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Latent heat of the first-order magnetic transition of MnFeSi, 33Py ¢6

P. Roy,"" E. Briick,” and R. A. de Groot!

Institute of Molecules and Materials, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
2Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15,
2629 JB Delft, The Netherlands
(Received 15 June 2015; revised manuscript received 26 January 2016; published 1 April 2016)

The latent heat of a magnetoelastic phase transition is used as a measure of the magnetocaloric effect since
it is directly proportional to the entropy change. Taking MnFeSiy 33Py¢6 as a model magnetocaloric material,

density functional theory calculations in addition to the phonon calculations based on the density functional
perturbation theory were performed in order to calculate the latent heat of the magnetoelastic phase transition.
The Curie temperature (7¢) was determined by taking into account the quasiharmonic approximation and the
configurational entropy. The material exhibits a first-order magnetic transition accompanied by a large latent-heat

(19.97 kJ /kg) near-room-temperature operation.

DOI: 10.1103/PhysRevB.93.165101

I. INTRODUCTION

In recent years, magnetic refrigeration has become one of
the most explored fields of research in magnetic materials [1].
The technique is widely accepted to have the potential of
replacing the current cooling technology for several reasons.
The absence of greenhouse gas refrigerants, the high efficiency,
the low noise level, and, in the case of transition-metal-
based refrigerants, the expectation of reasonable costs make
it very attractive for applications. Magnetic refrigeration
relies on the magnetocaloric effect (MCE) discovered by
Weiss and Piccard [2] in 1917, which is defined as the
reversible change of the magnetic entropy or temperature
by the application or removal of an external magnetic field.
Until recently, the MCE was only used to achieve sub-Kelvin
temperatures [3,4] in a laboratory environment and for space
applications. The discovery of giant MCE in GdsSi»Ge, by
Pecharsky and Gschneidner [5] initiated an extensive search
for materials suitable for near-room-temperature applications.
Since this discovery, several classes of materials including
MnFe(P;_, As,) [6], La(Fe,Si);3 [7,8], and their hydrides [9],
Mn(As,Sb), FeRh [10], Heusler alloys [11], and Mn,Sb [12]
have been proposed as promising candidates for magnetic
refrigerants. Some of the materials exhibiting a giant mag-
netocaloric effect, viz., La(Fe,Si);3 and MnFe(P,_, T,) [with
T = Si, Ge, and As], can be tuned for minimal hysteresis
loss around the phase transition, which is necessary for
its cyclic operation. The lower hysteresis is, in particular,
important when aiming at operation in low magnetic fields
below 1 T, making La(Fe,Si);3- and MnFe(P;_,T,)-based
materials most promising for real-life applications [13,14].
The large MCE in cubic LaFeSij3-based materials is asso-
ciated with the temperature- and field-induced metamagnetic
transition, which comes along with a 1.5% volume change,
whereas the hexagonal MnFe(P,_, T, )-based material displays
a temperature- and field-induced metamagnetic transition that
is accompanied by a significant change in the c/a ratio but
hardly any changes in the volume.
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For such magnetoelastic transitions, the changes in en-
tropies from both magnetic and elastic transformation at the
Curie temperature (7¢) add up and give rise to a larger
entropy change. The underlying mechanism was explained
recently for MnFeSijsPys using density functional theory
calculations [15,16]. The coexistence of strongly magnetic
atoms and weakly magnetic atoms in the same material (mixed
magnetism) gives the characteristic of room temperature
Tc as well as an enhanced isothermal entropy change in
this material. Similar moment instability has recently been
reported for La(Fe,Si);3 [17]. During the past decade, detailed
experimental investigations were carried out on Fe,P-based
magnetocaloric materials in order to obtain highly efficient
devices [18-21]. The magnitude of MCE in these materials
is generally measured by the adiabatic temperature change or
the isothermal entropy change at the Curie temperature. Since
the system under discussion undergoes a first-order isothermal
phase transition, the latent heat (L) is directly proportional to
the above two quantities. Hence the evaluation of L is essential
for determining the usefulness of magnetocaloric materials
for practical application [22]. The latent heat is related to
the magnetoelastic transition at 7¢, which depends upon the
magnetic entropy change as well as the energy change due to
the discontinuous elastic transition, originating from changes
in electronic structure and phonon spectrum. An accurate
determination of free energies for both phases—below and
above the transition—is essential to find L as well as T¢. A
complete set of ab initio calculations taking finite-temperature
effects into account can show simultaneously the driving
mechanism for the magnetoelastic transition by means of
electronic redistribution near the phase transition [15,16] as
well as the quantitative value of the parameters (latent heat,
entropy change, etc.) obtained. In this paper, we report the
phase-transition temperature for MnFeSi( 33Pg ¢¢ determined
by accurate phonon calculations, and the latent heat of the
metamagnetic translation. These calculated results are in good
agreement with the experimental findings.

