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Abstract—The impact of developers’ experience on several de-
velopment practices has been widely investigated in the past. One
of the most promising research fields is software testing, as many
researchers found significant correlations between developers’
experience and testing effectiveness. In this paper, we aim at
further studying this relation, by focusing on how development
teams’ experience is associated with the assertion density, i.e., the
number of assertions per test class KLOC, that has previously
been shown as an effective way to decrease fault density. We
perform a mixed-methods empirical study. First, we devise a sta-
tistical model relating development teams’ experience and other
control factors to the assertion density of test classes belonging to
12 software projects. This model enables us to investigate whether
experience comes out as a statistically significant factor to explain
assertion density. Second, we contrast the statistical findings with
a survey study conducted with 57 developers, who were asked
their opinions on how developer’s experience is related to the
way they add assertions in test code. Our findings suggest the
existence of a relationship: on the one hand, the development
team’s experience is a statistically significant factor in most of the
systems that we have investigated; on the other hand, developers
confirm the importance of experience and team composition for
the effective testing of production code.

Index Terms—Assertion Density; Developers’ Experience;
Mixed-Methods Empirical Study.

I. INTRODUCTION

It is often said that “failure leads to success”. One has to

have experienced failure to truly understand what it takes to

succeed. This is true in many fields, and perhaps also in the

area of software testing. Pham et al. [1] have already alluded

to it, when they conjectured that junior developers do not see

the need to write test cases, or at least, not that many test

cases; their reasoning being that junior developers have likely

not experienced the consequences of inadequate testing [1].

The research community has widely investigated developers’

experience as a factor in different contexts related to software

maintenance and testing [1]–[10]. In particular, several studies

focused on the correlation between developers’ experience

and the effectiveness of testing activities [1], [4]–[7], finding

a high correlation between the two phenomena. Following

these previous achievements, in this paper we aim at further

understanding the relation between developers’ experience and

software testing practices, which are fundamental for program

comprehension, understandability, and maintainability.

Among the different ways to measure test code effectiveness

(e.g., branch or mutation coverage [11]–[13]), we focus on test

assertions, which were originally described by Alan Turing [14]

as an effective way to prove the correctness of a program and

later shown as actually useful to improve testing effectiveness.

Specifically, researchers found that a high assertion density,
i.e., the number of assertions per test class KLOC, is associated

with a decrease of faults in production code [15] and makes

software systems more stable over their evolution [16], as the

assertions verify the internal state of a program at runtime [17].

In the context of this paper, we conjecture that the experience
of development teams in charge of developing a test class
is correlated to its assertion density. In other words, teams

composed of more expert developers add more assertions to

better verify the production code. Should this conjecture be

confirmed, the experience factor would represent an instrument

based on which project managers can compose testing teams

that are more effective and less likely to miss faults in

production code. To test our conjecture, we perform a mixed-

methods empirical study [18] that aims at addressing the

following two main research questions:

• RQ1. To what extent is the experience of development
teams correlated to the assertion density?

• RQ2. How do developers perceive experience as a relevant
factor for assertion density?

In the first place, we collect data of 12 open-source projects

and build a statistical model relating development teams

experience (and other control factors) to assertion density. In

addition, we contrast the statistical results with a survey study

featuring the opinion of 57 developers, who were asked about

the relation between experience and assertions.

The results of both the studies converge toward a clear

conclusion: the experience of development team is a statistically

significant factor to explain assertion density; this is also

reflected in the opinions of developers, who explicitly state the

importance of testing teams’ composition and experience for

effective testing of production code.

Based on our findings, we identify two main implications

for both the research community and practitioners.

On testing team composition. The findings reported in the

paper show that taking into account the experience of

development teams might have an impact on assertion density,

meaning that practitioners and project managers should

consider this aspect when allocating testing tasks. At the same

time, the research community is called upon to investigate

novel experience-aware methodologies and techniques that

enable/optimize the allocation of resources.
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On human-oriented testing. As a side effect, the results of

our study highlight the importance of considering human

aspects in software testing and how they can impact source

code quality [19]–[22]. On the one hand, this confirms

recent findings in the field of software maintenance and

evolution [23]–[26] as well as the correlations observed

between developer’s experience and testing practices [4]–

[7]; on the other hand, researchers in the field of software

testing should further explore these aspects and understand

how to measure them and the extent to which good people

management can lead to better software quality and reliability.

Structure of the paper. Section II overviews the literature

related to previously studied uses of developers’ experience, and

assertions. In Section III we discuss the research methodology

adopted to build the statistical model, while in Section IV we

report the results of the study. Section V examines the threats

to the validity of the study and the way we mitigated them.

Finally, Section VI concludes the paper and provides insights

on our future research agenda.

II. RELATED WORK

As our work is at the intersection between the use of

assertions and developers’ experience, due to space limitations,

we only report the main work related to these two aspects.

A. On assertion density

Rosenblum [27] defined assertions as “formal constraints
on software system behavior that are commonly written as
annotations of a source text. The primary goal in writing
assertions is to specify what a system is supposed to do rather
than how it is to do it” [27]. Based on this definition, the use

of asserts has been both suggested and investigated by many

researchers in different contexts [15], [28]–[32].

In particular, researchers constantly advised practitioners to

introduce assertions when testing software systems in order

to promote the automatic checking for program failures [30].

Chen et al. [32] found that assertion density, i.e., the number of

assertions per KLOC, is strongly correlated to coverage-based

test-suite reduction. Estler et al. [16] investigated the use of

pre- and post-conditions in 21 object-oriented projects, finding

that program elements including contracts/asserts tend to be

more stable over time. More importantly, Kudrjavets et al.
[15] showed that bug density decreases when the assertion

density increases, meaning that the higher the number of

assertions, the lower the number of bugs in production code.

