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Abstract

context: The long-term evolution of a self-gravitating astrophysical disk can be modeled using
secular perturbation theory. Recently, Batygin published a paper[1] where he claims that such
a disk with a special density (4.2) can be described by a Schrödinger equation by using this
method.
aims: In this thesis, we will study the secular perturbation theory applied to an astrophysical
disk with the same density as Batygin, using the Laplace-Lagrange equations. We will take the
continuum limit of those equations, and try to find a wave equation like Batygin.
methods: We first apply the Laplace-Lagrange equations to a disk with a large number of planets.
Then we take the continuum limit of an infinite number of planets. We then compare the numeric
results of the discrete disk to the analytic results of the continuum limit.
results: The eigenmodes of the system are well approximated by damped sinusoids. Mode number
n changes sign n times. The eigenvalues are linear in the mode number.
conclusions: The eigenmodes do not satisfy a wave equation.
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Chapter 1

Introduction

Stars are born in molecular clouds[2]. These molecular clouds are giant volumes of cold gas,
consisting mostly of hydrogen and helium. They also contain dust particles made from heavier
elements in the form of silicates, hydrocarbons and various ices. Parts of such clouds may collapse
under their own gravity, and form tens to thousands of stars. At the protostellar stage, there
exists a dense envelope of a few 1000 AU around each star. The seed of a new star forms from
matter pulled to the center of the envelope by gravity. After about 105 years, most of the envelope
has collapsed into a disk. The star continues to grow from this disk. After about 106 years, the
envelope is exhausted, leaving a fully developed star and a massive circumstellar disk of a few
Jupiter masses. In this disk, dust particles assemble via low velocity collisions and form larger
bodies called planetesimals. These planetesimals grow larger, and the gas slowly disappears. As
the planetesimals collide, they grow in size and their orbits become more circular. When the
orbits are nearly circular, collisions between them become rare. At this stage, the orbits of the
planetesimals are predominantly affected by gravitational forces. The system can be modeled as
a debris disk, consisting only of point masses orbiting a central mass. This debris disk model is
applicable to this epoch in planetary formation, but can also be applied to other systems, such
as planetary ring systems and the stars in the center of a galaxy. We want to study these debris
disks. Figure 1.1 shows an example of a protoplanetary disk.

There are three different methods to model such a debris disk[1]. The most obvious method is
the N-body simulation, where the trajectory of each individual particle is numerically calculated
using Newton’s laws of motion. The second method involves solving a partial differential equation
for the gravitational potential throughout the disk. The third method uses the Laplace-Lagrange
equations to describe how the orbits of the particles change over time scales much larger than
the orbital period. The last two methods are less computationally expensive than the N-body
simulation.

Recently, Batygin published a paper[1] where he claims that a debris disk with a surface den-
sity that scales as the inverse square root of the orbital radius can be described by a Schrödinger
equation using the third method. He applies this to the inclination dynamics, which is the evo-
lution of the inclination of the orbits. There, the amplitude of the wave function corresponds
to the inclination, and the phase to the argument of the ascending node. In this thesis, we will
study Batygin’s method. We also use the Laplace-Lagrange equations, but we apply it to the
eccentricity dynamics. We introduce a complex function ψ. Here the amplitude is the orbital
eccentricity and the phase is the argument of periapsis. As an introduction to the method, we
first studied the dynamics for two planets. As an example of the method, we apply this to Jupiter
and Saturn. Then we expand the method to an arbitrary number of planets. We apply this to
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the 8 planets of the solar system.
In order to compare our results to Batygin’s, we then considered a system of 101 planets.

After that we examined the limit of an infinite number of planets. In chapter 2, we derive
Kepler’s laws of planetary motion, in order to introduce the elliptic Kepler orbit and the orbital
elements. In chapter 3, we introduce the theory of secular perturbations, where we use the
Laplace-Lagrange equations to describe how planetary orbits change over large time scales by
the gravitational pull of other planets. We apply the theory to the planets of the solar system.
In chapter 4, we apply the theory of secular perturbations to a system with 101 planets, as to
approximate a continuous disk. We will try to find the eigenmodes of this system. In chapter 5,
we take the limit of an infinite number of planets. We will derive the eigenmodes of the system
analytically, and compare them to the eigenmodes we found for the discrete disk in chapter 4.
We will discuss our results in chapter 6, and compare them to the results of Batygin.

Figure 1.1: An image of a protoplanetary disk taken by the Atacama Large Millime-
ter/submillimeter Array.[3]
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Table 1.1 is a summary of the symbols used in this report.

symbol meaning
a semi-major axis
b semi-minor axis
$ argument of the periapsis
ε eccentricity
G gravitational constant
m mass
T orbital period
Ω angular orbital frequency
E eccentric anomaly
j planet index
k planet index unequal to j
I inclination
� argument of the ascending node
A Hamiltonian matrix for eccentricity dynamics
B Hamiltonian matrix for inclination dynamics
R disturbing function
~ψ complex eccentricity vector ε exp($i)
~φ complex inclination vector I exp(�i)
N number of planets
v eigenvector
ω eigenvalue/frequency
n modenumber
σ mass density
λ damping factor
φ phase offset
κ wavenumber

Table 1.1: List of symbols
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Chapter 2

Planetary Orbits

In this chapter, we will derive Kepler’s laws of planetary motion, using the method found in
the textbook by Adams[4] and define the orbital parameters needed to describe the orbit of a
planet around a star. We need this description in the next chapter, where we will use Lagrange’s
equations to find how the orbit of a planet evolves under the influence of the gravity of another
planet.

2.1 Kepler’s Laws of Planetary Motion

First, we will derive Kepler’s first law, which states that the orbit of an object around another
object with a much greater mass has the shape of an ellipse, with the more massive object at
one of the focal points of the ellipse. Figure 2.1 features an ellipse with one of its focal points at
the origin O.

b

a

reference direction

OC $

Figure 2.1: An ellipse with semi-major axis a, semi-minor axis b, and center C in the plane,
rotated by $ with respect to the reference direction.

The point of closest approach of an orbiting object to its parent is known as the periapsis.
Thus, the rotation angle $ is called the argument of periapsis. The eccentricity ε of an ellipse is
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defined by the ratio between the distance from one of the foci to the center and the semi-major
axis. This implies

ε =

√
1− b2

a2
. (2.1)

An ellipse with one of its focal points at the origin can be expressed in polar coordinates as
follows:

r(θ) =
(1− ε2)a

1 + ε cos(θ −$)
. (2.2)

We will now derive an orbit to be of this form. We assume that the only force in play is gravity.
We place the large mass at the center of the coordinate system. Since the large mass is much
larger than the small mass, the gravitational force on the large mass is negligible, and the large
mass will be stationary. The gravitational force of the central mass M on the small test mass m
is given by

~F = −GMm

r2
r̂, (2.3)

where G is the gravitational constant, r is the distance of the test mass from the origin, and r̂ is
the unit vector in the radial direction. Newton’s second law says that

~̇v = ~a =
~F

m
= −GM

r2
r̂. (2.4)

From this equation, we see that the change in the velocity ~v is in the direction of the position
vector ~r, and by definition, the change in position is in the direction of the velocity vector.
Hence both the position and velocity vectors stay in the plane spanned by the initial position
and velocity vectors. We choose this plane to be the xy-plane. We will from here on use cylindrical
coordinates (r, θ, z), defined in terms of the Cartesian coordinates (x, y, z) by

x = r cos θ, y = r sin θ, z = z. (2.5)

We also define the corresponding unit vectors

r̂ = cos θî+ sin θĵ, θ̂ = − sin θî+ cos θĵ. (2.6)

We can calculate the angular momentum ~L of the test mass, which is constant in time:

~L/m = ~r × ~p/m = ~r × ~v = (rr̂)× (ṙr̂ + rθ̇θ̂) = rṙ(r̂ × r̂) + r2θ̇(r̂ × θ̂) = r2θ̇k̂, (2.7)

which results in the following expression for ~L and its magnitude L:

~L = mr2θ̇k̂ := Lk̂. (2.8)

Using (2.4) and (2.8), we find for the change of velocity with respect to angle

d~v

dθ
=
~̇v

θ̇
=
−GMr̂/r2

L/mr2
= −GMm

L
r̂ =

GMm

L

dθ̂

dθ
. (2.9)

We can integrate this expression to find ~v in polar form:

~v(θ) =

∫
d~v

dθ
dθ =

GMm

L
θ̂ + ~c. (2.10)
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The integration constant ~c is in the center of a circle. Since we know that ~v will stay in the
xy-plane, the z-component of ~c will be 0. We will write ~c in cylindrical coordinates like

~c =

(
GMm

L
ε,$ +

π

2
, 0

)
, (2.11)

where ε is a dimensionless, positive constant. We will later find ε to be the eccentricity of the
orbit and $ the argument of periapsis. By substituting (2.11) into (2.10), we find:

~v(θ) =
GMm

L
θ̂ − GMm

L
ε sin$î+

GMm

L
ε cos$ĵ. (2.12)

We will now use the definition for ~L to find r(θ).

