offline. The variable nature of download speeds
can lead to fluctuations in test durations, potentially impacting the reliability
and reproducibility of energy consumption measurements.

6. Due to limitations with E-Compare’s workflow implementation, the tool does
not work with reusable workflows, as explained in section 3.4.

These inclusion criteria help us refine our dataset, ensuring that the selected projects
are fit for our experiments, as well as align with the capabilities and requirements
of E-Compare.

Other than these criteria, there may also be some projects that do not function
with E-Compare for any unknown reason. While there must be a reason for failure,
we could not find it based on the logs or code. These projects have to be removed
as well as we can not obtain the necessary data.

Figure 4.1 shows the impact of each inclusion criterion on the experiments.

29

4. Experiments

Figure 4.1: Flowchart showcasing the impact of the selection criteria by stating the
number of projects filtered for each step.

30

4.1. Repository selection

Se
le

ct
io

n
m

et
ho

d

R
ep

os
ito

ry
na

m
e

R
ep

os
ito

ry
ow

ne
r

Pr
og

ra
m

m
in

g
la

ng
ua

ge

te
st

in
g

fra
m

ew
or

k

A
ct

iv
e

de
ve

lo
pe

rs

M
os

t-
st

ar
re

d

vue vuejs TypeScript Vitest 364
bootstrap twbs JS, HTML, SCSS, CSS Karma 1387
flutter flutter Dart Native 1332
stable-diffusion-webui AUTOMATIC1111 Python Pytest 551
d3 d3 JavaScript Mocha 132
puppeteer puppeteer TypeScript Mocha 487
tailwindcss tailwindlabs HTML, Rust Jest 283
neovim veovim VIM script, C, Lua CTest 283

Tr
en

di
ng

ui shadcn-ui TypeScript, MDX Vitest 138
crewAI joaomdmoura Python Pytest 28
twenty twentyhq TypeScript Storybook 170
plate udecode TS, MDX, HTML Jest 163
hiddify-next hiddify Dart, Kotlin Flutter 42

Table 4.1: List of selected repositories and their programming language. The selec-
tion method states the method through which the repository has been selected, those
being either through the most-starred list or through the trending list. Commits
analysed show the amount of successful and failed commits analysed.

4.1.4 Selection

The selected repositories are shown in Table 4.1. In total, 14 different repositories
met the established criteria and managed to work with the tool. The selection
contains thirteen different programming languages. Only languages that make up
over 10% of the source code, according to GitHub, were included. Any language that
GitHub lists will be counted as such, even if some of these languages are debatable,
such as MDX. The most common language is TypeScript, which is used by seven of
the fourteen repositories.

In the end, there are slightly more repositories from the most-starred list com-
pared to the trending list. As expected, we find that the most starred repositories
have more active developers, as stars and developers are tightly related to popu-
larity. You could say that these repositories are generally more popular than the
trending repositories.

The source code for each of these projects can be found by going to https://
github.com/{repository_owner}/{repository_name}. The repository_owner
and repository_name are the same as “Repository name” and “Repository owner”
from Table 4.1

31

https://github.com/{repository_owner}/{repository_name}
https://github.com/{repository_owner}/{repository_name}

4. Experiments

4.2 Implementation

In this chapter, we delve into the practical aspects of integrating E-Compare into
software projects and workflows. We explore the historical integration process, de-
tailing how the tool was applied to past commits in selected repositories.

Our aim is to provide insights into the implementation process and offer trans-
parency regarding the tools and methodologies used in our experiments.

4.2.1 Historical integration

We integrated E-Compare into the selected repositories. To simulate the historical
integration of the tool, we applied it to past commits in the selected repositories.
This process involved applying the tool to past commits on the main branch, and
analysing each commit’s energy consumption based on the available historical con-
text.

The tool is running on fifty commits for each project. Starting with the most
recent commit on the main branch and going backwards. Some commits we can be
sure of will not change the energy consumption, so those are skipped. This includes:
README updates, CI/CD updates, docs updates, or new version releases. This
filter is put in place because running these tests on old commits takes a long time,
which can at least be slightly curbed by skipping redundant commits. We approach
this filter conservatively though as minor changes can have a big impact. Despite
not updating the code of the project directly, commits that upgrade the versions
of imported packages are included. This is because the efficiency of packages can
have a big impact on projects that use them. Some projects add flags to commits to
signify whether to skip the CI process. This can be done as a label or as a specified
phrase in the title of the commit, such as [CI skip]. When the project intends to
skip the tests, we skip them as well.

Sometimes it happens that the tests fail for one reason or another. This is a
rather common occurrence when introducing disruptive changes. We always try to
run the tool on at least fifty commits, so when a commit does not pass the filter or
fails the test we select the next commit down the line. In the case of CrewAI, we
could not gather fifty commits as we went back to the very commit where the first
tests were created.

The backtrack unfolds methodically: we spawn a new branch from each chosen
to commit and adapt the CI workflow to include E-Compare in the unit testing
process. This adaptation empowers E-Compare to run its diagnostics, generating
results. Analysing fifty commits of a project this way takes about 2-3 hours. The
entire process is visualised in Figure 4.2.

To ensure the reliability of tests with short durations, we employ a multiple-
run approach, followed by averaging the results. This practice aims to enhance
consistency and mitigate the impact of outliers. The number of test runs varies
across projects, with the specific count documented in the source code within the

32

4.2. Implementation

Figure 4.2: Flowchart of the backtracking process utilised for the experiments.

projects folder4 on the E-Compare GitHub repository. The decision on the number
of test runs is project-dependent. Our criterion is to run tests for a cumulative
duration of approximately thirty minutes. This systematic approach helps maintain
a balance between test accuracy and efficiency. For instance, if a test takes around
three minutes, we conduct ten runs. This is not exact as test duration can vary
wildly across a repository’s history. Typically, older tests from the same repository
take less time than more recent ones. In practice, we find that for many projects
the tests are run ten times. For precise information on the number of test runs
applied to each project, interested parties can refer to the source code available on
the E-Compare GitHub repository. The projects folder contains project-specific
details, providing transparency and reproducibility of our testing methodology.

Integrating the tool into a standard workflow only takes a few lines of code.
Listing 4.1 shows one example of a workflow that was adapted for this experiment,
specifically Vue.js. The trigger conditions are changed a bit to make sure the tool
also collects energy consumption data on non-main branches. This is so that the
tool can later draw comparisons when a pull request is made. At a minimum, three
lines are added to the end of the workflow to integrate the tool. These are required
for any project looking to implement E-Compare. Note that one line contains an
extra indent for readability, though this is not required. Sometimes changes have to
be made to other parts of the workflow. In this case, a trigger filter was removed so
that the tool would run for any push and not just pushes made to the main branch.
Other than that, the push and pull request triggers were already put in place.

4https://github.com/koenhagen/E-Compare/tree/main/projects. Retrieved April 23 2024

33

https://github.com/koenhagen/E-Compare/tree/main/projects

4. Experiments

Listing 4.1: Example of an adapted YAML file to integrate E-Compare into the
workflow. This specific YAML file is from Vue.js.

1 name: ’ci’
2 on:
3 push:
4 branches:
5 main
6 pull_request:
7 branches:
8 main
9 jobs:

10 unit-test:
11 runs-on: ubuntu-latest
12 steps:
13 - uses: actions/checkout@v2
14

15 - name: Install pnpm
16 uses: pnpm/action-setup@v2
17

18 - name: Set node version to 18
19 uses: actions/setup-node@v2
20 with:
21 node-version: 18
22 cache: ’pnpm’
23

24 - run: pnpm install
25

26 - name: Run unit tests
27 uses: koenhagen /measure-energy-action@v0.20
28 with:

29 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

30 run: pnpm run test:unit
31 run: pnpm run test:unit

34

4.2. Implementation

4.2.2 Tool integration

Sometimes the workflow files require additional changes to become compatible with
E-Compare. As discussed in 3.2.1, sometimes changes to the workflow permissions
are required. As E-Compare is run in a fork of the real repository we set the
permissions to write-all to make it easy for ourselves.