Finally, there are some works very close to ours [33]–[35].

In particular, Casalnuovo et al. [35] collected asserts in C

and C++ programs in order to assess a relationship between

asserts and defect occurrence. As a results they found that

methods with asserts do have significantly fewer defects. They

replicated this analysis in a subsequent study [34] showing also

that developers with higher ownership and experience are more

likely to add assertions. Finally, Kochar et al. [33] analyzed the

correlation between the use of assertions and the presence of

defects, but also whether and how developer-related factors are

correlated to the addition of assertions. In particular, they show

that there exists a significant relationship between assertions

and the presence of defects; also, developers’ ownership leads

to more assertions being added in test code.

To summarize, the aforementioned investigations indicate

that having a high assertion density represents a key factor

influencing quality aspects of test cases. Our work builds upon

these previous findings and aims at further investigating whether

developers’ experience might play a role in the way developers

introduce assertions when testing software systems.

B. On the use of developers’ experience

Recent findings have shown how developers’ experience

constitutes a key factor to carefully consider during mainte-

nance tasks [2], [3], [8]–[10], [36], [37]. For instance, Bhatt

et al. [10] found that human and organizational factors such

as organization climate, customer attitude, and developers’

experience have a significant influence on software maintenance

effort. Similarly, Jørgensen et al. [8] reported that more expert

developers promptly deal with the complexity of maintenance

tasks. Finally, Li et al. [9] discovered that maintainers’

experience, tool support and domain knowledge are the most

influential cost drivers of bug fixing operations.

Besides software maintenance, several studies have pointed

out the role of experience when performing testing activities [1],

[4]–[7]. Specifically, Kanij et al. [5] investigated which factors

influence testing effectiveness through a user study. The results

show that tools and training, but also human-centered factors

like personality characteristics and experience are those more

related to the ability of discovering bugs in production. The

same authors [6] also studied the correlations between per-

sonality characteristics of developers and testing effectiveness,

confirming the central role of experience. Rooksby et al. [7]
reported about the collaborative aspects of testing activities,

while Pham et al. [1] interviewed 97 computer science students,

exploring their experience and attitudes regarding testing. A

key result of these studies is that novice developers seemingly

have less understanding of what should be tested. Finally, Beer

and Ramler [4] investigated the role of developers’ experience

during testing activities in three projects at Siemens. The results

showed how test case design is based on experience in all

three projects and that experience-based testing is an important

supplementary approach to requirements-based testing.

Our work can be seen as complementary to those discussed

above. Indeed, while previous work clearly pointed out the

role of developers’ experience for testing activities, we aim at

further understanding this relation, by considering whether and

how the experience of developers that touch a test class (i.e.,
development teams) can impact the assertion density, building

a statistical model, and corroborating the results conducting a

survey analysis involving a large number of developers.

III. RESEARCH METHODOLOGY

This section reports the methodology that we have followed

to study the relation between the experience of development

teams and assertion density.
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A. Hypothesis and Research Questions

The goal of the empirical study is to investigate the

relationship between the experience of development teams

and the assertion density, with the purpose of understanding

the extent to which team experience can have a correlation with

the number of assertions present in a test class. The quality
focus is on the relation between team experience and assertion

density, while the perspective is that of project managers

who want to understand how much team experience can be a

factor to consider when allocating resources for testing. More

specifically, our study was driven by the following hypothesis:

H0 - The experience of development teams correlates with the
assertion density of test classes.

In other words, we believe that teams composed of more

expert developers write more effective test cases. It is important

to note that we intentionally focused on assertion density

because previous research has shown its relation to test

code effectiveness [15]–[17]. As such, we are interested in

determining which factors are correlated to assertion density

and how development team’s experience contribute to it. We are

aware that other factors may relate to the test code effectiveness

(e.g., branch or mutation coverage [11]–[13]), but an analysis

of the factors influencing them is out of the scope of this paper.

The aforementioned hypothesis has led to the definition of two

main research questions:

• RQ1. To what extent is the experience of development
teams correlated to the assertion density?

• RQ2. How do developers perceive experience as a relevant
factor for assertion density?

As detailed in the next subsections, we addressed our

research questions by means of a mixed-methods approach [18].

In RQ1, we built a statistical model relating experience of

development teams to the assertion density of test classes, while

in RQ2 we conducted a survey study with 57 developers.

B. RQ1 — Research Methodology

In this section, we overview the methodology adopted to

address our first research question.

Context Selection. The context of the study consists of the

12 Java open source systems whose characteristics are shown in

Table I. Starting from the list of projects available on GITHUB
1, we first ordered them based on the number of tests. Then,

we re-ordered the list based on the repository activity, i.e.,
the number of commits performed over the last year. With

these two criteria, we randomly selected 12 systems having a

high number of tests and being actively developed: the first

criterion was used to set a minimum number of test classes

the considered systems should have to be part of our study,

i.e., no statistically sound method can be applied with few

data points; the latter was an important requirement aimed

at reducing possible threats to construct validity in the way

development team’s experience is computed (see Section V for

1https://github.com

further discussion). It is also worth noting that the randomly

selected systems come from different application domains and

have different characteristics, especially in terms of number

of developers and number of classes: as such, this selection

process mitigates possible threats to external validity. To enable

the replication of our study, we made the dataset available in

our online appendix [38].