Lk̂/m = ~L/m = ~r × ~v = (rr̂)×
(
GMm

L
θ̂ − GMm

L
ε sin$î+

GMm

L
ε cos$ĵ

)
=

GMm

L
r ·

(r̂ × θ̂) + ε

cos θ
sin θ

0

×
− sin$

cos$
0

 =

GMm

L
r ·
(
k̂ + ε(cos θ cos$ + sin θ sin$)k̂

)
=
GMm

L
r(1 + ε cos(θ −$))k̂,

(2.13)

hence

r =

(
L2

GMm2

)
1 + ε cos(θ −$)

. (2.14)

This formula has the same form as the formula of an ellipse (2.2). We now see that ε is the
eccentricity of the orbit, and $ is the argument of periapsis. By equating the numerators from
the two formulas, we see that the angular momentum can be expressed by(

L2

GMm2

)
= (1− ε2)a. (2.15)

Next, we will derive Kepler’s second law. Consider a small time interval dt. During this time, a
line from the origin to the orbiting object sweeps out a triangle with area dA = 1/2 · r · rdθ. We
can rewrite this using (2.8) as

2
dA

dt
= r2 dθ

dt
=
L

m
. (2.16)

Since L is constant, dA/dt is constant. This is Kepler’s second law. We can now integrate over
one orbital period T , during which the entire area of the ellipse will be swept out. Because the
area of the ellipse is πab, we obtain

L

m
T =

∫ T

0

L

m
dt = 2

∫ T

0

dA

dt
dt = 2A = 2πab. (2.17)

We can now express L in terms of the angular orbital frequency Ω = 2π/T :

L = Ωmab. (2.18)

By combining (2.15) and (2.18), we find Kepler’s third law:

Ω =

√
GM

a3
. (2.19)

The square of the orbital period is proportional to the cube of the semi-major axis. A system of
one large central mass and many orbiting smaller bodies is called a Keplerian disk. If the bodies
have no mutual interaction, they will all orbit in perfect Kepler ellipses.
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2.2 Eccentric Anomaly

The eccentric anomaly is a parameter that specifies the position of an object on its orbit. We
will need this parameter in section 5.4. The eccentric anomaly is the angle E in figure 2.2.

a εa

r
P

P ′

reference direction

OC

θ

$

E

Figure 2.2: The eccentric anomaly E of an object at the point P = (r, θ) on its orbit. The point
P ′ is obtained by extending a line perpendicular to the major axis through P onto the circle
with radius a.

In figure 2.2, we can see by looking at the horizontal component of P , that

r cos(θ −$) + εa = a cosE. (2.20)

We can now express cos(θ −$) in terms of E:

cos(θ −$) =
a cosE − εa

r
. (2.21)

From figure 2.2, we also find, by looking at the vertical component of P , that

r sin(θ −$) =
b

a
a sinE = b sinE, (2.22)

since the ratio between the vertical component of P and P ′ is b/a. To find r in terms of E, we
use (2.21) and (2.22) and find

r2 = (r cos(θ −$))2 + (r sin(θ −$))2 = (a cosE − εa)2 + (b sinE)2 =

(a cosE − εa)2 + (a
√

1− ε2)2(1− cos2E) = ε2a2 cos2E − 2εa2 cosE + a2 = (a− εa cosE)2.

(2.23)

Now we find that r can be expressed in E by this simple formula:

r = a− εa cosE. (2.24)

Later, we will need an expression for dE/dt. To find one, we will use dr/dt:

dr

dt
= r̂ · d~r

dt
= r̂ · ~v = r̂ ·

(
GMm

L
(θ̂ − ε sin$î+ ε cos$ĵ)

)
=
GMm

L
ε sin(θ −$). (2.25)
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From (2.24), we know that

dr

dt
=

d

dt
(a− εa cosE) =

GMm

L
ε sin(θ −$). (2.26)

Using the chain rule:

εa sinE · dE
dt

=
GMm

L
ε sin(θ −$). (2.27)

We now obtain an expression for dE/dt:

dE

dt
=
GMm

L

sin(θ −$)

a sinE
=
GMm

L

b

ar
. (2.28)

We can rewrite this using (2.18) and (2.19) as

dE

dt
=

Ωa

r
. (2.29)
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Chapter 3

Secular Perturbations

In chapter 2, we derived the Keplerian planetary orbits. In this chapter, we will use Lagrange’s
equations to find how these orbits change over time by the gravitational influence of other planets.
We will apply the results to the planets of the solar system. We will make three important
approximations:

1. The mass of the central body is much larger than the mass of the planets, which means
that the changes in a planet’s orbit due to the gravity of other planets is much slower than
the orbital period. We can therefore average the planet’s mass over its orbit. Over the
timescale of many orbital periods, the so called secular time scale, the gravity from other
planets will change a planet’s orbital parameters over time.

2. There are no orbital resonances, which means that the ratio of any two planets orbital
periods is never a rational number. If this were the case, those two planets would always
be in the same relative positions of each other every few orbits, and the averaging of the
planet’s mass over the orbit would be incorrect.

3. The eccentricity and inclination of the planets is small. Therefore, we only need to take
the lowest order terms in the Lagrange’s equations and the disturbing function.

3.1 Two Planets

The approximate Lagrange’s equations of the orbital elements are found in Murray [5]:

ε̇j = − 1

Ωja2
jεj

∂Rj
∂$j

, $̇j = +
1

Ωja2
jεj

∂Rj
∂εj

,

İj = − 1

Ωja2
jIj

∂Rj
∂�j

, �̇j = +
1

Ωja2
jIj

∂Rj
∂Ij

.

(3.1)

The dot above a variable indicates a time derivative. In the equation above, Rj is the so-called
disturbing function:

Rj = Ωja
2
j

[
1

2
Ajjε

2
j +Ajkε1ε2 cos ($1 −$2) +

1

2
BjjI

2
j +BjkI1I2 cos (�1 −�2)

]
. (3.2)
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Here j, k ∈ {1, 2}, and j 6= k. The coefficients A and B are given by:

Ajj = +Ωj
1

4

mk

mc +mj
α12ᾱ12b

(1)
3/2 (α12) ,

Ajk = −Ωj
1

4

mk

mc +mj
α12ᾱ12b

(2)
3/2 (α12) ,

Bjj = −Ωj
1

4

mk

mc +mj
α12ᾱ12b

(1)
3/2 (α12) ,

Bjk = +Ωj
1

4

mk

mc +mj
α12ᾱ12b

(1)
3/2 (α12) ,

(3.3)

where mc is the mass of the central body, α12 = a1/a2 and ᾱ12 = α12 if j = 1, 1 if j = 2 and

b
(n)
3/2(α) =

1

π

∫ 2π

0

cosnψ dψ

(1− 2α cosψ + α2)
3
2

. (3.4)

It is convenient to continue with the vertical and horizontal components of the eccentricity and
inclination vectors:

hj = εj sin$j , kj = εj cos$j ,

pj = Ij sin �j , qj = Ij cos �j .
(3.5)

We will now derive the equations of motion for these convenient variables. The disturbing
function can be written in terms of these variables:

Rj = Ωja
2
j

[
1

2
Ajj

(
h2
j + k2

j

)
+Ajk (hjhk + kjkk) +

1

2
Bjj

(
p2
j + q2

j

)
+Bjk (pjpk + qjqk)

]
(3.6)

Using the chain rule, we get the following time derivatives:

dhj
dt

=
∂hj
∂εj

dεj
dt

+
∂hj
∂$j

d$j

dt
,

dkj
dt

=
∂kj
∂εj

dεj
dt

+
∂kj
∂$j

d$j

dt
,

dpj
dt

=
∂pj
∂Ij

dIj
dt

+
∂pj
∂�j

d�j

dt
,

dqj
dt

=
∂qj
∂Ij

dIj
dt

+
∂qj
∂�j

d�j

dt
,

(3.7)

where the partial derivatives can be derived from (3.5):

∂hj
∂εj

=
hj
εj
,

∂kj
∂εj

=
kj
εj
,

∂hj
∂$j

= +kj ,
∂kj
∂$j

= −hj ,

∂pj
∂Ij

=
pj
Ij
,

∂qj
∂Ij

=
qj
Ij
,

∂pj
∂�j

= +qj ,
∂qj
∂�j

= −pj .
(3.8)

Combining (3.7) and (3.8), we get the system of equations

ḣj =
hj
εj
ε̇j + kj$̇j , k̇j =

kj
εj
ε̇j − hj$̇j ,

ṗj =
pj
Ij
İj + qj�̇j , q̇j =

qj
Ij
İj − pj�̇j

(3.9)
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If we now substitute the time derivatives from the Lagrange equations (3.1), we get the following:

ḣj =
1

Ωja2
j

(
−hj
εj

1

εj

∂Rj
∂$j

+ kj
1

εj

∂Rj
∂εj

)
,

k̇j = − 1

Ωja2
j

(
kj
εj

1

εj

∂Rj
∂$j

+ hj
1

εj

∂Rj
∂εj

)
,

ṗj =
1

Ωja2
j

(
−pj
Ij

1

Ij

∂Rj
∂�j

+ qj
1

Ij

∂Rj
∂Ij

)
,

q̇j = − 1

Ωja2
j

(
qj
Ij

1

Ij

∂Rj
∂�j

+ pj
1

Ij

∂Rj
∂Ij

)
.