II. COMPUTATIONAL DETAILS

We used the Vienna Ab initio Simulation Package
(VASP) [23], employing the projector augmented wave (PAW)

©2016 American Physical Society
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method. Exchange interactions were taken into account using
the generalized gradient approximation (GGA) by Perdew,
Burke, and Ernzerhof (PBE) [24]. For all of the calculations,
PAW data sets were used with 1s, 2s, 2p, and 3s core states
frozen for Mn. In Fe atoms, an additional 3 p semicore state
was kept frozen, since it lies deeper in energy. For Si and P,
the 1s, 2s, and 2p core states were kept frozen. The Brillouin
zone integration was performed on a I'-centered k-point mesh
of 6 x 6 x 12 points in the irreducible part of the Brillouin
zone. The kinetic-energy cutoff of the plane-wave function
was taken as 350 eV and a Gaussian function was used for
smearing.

The MnFeSi,P,_, series of materials (for 0.3 < x < 0.7)
crystallizes in the Fe,P-type layered hexagonal structure with
space group 189/P62m. For this study, we have chosen
the MnFeSig33Pg6¢ composition in order to reserve each
crystallographic site for different chemical species within a
minimal unit cell, without introducing partial occupancy or
large supercells. The Fe atoms prefer to occupy the 3 f tetra-
hedron positions and Mn atoms prefer the square pyramidal 3g
positions [21] and comprise different alternative layers. The
partial occupancy [15,16] at the nonmagnetic sites is avoided
since it demands larger supercells. We expect minimal effects
of positional disorder on the magnetocrystalline transition and
utilize the crystallographically ordered model [25] with Si
and P atoms positioned at 15 and 2c sites, respectively [20].
Our primary aim was to study the phase transition at T,
so two different magnetic configurations were set up. The
ferromagnetic ordering has a single unit cell containing 9
atoms, where the paramagnetic state was modeled using
antiferromagnetic arrangements within the XY plane with 36
atoms in the supercell. The lattice parameters and atomic
positions were both optimized using a criterion for force
convergence of 1 meV/A, and the energies and eigenvalues
were converged to 0.01 meV. The final lattice parameters
obtained are given in Table I.

After obtaining the equilibrium lattice constants, the
structures were further relaxed for phonon calculations until
0.01 meV A for force and 0.01 ueV for energy/eigenvalue
convergence. The phonon calculations were done using the
finite-difference method as well as density functional pertur-
bation theory (DFPT) [26] as implemented in VASP. In the
finite-difference method, one atom was displaced from its
equilibrium position and the corresponding forces on all other
atoms were calculated. A full set of such forces corresponding

TABLE I. Optimized lattice parameters: a and ¢, atomic posi-
tions 3f Fe (x1, 0, 0); 3g Mn (x,, 0, 1/2), and volume (V) of
MnFeSij 33Po66. The experimental parameters [19] were also given
for temperature below and above T¢.