Table I: Characteristics of the Software Projects in Our Dataset

System # Assertions #Commits #Dev. #Classes #Methods KLOCs

Adempiere 421 14,131 20 4,922 104,866 1,112
Camel 45,035 35,143 447 17,171 111,195 940
Commons-Lang 14,517 5,363 110 308 6,292 97
Groovy 1,914 15,578 267 1,453 19,198 207
Closure 14,986 13,568 406 1,182 27,867 268
Eclipse Che 5,525 7,550 113 7,871 44,678 357
Guava 38,049 4,861 171 3,057 46,964 480
Jabref 4,642 12,262 184 1,429 9,874 86
Metasfresh 8,641 23,561 14 11,433 152,367 1,407
Mockito 2,555 4,946 138 816 4,783 45
RxJava 17,041 5,515 236 1,616 25,211 266
xWiki 10,096 36,182 94 4,477 26,901 324
Overall 163,422 178,660 2,200 55,735 580,196 5,589

Extracting Development Teams Composition. The first

step needed to answer our research question was the ac-

tual identification of development teams in our dataset. To

this aim, we followed the same definition of development

team used by many previous studies (e.g., [39], [40]): in

particular, a team is defined as the set of developers who

have added/modified/removed lines of code to a certain (test)

class. We are aware that such a definition might lead to the

approximation of the real composition of the development

teams of the considered projects, e.g., a team member might

not necessarily contribute to the development of the test code.

However, this identification strategy is the only one available so

far and, according to previous studies [39], represents a valid

heuristic to estimate both size and composition of open-source

development teams.

Building a Statistical Model. Once we have extracted

the development teams composing our subject projects, we

proceeded with the definition of a statistical model relating

development team experience to assertion density. In the

following, we overview the steps that we have taken.

Response Variable Definition. The response variable in our

statistical model is the assertion density, which has been

defined by Kudrjavets et al. [15] as follow:

assertion density(Ti) =
#assertionsTi

KLOCTi

(1)

where #assertionsTi represents the total number of assertions

in a test class Ti and KLOCTi
is the thousands (kilo) of lines

of code of Ti.

Independent Variables Definition. Our goal was to measure

the extent to which the experience of development teams is

correlated to the assertion density of test classes. Thus, our

independent variables were represented by metrics computing

team experience under different perspectives. We relied

on the metrics defined by Kamei et al. [41]: experience

(EXP), recent experience (REXP), and subsystem experience
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(SEXP). The rationale behind their selection is twofold:

on the one hand, they can measure experience in three

orthogonal dimensions [41], [42], thus allowing us to more

comprehensively verify our research hypothesis. On the other

hand, these metrics have been widely employed in the past by

the research community and are well-established in the field

[43], [44]. Given a developer d, the first metric computes

the total number of commits performed by d on a certain

test class Ti (hereafter, we name this metric as “T-EXP” to

highlight that it refers to test classes); REXP refers to the

number of commits performed by d on Ti over the last three

months (“T-REXP”), while SEXP computes the number of

commits performed by d on the package containing Ti (“T-

SEXP”). Note that while the last metric does not directly

consider Ti, it still makes sense because developers that are

in charge of testing an entire subsystem might have more

confidence with the test classes it contains.

As we consider the overall experience of a development team,

we needed to compute these metrics at team-level. To do so,

we have followed a similar process to that of previous work

[39], [40]. Specifically, for each test class Ti:

• We identified the development team corresponding to Ti

(as described before in this section);

• For each developer, we computed T-EXP, T-REXP, and

T-SEXP;

• We aggregated the values of single developers using

the median operator, i.e., the final development team

experience was given by the median experience of the

involved developers. It is important to note that we

have adopted the median to mitigate the influence of

possible outliers (e.g., a team member having much more

experience than another one): nevertheless, this choice did

not bias our conclusions, as similar results have been

observed when considering the average experience of

developers in a team (see Section V for more details).

Besides computing the experience of development teams on

test classes, we also measured how the developers belonging

to those teams are expert globally, i.e., independently from

test classes. Indeed, it may be that the overall experience

of a developer influences her actions on source code, rather

than the specific experience on tests. To account for this

aspect, we computed EXP, REXP, and SEXP of development

teams on all classes of the considered systems, i.e., without

considering tests only. For the sake of readability, in the

following we name them as O(verall)-EXP, O-REXP, O-

SEXP. It is worth noting that other experience metrics have

been proposed in literature, like the commit-tenure [24], [40],

[45] which computes the experience of developers looking at

the contributions done over all GITHUB projects. However,

these metrics are domain-agnostic, meaning that they do

not distinguish the type of projects a developer contributes

to (e.g., third-party library or Android app) and, therefore,

can fail in identifying the actual experience of a developer

in a specific project. As we were interested in assessing

how developers add assertions in the specific context of

the considered projects, we preferred to compute within-

project metrics such as EXP, REXP, and SEXP. A further

investigation of domain-agnostic experience metrics is part

of our future work.

Control Variables.Although we conjectured that develop-

ment team experience is correlated to the assertion density of

test classes, it is worth remarking that other factors related to

both the structure of production and test code (e.g., number

of lines of code) might represent an important source of

information to understand the response variable [46]–[48].

To account for this aspect, we have defined a list of technical

factors having the role to control possible confounding factors

when evaluating the role of development team experience.

More specifically, we have computed the four categories of

metrics described in the following:

Size. The first factor we have considered is the size of both

production and test classes. Indeed, it might be possible

that the number of assertions present in a test class is

simply a reflection of the number of lines of code or the

number of methods belonging to the test class (i.e., the

larger the test class, the higher the number of assertions)

or the tested class (i.e., the test requires more assertions

to test a large production class); thus, we considered the

metrics Number of Methods (NOM) [49]—computed for

both production and test classes, i.e., prod.class.nom and

test.nom—and Lines of Code (LOC)—only for production

code, i.e., prod.class.loc—as control factors in our model;

Complexity. Intuitively, production classes having a higher

complexity require more effort to be tested [50], [51].