(3.10)

In order to write everything in terms of the components only, we need the Jacobian matrices:(
∂εj
∂hj

∂εj
∂kj

∂$j

∂hj

∂$j

∂kj

)(
∂hj

∂εj

∂hj

∂$j
∂kj
∂εj

∂kj
∂$j

)
=

(
1 0
0 1

)
. (3.11)

Using the determinant of second matrix:

∂hj
∂εj

∂kj
∂$j

− ∂hj
∂$j

∂kj
∂εj

= −
h2
j

εj
−
k2
j

εj
= −

ε2j sin2($j)

εj
−
ε2j cos2($j)

εj
= −εj , (3.12)

we can invert the second matrix, and obtain(
∂εj
∂hj

∂εj
∂kj

∂$j

∂hj

∂$j

∂kj

)
= − 1

εj

(
∂kj
∂$j

− ∂hj

∂$j

−∂kj∂εj

∂hj

∂εj

)
. (3.13)

We can rewrite the partial derivatives of the disturbing function, using the chain rule, as follows:

∂Rj
∂hj

=
∂$j

∂hj

∂Rj
∂$j

+
∂εj
∂pj

∂Rj
∂εj

,
∂Rj
∂kj

=
∂$j

∂kj

∂Rj
∂$j

+
∂εj
∂pj

∂Rj
∂εj

,

∂Rj
∂pj

=
∂�j

∂pj

∂Rj
∂�j

+
∂Ij
∂pj

∂Rj
∂Ij

,
∂Rj
∂qj

=
∂�j

∂qj

∂Rj
∂�j

+
∂Ij
∂qj

∂Rj
∂Ij

.

(3.14)

If we now use (3.13) to get the unknown partial derivatives, and compare (3.14) with (3.10), we
see that

ḣj = +
1

Ωja2
j

∂Rj
∂kj

, k̇j = − 1

Ωja2
j

∂Rj
∂hj

,

ṗj = +
1

Ωja2
j

∂Rj
∂qj

, q̇j = − 1

Ωja2
j

∂Rj
∂pj

.

(3.15)

Taking the partial derivatives of the disturbing function (3.6) is straightforward:

ḣ1 = +A11k1 +A12k2, k̇1 = −A11h1 −A12h2,

ḣ2 = +A21k1 +A22k2, k̇2 = −A21h1 −A22h2,

ṗ1 = +B11q1 +B12q2, q̇1 = −B11p1 −B12p2,

ṗ2 = +B21q1 +B22q2, q̇2 = −B21p1 −B22p2.

(3.16)
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We see that the equations of h and k are decoupled from those of p and q. This can be written
in matrix form as follows:

d

dt

(
h1

h2

)
=

(
A11 A12

A21 A22

)(
k1

k2

)
,

d

dt

(
k1

k2

)
=

(
−A11 −A12

−A21 −A22

)(
h1

h2

)
,

d

dt

(
p1

p2

)
=

(
B11 B12

B21 B22

)(
q1

q2

)
,

d

dt

(
q1

q2

)
=

(
−B11 −B12

−B21 −B22

)(
p1

p2

)
.

(3.17)

If we now define the following vectors:

~h =

(
h1

h2

)
, ~k =

(
k1

k2

)
, ~p =

(
p1

p2

)
, ~q =

(
q1

q2

)
, (3.18)

we can combine h and k, as well as p and q into one complex variable:

~ψ = ~k + i~h, ~φ = ~q + i~p, (3.19)

which have the following time derivatives:

d

dt
~ψ =

d

dt
~k + i

d

dt
~h = −A~h+ iA~k = iA(i~h+ ~k) = iA~ψ,

d

dt
~φ =

d

dt
~q + i

d

dt
~p = −B~p+ iB~q = iB(i~p+ ~q) = iB~φ.

(3.20)

We wil use the equations of motion for the complex vectors:

d

dt
~ψ = iA~ψ,

d

dt
~φ = iB~φ.

(3.21)

The solutions of (3.21) are given by

~ψ(t) = eiAt ~ψ(0), ~φ(t) = eiBt~φ(0). (3.22)

We can get εj , $j , Ij and �j from ~ψ and ~φ as follows:

εj = |ψj |, $j = Argψj , Ij = |φj |, �j = Arg φj . (3.23)
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3.2 Jupiter and Saturn

Now we will apply the theory outlined above to the planets Jupiter and Saturn, orbiting the
Sun. The parameters of the system in 1983 are given by[5]:

m1/mc = 9.54786× 10−4, m2/mc = 2.85837× 10−4,

a1 = 5.202545 AU, a2 = 9.554841 AU,

Ω1 = 30.3374◦y−1, Ω2 = 12.1890◦y−1,

ε1 = 0.0474622, ε2 = 0.0575481,

$1 = 13.983865◦, $2 = 88.719425◦,

I1 = 1.30667◦, I2 = 2.48795◦,

�1 = 100.0381◦, �2 = 113.1334◦.

(3.24)

We will use Wolfram Mathematica to calculate equation 3.22. The code used for the results
in this section can be found in appendix A. From the result, we let Mathematica draw the
plots in figure 3.1. The plots show the eccentricity and argument of periapsis of both planets.
The eccentricity of both planets is a periodic function, with a period of approximately 70,000
years. The eccentricity varies between a minimum and a maximum value. When one planet
reaches the maximum value, the other planet reaches the minimum value. The variation of
Saturn’s eccentricity is larger than that of Jupiter’s. This makes sense, because Jupiter is larger,
and therefore we would expect Jupiter’s influence on Saturn to be greater. The argument of
periapsis of both planets precesses. For Saturn, this precession has a period of 70,000 years.

(a) (b)

Figure 3.1: The eccentricity (a) and argument of periapsis (b) of Jupiter and Saturn over a time
span of 200,000 years, centered on the year 1983 (t = 0).

In figure 3.2, we use Mathematica to draw the orbits of both planets over a period of 20,000
years. Saturn has a larger range of eccentricities, leading to a broader band than Jupiter.

14



Figure 3.2: The orbits of Jupiter and Saturn in the ecliptic plane over a period of 20,000 years.

Figure 3.3 shows the calculated value of ψj in the complex plane. |ψj | is the eccentricity of
planet j, Arg(ψj) is the argument of periapsis of planet j.

(j = 1) Jupiter (j = 2) Saturn

Figure 3.3: The phase vector ψj = εje
i$j in the complex plane over a period of 1.122×106 years,

starting at the year 1983, for j referring to Jupiter (j = 1) and Saturn (j = 2).
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The curves seem to close after 16 loops. For Jupiter (a), the curve goes around the origin 3
times in this period, while for Saturn (b), the curve goes around the origin 16 times. See figure
3.1.

We can write the solution (3.22) as follows:

ψj = c1je
iω1t + c2je

iω2t (3.25)

where j ∈ {1, 2} refers to Jupiter or Saturn, ω1 > ω2 are the eigenvalues of the matrix A, and
c1j and c2j are complex coefficients. We can rewrite this equation as

ψj = c2je
iω2t

(
1 +

c1j
c2j

ei(ω1−ω2)t

)
(3.26)

If c2j is larger than c1j , we see that ψj has a frequency of ω2, with an additional perturbation
with a frequency of ω1 − ω2.