In CI workflows, triggers determine when specific tasks are executed. Common
triggers include actions like updating code or creating a new release. These trig-
gers ensure that the workflow runs automatically after events in the development
process. E-Compare requires specific triggers to function correctly. Specifically, the
pull _request trigger and the push trigger are needed. These start the workflow
automatically when a pull request or push is made. Some workflows from the exper-
iments already use one or the other or neither. They may instead opt for triggering
tests at a recurring interval using a cron job. These workflows have to be changed
to utilise the push and pull request trigger instead. It is important to note that
the pull_request_target trigger is insufficient as it runs E-Compare on the base
branch instead of the head branch, meaning it will compare the base branch with
itself, obviously resulting in inaccurate results.

E-Compare currently does not work with parallel processing. These processes
have to be adapted to a sequential process, meaning all tests need to be run back to
back instead of in parallel. Concurrent processes like sharding have been removed.
Sharding typically involves splitting tasks or tests into smaller units and running
them concurrently to decrease overall execution time. Removing this means that
instead of executing tasks concurrently, each task is now linearly executed one after
the other.

Some workflows utilise matrices to test multiple versions of different software.
GitHub will run parallel versions of the testing suite in different environments. Ma-
trices are used for instance to test different operating systems or different versions of
the same operating system. They are also used to test different versions of languages
or frameworks. Commonly, a matrix is used to run the tests on different versions of
Python or Node.js. The parallel nature of matrices makes them incompatible with
E-Compare. For our experiments, all historical commits are only tested on the latest
version of any software or language. Also, only Ubuntu is tested.

The implementation is only done on code pushed to the main branch. Any other
branches are considered out of scope.

The exact implementation for each project can be found in the projects folder
of the replication package, available as a Github repository5. This includes the exact
version of operating systems, languages and frameworks used for each project.

5https://github.com/koenhagen/E-Compare/tree/main/projects. Retrieved April 23rd 2024

35

https://github.com/koenhagen/E-Compare/tree/main/projects

4. Experiments

4.3 Commit comparison

Now that the energy consumption has been measured for multiple versions of the
software, they are visualised in some charts. This allows us to find energy consump-
tion patterns associated with each commit or across multiple commits. Making the
data visual also helps to find interesting data points not directly found when looking
at the raw data. Also, you can look at the trend for some extra insights. Finding
differences in energy consumption between two consecutive commits could signify
an energy regression caused by a change to the source code.

4.3.1 Qualitative assessment

Then we proceed with a qualitative assessment of the commit tags and the underlying
code changes to gain insights into the root cause of the energy regression. The goal
is to find potential energy efficiency improvements that could have been realised if
E-Compare had been in use. Ideally, the analysis might show that there are direct
and unnecessary energy regressions included in the code that could easily be solved if
developers were aware. Or the analysis might show that energy consumption slowly
increases over commits and clear causes are not direction identifiable, or solvable.
This qualitative analysis encompasses diverse commit categories, such as bug fixes or
feature additions. Notably, we consider scenarios where significant energy spikes are
identified. For essential commits, such as security patches or high-priority features,
if the energy report reveals substantial spikes, it may indicate potential limitations
in its utility for critical updates. On the flip side, if E-Compare captures such spikes
for new low-priority features or nice-to-haves, it would suggest that E-Compare is
effective in flagging energy implications for non-essential enhancements.

We consider analysing external packages and other imported code to be out of
scope for this experiment.

4.3.2 Defining energy regressions

Before heading into the results, the question is asked as to what would be consid-
ered a spike in energy consumption. Defining energy regressions involves setting a
threshold to identify significant fluctuations in energy consumption. In our case, we
chose a threshold of 9% based on the maximum variability observed when running
tests with E-Compare on a server, as stated in research by green coding[38]. You
may notice that this number is different from the 5% at which E-Compare highlights
a number as green or red. It is important to note that this value is somewhat arbi-
trary, as it can be assumed energy variability tends to decrease as tests are repeated
multiple times, which is done in our experiments, and because other reasons for
overhead exist. However, we believe this to be the best method for defining energy
regressions. The 5% threshold used by E-Compare was chosen for its simplicity
and intuitiveness for users, while the 9% threshold is more robust for experimental
purposes.

36

4.3. Commit comparison

We recognise that some regressions might not reach the threshold of 9%, while
still having a significant impact on energy consumption for that project. So, other
than the main threshold of nine percent we define a lesser threshold at half that
(4,5%).

37

Chapter 5

Results and Discussion

All results can be found in Figure 5.1 and Figure 5.2. This section first gives gen-
eralised results and then goes more in-depth into the individual projects, looking at
the found regressions and their underlying reason, if there are any. Higher quality
versions of the plots can be found in Appendix A.

5.1 Overall result
A total of 13 projects were analysed. This is less than 7% of the initial 190 selected
projects before applying our selection criteria. Among these projects, 759 commits
were analysed. After removing broken commits (commits that did not successfully
run the testing suite), 594 led to functional results. Among these, 84 were classified
as energy regressions according to our definition, with 18 being major and 66 minor
energy regressions.

The source code changes for specific commits shown in the charts can be looked
up on GitHub by going to the following link: https://github.com/[repository
_owner]/[repository_name]/commit/[commit_hash]. The repository name and
repository owner can be found in Table 4.1. The commit hash can be found in the
individual charts of Figure 5.1 and Figure 5.2.

5.1.1 Success criteria

E-Compare can operate fully automatically by wrapping the testing suite of any
software application. A developer only has to adapt their CI workflow and the
tool reports the energy consumption and regressions without any further manual
work required from the developer. This solution satisfies the second criterion of
the experiments specifying that the energy regression testing can be done in an
automated manner.

The other criterion specified that the tool could find energy regressions in soft-
ware projects. E-Compare managed to show energy regressions for twelve of the
thirteen projects that were analysed. By looking at the source code of some of the
changes in the analysis, we found that a few energy regressions could be logically

39

https://github.com/[repository_owner]/[repository_name]/commit/[commit_hash]
https://github.com/[repository_owner]/[repository_name]/commit/[commit_hash]

5. Results and Discussion

traced back to changes in the code. These findings validate that the tool can find en-
ergy regressions, satisfying the first criterion. Importantly, these energy regressions
were not addressed by the developer in later commits. If this is because the devel-
oper was not aware of any inefficiencies in the code, it would mean that E-Compare
could potentially influence decision-making when developers are implementing new
updates to their projects.

While we successfully implemented E-Compare into thirteen different projects,
its success can be questioned. When you compare this number to the total number
of projects that fit the inclusion criteria, we can say that this is a low amount. In 31
other cases, the tool was intended to be applied but failed for inexplicable reasons.
If some projects are not able to utilise energy regression testing, the application of
such tools remains limited. However, even though the reason for these failures is
unknown, we do not believe that the reason is related to the fundamental concept
of energy regression testing. Instead, more likely is that the reason is due to the
implementation of the tool or because of issues with the underlying project.

Energy regressions that have a clear cause and effect are a rare find. One project
from the results does not show any energy regressions, while others show many where
the underlying cause is not clear. It is clear that some projects benefit from using
an energy regression testing tool, but not all of them.

5.1.2 Causes of energy regressions

Many regressions were due to changes in the tests, which makes sense, as increasing
the number of tests would likely lead to more computation and thus higher energy
consumption. This then is reflected in the results from the tool. However, these
findings are not particularly valuable, as more tests do not indicate that the code
contains inefficiencies that should be fixed. The energy regressions that seem to be
caused by actual changes to the source code can be considered valuable outcomes
and are the primary reason a developer would want to use an energy regression
testing tool. Among all analysed commits, only a few of them are we believe that
the results would come as a surprise to the developer.

Not all energy regressions flagged by the tool have a clear root cause. This
might be because the commit contains a lot of code changes, making pinpointing the
exact cause very difficult. The reason for the energy regression could be any of the
hundreds of lines changed in these commits. On the flip side, some smaller commits
were also flagged without a logical explanation. Based on our limited analysis of the
code change, we could not find a clear root cause in these small commits. However,
It is hard to predict how a change might impact energy consumption as some of the
glanced-over lines might have large consequences.

Energy testing is not deterministic, with various aspects influencing energy con-
sumption, such as server overhead, testing framework overhead, or general inconsis-
tencies in tests. These other aspects may significantly interfere with the measure-
ments that energy regressions are flagged that may not be there, or vice versa. We
must be aware of these factors and critically evaluate the results.