Following this conjecture, we computed the Weighted

Methods per Class (WMC) metric [52], which measures

the degree of complexity of a production class, i.e.,
prod.class.wmc. It is important to remark that WCM uses

the McCabe Cyclomatic Complexity metric [53], which in

turn is known to be important with respect to the number

of test cases (or assertions) that need to be written [54].

Similarly, we also computed WMC on test classes to check

the extent to which the complexity of the test is correlated

to the assertion density, i.e., test.wmc;
Cohesion. Low cohesive classes might contain code re-

sponsible for more than one responsibility [52]. As a

consequence, the corresponding test classes might require

more assertions to verify the behavior of the production

code. To control for this aspect, we computed the Lack

of Cohesion of Methods (LCOM5) defined by Henderson-

Sellers et al. [55] on the production classes of our dataset,

i.e., prod.class.lcom. Also in this case, we computed

LCOM5 on test classes too: indeed, low cohesion of

tests has been shown to be an important factor for test

effectiveness [56], [57], i.e., test.lcom;

Coupling. Production classes having a high level of coupling

tend to be less maintainable [46], [58]. As a result,

the corresponding test classes might require more assert

statements in order to carefully verify the behavior of the

tested code. For this reason, we compute the Coupling
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Table II: Complete list of survey questions.

n. Question Evaluation Criteria
Section I. Background
1 What is your current job? Multiple Choice (with the possibility, in addition, to write the job)
2 Experience in:

2.1 - Programming Multiple Choice (e.g., No Experience, 1-3 Years, More than 5 years)
2.2 - Industrial development
2.3 - Verification/Testing of Programs

3 What is your company size? Multiple Choice (e.g., more than 250 employees)
4 What is your team size? Multiple Choice (e.g., 5-10 team, Just me)

Section II. Relevant factors when writing assertions
5 Please rate the importance of the following aspects for writing assertions:

5.1 - Your testing skills
5.2 - Your experience within the domain of the project
(e.g., in past you worked on similar code and know where to check for bugs)
5.3 - Your experience within the project
(i.e., the knowledge accumulated on the project)
5.4 - Authority of the developer who wrote the production code
(e.g., For example, whether the production code has been developed by a core developer or a developer whose reputation is high, but he/she doesn’t test its code)

Likert Scale (i.e., from Not at all important to Extremely important)

5.5 - The characteristics of the production code that should be tested
(e.g., if you have to test a long or complex method/class)
5.6 - The characteristics of the test code
(e.g., if it already has assertions)
5.7 - The presence of test smells/anti-patterns
(e.g., a test method that exercises more than one production method)
5.8 - Other Text box

Section III. Further opinions

6 Can you please provide a brief explanation to your answers, by reporting how do you decide to add
an assertion in your tests and why these factors are (not) important?

Open Question

Between Object Classes (CBO) [52] on the considered

production classes, i.e., prod.class.cbo. Moreover, we

compute CBO on test units because coupling between

tests can affect test effectiveness [56], i.e., test.cbo.

In the end, the statistical model comprises a total of nine

control factors and six independent variables. For each of

them, we initially compute the standard deviation in order to

understand the distribution of each factor and whether there

are outliers that might possibly create bias in the statistical

model [59]. Based on the observed distributions, we then

decide to use the natural logarithm of the computed metrics as

independent variables of the model—the logarithm correction

is recommended to reduce the impact of outliers on the results

of statistical models [59].

It is important to point out that an intuitively interesting

control factor could be test coverage [60], [61], a measure

that expresses how many lines, branches or methods of

production code are actually exercised by the tests. However,

the coverage measure typically does not represent the quality
of a test: a more high-level (system/integration) test might

cover production code up to a certain percentage, while

more fine-grained (unit) tests might cover that same code

up to the same percentage of coverage [51]. Yet, more fine-

grained tests are likely to be more helpful to the developer

when trying to locate a defect. Because of the potentially

“misleading” nature of test coverage, we have decided not

to consider it as a factor; we aim to further investigate this

aspect in our future research agenda.

Statistical Modeling. Once we have collected all the re-

quired information, we devise a generalized linear model

(GLM) [62] relating development team experience and

control factors to assertion density for each of the projects in

our dataset. This statistical technique is used to fit a function

describing the continuous response variable (the assertion

density in our case) relying on a set of categorical and/or

continuous variables (in our case, experience of development

team and further control factors). We have used this statistical

modeling approach for two reasons. On the one hand, it is

able to analyze the simultaneous effects of both independent

variables and control factors on the response variable [63]. On

the other hand, it does not assume the underlying distribution

of data to be normal: in our case, we have verified the

normality of the distribution exploiting the Shapiro-Wilk

test [64], which fails to reject the null-hypothesis, i.e., our
data is not normally distributed and, as such, we had to

rely on GLM [62]. Note that we also verified that the other

assumptions made by the statistical method (e.g., errors are

independent but not normally distributed) are valid adopting

the standard diagnostics tools provided by the regdiag
package2 available in R.3

More formally, let Logit(πt) be the explained proportion of

assertions in a test t, let β0 be the log odds of the assertion

density being increased in a test, and let the parameters

β1 · t − expt , β2 · t − rexpt, β3 · t − sexpt, β4 · loct, etc.
be the differentials in the log odds of being the assertion

density increased for a test with characteristics t−expt−mean,

t−rexpt−mean, t−sexpj−mean, etc., the devised statistical

model is represented by the function:

Logit(πt) = β0 + β1 · t− expt + β2 · t− rexpt+
+β3 · t− sexpt + β4 · loct+
+...(other vars and β omitted for space reasons)

(2)

To implement the model, we rely on the glm function

available in the R toolkit. To avoid multi-collinearity we

use the vif (Variance Inflation Factors) function [65]

implemented in R to discard non-relevant variables, putting

a threshold value equal to 5 as recommended in literature

[65]. This method provides an index for each independent

variable that measures how much the variance of an estimated

regression coefficient is increased because of collinearity.