For Jupiter this is the case, we have |c12/c22| = 0.383. If we compare the frequency of ψ2

(ω2) with the frequency of the additional perturbation (ω1 − ω2), we see that (ω1 − ω2)/ω2 =
5.331 ≈ 16/3. This explains why the curve in figure 3.3 closes on itself after making 16 loops.

3.3 More Than Two Planets

If we have N > 2 planets, the disturbing function (3.6) changes to

Rj = Ωja
2
j

1

2
Ajj

(
h2
j + k2

j

)
+

N∑
k=1,k 6=j

Ajk (hjhk + kjkk)

+
1

2
Bjj

(
p2
j + q2

j

)
+

N∑
k=1,k 6=j

Bjk (pjpk + qjqk)

 . (3.27)

Here hj , kj , pj , qj as in equation (3.5). The matrix elements change to

Ajj =
Ωj
4

j−1∑
k=1

mk

mc +mj

ak
aj
b
(1)
3/2

(
ak
aj

)
+

N∑
k=j+1

mk

mc +mj

(
aj
ak

)2

b
(1)
3/2

(
aj
ak

)
Ajk =

−Ωj
4

mk

mc +mj


ak
aj
b
(2)
3/2

(
ak
aj

)
, k < j(

aj
ak

)2

b
(2)
3/2

(
aj
ak

)
, k > j

.

(3.28)

The partial derivatives of hj , kj , pj and qj are now given by

ḣj =

N∑
k=1

Ajkkk, k̇j = −
N∑
k=1

Ajkhk,

ṗj =

N∑
k=1

Bjkqk, q̇j = −
N∑
k=1

Bjkpk.

(3.29)

This can be written in vector form as

d

dt
~h = A~k,

d

dt
~k = −A~h, d

dt
~p = B~q,

d

dt
~q = −B~p. (3.30)
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Like in section 3.1, we get

d

dt
~ψ =

d

dt
~k + i

d

dt
~h = −A~h+ iA~k = iA(i~h+ ~k) = iA~ψ, (3.31)

d

dt
~φ =

d

dt
~q + i

d

dt
~p = −B~p+ iB~q = iB(i~p+ ~q) = iB~φ. (3.32)

3.4 The Planets of the Solar System

We will now apply the theory of secular pertubations to the 8 planets of the solar system. We
used Mathematica for the calculations. The code used for the results in this section can be found
in appendix B. The parameters of the solar system are taken from the website of the NASA[6].
Solving equation (3.31) for N = 8 yields the following:

ψj =

8∑
n=1

cnvnje
iωnt, (3.33)

where the vnj are the jth component of the nth eigenvector of the matrix A, and the ωn are the
eigenvalues of the matrix A. The complex coefficients cn are determined by the initial conditions.
If for some n, cnvnj is much larger in absolute value than for the others, then ψn is approximately
periodic, with a period determined by the corresponding eigenvalue ωn. In the table below, this
period is given for each planet.

Planet Period (10,000 years)
Mercury 23.8
Venus 17.7
Earth 17.7
Mars 7.22
Jupiter 34.8
Saturn 5.76
Uranus 34.8
Neptune 204

Since Jupiter and Saturn are much bigger than the other planets, the influences of the other
planets might be insignificant. We can ignore the influences of the other planets, by setting their
masses to 0. This gives the following values for the period:

Planet Period (10,000 years)
Mercury 77.1
Venus 29.4
Earth 17.5
Mars 8.48
Jupiter 37.1
Saturn 5.84
Uranus 55.6
Neptune 336

We can see that these values are very different. Apparently, the influence of the other planets is
significant compared to Jupiter’s and Saturn’s influence. To get a more complete picture, we let

17



Mathematica draw the ψj in the complex plane over a period of 1.2 million years, and compare
the results:
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(j = 1) Mercury (j = 2) Venus

(j = 3) Earth (j = 4) Mars

(j = 5) Jupiter (j = 6) Saturn

(j = 7) Uranus (j = 8) Neptune

Figure 3.4: The amplitudes ψj = kj + ihj for the planets of the solar system (j = 1, ..., 8) in the
complex plane over a period of 1.2 million years. For each planet, the picture on the left shows
the results under the influence of only Jupiter and Saturn. The picture on the right shows the
results under the influence of all planets.

This picture clearly shows that the results are very different. The resonance of Jupiter and
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Saturn observed in section 3.2 is gone. What if we only ignore Uranus and Neptune? Do the
inner planets have a significant effect on Jupiter and Saturn? The results of this experiment are
shown in figure 3.5:

(a) Jupiter

(b) Saturn

Figure 3.5: ψj in the complex plane over a period of 1.12 million years, for Jupiter and Saturn.
The picture on the left shows the results under only each other’s influence. The picture on the
right shows the results under the influence of all planets but Uranus and Neptune.

These results are very similar. The effects of the inner planets on Jupiter and Saturn is small
compared to their mutual influence.
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Chapter 4

The Disk Model

4.1 Introduction

In this chapter, we apply the secular perturbation theory from chapter 3 to a large number of
planets, as to approximate a continuous disk. We want to study the eigenmodes of this system
and hope to find a function to describe these.

4.2 The Disk Structure

We take N + 1 = 101 planets orbiting around a central body. The central body has a mass of
1 solar mass. The 101 planets have semi-major axes geometrically spaced between 1 and 100
astronomical units. Planet j has semi-major axis

aj = ain

(
aout

ain

)j/N
. (4.1)

For the planar density of the system, we take the special density

σ(a) = σin

√
ain

a
, (4.2)

where σin is the density at a = ain. The total mass in the infinitesimal ring element between
semi-major axis a and a+da is given by dm = 2πaσ(a)da. Substituting the special density (4.2)
gives us

dm

da
= 2πσin

√
aina. (4.3)

The masses of the planets are

mj =

∫ aj+1

aj

dm =
4

3
πσin
√
ain

(
a

3/2
j+1 − a

3/2
j

)
. (4.4)

In the examples, we will take for all planets an initial eccentricity of 0.2, and an initial argument
of periapsis 0.

Just like before, the solution has the following form:

~ψ =

N∑
n=0

cn~vne
iωnt. (4.5)
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Here the ~vn are the eigenvectors of the matrix A, and the ωn are the corresponding eigenvalues.
The complex coefficients cn are determined by the initial conditions.

4.3 The Eigenmodes

We want to study the eigenmodes of the system. The modes are used to solve the equation of
motion. Single modes can be exited by external forces. The eigenmodes have the following form:

~ψn(t) = ~vne
iωnt (4.6)

for n = 0, . . . , N . The modes have the special property that the eigenvectors ~vn can be chosen to
be real. Therefore the patterns in space stay the same, they only rotate with angular frequency
ωn. Also the orbits of all the planets are aligned. We use Mathematica to calculate the eigen-
modes. The code used for the results in this section can be found in appendix C. The first 10
modes are drawn about the horizontal line at their respective eigenvalues in figure 4.1.

0 25 50 75 100
0

1

2

3

4

5

6

7

8

π
Lω0

ωn ψ(a)

a

Figure 4.1: The first 10 eigenmodes of the complex vector ψ as a function of semi-major axis,
for 100 planets (one dot for each planet), drawn at their respective eigenvalues. Note that mode
n changes sign n times.

One remarkable observation is that mode n changes sign n times. We are going to use this
property later. Since the semi-major axes are geometrically spaced, it makes sense to draw the
eigenmodes as a function of x = log(a/ain), instead of a itself, see figure 4.2.
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π
Lω0

ωn ψ(a)

a/ain
0

1

2

3

4

5

6

7

8

1 10 102

Figure 4.2: The first 10 eigenmodes of the complex vector ψ, for 100 planets, as in figure 4.1.
The horizontal axis now has a logarithmic scale. The modes seem to have constant wave lengths.
The black lines are damped sinusoids (4.7), fitted to the modes.

In this logarithmic plot, the eigenmodes strongly resemble damped sinusoids. Formula (4.7)
gives a possible function describing the eigenmodes:

ψn = e−λnx cos(κnx+ φn). (4.7)

Fitting the parameters λn, φn and κn to each eigenmode gives the black curves in figure 4.2.
The values of the fitted parameters, as well as the eigenvalues, are given in figure 4.3.
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n

0 N

ωn

0

Nπω0

2L

(a)

n

0 N

κn

0

Nπ
L

(b)

n

0 N

λn

0

1

2

(c)

n

0 N

φn

0

π

(d)

Figure 4.3: The red dots are the eigenvalues (figure (a)) and the values of the fit parameters of
the damped sinusoid (4.7), fitted to the eigenmodes, as a function of modenumber n. Figure (b)
shows the wavenumber κn. Figure (c) shows the exponential factor λn. Figure (d) shows the
phase φn. The blue lines in figures (a) and (c) are the corresponding continuum limit.
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Chapter 5

The Continuum Limit

In this chapter, we will take the limit N → ∞ of an infinite number of planetesimals. We will
derive the modes for the continuous system, and compare them to the modes of the discrete
system found in chapter 4.