40

5.1. Overall result

Some projects showed clearer results than others. Regular fluctuations signifi-
cantly impacted some projects, with some even showing energy regressions for the
majority of commits. For these projects, the usability of an energy regression testing
tool might be questionable. Developers need to determine if such tools suit their
projects. We observed more frequent and larger fluctuations in projects using more
complex testing formats.

5.1.3 Outliers

The data often showed spikes, which we define as commits where the energy regres-
sion significantly changed and then changed right back to the original value in the
following commit. These spikes are always analysed thoroughly, as one outlier could
very well be caused by some unforeseen influence. The conditions needed for a spike
to be real are very niche. The changes to the source code have to logically cause an
energy regression, and the commit after where the energy consumption levels drop
back down to their initial value has to have a logical explanation for such a drop.
You would expect a revert of the previous commit or a code change that undoes or
fixes the potential regression. In most cases, these criteria are not met.

When an energy regression is followed by multiple commits around the same
value, it gives much more credibility to that commit. It suggests that the consecutive
commits do not or only minorly impact the energy consumption and the energy
consumption stays around the new value compared to the commits before the energy
regression.

5.1.4 Failing tests

For some commits, the testing suite results in failure. This may be due to the
underlying tests or source code, or this could be due to some conflict with the tool.
In ten cases, these broken commits are followed by an energy regression. In cases like
these, the cause of the regression can be in any of the commits including the commit
showing the regression. While this makes it more difficult to find the cause of the
regression, it can also be seen as one big commit that has all commits combined.
This also reflects the typical use of E-Compare where you would check the energy
consumption of an incoming merge, which is typically a combination of multiple
commits.

5.1.5 Project archetypes

Some archetypes of projects can benefit from energy regression testing more than
others. When we compare the results from different analysed projects we find a
couple of differences. Projects that showed more signs of immaturity resulted in less
relevant results for the experiments. These signs are larger commits without clear
labels or descriptions, more broken commits due to code changes, and incomplete
test suites. Larger commits and more broken commits mean larger code changes,
resulting in more difficulty in tracing an energy regression back to individual line

41

5. Results and Discussion

changes. Incomplete testing suites can result in some relevant energy regressions
being overlooked.

Energy regression testing works better for relatively stable projects. This means
that there are no major differences in energy consumption between runs of the tests
and source code. We see larger fluctuations in projects with larger testing suites.
This could be related to tests causing more overhead, or because more tests result in
more possibilities for differences. We also find that the one AI project analysed also
causes large fluctuations. AI is typically very inconsistent and non-deterministic,
thus it makes sense that its tests also adopt the same properties.

Ultimately, it is hard to draw any conclusions on project archetypes, because the
initial results are only comprised of a limited number of projects.

5.2 Per project

All results per project are shown in Figure 5.1. This section goes over each project
one by one providing basic background information and showcasing insights that the
tool provided. The aim is to figure out if the energy regressions found are caused by
changes to the source code and not because of other reasons. In other words, we try
to find out if the energy regressions are actually regressions and not just fluctuations
in the measurement. The hope is for these regressions to potentially be fixable if
the developer would be aware of their existence. Proving that the regressions are
caused by source code changes will be difficult, but tracing down likely culprits in
the source code helps to build a stronger case. The order here is the same as in
Figure 5.1.

The X-axes in Figure 5.1 and Figure 5.2 show the hashes of each individual
commits. The order is the same as the historical timeline of the main branch. Older
commits are shown on the left. The Y-axes show the energy consumption of the
tests for each commit. The energy consumption is measured in joules. Important
to note is that the Y-axis does not start at zero. This is done to better show the
regressions, but a negative side effect is that it might cause wrong takeaways when
the graph is not read correctly. Broken commits are shown with coral red stripes
going vertically.

A table containing a summary of all findings in numbers can be found in Ta-
ble 5.1. It lists the number of regressions per project, the number of analysed
commits, and the analysis period.

(a) Flutter Flutter is a modern SDK developed primarily for mobile development
by Google. Flutter uses the Dart language, which is also developed by Google.
Flutter developed its testing framework natively.
There are no direct major energy regressions found for Flutter. Though looking
at the chart, some changes in energy consumption across commits can be seen.
Important to note here is that the X-axis is relatively large. Based on the
average time taken for the unit tests to run and the energy consumption for

42

5.2. Per project

(a) Flutter (b) Vue

(c) Bootstrap (d) d3

(e) Stable Diffusion (f) Puppeteer

Figure 5.1: Results from the most starred repositories. The X-axis shows the commit
hashes going from new to old. The Y-axis shows the energy consumption in joules.
Bars show the difference in energy consumption between the current and previously
measured commit. Red means the energy consumption increased and green means
it decreased.

43

5. Results and Discussion

(g) Tailwind CSS (h) Neovim

Figure 5.1: Results from the most starred repositories. (cont.)

these commits, the relative changes are small. On average, running all unit
tests took around two hours and thirteen minutes. We run the entire testing
suite three times and take the averages.
While there are no major energy regressions, there is one minor energy regres-
sion for commit 83ac760, which dropped 596 Joules compared to the previous
commit. Based on the chart, we see that the drop in energy consumption
remains rather consistent for the following commits. What is most curious is
that this commit exclusively adds a new function to the source code. The com-
mit inserts 417 lines while removing zero. This is very atypical for a negative
energy regression. We can not deduce what would be the reason for this drop,
looking at the source code, though developers more versed with the project
might.
Four back-to-back commits broke the unit testing suite. Presumably, the first
commit breaks the suite. This commit updates many of the underlying pack-
ages. This commit gets reverted in the first commit afterwards that has a
functioning testing suite.

(b) Vue.js Vue is a JavaScript framework intended for building web user interfaces.
The framework prides itself on being accessible and performant.
The results show that the energy consumption of the unit tests is very consis-
tent. Changes in energy consumption typically hold for the commits following
the change.
Vue contains one major energy regression in commit 78ef627 where the energy
consumption rises from 245 joules to 290 joules. This commit does two things:
it updates the testing framework vitest to a higher version, and it changes some
server-side rendering functions to be able to run with Node 18 and up. Both of
these could influence the energy consumption of the testing suite, though they

44

5.2. Per project

(i) ShadowCN UI (j) CrewAI

(k) Twenty (l) Hiddify

(m) Plate

Figure 5.2: Results from GitHub’s trending repositories list. The X-axis shows the
commit hashes going from new to old. The Y-axis shows the energy consumption
in joules. Bars show the difference in energy consumption between the current and
previously measured commit. Red means the energy consumption increased and
green means it decreased.

45

5. Results and Discussion

would probably not show changes in an actual deployed environment. The new
testing framework could introduce more overhead when running the tests. This
would not be relevant for the developer as this increase in energy consumption
would then only show during testing and not in production. The performance
of the testing framework has no bearing on the actual performance. The fixes
to some of the functions will increase the overall accuracy of E-Compare’s
results, which would be useful for the result of all commits going forward.
However, it would not impact the real-life energy consumption of Vue, as the
testability of a function does not matter for its use. The functions are still
deployed and functioning in production.
Other than the major energy regression, there is another minor regression.
Commit 3e1037e results in a smaller increase in energy consumption. Similar
to 78ef627, it is also caused by an update of the testing framework. This time,
we can be certain that this is the cause as this is the only change in the commit,
consisting of a singular line edit. Supposedly, a change in vitest makes it so it
takes more computational power to run.
There is one broken commit, which is followed by a fix right away.

(c) Bootstrap Bootstrap is another JavaScript framework that focuses on dynamic
front-end usability across different screen sizes. It uses Karma as its testing
environment.
Compared to Flutter and Vue, Bootstrap fluctuates a lot more between com-
mits. This makes sense when we look at the testing suite of Bootstrap. In
the source code, we find that Bootstrap runs integration tests together with
their unit tests. Thus, the results from E-Compare show a combination of
the two. Integration tests are typically less steady compared to unit tests due
to their non-deterministic behaviour and complexity, which could explain the
fluctuations.
There are three major regressions within these fifty commits. The first two
are back to back, going up and down right after, causing a spike in the chart.
As these commits only add minor changes to the code, there is a large chance
that this spike is not a result of changes to the code, but instead comes from
something else. This assumption is backed by the fluctuating nature of the
results and the fact that the commit after the major regression goes back down
again to around the same values as previously recorded. The third major re-
gression is found in d029ef6. This is another small commit that updates the
sass-true package1 to a higher version. This package is a unit testing tool for
SASS code, which is used by Bootstrap. This update potentially caused more
overhead from the tool, causing an increase in energy consumption. Though,
this is far from certainty. Looking at the graph, it seems more like the commit
went back up to a typical level after a series of commits with a lower energy

1https://www.npmjs.com/package/sass-true. Retrieved March 10th 2024.

