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Abstract:  

Full insight into the dynamics of a coupled quantum system depends on the ability to follow the 
effect of a local excitation in real-time. Here, we trace the free coherent evolution of a pair of 
coupled atomic spins by means of scanning tunneling microscopy. Rather than using microwave 
pulses, we employ a direct-current pump-probe scheme to detect the local magnetization following 
a current-induced excitation performed on one of the spins. Making use of magnetic interaction 
with the probe tip, we are able to tune the relative precession of the spins. We show that only if 
their Larmor frequencies match, the two spins can entangle, causing angular momentum to be 
swapped back and forth. These results provide insight into the locality of electron-spin scattering, 
and set the stage for controlled migration of a quantum state through an extended spin lattice. 
 

 
One Sentence Summary:  

Using STM-based electron spin resonance and DC pump-probe spectroscopy we track the free 
spin evolution of two entangled atoms. 

 
Main Text:  

One of the longstanding goals in experimental physics is the ability to create a quantum simulator: 
an engineered system of coupled quantum degrees of freedom that can be initialized in an arbitrary 
state, allowing one to observe its intrinsic free evolution (1). In principle, scanning tunneling 
microscopy (STM) offers each of these ingredients. Individual magnetic atoms can be spatially 
arranged and studied by means of spin-polarized tunneling (2,3) and electron tunneling 
spectroscopy (4,5), allowing to respectively probe their local magnetization state and energy 
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configuration. However, due to their slow timescales, these techniques have been able to observe 
the dynamic spin processes only indirectly (6-8). 

 
In recent years, the STM toolbox was expanded to include pump-probe spectroscopy – allowing 
spin relaxation to be probed on the nanosecond timescale (9,10) – as well as electron spin 
resonance performed locally at the probe tip (ESR-STM) (11). ESR-STM, combined with 
microwave AC pulsing schemes, enabled the observation of the coherent time evolution of a single 
atomic spin (12), on par with achievements in semiconductor spin qubits (13,14) and NV centers 
(15). However, in order to demonstrate free evolution of a pair of entangled spins, the initial 
excitation has to be sufficiently fast to compete with the intrinsic dynamics set by the coupling 
strength. ESR-STM uses a Rabi flop process for initialization, the rate of which is limited by the 
radio-frequency (RF) power available at the probe tip. 

 
Here, by sequentially combining ESR-STM and DC pump-probe techniques, we demonstrate the 
detection of free, coherent flip-flop evolution of two coupled spin-1/2 atoms resulting from an 
electron-induced spin excitation that is nearly instantaneous compared to the typical duration of a 
Rabi rotation. Using the energy resolution of ESR-STM we tune the eigenstates of two coupled 
spin-1/2 particles from Zeeman states |↑↑⟩, |↓↑⟩, |↑↓⟩, |↓↓⟩ to singlet-triplet states |↑↑⟩, |–⟩, |+⟩, |↓↓⟩ 
by varying the tip height (11,16,17). Subsequently, using a DC pump-probe scheme, we excite and 
read out the spin projection of one of the two spins with nanosecond resolution. This is in contrast 
to previous efforts, where microwave AC pulses were used to control and readout spins (12). 
Rather than by means of a Rabi rotation, here the coherent evolution is initiated directly through 
an electron-spin scattering event. 

 
As we increase the delay between pump and probe pulses, we observe an oscillating magnetization 
for the spin underneath the tip which we attribute to a flip-flop interaction between the two spins 
(18,19). This implies that the excitation process due to tunneling electron scattering is local: it only 
consists of a spin-flip on the atom underneath the tip, irrespective of the energy eigenstates of the 
system. This is a noteworthy result in the light of previous works, where it was deemed sufficient 
to consider electron-induced spin excitations as transitions between energy eigenstates (20-22). 