5.1 Taking the Continuum Limit

We take the limit N →∞ of an infinite number of planetesimals. The planet index j is replaced
by the semi-major axis a.

We have the Schrödinger equation for the discrete system (see (3.31)):

i
∂

∂t
ψj(t) =

N∑
n=0

Ajnψn(t). (5.1)

This equation now transforms into

i
∂

∂t
ψ(a, t) =

∫ aout

ain

(
A(1)(a, s)ψ(a, t)−A(2)(a, s)ψ(s, t)

)
ds (5.2)

where (3.28) becomes the matrix kernel

A(n)(a, s) =
Ω(a)

4M

dm(s)

ds

{
s
ab

(n)
3/2

(
s
a

)
, s < a(

a
s

)2
b
(n)
3/2

(
a
s

)
, s > a

. (5.3)

The integration over A(1)(a, s) corresponds to the summation inside Ajj , and the integration
over A(2)(a, s) to the summation over Ajk. We can make the cases in equation (5.3) symmetrical

by factoring out
√
a/s:

A(n)(a, s) =
Ω(a)

4M

dm(s)

ds

√
a

s

{(
s
a

)3/2
b
(n)
3/2

(
s
a

)
, s < a(

a
s

)3/2
b
(n)
3/2

(
a
s

)
, s > a

. (5.4)

If we now bring the fractions within the cases inside of the exponent:

A(n)(a, s) =
Ω(a)

4M

dm(s)

ds

√
a

s

{
exp

(
3
2 log s

a

)
b
(n)
3/2

(
exp log s

a

)
, s < a

exp
(

3
2 log a

s

)
b
(n)
3/2

(
exp log a

s

)
, s > a

(5.5)
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we can merge the two cases together using the absolute value of the logarithm:

A(n)(a, s) =
Ω(a)

4M

dm(s)

ds

√
a

s

(
exp−3

2

∣∣∣log
a

s

∣∣∣) b(n)
3/2

(
exp−

∣∣∣log
a

s

∣∣∣) (5.6)

5.2 Transformation

We now make the following transformation of both the wavefunction and of the position coordi-
nate. The new coordinate is x, the new wavefunction is Ψ:

ψ(a, t) =
Ω(a)

σ(a)
Ψ (x(a), t) , x(a) = log

a

ain
, y(s) = log

s

ain
(5.7)

Equation (5.2) now becomes

i
∂

∂t

Ω(a)

σ(a)
Ψ(x, t) =

∫ aout

ain

(
A(1)(a, s)

Ω(a)

σ(a)
Ψ(x, t)−A(2)(a, s)

Ω(s)

σ(s)
Ψ(y, t)

)
ds. (5.8)

Dividing out Ω(a)/σ(a):

i
∂

∂t
Ψ(x, t) =

∫ aout

ain

(
A(1)(a, s)Ψ(x, t)−A(2)(a, s)

Ω(s)σ(a)

Ω(a)σ(s)
Ψ(y, t)

)
ds (5.9)

We now take the special density (4.2)

σ(a) = σin

√
ain

a
,

dm

da
= 2πσin

√
aina. (5.10)

Now we can transform the A(n):

A(n)(a, s)ds = K(n)(x− y)dy, K(n)(x) =
ω0

4
e−x−

3
2 |x|b

(n)
3/2

(
e−|x|

)
. (5.11)

The resulting K(n) are a function of one variable only. Equation (5.2) now becomes

i
∂

∂t
Ψ(x, t) =

∫ L/2

−L/2

(
K(1)(x− y)Ψ(x, t)−K(2)(x− y)ex−yΨ(y, t)

)
dy. (5.12)

For an infinite disk with ain → 0 and aout →∞, the solutions are plane running waves

Ψ(x, t) = e−iωt+ipx (5.13)

with frequency ω and wavenumber p. Substituting the solution in the equation gives the frequency
as a function of the wavenumber:

ω(p) =

∫ ∞
−∞

(
K(1)(−y)−K(2)(−y)eipy−y

)
dy. (5.14)

We can separate out ω(0) as follows:

ω(p) =

∫ ∞
−∞

(
K(1)(−y)−K(2)(−y)e−y

)
dy+∫ ∞

−∞

(
K(2)(−y)e−y −K(2)(−y)eipy−y

)
dy,

ω(p) = ω(0) +

∫ ∞
−∞

(1− eipy)K(2)(−y)e−ydy.

(5.15)
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By working out the integrand, we get

ω(p) = ω(0) +

∫ ∞
−∞

(1− cos(py)− i sin(py))
ω0

4
e−

3
2 |y|b

(2)
3/2

(
e−|y|

)
dy. (5.16)

The sine is odd and all other parts are even, so we can integrate from 0 to get rid of the absolute
value:

ω(p) = ω(0) +
ω0

2

∫ ∞
0

(1− cos(py))e−
3
2yb

(2)
3/2

(
e−y
)
dy. (5.17)

Because the modes with opposite values of p have the same frequency ω(p) = ω(−p), we can
construct real solutions of the form

Ψ(x, t) =
1

2
e−iωt(ei(px+φ) + e−i(px+φ)) = e−iωt cos(px+ φ). (5.18)

By reversing the transformation (5.7), we obtain

ψ(x, t) = e−iωt−x cos(px+ φ). (5.19)

5.3 Comparison to the Discrete Disk

In this section, we will compare the continuous wavefunction on the infinite disk (5.19) with
the discrete one (4.7). We found both to be damped sinusoids. Since we found for the discrete
system that mode n changes sign n times, we may approximate the wavenumber of mode n by

p = κn =
nπ

L
. (5.20)

We can find the corresponding frequencies ω(p) by substituting (5.20) into (5.17). The wavenum-
bers p (blue line) and κn (red dots) are drawn in figure (4.3) (b), and the frequencies ω(p) (blue
line) and ωn (red dots) are drawn in in figure (4.3) (a). We see that the continuous frequencies
ω(p) are a good approximation for the discrete frequencies ωn for low values of n. The exponen-
tial factor in the continuous wavefunction is fixed at the value 1, it is drawn as a blue line in
figure (4.3) (c). This is reasonably close to the value of the discrete λn.

5.4 Density in the Plane

If the orbits become eccentric, the planar density will not be circularly symmetric like (4.2). In
this section we will calculate this density. Consider one mode with modenumber n. The eccen-
tricity is ε(a, t) = |ψn(a, t)| = |ψn(a)|, and the argument of periapsis is $(a) = arg(ψn(a, t)) =
arg(ψn(a, 0)) + ωnt. We see that the mode rotates on the secular time scale. Therefore, it is
sufficient to calculate the planar density of the mode at t = 0 only. For every ring element with
mass dm, we average over one orbital period. The contribution to the density is:

Ω

2πr

∫ 2π/Ω

0

δ(r − r(t))δ(θ − θ(t))dtdm. (5.21)

The density in the plane is then given by integrating over all ring elements:

σ(r, θ) =
Ω

2πr

∫ aout

ain

∫ 2π/Ω

0

δ(r − r(t))δ(θ − θ(t))dtdm
da

da. (5.22)
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We can factor out the polar dependence of r, and use∫ 2π/Ω

0

δ(r − r(t))δ(θ − θ(t))dt = δ(r − r(θ))
∫ 2π/Ω

0

δ(θ − θ(t))dt. (5.23)

The integral over the delta function in θ gives (dθ/dt)−1. Therefore, the time average becomes∫ 2π/Ω

0

δ(r − r(t))δ(θ − θ(t))dt = δ(r − r(θ))
(
dθ

dt

)−1

(5.24)

Since we cannot find dθ/dt directly, we will be using the eccentric anomaly E from chapter 2.
We write (

dθ

dt

)−1

=
dt

dE

(
dθ

dE

)−1

. (5.25)

By differentiating (2.21), we can find dθ/dE:

− sin(θ −$)
dθ

dE
=
−ra sinE − (a cosE − εa)εa sinE

r2
, (5.26)

dθ

dE
=
ra sinE + (a cosE − εa)εa sinE

r2 sin(θ −$)
. (5.27)

Substituting (2.24) for r in the numerator gives

dθ

dE
=

(1− ε2)a2 sinE

r2 sin(θ −$)
. (5.28)

From figure 2.2, it is clear that sinE and sin(θ−$) always have the same sign. Therefore, their
signs cancel out, and we can take the absolute value of both:

dθ

dE
=

(1− ε2)a2| sinE|
r2| sin(θ −$)|

=
(1− ε2)a2| sinE|

r2

√
sin2(θ −$)

=
(1− ε2)a2| sinE|

r2
√

1− cos2(θ −$)
. (5.29)

After substituting (2.21) for cos(θ −$), the equation simplifies to

dθ

dE
=
a

r

√
1− ε2. (5.30)

Using (2.29) and (5.30), we get

σ(r, θ) =
r

2π

∫ aout

ain

δ(r − r(θ))
a2
√

1− ε2
dm

da
da. (5.31)

The integral over the delta function in r gives dr/da, which leads to

σ(r, θ) =
r

2π

∫ aout

ain

δ(r − r(θ))
a2
√

1− ε(a)2

dm

da
da =

r

2πa(r, θ)2
√

1− ε(a(r, θ))2

dm

da

(
dr(a, ε,$)

da

)−1

.