46

https://www.npmjs.com/package/sass-true

5.2. Per project

consumption. These previous commits mostly consist of version upgrades of
packages, so it is hard to say what causes the gradual drop in energy consump-
tion unless we look into the source code of the used packages. Combining this
with the fluctuations makes it hard to draw any conclusions as to what the
reason for the regression would be.
There are also many more minor regressions found in the results. In total
nineteen commits show sufficient change to be classified as a regression, which
would account for 38% of total commits for Bootstrap. It is highly unlikely
that all of these commits significantly influence the energy consumption of
the source code. Especially as fourteen of them are version bumps of package
dependencies. Underlying packages may have an impact on the energy con-
sumption of codebases that use them, but typically they are only used partly
and in a small part of the source code. These version bumps are often only
minor updates (e.g. from x.x.0 to x.x.1).

(d) D3 D3 stands for Data-Driven Documents. It is a JavaScript library used for
data visualisations. D3 uses the Mocha testing framework2 for its unit testing.
The first thing to note is that the test duration is short. Running the tests in
their entirety takes about a second with an average of 4.3 joules. It would seem
that the unit tests written on the main repository are not very comprehensive.
D3 splits up their widgets and functions across multiple repositories. Each of
these repositories hosts its own set of tests. Running the tests from the main
repository does not run these split-up tests, resulting in low code coverage.
Because of this, how useful the results are for D3 is questionable. The results
look very stable averaging around 3.8, then later 4.4 joules.
The one major regression at commit cd09a14 adds extra unit tests to the suite.
This makes sense with the results because, as stated before, more tests run
logically means more energy consumption. Two minor regressions appear back
to back at commit d331c14 and 8536272, but they seem coincidental. When
the values are this small, a 0.2-joule change would already indicate a minor
regression. Because of these small values, D3 would probably not benefit from
using D3.

(e) Stable Diffusion Stable Diffusion is a text-to-image Artificial Intelligence model.
This specific repository is for the web user interface. Stable Diffusion uses
pytest as its testing framework.
Stable Diffusion fluctuates a lot between commits, resulting in a lot of energy
regressions. This would make sense for an AI-based project, as AI is highly
inconsistent and non-deterministic. Looking at the written tests, they perform
a variety of text-to-image tests, which vary in length between tests.
Despite the high fluctuation, there are only two major regressions. Both con-
cern a drop in energy consumption. The first, commit 9eadc4f, makes changes

2https://mochajs.org/. Retrieved May 1st 2024.

47

https://mochajs.org/

5. Results and Discussion

to the automated cropping functionality. These changes could lead to more
efficiency, potentially dropping energy consumption levels. The three commits
before and after the regression remained stable, which would support this hy-
pothesis. However, it is ultimately hard to say due to the inconsistent nature
of the Stable Diffusion’s test results. The second major regression, commit
b7e0d4a, is a smaller commit only changing a couple of lines and the results
for the commit right after it jumps back to its previous level. Based on these
things, combined with the high fluctuations, the cause of the drop appears to
be random.
There are a lot more minor regressions, often appearing back to back as the
commits go back and forth between energy values. In total, there are sixteen
minor regressions. It is hard to find an explanation for the regression based on
the changes to the source code. Even if some change would potentially impact
energy consumption, the change right after would go back to the previous
value without any logical explanation in the source code. I strongly suspect
that the energy consumption is not influenced by the commits for these minor
regressions.

(f) Puppeteer Puppeteer is a Node.js library that allows control of your browser
through its API. It is mainly used as a web scraping tool. Puppeteer uses the
Mocha testing framework.
Analysis of only 27 commits was possible. This is not the typical fifty that are
conducted in these experiments. The reason for this is that all commits broke
after the 41st. After the seventieth commit, we concluded that there was no
longer any reason to make another commit because the likelihood of it working
was so slim. As a result, the tests for this specific project were discontinued.
The reason for these breaks is difficult to track down. Logs do not provide any
extra information and look the same as logs for tests that succeeded.
Fluctuations of around thirty joules are a common occurrence for Puppeteer.
Most of these are not classified as energy regressions, but they come close to
it. This suggests that the fluctuations are naturally high and not caused by
source code changes.
There is one major spike that causes two energy regressions. This spike goes
way higher than any other point in the graph. The commit 5bbee10 contains an
update to Angular, which is the primary JavaScript framework that Puppeteer
uses. As Puppeteer is heavily dependent on Angular, an update could be
the source of the energy regression. The problem here is that the energy
consumption comes back down for the commit right after (753a954). This
commit, as well as any commit after, are unrelated to this, making the instant
drop rather odd.

(g) Tailwind Tailwind CSS is a CSS framework for front-end development. It uses
class names to edit CSS properties directly from your HTML files. Tailwind
uses Jest for unit testing with Vite.

48

5.2. Per project

Tailwind contains two major regressions that can be seen in the graph in
Figure 5.1. Near the end, the energy consumption shoots up and goes back
down two commits later. The first commit f2a7c2c consistently took around
68 seconds for each run of the test suite, while the commit before took 60
seconds on average. There are no changes to the tests and the same amount
of tests succeed for both commits. The increase would not make sense as a
fluctuation because of the consistency between runs and the extreme difference
between it and other commits. The most logical explanation for the spike is a
change in the source code. The commit is rather short, only editing 43 lines.
It adds “Improve glob handling for folders with ‘(‘, ‘)‘, ‘[‘ or ‘]‘ in the file
path” by adding a new function called “normalizePath” shown in Listing 5.1.
The function does not contain any loops, which would typically increase the
duration. There is no clear spot in the code that would indicate inefficiencies.
Some of the used functions such as the .split function may be computationally
intensive. Potentially, the function is called so often that a minor increase in
energy consumption would already be significant. Ultimately, the cause of the
regression is not easily spotted, which makes this a good case for E-Compare.

Listing 5.1: Additions made in commit f2a7c2c for tailwindlabs/tailwindcss
function normalizePath(path) {

if (typeof path !== 'string ') {
throw new TypeError('expected␣path␣to␣be␣a␣string ')

}

if (path === '\\' || path === '/') return '/'

var len = path.length
if (len <= 1) return path

var prefix = ''
if (len > 4 && path [3] === '\\') {

var ch = path [2]
if ((ch === '?' || ch === '.')

&& path.slice(0, 2) === '\\\\') {
path = path.slice (2)
prefix = '//'

}
}

let segs = path.split (/[/\\]+(?![\(\)\[\]])/)
return prefix + segs.join('/')

}

49

5. Results and Discussion

The other major regression takes place two commits after, with the commit
in between being a broken commit. This second major regression at commit
780163c is a bigger commit that encompasses multiple changes. The commit
adds a new feature, updates the testing framework and fixes the regex in some
tests. Any of these could influence energy consumption. The regression could
also be because of the previous commit that was broken. As its values could
not be measured, it is unknown if the regression already appeared in that
commit. That commit adds a new feature and fixes some failing tests.

Other than two major regressions, there are also seven minor regressions for
Tailwind. As seen in the graph, there are three upward spikes other than
the one previously mentioned. For each of these commits (005c1be, 8012d18,
cc94c76) there is no logical place in the source code that would warrant such
a spike. None of the behaviours we look for to check if a spike is real are
present, thus we assume that these minor regressions are not caused by source
code changes. The last minor regression does not go back down significantly
afterwards. This commit 8201846 adds more opacity options for Tailwind
users. This is a change that could lead to an energy regression. Depending on
how they are done, opacity calculation may be quite computationally intensive.

The is mainly one big gap of broken commits. This is caused by an update to
the tests. Eight commits later another update to the tests fixes the workflow
allowing E-Compare to work again.

(h) Neovim Neovim is a fork of Vim that focuses on bringing a new and improved
version of the old text editor. Neovim adds dozens of new features and im-
proved extensibility and usability. It uses CMake3 and CTest to run its tests.

Neovim has a very large testing suite, reaching around 3200 joules just to
test all of its functionality. Looking at the chart, it is not a stable suite with
differences over 100 joules being a common occurrence.