 
We use a low-temperature STM to manipulate individual hydrogenated Ti atoms, henceforth 
referred to as TiH, on top of bilayer MgO islands on a Ag(100) crystal. To obtain spin polarization, 
we deposit Fe atoms and transfer them to the tip apex (23). The ESR and pump-probe experiments 
are performed by applying the RF voltage and pulse trains to the tip, at temperatures of 1.5 K and 
400 mK, respectively. We use an external field Bext = 450 mT in-plane at 14° angle with respect 
to the MgO lattice to separate the energy levels via Zeeman splitting. 
 

We study TiH species without any observable nuclear spin adsorbed on bridge sites with different 
orientations with respect to the external magnetic field, as sketched in Fig. 1A. TiH on MgO has 
been shown to be an effective spin-1/2 particle with an anisotropic g-factor (24,25). In agreement 
with these studies, we observe different ESR resonance frequencies for the two species: for the 
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spin Sv vertically oriented TiH species (blue) we find a g-factor gv = 1.75 while for the spin Sh of 
the horizontal TiH (green) we find gh = 1.95 (supplementary sections S1 and S2). 

 
Figures 1B and C demonstrate how we use the effective magnetic field emanating from the tip on 
one of the two atoms to tune the level of entanglement between the spins (10, 17). If the two spins 
experience the same effective Zeeman splitting, they precess at identical Larmor frequencies 
resulting in entangled states. Since we want to reach entanglement at a finite tip field, the two spins 
need to be inherently detuned in absence of the tip. For this reason, we build heterodimers out of 
vertically and horizontally oriented TiH species (Fig. 1B, see supplementary section S3 for 
details). 
 

The dimers are engineered to have a spacing of 1.3 nm, corresponding to a coupling strength in 
the order of tens of MHz. This coupling strength is chosen to ensure that the dynamics of the local 
magnetization are slow enough to be probed by our experimental setup, which is limited to ~5 ns 
pulses, but still faster than the ~100 ns decoherence time of TiH dimers (17). At this distance, the 
atoms interact both via exchange and dipolar interactions. The Hamiltonian of the system can be 
written as (supplementary section S4): 
 

   

 

where J and D are the exchange and dipolar coupling parameters, respectively. The two last terms 
account for the Zeeman splitting due to the external (Bext) and effective tip (Btip) fields, which, 
based on their relative strengths, we assume to be aligned. In supplementary section S6, we discuss 
the justification and limits of this assumption. 

 
We separate the exchange and dipolar contributions by performing the experiment on two 
heterodimers as sketched in Figs. 2A (dimer A) and B (dimer B). The two dimers are equidistant, 
yielding identical exchange couplings. However, as they are oriented at different angles with 
respect to the external field, their dipolar coupling strengths differ. This is confirmed by ESR 
measurements performed on top of the vertically oriented TiH of each dimer with the tip well away 
from the tuning point (Figs. 2A and B). In this situation, the SxSx and SySy components of the 
coupling (Eq. 1) average out over time as the spins precess with different Larmor frequencies. The 
resulting coupling, being mediated through the SzSz terms only, is effectively Ising-like. Due to the 
composition of the eigenstates and because ESR can only flip the spin underneath the tip (26), only 
transitions I and II are observed (see Fig. 1C). The measured splitting between these two ESR 
resonances corresponds to J + 2D, and thus, is different for the two heterodimers (see Figs. 2A and 
B). 

 
In order to probe the full energy level diagram of Fig. 1C and identify the exact tuning point for 
maximal entanglement, we perform ESR measurements at various tip heights for each dimer 
(Figs. 2C and 2D). We observe two sets of peaks that, upon tip approach, shift together and 
broaden due to decoherence effects (27). These two sets of resonances can be assigned to 

v h v h v h B ext v v h h B tip v v( 2 ) ( )( ) ( )z z x x y y z z zJ D S S J D S S S S B g S g S B g Sµ µ= + + - + - + -H
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transitions I & II and III & IV in Fig. 1C. Away from the tuning point, only one of these pairs is 
observed: transition I & II before the tuning point and transition III & IV after it. As the energy 
eigenstates become more entangled near the tuning point, all four transitions become accessible. 
Due to the opposite signs of the dipolar coupling contributions, the two dimers show slightly 
different behaviors: transitions II and III intersect twice for dimer A while they stay apart for dimer 
B. We find J = 67 ± 2 MHz, D = 2 ± 1 MHz for dimer A and D = –15 ± 1 MHz for dimer B 
(supplementary section S5). 
 

