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Modeling of Information Diffusion on Social Networks
with Applications to WeChat
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@College of Information System and Management, National University of Defense
Technology, Changsha, China, 410073
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Abstract

Traces of user activities recorded in online social networks open new pos-
sibilities to systematically understand the information diffusion process on
social networks. From the online social network WeChat, we collected a large
number of information cascade trees, each of which tells the spreading tra-
jectory of a message/information such as which user creates the information
and which users view or forward the information shared by which neighbors.
In this work, we propose two heterogeneous non-linear models, one for the
topologies of the information cascade trees and the other for the stochastic
process of information diffusion on a social network. Both models are val-
idated by the WeChat data in reproducing and explaining key features of
cascade trees.

Specifically, we apply the Random Recursive Tree (RRT) to model the
growth of cascade trees. The RRT model could capture key features, i.e. the
average path length and degree variance of a cascade tree in relation to the
number of nodes (size) of the tree. Its single identified parameter quanti-
fies the relative depth or broadness of the cascade trees and indicates that
information propagates via a star-like broadcasting or viral-like hop by hop
spreading. The RRT model explains the appearance of hubs, thus a pos-
sibly smaller average path length as the cascade size increases, as observed
in WeChat. We further propose the stochastic Susceptible View Forward
Removed (SVFR) model to depict the dynamic user behavior including cre-
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ating, viewing, forwarding and ignoring a message on a given social network.
Beside the average path length and degree variance of the cascade trees in
relation to their sizes, the SVFR model could further explain the power-law
cascade size distribution in WeChat and unravel that a user with a large
number of friends may actually have a smaller probability to read a message
(s)he receives due to limited attention.

Keywords:
Information cascade, Stochastic model, Social networks, WeChat, Random
recursive tree

1. Introduction

The rapid development of the Internet, smart phones and information
technology has facilitated the boost of online social networks, such as Face-
book, Twitter, Flickr, Digg and Sina Weibo, each of which support the spread
of information, behaviour and opinion [1-17]. Data such as information dif-
fusion trajectories recorded online allows us to further identify the spreading
patterns and the underlying spreading process on a social network. Such
understanding is crucial for businesses to promote products and for govern-
ments to predict and even regulate public opinion [18-20].

In this work, we consider the information diffusion trajectories recorded
on a social network. The spreading trajectory of each information content
can be represented by a cascade (tree), where the root is the source node
that creates the information and the links represent the information trans-
mitting paths between users. First, we aim to model the topologies of the
information cascade trees with few parameters. Such a topology model of
a group of cascade trees with few parameters would allow us, for example,
to quantify to what extent information spreads viral-like (via hop by hop
propagation) or broadcast like (via hubs), to compare various online social
networks, and possibly to distinguish and/or identify the spread of a certain
type of information such as misinformation [21]. Second, we aim to develop a
dynamic model of the information diffusion process on a social network with
few parameters, that could capture several key features observed in the cas-
cade trees. Such discovery of the first-order spreading process/mechanisms is
essential to design optimisation strategies e.g. how to select the source node
to publish the information such that more users could be reached.

Topologies of cascade trees have so far been characterised by the average



path length of a cascade tree!, also called structural virality, in relation to the
size of the tree[9, 22, 23]. The size (number of nodes) distribution of cascade
trees has been shown to be highly skewed [24]. Consider the class of cascade
trees collected from an online social network. If the average path length
of a cascade tree does not increase much with the size (number of nodes)
of the tree, hubs may exist in relatively large cascade trees. In this case,
information propagates via star-like broadcasting and large cascade trees
are relatively shallow [9, 25, 26]. If the cascade trees’ average path lengths
increase dramatically with their sizes, large cascade trees tend to be deep
without large hubs and information spreads viral-like, hop by hop. However,
we lack a systematic method to quantify the extent of the shallowness or
deepness of a group of cascade trees. In this work, we propose to use of the
generalised random recursive tree (RRT) [27, 28] with a single parameter to
model a group of cascade trees (possibly of a given type of contents) with
diverse sizes in an online platform. The RRT, a growth tree model, could
well capture two features of WeChat cascade trees: the average path length
and the degree variance, as a function of the cascade size. The identified
parameter in the RRT model quantifies how deep or shallow the cascade
trees are and indicates the possible growing mechanisms of cascade trees.
Stochastic models, such as cellular automata [29], Threshold models [30—
33], Susceptible Infected Recovered (SIR) [14, 34-36], and Linear Influence
[37] have been studied to understand how the dynamics of information dif-
fusion such as the spreading rate and the social network topology could in-
fluence a key feature of the diffusion process such as cascade size. However,
we still insufficiently understand whether such first-order models with few
parameters could quantitatively reproduce several key features of real-world
information diffusion. Moreover, does a user with a large number of friends
have a lower probability to view a message it receives, according to earlier
evidence found in [14]? Correspondingly, we propose the heterogeneous Sus-
ceptible View Forward Removed (SVFR) model, which allows users to have
different probabilities of viewing a message, depending on their degree (the
number of neighbors) in the underlying social network. Interestingly, our
SVFR model could well explain the power-law distributed size of cascade
trees, the degree variance and the average path length of a cascade tree in