However, because of the lengthy duration of the tests, there are no major
regressions. A major regression requires a change in energy consumption of at
least 290 joules, which did not occur.

There were however many minor regressions. The question again is if these
were caused by changes to the source code or natural fluctuations. There is
no significant trend to be found in the data. Plotting a trend line shows just
about a straight line, suggesting that the commits have no impact on energy
consumption. Anytime a regression occurs, it goes back in a few commits. The
amount of minor regressions combined with the insignificance of some commits
also brings up questions. Of course, you can not be sure a commit does not
cause a regression, but some of these commits are very unlikely. For instance,
one of the commits that caused a regression is an update to the localisation

3https://cmake.org/. Retrieved 2 May 2024.

50

https://cmake.org/

5.2. Per project

of Japanese. Based on this, we assume that these regressions occur due to
natural fluctuations of the tests.

(i) ShadowCN UI ShadowCN is a customizable component library that devel-
opers can use to copy and paste into their apps. ShadowCN uses the Vitest
testing framework for typescript. ShadowCN is the first project from the trend-
ing repositories list. It is a younger project compared to the previous projects
from the most starred list.
The unit tests for ShadowCN are short, totalling from 20 to 32 joules per
commit. There is not much fluctuation between commits, where the first 28
commits all fall within a narrow range of energy consumption, without any
energy regressions.
There are two major energy regressions for ShadowCN. Both commits are very
large, with commit 0374ba8 reaching 12.098 line changes. Among the changed
lines are also some additions to the test files. Some tests were changed and
some were added. There were also some new packages imported, some changed
functions and some new functions added. When a commit is this large, it is
hard to find the root of the rise in energy consumption. It could be one specific
change or a combination of multiple changes done in the commit. Commit
4fb98d5 shows the other major regression. It is a shorter commit compared
to the other major regression, adding 477 lines. This commit adds support to
the use of ShadowCN components with the Tailwind framework, which could
cause a rise in energy consumption. It also adds more tests, which could be
another reason.
There are also two minor regressions found in the results for ShadowCN. The
first be580db is also a sizeable commit adding multiple functions and additional
unit tests that test these new functions. A rise in energy consumption is
completely logical for that. The other minor energy regression is a drop in
energy consumption that is less easy to explain based on the source code. This
commit 7822e06 is in between similarly valued commits. It is slightly below
its neighbours, while the previous commit is slightly above its neighbours,
resulting in a minor regression. So we presume that the regression is by chance
and not because of changes to the source code.

(j) CrewAI CrewAI is a framework for creating AI agents based on specific identity
specifications. It allows the agents to work together and can be used for role-
playing. CrewAI uses pytest for testing.
CrewAI is a young repository, even though it still fits the revision history
inclusion criteria. It is mostly created by one person. This is reflected in the
chart with many broken commits and steep increases in energy consumption.
Other than some clear energy regressions, the energy consumption remains
stable across commits. In total, we obtained data for only 28 commits, which
is 22 less than the goal of 50 commits. The reason for this is that we went back

51

5. Results and Discussion

with the backtracking process to the very first commit where unit tests were
created. Theoretically, we could have gone back further by applying the unit
tests to older commits, but this seems illogical as such a scenario would never
occur with regular use of the tool. Also, it could create inexplicable behaviour
that would result in unreliable data. This is one of the two repositories where
we did not manage to obtain enough data points to satisfy our goal.
There are five major regressions found among the 28 working commits. Often
these regressions are preceded by several broken commits. Any of the broken
commits and the commit with the energy regression could be the cause of the
energy regression. Some of the regressions are preceded by ten broken commits,
making it very hard to deduce what the origin of the regression is. There are
two commits succeeded by seven broken commits and two succeeded by ten
broken commits. For these four, we have to skip the analysis because of the
difficulty of establishing the origin of the energy regression. The other major
regression 0076ea7 has one broken commit before it. The former adds extra
unit tests, which would coincide with the increase in energy consumption. The
latter refactors the source code by creating a new class.
There are two minor regressions for CrewAI, both not preceded by broken
commits. Commit 63fb5a2 mostly updates documentation and makes a couple
of line changes, including a filter for AI agents. Such a filter could have an
impact on the energy regression. Commit a45c82c mainly adds one extra unit
test, which would explain the small increase in energy consumption.
The broken commits can be caused by the fact that this is an immature repos-
itory that gets frequent large updates. These updates could completely break
the testing suite. When the tests are broken, it takes a while for a developer
to fix them.

(k) Twenty Twenty is an open-source customer relationship management platform.
It is designed to help businesses manage and analyse customer interactions,
data, and relationships. Twenty used storybook’s testing environment4.
The chart of this project shows a clear trend upward, with later commits
structurally requiring more energy than earlier commits. However, it is difficult
to pinpoint one specific commit as the culprit. It might be that multiple
commits contributed a small amount to the increase, or one commit got masked
by the natural fluctuations.
There are no major energy regressions found for Twenty. There are five com-
mits with two back-to-back minor energy regressions. Keep in mind that these
are only minor regressions. The first regression is a drop in energy consump-
tion, despite adding many new lines and functions. Other than new functions
it also has multiple fixes, including fixes to the tests. It is difficult to pinpoint
exactly what would cause a drop in energy regression if there even is a reason

4https://storybook.js.org/docs/writing-tests. Retrieved May 16th 2024.

52

https://storybook.js.org/docs/writing-tests

5.2. Per project

based on the code. The commit right after also shows an energy regression,
but upwards. This commit makes a lot of changes to the testing suite, “making
fixes and enhances”. This would align with the increase in energy consumption.
Commit 51c6570 shows another downward regression. The commit “removed
the boxes around fields on shows and side panel”. Having fewer objects to
load logically takes less energy, so this change makes sense with our results.
The fourth regression adds more dependencies and the fifth regression makes
changes to the imports. It is hard to judge the impact of such changes on the
energy regression as we consider analysing external code to be out of scope.
What is interesting is that looking at the chart there are two downward spikes
can be seen. The first one shows a minor regression both ways, but the second
one is not flagged as a minor regression. This is despite the second downward
spike going lower to 597 joules, compared to 600 joules for the first spike.
This shows how influential the regular fluctuations or gradual changes across
multiple commits can be for the results.

(l) Hiddify Hiddify is a multi-purpose proxy tool. It provides a secure and private
way of accessing free internet. Hiddify uses Flutter under the hood.
Hiddify contains no major or minor regressions. In this case, it is important
to note that the Y-axis is only stretching a narrow range.
Only eighteen commits were able to be analysed. This is different from the
usual fifty done for these experiments. After the eighteenth commit, every sin-
gle commit broke. By the fiftieth commit, we figured that the chance another
commit was going to work was so low it was not worth it to continue. Thus,
the experiments for this particular project were stopped, much like what hap-
pened with Puppeteer. The earliest commit before the breaks was an update
of the Flutter framework. Presumably, this Flutter update changed something
to allow E-Compare to function with its tests.

(m) Plate Plate is a rich-text editor that can be implemented in your projects.
Plate uses Jest as its testing framework.
The energy consumption of Plate seems to be stable, with most commits hov-
ering between 1122 and 1184 joules in the majority of cases. There are no
major energy regressions in the fifty commits analysed for Plate. What is no-
table is that the test results are cached after running them for the first time.
This effectively means that the tests are only run once and consecutive runs
are negligible. From the second run onward, the runs only take a few microsec-
onds, not running any of the tests. This result is that the usual method of
removing variability does not work as intended.
There are two relatively large dips in energy consumption, resulting in four
minor energy regressions, but no major regressions. These might be the result
of the increased chance of variability. Or they might be caused by source code
changes. However, we believe the latter is not the case due to the nature of

53

5. Results and Discussion

the changes: First of all, they only contain additions, which is weird for drops.
Second of all, consecutive commit’s code changes are not related. If the energy
consumption jumps back, you would expect an edit to the previously chanced
code.