We now arrive at the second stage of the experiment where we measure the free time evolution of 
the spins. We use a pump probe scheme to excite and measure the spin state of the atom underneath 
the tip for various degrees of entanglement. When the tip height is far away from the tuning point, 
the pump probe experiments show the onset of an exponential decay similar to the decay signal of 
a single excited spin (Figs. 2E and F, top and bottom curves) (9). By contrast, when tuned, we 
observe a clear oscillation with a frequency of 64 ± 1 MHz for dimer A and 84 ± 1 MHz for dimer 
B. We attribute these oscillations to the flip-flop interaction of strength J – D between the two 
atoms in the dimer. 

 
The dynamics of the flip-flop interaction can be well understood by describing the time evolution 
of the combined density matrix of the two spins within a dissipative Bloch-Redfield framework 
(28,29), which accounts for the uncorrelated electron baths in sample and tip (Fig. 3A, see 
supplementary section S7 for details). In Figs. 3B-E we show density matrices in the energy basis 
obtained by numerical simulation for a perfectly tuned dimer at different moments in time after 
the pump pulse. 
 

During the pump pulse, the system is pushed into a coherent superposition of its excited states 
(Fig. 3B). These add up to a net |↓↑⟩ magnetization (where the left arrow corresponds to the spin 
underneath the tip), as a result of spin pumping (23). This net magnetization is reflected in the off-
diagonal terms, which correspond to the coherence between the |–⟩ and |+⟩ states. Due to the finite 
thermal occupation of the excited states in the initial Boltzmann distribution, the pump pulse also 
populates the higher energy |↓↓⟩ state. Immediately after the pulse, the off-diagonals begin to 
oscillate between positive and negative values (Figs. 3C,D), giving rise to the observed periodicity 
in the magnetization (see inset of panel a). Due to interaction with the electron baths, the 
oscillations decay over an effective decoherence time and eventually the populations evolve back 
towards thermal equilibrium (Fig. 3E). We estimate the decoherence time to be 60 ns and 130 ns 
for the relaxation time (supplementary section S8).  

 
We now proceed to the effect of detuning on the flip-flop oscillations. For this purpose, we perform 
pump-probe experiments at different current setpoints around the tuning point: ~28 pA for dimer 
A and ~40 pA for dimer B (Figs. 4A and B). As expected, the oscillations diminish rapidly as we 
tune away from these values. Depending on the microscopic tip apex, we observe a small 
difference in tuning height between ESR (Fig. 2) and pump probe measurements (Fig. 4). We 
attribute this discrepancy to the temperature dependence of the spin polarized current as the two 
different experiments were carried out at different temperatures (supplementary section S9). 
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To gain insight into the effect of detuning on the spin dynamics, we map the effective two-level 
system of the inner 2×2 matrix of the density matrix onto a Bloch sphere. For clarity, the axes of 
the sphere are fixed to be the energy eigenstates of the fully tuned case, while the projected spin 
state evolution is plotted for different levels of detuning (Fig 4C-F). As can be seen from the 
density matrices in Fig. 3, the spin state always has components outside the inner 2×2 matrix, 
meaning that the projection in Fig. 4 never reaches the surface of the sphere. 
 

When the dimer is in tune (Fig. 4C), the state moves fully within the vertical plane of the Bloch 
sphere, making maximal flip-flops between |↑↓⟩ and |↓↑⟩. With increasing detuning, the axis 
around which the state rotates moves as the eigenstates of the system gradually tilts towards the 
vertical. The difference between the projected maxima and minima of the oscillation onto the 
vertical axis gets smaller and thus the oscillation amplitude decreases, consistent with our 
experimental observations. 
 