IThe average path length of a cascade tree is the average number of links in the shortest
path between two nodes. The shortest path between any two nodes in a tree is unique.



relation to the tree size.

Our modeling methods have been illustrated and verified by the infor-
mation diffusion trajectories recorded in WeChat, a social network with 800
million monthly active user accounts in 2016 [38]. We choose WeChat also
because we understand far from sufficiently WeChat, a semi-closed social net-
work where information is shared mainly via strong social ties (i.e. friends
that mutually agree to share information) [39].

Our characterisation and modeling of WeChat in this work is a starting
point to explore the difference between semi-closed social networks and open
social networks like Twitter. Does information spread more viral-like in semi-
closed networks? To answer such questions, we need to collect the diffusion
trajectories of the properly selected type of contents among the properly
selected population on the two types of networks for comparison purpose,
beyond our modeling approach.

The remainder of this paper is organized as follows: Section 2 describes
the WeChat information diffusion data and how to construct the cascade
trees. Section 3 and 4 present the RRT and SVFR model to capture the
topology of the cascade trees and the dynamics of the information diffusion
respectively. Section 5 summarizes our findings and points out interesting
future work.

2. Dataset Description

We will use the information diffusion dataset of WeChat to validate the
two models that we are going to propose. We focus on the diffusion of
web pages, in the WeChat social network. A user may react to a web page
forwarded/shared by his/her friend, as such appearing in his/her WeChat
with a title in three ways: (i) View the web page, meaning that the user
clicks the link of the web page and views the content, (ii) ignore the web
page without a click to view the content, and (iii) Forward (or share) the
URL of the web page to all or subgroup of his/her friends after viewing the
content. An example of the diffusion of a web page in WeChat is shown
in Figure 1. First, a user being at the root of the tree initially forwards a
web page to his friends in WeChat. Then his friends may ignore, view or
forward the web page after seeing the web page appearing with a title. The
forwarding of the information (web page) allows its friends to further view,
forward or ignore the information. The users who have received and ignored
the web page, or equivalently to whom a webpage has been shared, can not



be detected. Our topology and stochastic models to be proposed aim to
capture the features of the observed (view) cascade trees composed of users
that have created, viewed and forwarded the messages?.

Figure 1: Schematic diagram of the diffusion of a web page in WeChat. Colors differentiate
between the users showing different behaviors regarding what they do with the information
forwarded to them. The green circles represent users who have viewed the message. The
blue circles stand for users who have shared the message after viewing it. The grey circles
are those users who have not viewed the content. A view cascade tree is composed of the
source node that initially forwards the message, the nodes that have viewed the message,
thus both the blue and green nodes and the black solid arrows among them. The view
cascade tree of each web page is well recorded in the data.

We obtained the web page spreading dataset in WeChat Moments from

2It is possible that a user views/clicks the same content multiple times, forwarded by
one or different friends, to read the content completely or more than once. A user in
WeChat may share a content to all his/her friends or share the contents several times to
several groups of friends. We aim to understand users’ two levels of perceiving information:
read or share the information but not more detailed behaviours such as reading a content
in one time or not and sharing a content once to all friends or several times to sub-groups
of friends. Hence, we construct the cascade trees by taking into account only the first
view and sharing actions for each user per content. If we taken into account all the view
actions, the information diffusion trajectories are not necessarily trees. Our collection of
the cascade trees to be described in detail below ignores 8 percent links.