ad)y ) VA) x
Ferromagnetic:
GGA-PBE 6.128 3.273 106.375 0.265 0.598
Expt. (5 K) 6.166 3.290 109.254 0.254 0.588
Antiferromagnetic:
GGA-PBE 5.941 3.421 104.579 0.262 0.583
Expt. (400 K) 6.018 3.482 108.346 0.258 0.594
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to all displacements utilizing symmetry gave a force-constant
matrix. In DFPT, a small perturbation potential was added
and then the standard DFT formalism was carried out to
obtain the force-constant matrix. The force-constant matrices
were finally used to obtain the phonon vibrational frequen-
cies. Comparing results from the finite-difference and DFPT
methods, we observe very similar force-constant matrices.
However, we employed the DFPT method throughout all the
calculations as it is computationally cheaper. The inputs for
the phonon calculations were obtained using the PHONOPY
utility [27]. For computing the Gibbs free energy (G), we used
the quasiharmonic approximation (QHA) [28] and obtained
phonon vibrational frequencies for different volumes. The
phonon calculations usually require bigger unit cells, so a
2 x 2 x 2 supercell was adopted. Finally, as the paramagnetic
state is disordered, a configurational-entropy term has to be
taken into account [29].

III. RESULTS AND DISCUSSIONS

MnFeSi,P;_, (for 0.3 < x < 0.7) exhibits a first-order
magnetoelastic transition between the ferromagnetic and para-
magnetic phase at 7¢. The lattice parameter a decreases and ¢
increases [19-22]. The paramagnetic phase is modeled using
an antiferromagnetic alignment. To obtain the lowest-energy
configuration, different arrangements of magnetic moments
were considered. The first one we chose isa 1 x 1 x 2 super-
cell with an antiferromagnetic order along the c direction. We
also consider 2 x 2 x 1, 2 x 2 x 2, and 2 x 2 x 4 supercells
with an antiparallel magnetic alignment between the neighbor-
ing unit cells within the ab plane. Accurate energy calculations
identify the 2 x 2 x 1 supercell to have the lowest energy.
The local moments for the Fe atoms in those configurations
decrease from bigger unit cells to smaller unit cells (1.1, 0.9,
0.6, and 0.5 wp). Experimentally, the local moment for Fe
decreases with the increasing temperature above 7¢ [18,30].
This suggests that just above the transition temperature, the
paramagnetic state carries a short-range magnetic order, which
disappears at higher temperature. Hence, the bigger unit cell
corresponds to the state just above T¢ and the smaller unit cell
represents the magnetic state for higher temperatures.

The latent heat of the first-order magnetoelastic phase
transition is an important quantity to determine the size of
the MCE and hence the effectiveness of the magnetocaloric
materials. The amount of heat absorbed during the transition
effectively cools down the refrigerator. Theoretically, the latent
heat (L) can be calculated from the total entropy change at 7¢.
Since the states were modeled at 0 Kelvin using the DFT
formalism, a finite-temperature approach is required to obtain
the transition temperature (7¢) and hence L. The Helmholtz
free energy (F) is expressed as the summation of the internal
energy (U) in addition to the temperature-dependent term: F =
U — T S. To evaluate the temperature-dependent term, phonon
calculations are necessary. For the lattice vibrational properties
of the stable phase, dynamical matrices were created using
the DFPT formulation [26]. The eigenvalues and eigenvectors
were computed for the dynamical matrices and the phonon
vibrational frequencies were obtained using the interatomic
force constants. No imaginary phonon frequency was obtained
(see Fig. 2), showing vibrational stability of the system for both
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FIG. 1. Phonon density of states of MnFeSi 3P in (2) AFM
and (b) FM states as a function of frequency.

magnetic phases. The internal energy term consists of the VASP
total-energy output and the zeroth-order phonon vibrational
term. So the Helmholtz free energy F(V,T,m) as a function
of volume (V), temperature (7'), and magnetization (m) takes
the following form:

1 hw (q,V)
F(V,T,m) = Uy(V,m) + — / =
0 Qpz XJ: BZ 2

+kBTln{1 — exp[%] }dq. (D
B

Here, h,w;(q,V) and kp are the Planck constant, frequency
of the jth phonon mode at wave vector q, and the Boltzmann
constant, respectively. The phonon density of states and the
corresponding band structures for the two magnetic states are
shown in Figs. 1 and 2, respectively.