The observed flip-flop frequency remains constant as a function of detuning. This is surprising, as 
the energy splitting is supposed to increase away from the tuning point, causing an increase in the 
frequency (see supplementary section S10). Since the in-plane anisotropy of the g-factor indicates 
a partially unquenched orbital moment resulting from the crystal-field symmetry of the bridge 
sites, as previously observed for the out-of-plane direction on TiH species on oxygen binding sites 
(24), the observed discrepancy may be related to this orbital moment. 

 
In conclusion, by combining the energy resolution of ESR-STM and the time resolution of DC 
pump-probe spectroscopy, we have demonstrated a new experimental procedure enabling the 
observation of the free coherent evolution of coupled atomic spins. As the dynamic processes are 
initialized by means of a coherence-preserving pulse in the tunneling current, our method provides 
new insight into the physics of electron-spin scattering that could not be obtained by pulsed ESR-
STM methods (12). Specifically, we find that only the spin directly underneath the tip is affected 
by the spin excitation, irrespective of the global quantum state. In conjunction with the recent 
demonstration of pulsed ESR-STM, our technique offers pathways towards coherent manipulation 
of extended atomic spin arrays. The ability to perform a very local, nearly instantaneous, coherent 
spin flip inside an extended spin lattice constitutes an essential building block for advances in 
spintronic engineering as well as studies into the propagation of spin waves. 
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Fig. 1. Tuning the eigenstates of a TiH dimer using tip-induced magnetic field. (A) ESR measurements of single 
TiH adsorbed onto a vertical (blue) and a horizontal (green) bridge site (T = 1.5 K, VRF = 30 mV, I = 50 pA, 
VDC = 60 mV, Bext = 450 mT). (B) STM topography of a TiH dimer with MgO lattice indication and schematic 
demonstrating tuning of the tip field. (C) Calculated energies and eigenstate compositions as function of tip field. An 
avoided crossing occurs at the point where the tip field compensates the g-factor difference. Roman numerals indicate 
the four possible ESR transitions. 
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Fig. 2. Measurement of free coherent evolution at the tuning point. (A) and (B) ESR measurements on dimer A 
and dimer B (T = 1.5 K, VRF = 50 mV, I = 10 pA, VDC = 60 mV). Insets: schematic drawings of the dimer placement 
on the MgO lattice. (C) and (D) ESR measurements at various tip heights, showing an avoided crossing at the tuning 
point (T = 1.5 K, VRF = 50 mV, VDC = 60 mV). Dashed lines: guides to the eye marking ESR transitions. (E) Pump-
probe measurements on dimer A, above, below and at the tuning point (T = 400 mK, setpoint voltage 60 mV, pulse 
width 7 ns). (F), same for dimer B (pulse width 5 ns). All pump-probe experiments use +100 mV pump and –100 mV 
probe pulses. 
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Fig. 3. Decoherence of the flip-flop oscillation. (A) Pump-probe measurement on dimer B showing the decay in 
amplitude of the oscillations (T = 400 mK, setpoint 40.5 pA, 60 mV, pulse width 7 ns). Solid line: calculated pump-
probe signal. Inset: calculated magnetizations ⟨Svz⟩ (blue) and ⟨Shz⟩ (green); the origin of the time axis is set to coincide 
with the end of the pump pulse. (B-E) Density matrices at different times after the pump pulse (see inset of panel A). 
Off-diagonal elements are marked red for clarity. 
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Fig. 4. Flip-flop oscillations as function of detuning. (A) and (B) Pump-probe measurements on dimer A and B at 
various tip heights (parameters same as in Fig. 2). (C-F) Bloch sphere representations of the state evolution at 
increasing levels of detuning, as indicated by the ratio χ = gv(Bext + Btip) / ghBext. The Bloch spheres show the reduced 
state space between the |↑↓⟩ and |↓↑⟩ states. The excitation process due to the pump pulse is plotted in red, while the 
subsequent free evolution of the spin state is plotted in blue. For χ < 1 the rotation axis (dashed blue line) tilts in the 
opposite direction.  
 