a third-party service company®. The service company helps users create
HTML5 format web pages (e.g. news and advertisements) to share on
WeChat. Spreading trajectories of these web pages have been recorded. The
dataset includes all user activities from January 14 to February 27 in 2016,
such as viewing and forwarding, and their corresponding time stamps related
to all the web pages created with the format support from the service com-
pany. A user must first view a web page before (s)he forwards it. Whenever
a user views a web page shared by a friend, the index of both the user who
views the web page and the friend who shares the web page are recorded
in the dataset, allowing us to construct the view cascade tree for each web
page. We aim to select the web pages whose diffusion starts and ends within
the period of 45 days. We assume that a web page starts to diffuse within
the 45 days’ observation window if the page is not viewed nor forwarded on
day 1 but later and the first view of the page is a view at the page shared
by the root, the user who publishes the page. We assume that the diffusion
of a content stops within the observation window if there is no view nor
forward action of the content on day 45 [25]. The precise identification of
contents whose diffusion starts and ends within a period is challenging be-
cause the diffusion of a content could recur after a long period without being
viewed /shared [40]. For example, we identify the pages that start the diffu-
sion within period [11,45] under our assumptions and 8.8 percent of these
identified pages have actually started their diffusion within day [1, 10]. Both
the content of the web pages and users are anonymised by web page indexes
and user indexes, respectively.

As aresult, we obtain 229, 021 web pages, whose life span is approximately
within the considered time window. More than 5 million users are involved
in the diffusion of these web pages. For each web page, we construct its view
cascade tree, in which nodes represent the users who have viewed the web
page and some of these nodes may have forwarded the web page. A user
seldom views/forwards the same content more than once. If, in the rare case
a user views (shares) a web page more than once, we consider only the first
time when the user views (shares) the page. Hence, each information cascade
is a tree without cycles. The users who have received and ignored the web
pages, thus the underlying social network, are unknown.

Shttp://www.fibodata.com/
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3. Modeling of Information Cascade Tree Topology

In this section, we focus on the modeling of the topologies of the infor-
mation cascade trees, without considering the underlying dynamics of users.
We aim to propose a tree model that could construct trees that share similar
properties of the cascade trees observed in WeChat. We will analyse two
fundamental properties of the information cascade trees in WeChat, that we
would like our model to reproduce, namely the average path length and degree
variance. Afterwards, we propose to use the Random Recursive Tree (RRT)
to model information cascade trees and illustrate to what extent this model
could capture the two key features of the information cascades in WeChat.

3.1. Cascade Structure in WeChat

Two basic properties of a generic tree are the average path length and the
degree variance. The average path length, also known as ”Wiener Index” or
"Structural Virality”, is the average of the number of links H;; in the shortest
path between any two nodes ¢ and j. Hence, in a tree with /N nodes we can
formulate it as

E[H] - m i=1 j:lzj;éiHij’ (1)

The degree variance is the variance of degrees of all the nodes in a tree,

Var[D] — Zil(di]\: E[D])27 (2)

where the degree d; of the node 7 tells how many links a node 7 has and
E[D] is the average degree of all the nodes. The degree variance can be
equivalently characterized by the standard deviation \/ Var[D] of the degree,
which is used later in our data analysis and model validation.

Both properties can depend on the size of the tree. Hence, we propose to
characterize how deep/shallow the class of observed cascade trees is by these
two properties as a function of tree size. As shown in Figure 5, the sizes of
the cascade trees collected from WeChat follow approximately a power-law
distribution. Hence, we group the cascades trees according to their sizes
that are slitted uniformly in logarithmic scale. We consider cascading trees
that have more than 100 nodes in the dataset, which corresponds to the web
pages that could propagate to a certain extent. Both properties are explored

7



for each group of trees. Figure 2(a) and 2(b) show the average path length
and degree variance of a cascade tree as a function of the size of the tree,
respectively. The average path length increases first and decreases afterwards
as the size of the cascade tree increases. The decrease of the average path
length with the cascade size when the size is above 10* is due to the hubs
in the cascade trees, i.e. high degree nodes, which is reflected in the large
degree variance of large cascade trees.