(5.32)
By the chain rule, we have

dr(a, ε,$)

da
=
∂r

∂a
+
∂r

∂ε

dε

da
+

∂r

∂$

d$

da
. (5.33)

28



By substituting the polar form of r (2.2), we obtain

dr

da
=

(
1− aε′ cos(θ −$) + aε$′ sin(θ −$)

1 + ε cos(θ −$)
− 2aεε′

1− ε2

)
r

a
. (5.34)

Here an apostrophe behind a variable indicates its derivative with respect to a. We now replace
the orbital parameters in terms of the mode function, by

Re(ψe−iθ) = ε cos(θ −$), Re(ψ′e−iθ) = ε′ cos(θ −$) + ε$′ sin(θ −$), (5.35)

and obtain
dr

da
=

(
1− rRe(ψ′e−iθ) + a|ψ2|′

1− |ψ2|

)
r

a
. (5.36)

By substituting this in the formula for the density (5.32), we obtain

σ(r, θ, t) =
m′(a)

2πa

√
1− |ψ|2

1− Re [(re−iθ + 2aψ∗)ψ′]− |ψ|2
. (5.37)

For a stationary mode ψ(a, t) = eiωntψn(a) with real ψn, we have

ε(a) = |ψn(a)|, $(a) =

{
0, ψn(a) > 0

π, ψn(a) < 0
. (5.38)

The density of the mode is then

σ(r, θ, t) =
m′(a)

2πa

√
1− ψ2

1− ψ′r cos θ − 2aψψ′ − ψ2
. (5.39)

We now need to find a in terms of r and θ. We can find a(r, θ) from formula (2.2), provided
that a(r, θ) is a proper function. For small values of ε, this is indeed the case. a(r, θ) is drawn in
figure 5.1 for the mode n = 3 and with a maximum eccentricity of ε = 0.2, for θ = 0 and θ = π.
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Figure 5.1: a(r, θ) in red for θ = 0 and θ = π. The blue line is the line a = r. The axes have
units of 1 AU.
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We can now plot the density of a mode using Mathematica. The code can be found in
appendix D. In figure 5.2, we plot the density for the modes with modenumbers n = 3 and
n = 10.
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Figure 5.2: The planar density for the modes with modenumbers n = 3 and n = 10. The top
images show the density of mode n = 3, with a maximum eccentricity of 0.2. The bottom images
show the density of mode n = 10, with a maximum eccentricity of 0.08. The images on the left
show the planar density of the modes. The images on the right show the modes of the discrete
system with 100 planets. The images are centered on the central mass, the axes have units of 1
AU. The black areas have density 0. For n = 3, we observe three maxima; for n = 10, we observe
ten maxima.
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Chapter 6

Conclusions

We studied the ecentricity dynamics of a Keplerian disk with a special density (4.2). Recently,
Batygin studied the inclination dynamics using this density [1]. He derived a wave equation

for the inclination in the complex wave form ψ = Iei�. He found that the eigenvalues of the
modes increases quadratically with the mode number. However, in his numerical calculation, the
argument of the ascending node increases in time, with a rate (frequency) proportional to the
mode number, i.e. �n ∝ nt. Thus his numerical results actually indicate that the eigenvalues
are linear in the mode number. We studied the dynamics of the eccentricity of the orbits. We
introduce the complex number ψ = εei$ to describe the orbits of the planets. We did our
numerical calculations in Wolfram Mathematica. The equation of motion for the system is given
by (3.1). The governing matrix is not symmetric, yet we found the eigenvalues to be real and
unique. The eigenspectrum is also nearly equidistant. The eigenvector of the lowest state can
be chosen to be positive in all elements. The eigenmodes are well approximated by damped
sinusoids, given by formula (4.7). If we label the modes with the ground state n = 0, then the
vector of mode n changes sign n times.

An astrophysical disk consists of many bodies, thus we also studied the continuum limit of
the number of planets N → ∞ on a finite disk, then the disk size L → ∞. This limit has an
analytical solution. We compared the exact finite solution with the analytical solution. The
boundary conditions for the continuous system are taken from the discrete system. For n << N ,
the modes can be approximated by the continuum limit. The eigenmodes for the continuum
limit agree with the eigenmodes of the discrete system. In section 5.4, we derived formula (5.39)
for the density of the disk. In figure 5.2, we compare the density of the continuum limit to the
density of the discrete system. We see that mode number n has n maxima in the density.

In Batygin’s paper, he claimed the modes to be cosines. However, he did his calculations
using a very thin disk. If we apply our method to a thin disk, the damping factor in the modes
becomes negligible. We then also find cosine modes. We also found a linear eigenspectrum, which
agrees with Batygin’s numerical results. Because the eigenvalues do not increase quadratically
with the mode number, his description of the disk with a Schrödinger equation cannot be correct.
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In[ ]:= mu = 1.327124400189  149597 870 700^3 * 31 557 600 * 1.00001742096^2 * 10^20;

m1 = 9.54786 * 10^ -4;

a1 = 5.202545;

n1 = Sqrtmu  a1^3;

e10 = 0.0474622;

varpi10 = 13.983865 * Degree;

I10 = 1.30667 * Degree;

Omega10 = 100.0381 * Degree;

m2 = 2.85837 * 10^ -4;

a2 = 9.554841;

n2 = Sqrtmu  a2^3;

e20 = 0.0575481;

varpi20 = 88.719425 * Degree;

I20 = 2.48795 * Degree;

Omega20 = 113.1334 * Degree;

In[ ]:= b[i_, a_] := 1  Pi * IntegrateCos[i * x]  1 - 2 * a * Cos[x] + a^2^3  2, {x, 0, 2 * Pi};

In[ ]:= A11 = n1 * 1  4 * m2  1 + m1 * a1  a2 * a1  a2 * b1, a1  a2;

A12 = -n1 * 1  4 * m2  1 + m1 * a1  a2 * a1  a2 * b2, a1  a2;

A21 = -n2 * 1  4 * m1  1 + m2 * a1  a2 * 1 * b2, a1  a2;

A22 = n2 * 1  4 * m1  1 + m2 * a1  a2 * 1 * b1, a1  a2;

In[ ]:= AA = {

{0, 0, A11, A12},

{0, 0, A21, A22},

{-A11, -A12, 0, 0},

{-A21, -A22, 0, 0}} ;

In[ ]:= lambda = Eigenvalues[AA];

In[ ]:= u = Eigenvectors[AA];

In[ ]:= A = {

{A11, A12},

{A21, A22}};

In[ ]:= psi10 = e10 * Exp[I * varpi10];

psi20 = e20 * Exp[I * varpi20];

psi0 = {psi10, psi20};

In[ ]:= psi = MatrixExp[I * A * t, psi0];

In[ ]:= Plot[{Abs[Part[psi, 1]], Abs[Part[psi, 2]]},

{t, -100 000, 100 000}, PlotRange → {0, Automatic}]

Plot[{Arg[Part[psi, 1]], Arg[Part[psi, 2]]}, {t, -100 000, 100 000}]

In[ ]:= l1 =
A11 + A22

2
-

A11 - A22

2

2

+ A21 * A12 ;

l2 =
A11 + A22

2
+

A11 - A22

2

2

+ A21 * A12 ;



In[ ]:= c1 = -
e20 * Exp[I * varpi20]

l2 - l1
+

l2 - A11

l2 - l1 A12
e10 * Exp[I * varpi10];

c2 =
e20 * Exp[I * varpi20]

l2 - l1
-

l1 - A11

l2 - l1 A12
e10 * Exp[I * varpi10];