Pl
ot

nu
m

be
r

Pr
oj

ec
t

C
om

m
its

an
al

ys
ed

Su
cc

es
sfu

lc
om

m
its

M
aj

or
re

gr
es

sio
ns

M
in

or
re

gr
es

sio
ns

A
na

ly
sis

pe
rio

d

(a) Vue 51 50 1 1 Oct 11, 2022 to Dec 31, 2023
(b) Bootstrap 53 50 3 16 Oct 31, 2023 to Jan 9, 2024
(c) Flutter 54 50 0 1 Dec 27, 2023 to Jan 9, 2024
(d) Stable Diffusion 65 50 2 15 Nov 27, 2023 to Dec 16, 2023
(e) D3 50 50 1 2 Jun 11, 2023 to Jan 29, 2024
(f) Puppeteer 71 27 2 2 Feb 6, 2024 to Mar 4, 2024
(g) Tailwind 63 50 2 7 Apr 19, 2023 to Mar 7, 2024
(h) Neovim 51 50 0 9 Mar 15, 2024 to Mar 19, 2024
(i) ShadowCN 50 50 2 2 Oct 21, 2023 to Feb 4, 2024
(j) CrewAI 70 29 5 2 Jan 10, 2024 to Feb 22, 2024
(k) Twenty 50 50 0 5 Feb 22, 2024 to Feb 29, 2024
(l) Plate 57 50 0 4 Feb 7, 2024 to Mar 1, 2024
(m) Hiddify 50 18 0 0 Feb 21, 2024 to Mar 10, 2024
Total 735 574 18 66

Table 5.1: Table containing a list of the selected projects. Commits analysed show
the number of commits analysed, while successful commits only shows the number
of commits that gave results. The analysis period shows the date of the first and
last commit that were analysed.

54

5.3. Discussion

5.3 Discussion

In this section, we discuss the implications of our key findings. We discuss the
impact of various commit types, the robustness of our tool, and the difficulties
with identifying energy regressions.

5.3.1 Main findings

In the experiments, a large amount of commits were analysed. This allows us
to dive deeply into the underlying code and find correlations between types
of commits and energy consumption. In the end, far and away most energy
regressions came from commits that were focused on the tests. Other than that
commits that updated packages also often impacted the energy consumption.
This mostly happened when the updated package was related to the tests, like
the testing framework. The potential impact of package updates is interesting
as these commits are sometimes flagged as chore, for which tests are then
subsequently skipped in CI. Other than tests and package updates, there were
no other patterns found in other commit types. This does not necessarily
mean that these do not impact energy consumption, but instead, it could be
that they are not as common. Commits that target performance or implement
refactors, likely have an impact on energy consumption, but did not occur
frequently among the analysed commits. We also saw that tests were often
written in a different commit than the features they are meant to accompany.
In these cases, the initial commit that adds the new features would impact the
energy consumption, but this is only reflected in the data once the new tests
are written.

Although the number of commits analysed was high, the number of projects
was low. Almost all analysed projects provided some new findings. While
we spend a long time gathering all the data and analysing all the projects,
analysing more projects will provide even more interesting findings. With the
current study size, generalisations about different archetypes of projects were
difficult to make. We can not reasonably discuss the impact of certain testing
frameworks, for instance, when that framework is only used by one or two
projects.

In general, we found only a few concrete examples of energy regression. Even
with a sizeable sample size, energy regressions outside testing and package
updates remained rare. Most relevant energy regressions came from the older,
more established projects. This would suggest that more mature reposito-
ries benefit more from implementing an energy regression testing tool. On
one hand, they more often have more comprehensive code coverage. On the
other hand, they are often larger codebases, which would require a larger code
inefficiency before it shows up in the results.

Bigger commits are much harder to dissect compared to small ones. When

55

5. Results and Discussion

only a few lines are changed, it is easy for the developer to wrap their head
around. When the commit has a lot of line changes, that can be tricky. Even
if you have a hunch of where the energy regression comes from, it remains
speculative. This happened often throughout our experiments. The result is
that even though we can be reasonably sure that a change in the source code
caused the regression, the underlying reason could not be found.

5.3.2 Robustness

Some of the commits are not correctly measured, making comparing with
those impossible. These broken commits make it harder for the developer
to trace back energy regressions, and more problematically, it might cause
the developer to incorrectly identify a certain commit as the culprit, while
the actual energy regression was caused by an earlier broken commit. This
fragility of the tool is mostly not caused by the tool itself. Instead, it happens
quite often that something in the tests itself breaks[40], resulting in errors.
When the tests fail, the energy testing also fails. In a few cases, the energy
measurement was broken, while the tests ran fine. We can trace these cases
back to significant updates to the environment, such as Node. These cases are
very peculiar as the tool operates as a black box, thus the environment should
not be relevant. What’s more likely is that the error is caused by a mistake in
the implementation of the tool.

5.3.3 non-deterministic data

One thing we always keep in the back of the head when looking at results is
to evaluate them critically. We can rarely be sure that a certain change is
the cause of an energy regression. There are dozens of different factors that
have to be taken into account before you can be confident. Different testing
environments can significantly affect the results of energy regression analysis.
Variations in hardware, operating systems, and other environmental factors
could influence energy consumption measurements. It is important to consider
these variables when interpreting the results. Throughout the experiments, we
always made sure to remain speculative and open to other explanations. This
is why defining logical thresholds is important.
There has been much debate about where to set the cut-off of an energy re-
gression. A couple of different methods were discussed, before settling for the
current percentage threshold. You could use the standard deviation to identify
energy regressions. The benefit is that this method does not use hard values
and works for any amount of joules. The problem with this is that highly
fluctuating projects could potentially never get flagged for energy regressions
despite constantly having big changes in energy consumption. In a hypotheti-
cal situation where an energy regression occurs for every single commit, using
this method those regressions would not all show up. On the other hand, a

56

5.3. Discussion

very stable project could have a minor irrelevant energy regression get flagged,
just because it is more significant than others from that project. Another
method is to set a hard division of energy consumption. For instance, flag
any change in energy consumption over fifty joules as significant. The prob-
lem with this method is that the size of the testing suite matters a lot. Some
testing suites in our experiments do not reach over fifty joules in total and
thus would never have a commit flagged. Other projects, like Flutter, might
have too many commits flagged as energy regression. In the end, we ended
up choosing a percentage-based definition for energy regression. The down-
side of this method is that it is very hard to reach the significance threshold
for large codebases. You could introduce an unoptimised change, causing an
energy regression, and still not be flagged with this method if the codebase
is large enough. Ultimately, the percentage-based threshold proved to be the
most logical, finding the most energy regressions with a low amount of false
positives and negatives.

57

Chapter 6

Conclusions

This chapter gives an overview of the project’s contributions. After this overview, we
will conclude by answering the research question. We will also provide our reflections
on the entire thesis. Finally, some ideas for future work will be discussed.

6.1 Can automated energy regression testing
contribute towards finding energy regressions in
software applications?

This is the research question that we defined at the start of this research paper. To
answer the question, we built an energy regression testing tool that works automat-
ically through a CI pipeline. This tool was then implemented in a diverse range of
projects. Through the process of backtracking, the tool was applied to historical
versions of these projects. The resulting data was put in an energy consumption
timeline that shows the energy consumption of the testing suite over time. With
this, energy regression could easily be found among the data.

So, based on the results from chapter 5, we can confidently say that energy
regressions can be found by utilising automated energy regression testing. Energy
regressions were found that could logically be the result of the underlying code
changes, such as updates to the testing framework or additional unit tests. Also,
multiple energy regressions could be traced back to a few line changes, making us
confident that these were the source of the energy regression.

6.2 Contributions

In this research, we have made contributions to the scientific understanding and
practical application of energy regression testing in software development.

First, we validated the effectiveness of energy regression testing through our ex-
periments involving thirteen real-world software projects. These projects range from
all-time most popular projects to newer, but highly active projects, providing a di-

59

6. Conclusions

verse range of projects for evaluation. Through these experiments, we demonstrated
that E-Compare could reliably identify energy regressions. We traced multiple re-
gressions back to specific code changes, confirming the tool’s accuracy and relevance.

Second, we developed a state-of-the-art energy regression testing tool called E-
Compare. This tool automates the process of detecting energy regressions by com-
paring the energy consumption of different versions of a project. E-Compare inte-
grates into CI pipelines with minimal manual labour, enabling continuous monitoring
and reporting of energy consumption changes. This is all done fully automatically.
By alerting developers to potential energy regressions caused by code changes, E-
Compare helps them to make informed decisions about whether the benefits of those
changes justify the increased energy consumption.