In the density of states as shown in Figs. 1(a) and 1(b),
the low-frequency linear parts from O to 2.2 THz are similar
and represent the acoustic phonons. The optical modes are
reasonably different for both of the states above 2.2 THz,
especially from 8 to 14 THz. As shown in Eq. (1), the
third term determines the temperature profile of F(V,T,m),
which includes the phonon frequencies of the normal modes
shown by the phonon DOS. The differences in DOS for

PHYSICAL REVIEW B 93, 165101 (2016)

T

z)

(TH

Frequency

(a)

K
Wave Vector

T

W\

(k)

K H
Wave Vector

FIG. 2. Phonon band structure of MnFeSi( 33P ¢ in (a) AFM and
(b) FM states.

ferromagnetic (FM) and antiferromagnetic (AFM) states is
responsible for the thermal evolution of the free energies
that leads to different slopes for the free-energy curves.
The low-frequency optical phonon vibrations have a greater
contribution to the temperature-dependent third term of Eq. (1)
rather than the high-frequency vibrational terms. So, the
differences in phonon DOS just above 2.2 THz primarily
determine the difference in slopes of the F versus T curves, as
shown in Fig. 3.

The FM state represents the ground state at 0 Kelvin,
but F' decreases gradually for both FM and AFM states
with increasing temperature. Despite the fact that the curves
have different slopes, they do not intersect even at higher
temperature (1000 K), which excludes the possibility of
any phase transition. This is in direct contradiction with the
experimental observation of a magnetoelastic transition at 7¢.
However, in the above calculation, we did not consider the
volume expansion with temperature. Therefore, to remove this
discrepancy in Fig. 3, we introduce the correction for the effect
of lattice expansion by incorporating QHA, which includes
the volume dependence of the phonon frequencies as a part of
the anharmonic effect [28,31]. So, instead of Helmholtz free
energy F'(V,T,m) for constant volume, we used the Gibbs free
energy (G) at constant pressure (P) [32], which is defined as

G(P,T,m) = mvin[F(V,T,m) + P(V,T)V]. 2)

165101-3
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FIG. 3. Helmholtz free energy (F') as a function of temperature.

Following the procedure mentioned by Togo et al. (Fig. 2 of
Ref. [33]), F(V,T,m) were evaluated with different volumes
for both the FM and the AFM states. Then, fitting F(V,T,m)
in the Birch-Murnaghan equation of state, we finally ob-
tain P(V,T).! From P(V,T) and F(V,T,m), we calculated
G(P,T,m) by minimizing the parameters inside the square
bracket with respect to the volume [Eq. (2)] [34]. Note that
since QHA neglects the temperature dependence of the phonon
frequencies, it becomes invalid at very high temperature (well
above 1000 K).

Additionally, this model does not include the fact that in
reality the material in a paramagnetic phase can be assumed
to be an assembly of multiple magnetic orders. So in order
to include the disorderliness of the system, a configurational
entropy term [Sconr = kplnW] was added [29]. Here, W is
the number of all possible magnetic configurations. Since
a complete magnetically disordered system leads to the
Boltzmann limit for the entropy, it is a reasonably good
approximation to model a system at high temperature in the
paramagnetic phase. Finally, adding all the contributions, the
total free energy [Fiot = G(P,T,m) — T Scont] Was obtained
and plotted in Fig. 4.