3.2. The Random Recursive Tree Model

We propose to use the Random Recursive Trees (RRTSs) to model the
cascade trees. The RRT [27, 28, 41] is a growth tree model with a single
preferential attachment parameter. It starts with the root node at t = 0 and
adds a node at each time step ¢ to an existing node selected as follows: each
existing node ¢ with its degree d;(t) at time ¢ has the probability f?—(?@(t)
of being connected to the newly added node. Hence, the probabilit?ltflat
an existing node is connected to a newly added node is proportional to the
degree of this node of power 0,6 € [0,00). We denote a RRT with N nodes
and the scaling parameter 6 by T'(N, #). Specifically, T'(N, 0) corresponds to
a uniform recursive tree (URT) where at each time step, a randomly selected
existing node is connected to the newly added node [42, 43]. T'(N,1) is a
scale-free tree where at each time step, the probability for an existing node to
be connected to the new node is proportional to the degree of this node [44].
When 0 < 6 < 1 (6 > 1), the probability that an existing node is attached
to a new node is sub-linear (super-linear) of the degree of the existing node.
When 6 — oo, the RRT approaches a star topology, whose average path
length is 2 — 2/N for a star with N nodes.

We conduct 10* independent realizations of each RRT class T'(N, 6) with
size N and scaling parameter 6, and obtain for each class the average as
well as the standard deviation of the two key topological features, i.e. the
average path length and the degree variance. As illustrated in Figure 2, a
small (large) 6 suggests a relative deep (shallow like a star) tree with a large
(small) average path length, that corresponds to the viral (broadcast) type
of information diffusion.

Figure 2 shows that the average path length and degree variance (stan-
dard deviation), in WeChat cascade trees as a function of the tree size can
be well captured by the RRT model with the scaling parameter 6 around 1.2
if we look at the mean of these two properties. When the standard deviation
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Figure 2: The average path length and degree standard deviation of the cascade trees in
WeChat and the RRT models as a function of tree size. The cascade trees in WeChat
are grouped according to their sizes: [100,200), [200,400), [400, 800), [800,1600) etc. The
average and standard deviation (error bar) of these two properties are obtained for each
group and plotted as a function of the medium size of each group. For a given size of the
trees and a given 0, 10* RRTs are generated independently and the average and standard
deviation (error bar) of the average path length and degree standard deviation are obtained
from the 10* realizations. The error bar for the two properties are shown for the RRT
model with # = 1.2 and 6 = 1.6.

of these properties, i.e. error bar, is taken into account, the WeChat cascade
trees can be well described by the RRT model with 8 > 1, suggesting that
the WeChat cascade trees may follow a growth rule where a high degree node
in the tree has a high probability to attract the connection to new nodes.
When 6 = 0, the average path length E[H] ~ logN scales linearly with the
logarithmic of the network size [45]. When 6 is positive, the average path
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length of RRTs increases first and decreases afterwards as the size of the
tree increases. This can be observed evidently in the RRTs when 6 = 1.2 in
Figure 2. Such transition is due to the fact that as a RRT grows in size with
a positive 6, hubs tend to form and have a higher chance to be connected to
newly added nodes. Such dominant growth of the hubs or local stars reduces
the average path length and increases the degree variance. The average path
length starts to decrease at a small tree size when 6 is large thus hubs form
faster as a tree grows. The average path length in WeChat cascade trees
indeed increases first and then decreases as the cascade tree size increases,
which can be thus well captured by the RRT model.

The RRT model could be used to model the cascade trees, not limited
to WeChat, that have diverse sizes. The parameter 6 that best fits the data
reflects quantitatively how deep the tree is and how diverse the degrees of
the nodes in the tree are. In this way, we could compare different online
systems with respect to in which system information propagates more via
hubs/broadcasting or viral-like spreading.

4. Modeling of Information Cascade Process

In this section, we aim to develop a stochastic model of the information
diffusion process based on our understanding of the WeChat information
diffusion mechanisms that is able to reproduce three key features of cascade
trees as observed in the WeChat dataset: the distribution of the sizes of the
cascade trees, the average path length and the degree variance of a cascade
tree in relation to the size of the tree.

4.1. The Susceptible View Forward Removed Model

We propose the Susceptible View Forward Removed (SVFR) model to
describe the information diffusion process on a social network. This model is
based on classic viral spreading models such as SIR model but more general
and practical with respect to the definition of the possible states of a user
and the possible non-liner and non-homogeneous probability for a user to
view a message shared by its friend.

In the SVFR model, each node can be in one of the following four states
at any time step:

e Susceptible (S) - the user has the potential to read a message/content,
but has not yet read it,

10



e View (V) - the user views the message,
e Forward (F) - the user forwards the message,

e Removed (R) - the user ignores the message either because (s)he does
not want to read the message or has already viewed or forwarded the
message.