In[ ]:= u1 = {A12, l1 - A11};

u2 = {A12, l2 - A11};

f = c1 * u1 * Exp[I * l1 * t] + c2 * u2 * Exp[I * l2 * t];

In[ ]:= ParametricPlot[{Re[Part[f, 1]], Im[Part[f, 1]]}, {t, 0, 1 122 000}]

ParametricPlot[{Re[Part[f, 2]], Im[Part[f, 2]]}, {t, 0, 1 122 000}]

In[ ]:= t = Range[30 000, 50 000, 1000];

In[ ]:= orbits1 =
a1 1 - Abs[Part[psi, 1]]^2

1 + Re[Exp[I theta] * Part[psi, 1]]
;

orbits2 =
a2 1 - Abs[Part[psi, 2]]^2

1 + Re[Exp[I theta] * Part[psi, 2]]
;

orbits = Join[orbits1, orbits2];

PolarPlot[orbits, {theta, 0, 2 * Pi}]

2     Jupiter and Saturn.nb
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In[ ]:= mc = 1.9885 * 10^30; (*Mass of sun*)

G = 6.6740831 * 10^-11; (*Gravitational constant*)

AU = 149 597 870700;(*Astronomical unit*)

year = 31 557 600;(*Year*)

In[ ]:= nn = 8; (*Number of planets*)

names =

{"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"};

m = {.33011, 4.8675, 5.9723, 0.64171, 1898.19, 568.34, 86.813, 102.413} * 10^24;

(*Planet masses*)

(*m={0,0,0,0,1898.19,568.34,0,0}*10^24;*) (*Only Jupiter and Saturn*)

(*m={.33011,4.8675,5.9723,0.64171,1898.19,568.34,0,0}*10^24;*)

(*All planets except Uranus and Neptune*)

a = {0.38709893, 0.72333199, 1.00000011, 1.52366231, 5.20336301,

9.53707032, 19.19126393, 30.06896348} * AU; (*Semi-major axis*)

e0 = {0.20563069, 0.00677323, 0.01671022, 0.09341233, 0.04839266,

0.05415060, 0.04716771, 0.00858587};(*Eccentricity*)

varpi0 = {77.45645, 131.53298, 102.94719, 336.04084, 14.75385, 92.43194,

170.96424, 44.97135} * Degree;(*Argument of Periapsis*)

n = SqrtG * mc  a^3;

In[ ]:= b[i_, a_] := Ifi ⩵ 1, 3 a * Hypergeometric2F13  2, 5  2, 2, a^2,

15 a^2  4 * Hypergeometric2F13  2, 7  2, 3, a^2;

In[ ]:= Ajk[j_, k_] := Ifk ⩵ j,

Part[n, j]  4 * SumPart[m, i]  mc + Part[m, j] *

Part[a, i]  Part[a, j] * b1, Part[a, i]  Part[a, j], {i, 1, j - 1} +

SumPart[m, i]  mc + Part[m, j] * Part[a, j]  Part[a, i]^2 *

b1, Part[a, j]  Part[a, i], {i, j + 1, nn},

-Part[n, j]  4 * Part[m, k]  mc + Part[m, j] * Ifk < j,

Part[a, k]  Part[a, j] * b2, Part[a, k]  Part[a, j],

Part[a, j]  Part[a, k]^2 * b2, Part[a, j]  Part[a, k];

In[ ]:= A = Array[Ajk, {nn, nn}];

In[ ]:= periods = 1  Eigenvalues[A]  year  10 000 * 2 * Pi;

absev = Abs[Transpose[Eigenvectors[A]]];

For[j = 1, j ≤ nn, j++, Print[periods[[Ordering[absev[[j]], -1]]]]]

In[ ]:= psi0 = e0 * Exp[I * varpi0];

psi[t_] := MatrixExp[I * A * t, psi0];

In[ ]:= For[i = 1, i ≤ nn, i++, ParametricPlot[{Re[Part[psi[t], i]], Im[Part[psi[t], i]]},

{t, 0, 1 200 000 * year}, PlotLabel → Part[names, i]] // Print]
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In[ ]:= mc = 1.9885 * 10^30;(*Mass of sun*)

mj = 1898.19 * 10^24;(*Mass of Jupiter*)

G = 6.6740831 * 10^-11;(*Gravitational constant*)

AU = 149 597 870700;(*Astronomical unit*)

year = 31 557 600;

In[ ]:= b[i_, a_] := Ifi ⩵ 1, 3 a * Hypergeometric2F13  2, 5  2, 2, a^2,

15 a^2  4 * Hypergeometric2F13  2, 7  2, 3, a^2;

In[ ]:= nn = 101;

amax = 100 * AU;

amin = 1 * AU;

beta = amax  amin^1  nn - 1 - 1;

a = Tableamin * amax  amin^j - 1  nn - 1, {j, 1, nn};

da = beta * a;

gamma = 3  4  Pi * mj  amax^3  2 - amin^3  2;

sigma[a_] := gamma * Sqrt1  a;

sigma0 = sigma[a[[1]]];

m = Table[2 * Pi * a[[i]] * da[[i]] * sigma[a[[i]]], {i, nn}] // N;

e0 = Table[.2, {i, nn}];

varpi0 = Table[0, {i, nn}];

n = SqrtG * mc  a^3;

In[ ]:= Ajk[j_, k_] := Ifk ⩵ j, n[[j]]  4 *

Summ[[i]]  mc + m[[j]] * a[[i]]  a[[j]] * b1, a[[i]]  a[[j]], {i, 1, j - 1} +

Summ[[i]]  mc + m[[j]] * a[[j]]  a[[i]]^2 * b1, a[[j]]  a[[i]],

{i, j + 1, nn}, -n[[j]]  4 *

m[[k]]  mc + m[[j]] * Ifk < j, a[[k]]  a[[j]] * b2, a[[k]]  a[[j]],

a[[j]]  a[[k]]^2 * b2, a[[j]]  a[[k]];

In[ ]:= A = Array[Ajk, {nn, nn}];

In[ ]:= psi0 = e0 * Exp[I * varpi0];

psi[t_] := MatrixExp[I * A * t, psi0];

In[ ]:= eigIA = Eigenvalues[I * A];

eigvIA = Eigenvectors[I * A];

psii[t_, i_] := Exp[eigIA[[i]] * t] * eigvIA[[i]];

In[ ]:= (*Check if mode number n has n sign changes. Print

the mode numbers for which this is not the case.*)

For[i = 0, i < nn, i++,

s = Sign[Re[psii[0, nn - i]]][[1]];

changes = 0;

For[j = 2, j ≤ nn, j++,

If[s != Sign[Re[psii[0, nn - i]]][[j]],

changes++;

s *= -1;

]

] ×

If[i ≠ changes,

Print[i]

]

]

In[ ]:= eigA = Eigenvalues[A];



In[ ]:= fits = {};

Fori = nn, i > 0, i--,

sign = Sign[Re[psii[0, i][[1]]]];

data = TableLoga[[j]]  AU, sign * Re[psii[0, i]][[j]], {j, nn};

func =

alpha * Exp[-lambda * q] * Cosphi + nn - i * Pi + phi2 - phi  Logamax  amin * q;

fit = FindFitdata, func, -Pi ≤ phi ≤ Pi, -Pi ≤ phi2 ≤ Pi, alpha ≥ 0

(*lambda⩵1*)(*mu⩵nn-i-.5*PiLogamaxamin*),

{{alpha, .25}, {lambda, 1}, {phi, 0}, {phi2, 0}}, q(*,MaxIterations→10000*);

table = {alpha, lambda, phi2, phi} /. fit;

AppendTo[fits, table];



In[ ]:= alphas = Table[fits[[j]][[1]], {j, nn}];

lambdas = Table[fits[[j]][[2]], {j, nn}];

mus =

Tablej - 1 * Pi + fits[[j]][[3]] - fits[[j]][[4]]  Logamax  amin, {j, nn};

phis = Table[fits[[j]][[4]], {j, nn}];

In[ ]:= Ke[i_, q_] :=

Pi * sigma[amin]  2 * SqrtG * amin  mc * Exp-q - 3 * Abs[q]  2 * b[i, Exp[-Abs[q]]];

In[ ]:= omega[p_] :=

NIntegrate[-Ke[1, r] + Ke[2, r] * Exp[I * p * r] - Ke[1, -r] + Ke[2, -r] * Exp[I * p * -r],

{r, .01, 1}, PrecisionGoal → 10, MaxRecursion → 9, Method → "RiemannRule"];