6.3 Reflection

This paper and its contents have been the culmination of nine months of work.
Throughout this period, we have been working on many different things. Going from
background research to developing a functional tool, to conducting experiments, to
processing results, to writing a thesis paper.

The majority of my time has been spent developing the tool. As I have previously
never worked extensively with CI tools, this was not an easy task. With much trial
and error, the result is something I am happy to bring to the scientific world and
anyone who may want to continue with the tool. In the end, 32 different versions
of the tool were created before reaching the last and current version v1.0. In total,
356 commits have been made.

Working on the experiments has been much more demanding of me than I origi-
nally anticipated. More manual labour ended up being required. These experiments
have been very educational to me personally. Diving into dozens of different code-
bases, investigating what they do, how they would do that, what frameworks they
use, etc, has been a valuable experience. This is one of the big reasons why I enjoyed
working on this thesis. Though, it is also one of the limitations, as we discuss in the
next section.

6.4 Limitations

This section only goes into the limitations of the experiments performed. For tech-
nical and conceptual limitations of the E-Compare tool, go to section 3.4.

Superficial analysis Within the experiments, many different projects were anal-
ysed. As we had no experience with the source code of any of these projects, the
analysis was always gonna be rather superficial. In an intended situation, it will
be an actual developer analysing the results given by E-Compare. Because of this,
there may be commits analysed in these experiments that could have been analysed
further had someone else looked at the results.

60

6.4. Limitations

Splitting up results in individual tests Currently, the energy consumption is
measured for all tests combined. This way, a regression will typically only occur if it
impacts multiple tests. However, a developer that only changes one function would
want to be notified if that function now significantly differs in energy consumption.
Ideally, you would like to compare individual unit tests across different versions of
the software. If one unit test shows a regression, the developer can be made aware
despite the total energy consumption not significantly changing.

Backtracking method limitations One flaw with the backtracking method in
the experiments is that it is not how the tool would normally be used. The result
is that more commits are checked in the experiments than E-Compare would in
real-world cases. Now, every commit on the main branch is checked when it passes
through the filters. With actual use of the tool, only commits that get merged in
the main branch are checked. These merging commits are typically a combination
of multiple commits and are larger than normal. This means that the experiments
might not exactly reflect the actual use of the tool. If time is no constraint, future
research could monitor actual natural use of the tool, instead of simulating natural
use.

Only main branch analysed Furthermore, through normal use of the tool, the
developer can see the energy consumption of commits made to other branches than
the main branch. This allows developers to analyse smaller pieces of code, making it
easier to pinpoint possible causes of energy regressions. In these experiments, only
the merges are analysed, focusing on the combined code changes of an entire branch
rather than individual commits made to that branch. Future research could include
commits to other branches than main.

Limited testing types tested One big limitation is the lack of diversity among
types of tests. For the projects analysed in these experiments, the unit tests were
used for reasons stated in Chapter 4. Many other types of tests were not used,
even though they are usable in combination with E-Compare. The results might be
different for other testing types. The usefulness of E-Compare for these types is not
yet proven. Future research could focus on other testing types.

Standard deviation One thing that was not done is to look at the standard
deviation. For some repositories, the fluctuations were checked with the individual
runs to find an explanation. If energy consumption between individual runs is very
inconsistent it could lead to questionable data. On the other hand, if there is an
energy regression and the individual runs are stable it provides much more credibility.

Outlier removal To improve the accuracy of the average and standard deviation,
outlier removal could be implemented. Individual runs that differ wildly from the
norm can be skipped when calculating the average or standard deviation.

61

6. Conclusions

Caching We repeat tests multiple times to diminish the impact of outliers. But
sometimes the first test costs significantly more joules than any following tests. This
can happen due to caching. The testing framework stores the results for the tests
so that it does not need to run them again somewhere down the line. The result is
that the repetition of tests is useless and even makes the results inaccurate. Every
selected project was checked if any caching occurred. In only one case, Hiddify, did
caching occur. Caching is not a big issue as long as researchers and developers are
aware of it.

Graphical limitations The graphs introduce a few inevitable shortcomings be-
cause of the way they are shown. Firstly, the y-axis does not start at zero, nor is the
same place for every graph. This makes the energy regressions seem larger than they
are. Secondly, the differences between steps on the y-axis also change depending on
the project. This is important to note before readers compare the energy regressions
of two different graphs. The length of one bar on one graph does not equate to the
same values as a similar length bar on another graph. Third and last, large energy
regressions in one project might mask other potential regressions in the graph, as a
large regression stretches the y-axis, making other bars smaller.

6.5 Future
This section describes potential future alleys for these experiments. Future re-
searchers can use these suggestions to continue the research done in this paper.
The suggestions made have been skipped due to time constraints, or because other
methods had been prioritised. The future direction of the tool is discussed in sub-
section 3.4.3.

Limited data Despite the large amount of repositories and commits analysed,
only a few relevant energy regressions could be found. While we can be certain that
they exist and that the tool can spot them. In future work, these experiments can
be expanded even further to a wider net of projects.

Backtracking method Due to time constraints, the backtracking method was
used. As stated in section 6.4, this method might give slightly different results than
when E-Compare is normally used. Future research could observe actual projects us-
ing E-Compare in real-time. This method stays more true to the actual use, allowing
for more accurate experiment results. The main differences are that fewer commits
are checked and the average checked commit is larger. It would be interesting to see
if the results of the experiments would be the same as the current results.

Long-term developer interaction Also, further exploration could take a look
at the behaviour of developers using E-Compare over an extended period. This
allows developers time to interact with E-Compare and make adjustments to their

62

6.5. Future

code based on the insights provided by the tool. The primary goal is to investigate
the dynamic relationship between developers and E-Compare, examining whether
the tool influences decision-making regarding code optimisation for energy efficiency.
This would capture changes in developer responses over time and explore whether
the tool prompts adjustments in coding practices and resource usage. As this re-
search primarily focused on whether the tool could identify energy bugs, it does not
necessarily guarantee that developers will adapt their code to address these issues.
As developers engage with E-Compare, it would be valuable to observe whether
the tool inspires them to actively modify their code or adopt more energy-efficient
coding practices. Gathering qualitative feedback from developers is important to
understand their experiences & the challenges they faced with the tool, and the
perceived impact of E-Compare on their development workflows.

63

Bibliography

[1] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday,
“The real climate and transformative impact of ict: A critique of estimates,
trends, and regulations,” Patterns, vol. 2, no. 9, p. 100340, 2021.

[2] A. S. G. Andrae and T. Edler, “On global electricity usage of communication
technology: Trends to 2030,” MDPI, Apr 2015.

[3] L. Belkhir and A. Elmeligi, “Assessing ict global emissions footprint: Trends to
2040 & recommendations,” Journal of Cleaner Production, vol. 177, pp. 448–
463, 2018.

[4] B. Knowles, “Acm techbrief: Computing and climate change,” 2021.

[5] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud computing
data centers: a survey on software technologies,” Cluster Computing, vol. 26,
pp. 1845–1875, June 2023.

[6] A. Petrosyan, “The state of developer ecosystem in 2023.” https://www.
statista.com/statistics/617136/digital-population-worldwide/, May
2024. Accessed: 13-05-2024.

[7] G. W. Index, “Digital vs. traditional media consumption.” https://www.gw
i.com/hubfs/Digital_vs_Traditional_Media_Consumption.pdf, 2017. Ac-
cessed: 13-05-2024.

[8] G. Moore, “Cramming more components onto integrated circuits (1965),” Elec-
tronics Magazine, 4 1965.

[9] B. Publishing, “Global high performance computing market.” https:
//www.bccresearch.com/market-research/information-technology/high
-performance-computing-market.html, 2022. Accessed: 13-05-2024.

[10] Jetbrains, “The state of developer ecosystem in 2023.” https://www.jetbrain
s.com/lp/devecosystem-2023/languages/, 2023. Accessed: 13-05-2024.

65

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.gwi.com/hubfs/Digital_vs_Traditional_Media_Consumption.pdf
https://www.gwi.com/hubfs/Digital_vs_Traditional_Media_Consumption.pdf
https://www.bccresearch.com/market-research/information-technology/high-performance-computing-market.html
https://www.bccresearch.com/market-research/information-technology/high-performance-computing-market.html
https://www.bccresearch.com/market-research/information-technology/high-performance-computing-market.html
https://www.jetbrains.com/lp/devecosystem-2023/languages/
https://www.jetbrains.com/lp/devecosystem-2023/languages/

Bibliography

[11] B. Danglot, J.-R. Falleri, and R. Rouvoy, “Can we spot energy regressions using
developers tests?,” arXiv preprint arXiv:2108.05691, 2021.