For a given message, all the nodes are initially susceptible, except for the
source node that publishes/shares this message thus is in state F at step
t = 0. The state transition diagram has been shown in Figure 3. For any
node that is in state F at any time step ¢, each of its susceptible neighbours
in the social network has a probability £ to view the message at step t + 1.
Moreover, each neighbour that views the message has a probability v to
forward the message immediately after reading, and thus transits to state F
at step ¢t + 1. In other words, each S neighbour has a probability 8 * (1 — )
of being in state V (view but not forward) and a probability 5+ of being in
state F (view and forward) and probability 1 — /5 of being in state R (ignore
the message without reading the content) at time step ¢ + 1. For any node
in state V or F at any given time, this node will be in state R at the next
time step. The diffusion process of a message stops when all the nodes are
either in state S or R, thus when the system reaches the stable state.

1—-p

— g : v 1 v
Susceptible View Forward Removed
[ A

L=

v

Figure 3: States transition diagram of the SVFR model.

Furthermore, we generalise the SVFR model to be a heterogeneous stochas-
tic model where the probability  that a user reads a message shared by its
friend may depend on the degree of this user in the underlying social network.
This is motivated by the fact that a node has a large number of friends tends
to have a low probability to read a message shared by his/her friend due to
the large number of messages he/she is exposed to and his/her limited effort
in reading messages [46, 47]. Without loosing generality, we assume that the
probability for a node i to read a message shared by a neighbour may depend

11



on the degree d; of this node, and we denoted the probability as 3; = cd; “,
where the power exponent « is assumed to be positive and the constant c is
determined by the given average probability 5 to view a message over all the
nodes *:

dmaz

B = c > k°PrD=Hk, (3)

As observed in the data and assumed in our model, users seldom reads
or share a message more than once. The average view probability § suggests
how infectious/interesting a message is for users to view it. When o = 0, all
nodes have the same view probability. Similar homogeneity has been usually
assumed in previously proposed information diffusion models [9]. Our het-
erogeneous model takes into account the possibility that the view probability
of each node may be inversely proportional to the degree of the node, char-
acterized by the degree scaling parameter o. Evidence has been found in [14]
that the probability a node shares a message may be inversely proportional
to the degree of the node thus a = 1. Our model is more generalised with
respect to its polynomial scaling a and realistic states of user activities, aim-
ing to reproduce several key features of cascades observed in real-world data.
In the proposed stochastic model, we did not take into account a realistic
and possibly heterogeneous time delay, e.g., between the time when a node
shares a message and the time a neighbour reads or shares the message.

We assume that the probability + that a user forwards a message after
viewing it, the so-called forward probability, is a constant, which is a simple
start for the model study. Given the underlying social network and given
the parameters o, v and [ to be calibrated, the SVFR model could iterate
the stochastic propagation of a message, each resulting in a cascade tree
composed of users that have created, viewed and forwarded the message.

4.2. Model Validation

The (average) forward probability in a cascade tree can be obtained as
the number of nodes that forward the message over the total number of nodes
in the cascade. Figure 4 shows that the forward probabilities of the WeChat
cascade trees follow approximately a Gaussian distribution where forward

4Fach node may view a message maximally once.
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probabilities are close to the average. Hence, we consider the average forward
probability v = 0.091 observed in the data as the forward probability in our
SVFR model.
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&
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O 02 04 06 08 1
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Figure 4: Distribution of the average forward probability in a cascade tree. This distribu-
tion is obtained from the WeChat cascade trees that have a size larger than or equal to
100.

The WeChat social network topology is unknown. Hence, we cannot de-
rive directly from the data the two parameters related to the degree depen-
dent view probabilities: the average view probability 5 and scaling parameter
a. Instead, we will explore whether the SVFR information diffusion on a so-
cial network model with tunable parameters § and « could reproduce the
three key features of the WeChat cascade trees: the size distribution, the
average path length and degree variance in relation to the tree size. The
distribution of the sizes of the cascade trees is a crucial feature for a online
social network, characterizing the distribution of the prevalence or popularity
of the information propagated on the network.

We assume that the underlying social network is a scale-free network with
a power law degree distribution Pr[D = k] = ck~?, as observed in many real-
world networks [48]. We use the configuration model [49-51] to construct the
random scale-free networks with a power exponent of the degree distribution
¢ = 2.5, a minimum degree d,,;, = 10 as in [9] and a cutoff of the maximum
degree dynqa; = N'V@~1) [52], where N is the network size. When the network
size is N = 10°, the average degree E[D] =~ 26.7.