The square root of the variance inflation factor indicates how

much larger the standard error is, compared to what it would

be if that variable were uncorrelated with the other predictor

variables in the model. Based on this information, we can

understand which metric produces the largest standard error,

thus allowing the identification (and removal) of the metric

that is better to drop from the model.

2https://goo.gl/Z9WRrr
3https://www.r-project.org

227



Data Analysis. Once we have built the statistical model, we

address RQ1 by assessing whether the coefficients assigned

by the statistical model to the independent variables are

statistically significant (p < 0.05). In other words, we

verify that, despite the presence of the control factors, the

development team’s experience represents an important (i.e.,
statistically significant) factor when explaining the assertion

density of test classes. Moreover, in order to measure the

goodness of fit of our model we computed the R-square
coefficient [66], which is a measure determining how well

the model fits our data and how well it predicts new unseen

observations [66]. The coefficient is implemented in the rsq
package available in R.

C. RQ2 — Research Methodology
In RQ2, we aim at triangulating the results that we achieve

in the previous research question and understand developers’

opinions on the relation between experience and assertion

density. For this purpose, we conduct a survey study, whose

details are reported in the following.

Survey design. We define an anonymous questionnaire

composed of three main sections. In many cases, making a

survey anonymous leads to more honest feedback [67]; indeed,

previous studies have shown that when respondents are aware

that they will not be tied to their answers, a researcher may

get more insights [67], [68]. The structure of the survey, along

with the expected response type, is reported in Table II.
In the first section we collect demographic information of

the participants, including programming/testing experience as

well as some information about the size of company and her/his

team: we use this information to characterize the sample of

developers taking part in the study. In the second section,

we inquire participants about their opinions on the assertion

mechanism with the aim of gathering insights that can address

our research question. In particular, we ask what are the

crucial aspects for writing assertions: we provide them with a

predefined list of factors potentially being relevant when writing

assertions (e.g., ‘Testing Skills’ or ‘Experience in domain of

the project’ ) and requested them to rate the importance of

each of them using a 5-points Likert scale [69] ranging from

‘Not at all important’ to ‘Extremely important’. Of course,

participants could also indicate additional entries by filling

out a text box with other relevant aspects. It is important to

note that in this section we explicitly ask about the factor that

we want to measure, i.e., developer’s experience. With the

answers provided to the experience-related questions, we could

assess how much the experience counts for developers and

possibly corroborate the results of RQ1. Furthermore, in the

last part of this survey we asked participants to give further

opinions on whether and how tester’s experience is related

to the addition and management of assertions. In doing so,

we aimed at collecting additional insights that can help us in

answering RQ2 and better understanding developers’ opinions

on the factors related to the assertion density.

Survey dissemination. We have created the questionnaire

using a GOOGLE survey module and made it accessible from

December 10th, 2018 to January 10th, 2019. We have first

advertised it using our personal social network accounts, i.e., the
survey was available on FACEBOOK, TWITTER, and LINKEDIN.

Then, we have posted it on REDDIT,4 targeting three specific

sub-groups such as SOFTWARETESTING,5 COMPSCI,6 and

LEARN JAVA.7 We have selected these sub-reddits because (i)

they allow for the advertisement of surveys, (ii) they have a

large amount of subscribers (≈35,000, overall), and (iii) they

are all directly related to Java and/or JUnit. Finally, we have

also contacted developers through our personal contacts.

Survey recruitment. To stimulate developers to participate

in the study, we have followed the guidelines provided by

Flanigan et al. [70]. As such, we mitigate common issues

possibly arising in survey studies and affecting the response

rate by keeping the survey short, respecting the anonymity of

participants, and preventing our influence in the answers. As a

result, we have collected 57 fully compiled questionnaires: 4

of them came from personal contacts, 5 from TWITTER, and

the remaining 48 from the REDDIT sub-groups.

IV. ANALYSIS OF THE RESULTS

In this section we report on the analysis of the results

obtained for the two research questions formulated in our

study. For RQ1 we show the results of the statistical models

built for each system considered in the study. Subsequently,

for RQ2, we show through charts and box plots the results

of our survey. The raw data and fine-grained overview of the

results of the study are available in the online appendix [38].

A. RQ1 - Statistical Models results

Table III shows the results of the 12 models we have built,

one for each project in our dataset. Specifically, the set of

tables contain, for each independent variable and control factor

investigated (column “Factor”), the value of the estimate in

the regression model (column “Est.”) and the standard error

(column “S.E.”). The statistical significance is given by the

number of stars, i.e., ‘***’ indicates a p < 0.001, ‘**’ a p <

0.01, ‘*’ a p < 0.05, and ‘.’ a p < 0.1. It is important to note

that when a certain metric is associated with a blank cell in

the tables, it indicates that the metric has been excluded by

the model as a result of the vif analysis [65]. For the sake of

space limitation, detailed results i.e., goodness of fit for each

model as well as the script used in order to compute these

analyses are available in our online appendix [38].