[12] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree,
and M. E. Femal, “Analyzing the energy-time trade-off in high-performance
computing applications,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 18, no. 6, pp. 835–848, 2007.

[13] L. Cruz, “Tools to measure software energy consumption from your computer,”
Blog post, July 2021.

[14] J. Sallou, L. Cruz, and T. Durieux, “Energibridge: Empowering soft-
ware sustainability through cross-platform energy measurement,” ArXiv,
vol. abs/2312.13897, 2023.

[15] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible open
power manager: A vehicle for hpc community collaboration on co-designed en-
ergy management solutions,” in High Performance Computing (J. M. Kunkel,
R. Yokota, P. Balaji, and D. Keyes, eds.), (Cham), pp. 394–412, Springer In-
ternational Publishing, 2017.

[16] S. I. Roberts, S. A. Wright, S. A. Fahmy, and S. A. Jarvis, “The power-optimised
software envelope,” ACM Trans. Archit. Code Optim., vol. 16, jun 2019.

[17] C. Marantos, K. Salapas, L. Papadopoulos, and D. Soudris, “A flexible tool for
estimating applications performance and energy consumption through static
analysis,” SN Computer Science, vol. 2, no. 1, p. 21, 2021.

[18] M. Poess and R. Othayoth Nambiar, “A power consumption analysis of deci-
sion support systems,” in Proceedings of the First Joint WOSP/SIPEW Inter-
national Conference on Performance Engineering, WOSP/SIPEW ’10, (New
York, NY, USA), p. 147–152, Association for Computing Machinery, 2010.

[19] J. D. Davis, S. Rivoire, M. Goldszmidt, and E. K. Ardestani, “Chaos: Com-
posable highly accurate os-based power models,” in 2012 IEEE International
Symposium on Workload Characterization (IISWC), pp. 153–163, 2012.

[20] N. Kim, J. Cho, and E. Seo, “Energy-based accounting and scheduling of virtual
machines in a cloud system,” in 2011 IEEE/ACM International Conference on
Green Computing and Communications, pp. 176–181, 2011.

[21] S. A. Chowdhury and A. Hindle, “Greenoracle: estimating software energy
consumption with energy measurement corpora,” in Proceedings of the 13th In-
ternational Conference on Mining Software Repositories, MSR ’16, (New York,
NY, USA), p. 49–60, Association for Computing Machinery, 2016.

66

Bibliography

[22] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler: training
software energy models with automatic test generation,” Empirical Software
Engineering, vol. 24, no. 4, pp. 1649–1692, 2019.

[23] N. Rteil, R. Bashroush, R. Kenny, and A. Wynne, “Interact: It infrastruc-
ture energy and cost analyzer tool for data centers,” Sustainable Computing:
Informatics and Systems, vol. 33, p. 100618, 2022.

[24] G. C. Berlin, “Cloud energy | green coding.” https://www.green-coding.io
/projects/cloud-energy/. Accessed: November 6, 2023.

[25] G. KP, G. Pierre, and R. Rouvoy, “Studying the Energy Consumption of Stream
Processing Engines in the Cloud,” in IC2E 2023 - 11th IEEE International Con-
ference on Cloud Engineering, (Boston (MA), United States), pp. 1–9, IEEE,
IEEE, Sept. 2023.

[26] A. Kruglov, G. Succi, and X. Vasuez, “Incorporating energy efficiency measure-
ment into ci cd pipeline,” in Proceedings of the 2021 European Symposium on
Software Engineering, ESSE ’21, (New York, NY, USA), p. 14–20, Association
for Computing Machinery, 2022.

[27] G. C. Berlin, “Eco ci | green coding.” https://www.green-coding.io/proje
cts/eco-ci/. Accessed: November 6, 2023.

[28] F. Quesnel, H. K. Mehta, and J.-M. Menaud, “Estimating the power consump-
tion of an idle virtual machine,” in 2013 IEEE International Conference on
Green Computing and Communications and IEEE Internet of Things and IEEE
Cyber, Physical and Social Computing, pp. 268–275, 2013.

[29] H. Acar, G. I. Alptekin, J.-P. Gelas, and P. Ghodous, “The Impact of Source
Code in Software on Power Consumption,” International Journal of Electronic
Business Management, vol. 14, pp. 42–52, 2016.

[30] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers know
about the energy consumption of software?,” PrePrints, 3 2015.

[31] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pol-
lock, and J. Clause, “An empirical study of practitioners’ perspectives on green
software engineering,” in Proceedings of the 38th international conference on
software engineering, pp. 237–248, 2016.

[32] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes, “The influence
of the java collection framework on overall energy consumption,” in Proceedings
of the 5th International Workshop on Green and Sustainable Software, pp. 15–
21, 2016.

67

https://www.green-coding.io/projects/cloud-energy/
https://www.green-coding.io/projects/cloud-energy/
https://www.green-coding.io/projects/eco-ci/
https://www.green-coding.io/projects/eco-ci/

Bibliography

[33] M. Funke, P. Lago, E. Adenekan, I. Malavolta, and I. Heitlager, “Experimental
evaluation of energy efficiency tactics in industry: Results and lessons learned,”
in 21st IEEE International Conference on Software Architecture (ICSA), Feb.
2024.

[34] A. B. De Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Perphecy: Performance regression test selection made simple but effective,”
in 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST), pp. 103–113, 2017.

[35] D. Alshoaibi, K. Hannigan, H. Gupta, and M. W. Mkaouer, “Price: Detection
of performance regression introducing code changes using static and dynamic
metrics,” in Search-Based Software Engineering (S. Nejati and G. Gay, eds.),
(Cham), pp. 75–88, Springer International Publishing, 2019.

[36] Q. Luo, D. Poshyvanyk, and M. Grechanik, “Mining performance regression
inducing code changes in evolving software,” 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pp. 25–36, 2016.

[37] A. Hindle, “Green mining: a methodology of relating software change and con-
figuration to power consumption,” Empirical Software Engineering, vol. 20,
pp. 374 – 409, 2013.

[38] D. Mateas, “Ci pipeline for energy variability management.” https://www.gree
n-coding.io/case-studies/ci-pipeline-energy-variability/, Septem-
ber 2023. Accessed: April 5, 2024.

[39] K. Huppler, K.-D. Lange, and J. Beckett, “Spec: enabling efficiency measure-
ment,” in Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering, ICPE ’12, (New York, NY, USA), p. 257–258, Associa-
tion for Computing Machinery, 2012.

[40] M. M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An explorative analysis of travis ci with github,” 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (MSR), pp. 356–367,
2017.

68

https://www.green-coding.io/case-studies/ci-pipeline-energy-variability/
https://www.green-coding.io/case-studies/ci-pipeline-energy-variability/

Appendix A

Plots

In this appendix we show higher quality versions of the charts shown in chapter 4.
These versions can be used to look up commit hashes and to look at the energy
regressions more easily.

Figure A.1: Flutter

69

A. Plots

Figure A.2: Vue

Figure A.3: Bootstrap

70

Figure A.4: D3

Figure A.5: Stable Diffusion

71

A. Plots

Figure A.6: Puppeteer

Figure A.7: Tailwind

72

Figure A.8: Neovim

Figure A.9: ShadowCN UI

73

A. Plots

Figure A.10: CrewAI

Figure A.11: Atomicals

74

Figure A.12: Twenty

Figure A.13: Plate

75

A. Plots

Figure A.14: Hiddify

76

	Preface
	Contents
	Introduction
	Background
	Terminology
	Research question

	Related Work
	Energy Profiling
	Regression Testing
	Energy regression testing

	Approach
	Conceptual Approach
	Implementation of the solution: E-compare
	Challenges
	Limitations and future

	Experiments
	Repository selection
	Implementation
	Commit comparison

	Results and Discussion
	Overall result
	Per project
	Discussion

	Conclusions
	Can automated energy regression testing contribute towards finding energy regressions in software applications?
	Contributions
	Reflection
	Limitations
	Future

	Bibliography
	Plots