In[ ]:= c0 =

NIntegrate[Ke[1, -r] - Ke[2, -r] * Exp[I * 0 * r - r], {r, -1, -.005}, PrecisionGoal → 10,

MaxRecursion → 9] + NIntegrate[Ke[1, -r] - Ke[2, -r] * Exp[I * 0 * r - r],

{r, .005, 1}, PrecisionGoal → 10, MaxRecursion → 9];

In[ ]:= omega[p_] :=

c0 + 1  2 * omega0 * NIntegrateExp-3 * Abs[y]  2 * b[2, Exp[-Abs[y]]] * 1 - Cos[p * y],

{y, 0, Infinity}, Method → "Trapezoidal"

In[ ]:= omega0 = 2 * Pi * sigma[a[[1]]] * SqrtG * a[[1]]  mc;

number = 10;

scale = omega0;

scale2 = 1;

size = Large;

aspect = 1.5;

2     disk.nb



In[ ]:= g1 = {};

g2 = {};

p1 = {};

Fori = nn, i > nn - number, i--,

AppendTog1, TableLoga[[j]]  AU, eigA[[i]]  scale +

scale2 * Sign[Re[psii[0, i]][[1]]] * Re[psii[0, i]][[j]], {j, nn};

Fori = nn, i > nn - number, i--,

j = 1 + nn - i;

fit = PloteigA[[i]]  scale + scale2 * alphas[[j]] *

Exp[-lambdas[[j]] * q] * Cos[mus[[j]] * q + phis[[j]]], q, 0, Logamax  amin,

PlotStyle → {Thickness[0.005], Black}, PlotPoints → 200, PlotRange → All;

AppendTo[g2, fit];

Fori = nn, i > nn - number, i--,

AppendTop1, 0, eigA[[i]]  scale, amax / AU, eigA[[i]]  scale;

plotlines = ListLinePlot[p1, PlotStyle → Table[{Gray, Thickness[.005]}, {number}]];

plot1 = ListPlot[g1, PlotMarkers → {Graphics@{Disk[]}, 0.015},

ImageSize → size, PlotRange → {{0, Automatic}, {0, Automatic}},

AspectRatio → aspect, AxesLabel → {"q", "E"}, PlotStyle -> Thick];

Showplotlines, plot1, g2, PlotRange -> Logamin  AU, Log[amax / AU],

0, Pi * 8  2  Logamax  amin, ImageSize → Large, Axes → False,

PlotRangePadding → None, PlotRange → Automatic, AspectRatio → aspect

In[ ]:= scale3 = 1;

In[ ]:= p1 = ListPlotTablek - 1, eigA[[nn - k + 1]]  scale3, {k, nn}, PlotStyle → {Red, Large},

PlotRange → {{0, Automatic}, {-6 * 10^-10, Automatic}}, PlotStyle → {Thick, Red},

PlotMarkers → {Graphics@{Red, Disk[]}, 0.01};

p2 = Plotomegan * Pi  Logamax  amin  scale3,

{n, 0, nn - 1}, PlotStyle → {Thickness[0.005], Blue}, PlotPoints -> 200;

Show[{p1, p2}, AspectRatio → 1, ImageSize → Large, Axes → False,

PlotRangePadding → None, PlotRange → Automatic]

In[ ]:= p1 = ListPlot[Table[{k - 1, mus[[k]]}, {k, nn}],

PlotRange → {{0, Automatic}, {0, Automatic}}, Joined → {False}, PlotStyle → Red];

p2 = ListPlot{0, 0}, nn - 1, nn - 1 * Pi  Logamax  amin,

Joined → {True}, PlotStyle → {Thickness[.005], Blue};

Showp1, p2, PlotRange -> {0, nn - 1}, 0, nn - 1 * Pi  Logamax  amin,

AspectRatio → 1, Axes → False, PlotRangePadding → None

In[ ]:= p1 = ListPlot[Table[{k - 1, lambdas[[k]]}, {k, nn}],

PlotRange → {{0, Automatic}, {0, Automatic}}, Joined → {False}, PlotStyle → Red];

p2 = ListPlot[{{0, 1}, {nn - 1, 1}}, Joined → {True},

PlotStyle → {Thickness[.005], Blue}];

Show[p1, p2, PlotRange -> {{0, nn - 1}, {0, 2}}, AspectRatio → 1,

Axes → False, PlotRangePadding → None]

In[ ]:= p1 = ListPlot[Table[{k - 1, Mod[phis[[k]], 2 * Pi]}, {k, nn}], PlotRange →

{{0, Automatic}, {0, 2 * Pi}}, PlotMarkers → {Graphics@{Red, Disk[]}, 0.01}];

Show[p1, PlotRange → {{0, nn - 1}, {0, Pi}}, AspectRatio → 1,

Axes → False, PlotRangePadding → None]

disk.nb     3
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In[ ]:= AU = 1 149 597 870700; (*astronomical unit in m*)

nn = 100; (*amount of planets*)

amax = 10 * AU;

amin = 1 * AU;

mj = 1898.19 * 10^24; (*mass of Jupiter in kg*)

gamma = 3  4  Pi * mj  amax^3  2 - amin^3  2;

sigma0 = gamma * Sqrt1  amin; (*disk surface density at r = amin*)

L = Logamax  amin;

In[ ]:= norm = .08;

psi[n_, a_] := norm
amin

a
* Cos

n * Pi

L
* Log

a

amin
 +

n * Pi

nn
 // N (*mode n*)

psip[n_, a_] :=

norm
-amin

a2
* Cos

n * Pi

L
Log

a

amin
 +

n * Pi

nn
 +

n * Pi

L
Sin

n * Pi

L
* Log

a

amin
 +

n * Pi

nn
 //

N (*dda of mode n*)

In[ ]:= density[a_, theta_, n_] :=
sigma0 * amin * a

a 1 - psi[n, a]2

1

1 -
a*psip[n,a] Cos[theta]

1+psi[n,a] Cos[theta]
-

a*2 psi[n,a] psip[n,a]

1-psi[n,a]2

// N

In[ ]:= RA[a_, theta_, n_] :=
1 - psi[n, a]2 a

1 + psi[n, a] Cos[theta]

In[ ]:= AR[R_, theta_, n_] := Module[{a, ai, x},

ai = FindRoot[RA[a, theta, n] ⩵ R, {a, amin, amax}, MaxIterations → 100];

a /. ai

]

In[ ]:= n = 3; (*mode number*)

In[ ]:= Do

p1 = ParametricPlot[{a, a}, {a, 0, amax / AU},

(*GridLines→{Range[10]*1, Range[10]*1},*)PlotStyle → {Blue, Thickness[.005]}];

p2 = ParametricPlotRA[a * AU, theta, n]  AU, a,

a, amin  AU, amax / AU, PlotStyle → {Red, Thickness[.005]};

(*p3=PlotAR[AU*r,theta,n]AU,r,RA[amin,theta,n]AU,RA[amax,theta,n]AU;*)

Print@Show[p1, p2, PlotRange → {{0, 10}, {0, 10}},

AspectRatio → 1, Axes → False, PlotRangePadding → None, ImageSize → Large]

, {theta, {0, Pi}}



In[ ]:= rstep = .05 * AU;

rscale = 1.05;

thetastep = 2 * Pi  100;

points = {};

points2 = {};

values = {};

Forr = 1.01 * amax, r ≥ amin  2, r /= rscale,

Fortheta = 0, theta < 2 * Pi, theta += thetastep,

x = r * Cos[theta]  AU;

y = r * Sin[theta]  AU;

If[RA[amin, theta, n] < r,

a = AR[r, theta, n];

d = density[a, theta, n];

AppendTo[points, {x, y}];

AppendTo[values, {x, y, d}];

]





In[ ]:= elmin = Ellipsoid{-psi[n, amin], 0}, amin  AU, amin 1 - psi[n, amin]2  AU;

elmax = RegionDifferenceRectangle[{-amax / AU, -amax / AU}, {amax / AU, amax / AU}],

Disk{-psi[n, amax], 0}, amax / AU, amax 1 - psi[n, amax]2  AU;

In[ ]:= grayScale = Blend[{GrayLevel[.02], White}, #1] &;

In[ ]:= size = 500;

p1 = Graphics[elmin];

p0 = DensityPlot[0, {x, y} ∈ elmax, PlotPoints → 100, ColorFunction → GrayLevel];

p2 = ListDensityPlot[values, ColorFunction → grayScale, PlotRange → All];

Show[p2, p0, p1, AspectRatio → 1, ImageSize → size, Axes → False,

PlotRangePadding → None, Frame → None, PlotRange → {{-10, 10}, {-10, 10}}]

2     density.nb
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