Looking at the tables, it seems that the models follow

a common pattern: indeed, metrics related to the size and

complexity of test and production classes, i.e., NOM and WMC,

are usually discarded or have limited statistical significance in

only few cases. In particular, the result of the WMC metric

is pretty surprising: it measures the complexity of production

code and directly impacts testing efforts [53], however it turned

out that it has often a limited power. In other words, most

4https://www.reddit.com/
5Link omitted for double-blind rules
6Link omitted for double-blind rules
7Link omitted for double-blind rules
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Adempiere Camel Common-Lang
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -2.594 1.176 * -3.966 0.391 *** -2.498 1.185 *
o.exp -1.042 0.765 0.013 0.19 0.137 0.619
o.sexp -0.849 0.716 -0.304 0.142 * -0.115 0.49
o.rexp -0.625 0.371 . -0.014 0.154 0.572 0.518
t.exp -0.763 1.01 0.017 0.330 0.011 1.114
t.sexp 0.526 2.342 0.018 0.329 -0.849 1.069
t.rexp 3.452 1.032 ** 3.566 0.487 *** 5.6 0.987 ***
prod.class.loc 0.023 0.037 -0.105 0.114
prod.class.cbo -0.003 0.006 -0.005 0.006 -0.003 0.02
prod.class.lcom 0.014 0.012 -0.005 0.04
prod.class.nom 0.005 0.009
prod.class.wmc 0.002 0.016
test.nom
test.cbo -0.013 0.02 0.014 0.005 * -0.013 0.02
test.lcom 0.001 0.002 0.001 0.0004 ***
test.wmc

Groovy Closure Eclipse Che
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -5.525 1.624 *** -6.049 0.772 *** -5.819 0.447 ***
o.exp 0.23 0.845 0.279 0.51 0.402 0.374
o.sexp -0.895 0.608 0.531 0.414 -0.224 0.312
o.rexp -0.49 0.683 -0.266 0.287 -0.168 0.204
t.exp -0.947 1.471 -0.913 1.375 -1.324 0.395 ***
t.sexp -0.187 1.494 1.784 0.435 *** 3.926 0.865 ***
t.rexp 5.416 1.685 ** 6.668 0.386 *** 4.183 0.358 ***
prod.class.loc 0.25 0.151 . -0.033 0.063 0.326 0.051 ***
prod.class.cbo 0.011 0.027 -0.002 0.006 -0.025 0.005 ***
prod.class.lcom -0.003 0.0485 0.0001 0.0003
prod.class.nom 0.002 0.011
prod.class.wmc 0.013 0.023
test.nom
test.cbo 0.017 0.026 0.041 0.009 *** -0.005 0.004
test.lcom 0.0007 0.0002 ***
test.wmc

Guava Jabref Metasfresh
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -4.333 0.255 *** -4.019 0.866 *** -7.094 0.558 ***
o.exp 0.523 0.200 ** 0.272 0.345 0.837 0.353 *
o.sexp 0.643 0.166 *** 0.343 0.29 0.323 0.309
o.rexp -0.211 0.116 . -0.573 0.203 *** 0.17 0.2
t.exp 1.155 0.227 *** -0.166 1.471 3.944 0.576 ***
t.sexp 1.613 0.527 ** 0.168 0.92 0.595 0.904
t.rexp 2.482 0.268 *** 5.189 0.524 *** 3.807 0.721 ***
prod.class.loc 0.21 0.041 *** 0.164 0.047 ***
prod.class.cbo 0.010 0.003 *** -0.020 0.006 *** -0.009 0.003 **
prod.class.lcom -0.0002 0.0002
prod.class.nom
prod.class.wmc
test.nom 0.032 0.006 ***
test.cbo -0.003 0.003 -0.033 0.008 *** -0.001 0.004
test.lcom -0.0005 0.0003 * -0.0003 0.0006
test.wmc 0.044 0.02 * -0.211 0.053 ***

Mockito RxJava xWiki
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -0.566 1.430 -3.240 0.626 *** -4.047 2.78 ***
o.exp 1.149 0.526 * -0.168 0.242 -6.953 2.193 **
o.sexp 0.593 0.430 0.521 0.205 * 2.725 1.835
o.rexp -0.459 0.321 -0.630 0.146 *** -4.956 1.226 ***
t.exp -4.353 2.313 . 1.633 1.02 4.330 3.471 ***
t.sexp -4.035 1.489 ** -0.768 0.65 -8.115 5.590
t.rexp 3.806 0.887 *** 1.38 0.467 ** 8.816 3.782 *
prod.class.loc 0.073 0.088 0.243 0.045 *** 6.157 1.984 **
prod.class.cbo -0.037 0.015 * -0.051 0.013 ***
prod.class.lcom -0.0003 0.0004
prod.class.nom
prod.class.wmc
test.nom
test.cbo -0.006 0.012 0.026 0.009 ** -1.710 2.305 ***
test.lcom 0.0007 0.0005 -4.525 8.421
test.wmc -0.056 0.083 -0.250 0.031 **

Table III: Results achieved by the statistical models - S.E. =

Standard Error, Sig. = Statistical significance

of the metrics that are supposed to be correlated to the way

developers test production code in terms of assertion density

are instead not at all or not very significant.

With respect to the role of development team experience,

as shown in the tables, at least two of the experience-related

variables are significant in all the projects when describing

the phenomenon of assertion density; in particular, O-EXP

is statistically significant in four projects, while O-SEXP

and O-REXP are statistically significant in three and five

projects, respectively. The statistical relevance increases when

considering the metrics specifically related to testing experience:

indeed, T-EXP and T-SEXP are statistically significant factors

in five and four projects, respectively, while T-REXP is the

only metric that is significant in all the systems considered.

Thus, our findings seem to confirm our hypothesis: the
development team’s experience is correlated to the assertion
density of test classes. As a side effect, we can confirm what

previous works reported on the relation between experience

and testing practices, namely: the most expert developers

tend to better test production code [1], [4]–[7]. Furthermore,

our findings further stimulate and suggest the need for more

research on how developer-related factors can be employed

within software testing techniques.