For each given pair of # and «, we generate independently 100 scale-free
networks and on each generated network, we carry out the information spread
of 100 messages independently according to the SVFR model where the initial

13



node that creates/shares the message is chosen uniformly at random. In total,
we obtain 10* cascade trees for the given 38 and a.

First, we explore the distribution of the sizes of the cascade trees in both
the WeChat dataset and in our SVFR model. As shown in Figure 5, the dis-
tribution of the sizes of the observed WeChat cascade trees is approximately
a power-law distribution. Since we are interested in the cascade trees with
a size larger than 100, that corresponds to the messages that could propa-
gate to a certain extend, we fit the tail part of the distribution when the
size is larger than or equal to 100. The power exponent is approximately
A = 2.17. The power-law cascade size distribution has also been observed in
other social networks, such as Twitter [7, 8, 24], Flickr [11], Digg [12] and
Sina Weibo[13].

. |
o data |

- \=2.17

m:ommooo OOZ)’

10° 10t 102 10° 10* 10°

Figure 5: Distribution of the size of the WeChat cascading trees with the curve fitting for
the tail where the size is larger than or equal to 100.

We take as an example the SVFR model with the average view probability
B = 0.3 whereas the degree scaling parameter « varies. Figure 6 illustrates
how the size distribution of the cascade trees generated by our SVFR model
changes as the degree scaling parameter « increases.

When a = 0 or «v is small , i.e. all the nodes have a similar probability to
view a message, the cascade size distribution has a peak in the tail, thus a
significantly higher probability to be large. When the view probability 8 or
the network size N increases, the separation between the power law decrease
and the peak in the size distribution becomes even more apparent. As «
increases, the cascade size distribution becomes a power-law distribution, the
same as observed in WeChat. The hubs play a key role in such a change in the
size distribution. First, a hub (a high degree node in the underlying scale-

14
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Figure 6: Cascade size distribution of the SVFR model for different degree scaling param-
eter a. The underlying scale-free network size is N = 10° and the average view probability
is 8 = 0.3. The power-law part of the tail has been fitted. Each figure is obtained by 100
independent realizations of the SVFR process on each of the 100 independently generated
underlying scale-free networks.

free network) has a higher probability that one of its neighbours forwards
the message than low degree nodes. Second, a hub has a higher probability
to view thus forward a message when « is smaller, given the same average
view probability S. Third, the forwarding of a message by a hub allow its
large number of neighbours to further view and forward the message, leading
potentially to a large cascade. Hence, hubs facilitate the appearance of large
cascades, especially when « is small. This explains as well why the largest
possible cascade size decreases as a increases. Figure 7 further supports
our explanation. We look into the maximal degree (in the underlying social

network) DI of nodes that have forwarded the information in a cascade
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tree in relation to the size of the cascade. As the DI increases, i.e. a
higher degree node involves in the forwarding of the message, an abrupt
jump occurs in the cascade size, when o = 0. Hence, the bulk in the size
distribution o = 0 corresponds to the large cascades where hubs involve in
forwarding the information. When a = 0.8, the increase of the cascade size

with DF is relatively continuous.

a=0 «=0.8
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Figure 7: The size of a cascade tree generated by the SVFR model versus the maximum

degree DI in the underlying social network of the nodes that have forwarded the message

in the cascade tree when (a) o = 0 and (b) a = 0.8. Cascade trees larger than 100 in size
are considered.

Figure 6 suggests that a should not be small in order to capture the
power-law size distribution in the WeChat dataset. Furthermore, we explore
how the power exponent/slope A of the power-law cascade size distribution
generated by the SVFR model is influenced by the size N of the underlying
network, the average view probability S and the degree scaling parameter «.
As shown in Figure 8, the exponent A is obtained via the power-law curve
fitting of the power-law decreasing part of the size distribution [50].

As shown in Figure 8, power exponent A is insensitive to the size N of
the underlying networks, though the average cascade size may depend on the
size of the underlying network. We will focus on the underlying network size
N = 10°, which is large as well feasible for simulations. A smaller o and
a large average view probability [ contribute to a smaller power exponent
A, thus large cascade trees with a higher probability. The power exponent
A = 2.17 observed in WeChat can be approximated by our SVFR model
when f =03 and a =08 or f=04and a=12o0r §=0.5 and a = 1.6.