Experimentally, the Curie temperature lies around 300 K
for MnFeSig 33Pg 66 [19]. In Fig. 4, the total-free-energy plots
intersect at a temperature around 410 K, which depicts the
magnetoelastic phase transition and shows good agreement
with the experiments. The dissimilarity may arise from other
factors contributing to the entropy, such as magnons or
phonon-phonon interactions. The difference in F between the
FM and AFM state at 410 K in Fig. 3 is 19.19 kI mol~'. With

'The F(V,T,m) versus V was fitted with the Birch-Murnaghan
equation of state [38] independently for all of the temperatures,

9 /S . VB
F(V.T.m) = 2By (4 = Blo)75 — (14— 38'0) e
TR
+ (16 — 3B O)W] + const. 3)

From the fitting, the constants of the equation were obtained. Then
the pressure was evaluated using P(V,T) = —[6F(V,T)/6V]r.
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FIG. 4. Total free energy (Fi) and entropy (S) evolution with
temperature.

the anharmonic correction using Eq. (2), the difference reduces
by 6.41 kImol~! and decreases further by 12.78 kJmol™!
when including the configurational entropy. The specific heat
at constant pressure can also be calculated by deriving the
second derivatives of the Gibbs free energy using the relation
Cp= —T[32G(P,T,m)/8T2]p. The specific heat undergoes
a discontinuous transition near 7¢ as shown in Fig. 5, which
is the characteristic of a first-order phase transition. The
entropy as a function of the temperature and the entropy
jump at the phase transition (ASy) are shown in Fig. 4. We
derive a value of 48.7 JK~'kg~!, which is comparable to
the experimental finding of 58.6 JK~'kg~! [35]. The latent
heat of the phase transition is defined as L = T¢ x ASy. So
the value obtained from this calculation is 19.97 kJkg™!,
which is also in good agreement with experimental findings
considering the somewhat overestimated value of the Curie
temperature [22,35,36]. The latent heat is the difference
between the slope of Fi in the FM and AFM state with respect

540
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~
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420 :
Tc.
400 — .
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FIG. 5. Calculated Cp as a function of temperature.
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to temperature at 7¢. Comparing the latent heat as calculated
from the temperature derivative of the total free energy and
the Helmholtz free energy at the Curie temperature strongly
suggests that the latent heat in this system mainly originates
from the configurational entropy change.

IV. CONCLUSION

Compounds of the type MnFeSi,P;_, belong to the MCE
materials with the highest magnitude of the MCE (as measured
by ASi; and ATy) [14]. Our calculation results lead to the
following picture. The electronic redistribution that creates
covalent bonding among the atoms [15,16] is responsible
for both the electronic part of the entropy change and the
change in thermal vibrations of the atoms that contributes
to the lattice entropy change. In addition to the regular
magnetic part of the magnetic-field-induced entropy change
at T¢, this magnetoelastic transition contributes dominantly
to the configurational and much less to the lattice part of
entropy change. The electronic redistribution initiates the
lattice change and both of these contributions add up to a bigger
entropy change and a large latent heat with unexpectedly
low thermal hysteresis [37]. The latent heat of this system is
primarily considered as being of magnetic (configurational)
rather than lattice origin, which should also be true for
La(Fe,Si);3 materials, in contrast to the findings of Griiner
etal. [17].

In this study, we use the stereotypical compound
MnFeSig33Pp¢s with Mn:Fe = 1:1 stoichiometry. To take

PHYSICAL REVIEW B 93, 165101 (2016)

thermal effects into account, we utilize a 2 x 2 x 2 supercell.
The need for such larger supercell sizes restricts the method
for low symmetric structures because of high computational
costs at the moment. In addition to this, nonmagnetic Si and
P atoms were inserted at crystallographically distinct 15 and
2c sites, respectively, in order to avoid the computational cost
related again to larger supercells to account for positional dis-
order. DFT optimized rather than experimentally determined
structures were used for both high and low magnetic states
in MnFeSig33Po¢s. The temperature evolution of the free
energy (F) in these states was evaluated using the efficient
DFPT mechanism. Further corrections to the free energy were
included in the form of QHA and configurational entropy. We
calculate the phase-transition temperature, A Sy, and the latent
heat of the system within reasonable accuracy [22,35,36].
The observed dominance of the magnetic (configurational)
part of the latent heat is awaiting experimental verification.
This method can be used to calculate latent heat or related
quantities of other magnetic systems and characterize them
based on the size and nature of the MCE in the search for
better magnetocaloric materials in the near future.
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