Besides development teams experience, we also observe

that other control variables, mainly related to cohesion and

coupling, can partially explain the phenomenon of interest. As

an example, let us consider the case of ECLIPSE CHE. Here

all the metrics related to testing experience, along with the test

LCOM and production CBO are significant factors explaining

the assertions density of the system. On the one hand, this

means that test cohesion and product coupling can represent
important elements to assess the dependent variable (this is

true for more than one system considered); on the other hand,

it is worth noting that this is the fifth largest system considered

in our study (see Table I), possibly indicating that the assertion

density in larger systems tends to be mainly explained by test

class-related factors.

If we consider the other systems, we find that in GUAVA all

the metrics related to the developers’ experience are significant.

Analyzing the project deeper, we find that the statistical

significance of O-SEPX and T-SEXP can be explained by the

solid package division and good distribution of classes within

the system: this is confirmed by the value of the Modularization

Quality (MQ) metric [71] of the project, that is 0.85. Such a

good modularization likely made developers more focused on

specific aspects of the system and, as a consequence, more

expert of the way they should be exercised. A similar discussion

can be held when considering the METAFRESH project, where

we have found that O-EXP and T-EXP are significant. A

possible explanation could be given by looking at its repository.

In particular, we observe that only 4 out of 14 contributors

have continuously been active in the project right from the

start and have developed all the tests. As such, the testing

experience is concentrated within a small group of developers;

this aspect is correctly identified by both metrics, that are,

therefore, significant in this case. There are also smaller systems

like ADEMPIERE, GROOVY and APACHE COMMON LANG,

where we observe that the recent experience on test classes

(T-REXP) is relevant for explaining assertion density. Looking

at the ADEMPIERE repository, we notice that over the last

three months there is an increasing number of commits and

the development of both production and test code was very

active: likely, this has contributed to the statistical relevance of

T-REXP and O-REXP. As for APACHE GROOVY, we notice
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that the number of commits is quite low, so T-REXP could

better explain the phenomenon of assertion density. Finally, for

APACHE COMMON LANG, the number of developers working

on test cases is pretty low (20 out of 113 contributors), and

they frequently modify tests to make them compliant with the

changes of the production code: therefore, T-REXP turns to

be the metric that correlates better with assertion density.

As mentioned in Section III-B, we also verify the goodness of

fit of the devised statistical model using the R-square coefficient,

that is a metric to determine how well the model fits our data

and how well it predicts new unseen observations [66]. The

average value of the coefficient is 0.25. According to previous

studies [72], [73], this value is considered “moderate”, meaning

that the statistical models we have built can fit the data rea-

sonably well and, therefore, can well explain the phenomenon

of interest, i.e., assertion density. The detailed results achieved

for each project are available in the appendix [38].

To sum up, our findings reveal that, even when controlling

for production and test code variables, different experience-

related metrics turn out to be significant when explaining

assertion density. This seems to further demonstrate the role

of developers’ experience in testing activities and thus also

warrants further analyses into this research area.

Summary for RQ1: At least two of the considered

experience-related metrics turn out to be statistically signif-

icant factors to explain assertion density over the entire

dataset. Also, we have found that metrics like WMC

and NOM do not frequently correlated to the number of

assertions added by developers.

B. RQ2 - Survey analysis result

Figure 1 shows the background of our participants. This data

comes from the first four questions in Table II. Among the 57

respondents, 39% (22 participants) report that they have more

than 5 years of experience in testing activities, while another

42% (24) report between 1 and 3 years of experience. Moreover,

72% of the participants (mostly) work in industry, and 51%

(29) of them work in large companies having more than 250

employees. From these descriptive statistics, we can claim that

our sample is composed of a variety of developers having

enough experience in testing activities and whose opinions are

likely to provide us with valid and reliable insights into how

developers’ experience is correlated to the assertion density.

In addition, 32% of the participants work in a large team

composed of 5-10 people (18), 21% within a team of 10-12,

while the majority (35%) in a small team (i.e., 2-5 people).

Regarding the relevant factors for writing assertions, looking

at the boxplots in Figure 2 we see that the majority of them are

considered important, as indicated by the median value that is

close to 4. For factors such as Testing Skill, Experience within
the domain of the project (e.g., if in the past a developer has

worked on similar code and knows where to check for bugs),

Characteristics of Test Code, and Presence of Test Smells, we

notice that participants assigned a similar value of importance
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Figure 1: Graphics of the background of our participants

to all of them; this is also visible by looking at the tight shape

of the boxplots. Conversely, in the case of Experience within
the Project (i.e., the knowledge accumulated on the project) and

Characteristics of Production Code, the shape of the boxplots

is extended upward, meaning that participants’ answers are

mixed but also that some of them consider these factors highly

important (many times assigning a value of 5, i.e., extremely

important). Finally, we observe that Developers’ authority is

considered as having limited importance to write assertions,

i.e., the median value is very low with respect to the others.

Note that as a description of this factor, we have provided

the following statement: “Whether the production code has
been developed by a core developer or a developer whose
reputation is high"; in doing so, we try to verify if the status

of a developer can influence the decisions made during testing

activities. The results, however, highlight that our participants

are not concerned with this aspect, but rather they base their

decisions on good skillset and past experience, as also shown

in previous work [74], [75].

From the analysis of the answers provided to the second

section of the survey, we can claim that developers consider

experience and code quality as key factors influencing the deci-
sion to add test assertions. Thus, not only the survey confirms

our statistical analyses, but also highlights an additional aspect,

i.e., the relationship between test code quality [57], [76]–[79]
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Figure 2: Results related to the relevant aspects for writing assertions.

and assertion density should be further investigated.