Finally, we investigate the average path length and the degree variance of
the cascade trees in relation to the cascade tree sizes produced by our SVFR
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Figure 8: The power exponent A of the power-law cascade size distribution generated by
the SVFR model as a function of the size N of the underlying network, the average view
probability 8 and the degree scaling parameter a. For each set of parameters, the cascade
size distribution is obtained from the 100 iterations of the SVFR information spread on
each of the 100 independently generated underlying social networks.

model with the aforementioned three sets of parameters that could already
well capture the cascade size distribution of WeChat.

Figure 9 shows that the cascade trees generated by the SVFR model with
£ = 0.3 and a = 0.8 well approximate the cascade trees in WeChat with
respect to their average path length and the degree variance/standard devi-
ation. The cascade trees generated by the SVFR, the same as the WeChat
cascade trees, are also well bounded by the RRT models with § = 1.2 and
6 = 1.6 and closer to RRT models with § = 1.2, verifying the consistency of
the RRT and SVFR models.

Our SVFR model could well explain the cascade size distribution includ-
ing the power-law decay exponent, the average path and the degree variance
of the cascade trees in WeChat and suggests that a user with a large num-
ber of friends may have a lower probability to view the message shared by a
friend.
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Figure 9: The average path length and degree standard deviation of the cascade trees in
WeChat, of the RRT structural model and of the cascade trees generated by the SVFR
model. We consider the SVFR model with the three sets of parameters 5 and « that could
well capture the WeChat cascade size distribution. The underlying networks of the SVFR
model are scale-free with size N = 10°. Given the parameter 3 and «, we perform 100
realisations of the SVFR model on each of the 100 independently generated underlying
networks leading to 10% cascade trees. These cascade trees generated by SVFR are grouped
according to their sizes: [100,200), [200,400), [400,800) and [800,1600]. The average and
standard deviation of the two key properties are derived for each group and plotted as a
function of the medium size of the group. When 8 = 0.4 and a = 1.2, the cascade trees
generated by SVFR model are all smaller than 800 in size. Given the parameter 6 and
tree size, we carry out 10% iterations of generating the cascade trees using the RRT model
and obtain the average and standard deviation (error bar) of these two properties.
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5. Conclusion

The cascade trees that describe the information spread trajectories in
social networks have been widely studied. In this work, we rely on the data
extracted from the WeChat social network as a test bed to further advance
the information diffusion analysis methods from two aspects.

We propose to model the cascade tree topology by random recursive trees
RRTs. The RRT model could well reproduce the tendencies of two funda-
mental properties of the cascade trees in the WeChat network, i.e. the av-
erage path length and the degree variance in relation to the tree size. The
identified single parameter ¢ in the RRT model, allows us, for the first time
to quantify how deep (viral like spread) or shallow (broadcast type spread)
a class of cascade trees are. Hence, we could compare or classify different
online networks regarding to that the information spread on each network is
more broadcast or viral like. The RRT model also unravels some interesting
phenomena in the cascade-tree growth, like the emergence of hubs.

We introduced the SVFR stochastic model to capture the information dif-
fusion process on a network. The model encodes three types of user reactions
to a message they receive: ignore, view and forward the message. We have
shown that this model is able to capture three main properties of the WeChat
cascade trees: tree size distribution, the average path length and the degree
variance of a tree in relation to the size of the tree. The identified model
parameters based on the dataset of WeChat cascade trees suggests that a
WeChat user with a large number of friends tends to have a low probability
to view a message shared by his/her friends. This finding can be supported
by the cognitive and biological constraints of users as predicated by Dunbar’s
theory [46, 47].

The WeChat dataset served as excellent test bed enabling the above men-
tioned contributions due to the rich user actions it captures and related to
the way how users react to the message forwarded to them. We believe, how-
ever, that our contributions can serve as a starting point to systematically
explore the structure and dynamics of information diffusion in general social
networks, not limited to WeChat.

The proposed SVFR stochastic model can be applied to other online social
networks as well to explore e.g. whether other types heterogeneity may exist.
For example, the view or forward probability of a content may depend on the
content. Another promising future research direction is to explore the time
delay in the information diffusion model in order to explain e.g. how fast a
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message could reach a certain number of users.
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