Going deeper into the comments left by participants in the

last section of the survey, we can provide a more comprehensive

view of the usefulness of assertions and the way developers

decide to add them in test code. For instance, participant #20

(i.e., an industrial developer that works in a large team of 10-20

people with high experience in verification and testing activity)

stated that:

#20 - “Assertions make test-driven development
possible, which allows immediate feedback to how
the application should even run in the first place.
They keep bugs from regressing, and when they do
pop up, we know how to fix them”.

As such, we can deduce that having a high assertion density

is fundamental to properly verifying source code reliability.

Still, the mechanism of adding assertions is driven by the

experience of the development team. Indeed, as pointed out

by one the surveyed developers:

#15 - “The experience of who develops tests is
necessarily important to make them effective and this
influences the way assertions are inserted.”.

Thus, the results of the study seem to corroborate the findings

of RQ1. Nevertheless, according to our participants, there are

also drawbacks when it comes to an excessive usage of the

assertion mechanism, as it might create side-effects. More

specifically, two of the participants stated:

#7 - “Too many assertions in one test makes the
test less readable.”

#12 - “Testing the right things is hard. More
assertions do not automatically mean better tests.”

These opinions somehow recall the concept of assertion
roulette [76], a test smell which occurs when a test method

has multiple non-documented assertions. Multiple assertion

statements in a test method without a descriptive message

impacts readability/understandability/maintainability as it is

harder to understand the reason leading to the failure of the

test. Consequently, developers are concerned with the number

of assertions to add and try to determine when it is really

the case to add a new assert. Moreover, the last statement of

participant #12 suggests that assertion density is important but

is not the only aspect to consider for test code effectiveness;

thus, the quality of tests should be assessed by taking into

account additional and complementary aspects such as, for

instance, branch or mutation coverage [11]–[13].

In summary, the survey study highlights that, on the one

hand, experience represents an important factor when writing

assertions, thus corroborating our previous results coming from

the statistical modeling done in Section IV-A; on the other

hand, our findings also show that assertions need to be treated

carefully: although they are widely perceived as a key and

useful element for writing effective test cases, over-using them

may be detrimental to test design quality.

Summary for RQ2: The survey participants perceive

the role of experience as a relevant factor when writing

assertions, thus confirming the findings achieved when

statistically assessing the impact of experience-related

metrics on assertion density. Moreover, they also highlight

that test code quality plays a role.

V. THREATS TO VALIDITY

A number of threats might have influenced our findings. In

this section, we summarize and explain how we mitigate them.

A. Threats to construct validity

Threats to construct validity are related to the relationship

between theory and observation. In our case, they are mainly

due to the independent variables used within the statistical

model, as well as the dataset exploited in RQ1. To compute

the team’s development and testing experience, we relied on the

metrics originally proposed by Kamei et al. [41]. We are aware

of the existence of other metrics that can capture experience

under different angles (e.g., commit-tenure [40], [45]), and we

plan to explore their role as part of our future research agenda

as well as to measure the phenomenon at a finer granularity

(e.g., at individual-developer level). As for the control variables,
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we computed them using PYDRILLER,8 a publicly available

framework able to mine software repositories and compute a

number of code metrics. It is important to note that the tool has

also been evaluated by the original authors, showing excellent

performance [80]. Nevertheless, we cannot exclude possible

imprecision in the computation of such variables.

To extract development teams composition, we relied on the

definition previously used in literature [39], [40], i.e., a team is

the set of developers who have added/modified/removed lines

of code to a certain test class. While this definition has been

shown to be accurate enough [39], [40], [45], it may be possible

that in some cases it is inaccurate because of the presence

of developers that are not active anymore in the considered

projects, e.g., developers who worked on a test in the past but

that are now not part of the team anymore. We recognize this

threat to validity: the context selection process, which explicitly

selects systems which are still actively developed, partially

mitigated the possibility to consider non-active developers.

In the context of RQ2, threats are related to the way we

have measured how important the developer’s experience is

when writing assertions. In this regard, we have relied on a

5-point Likert scale [69] ranging from ‘Not at all important’ to

‘Extremely important’. However, being aware that this indication

only gives part of the story, we invited participants to further

explain the reported answers, in order to obtain a deeper insight.

B. Threats to conclusion validity

Threats to conclusion validity concern the relation between

treatment and outcome. A major threat in our context is related

to the statistical methods employed. To ensure that the model

is appropriate for the available data, we have first investigated

how similar studies performed their analyses [81] and verified

the assumptions made by the GLM technique on the underlying

data. Afterwards, to ensure that the experimented model did

not suffer from multi-collinearity, we have adopted the well-

established variance inflation factors function [65] to discard

non-relevant variables from the considered features, setting

the threshold to 5 as suggested by O’Brien [65]. In addition,

we have discarded outliers to avoid some interpretation bias

[82]. Moreover, we have computed the R-square coefficient

for evaluating the goodness of fit of our model. Finally,

we statistically verified our conjecture while applying some

precautions to avoid conclusion biases: in particular, we have

defined a number of control variables related to both production

and test code [52]. To compute a team-level measure of

experience, we have computed the median experience of the

developers composing a team: it is worth noting that the results

we have achieved were similar even when considering the mean

as operator, and thus we can exclude that this choice might

have biased our findings.

C. Threats to external validity

Threats to external validity relate to the generalizability of

the results. In our context, we analyzed 12 systems coming

8https://github.com/ishepard/pydriller

from various ecosystems (e.g., APACHE vs ECLIPSE), having

different application domains, and characteristics (size, number

of classes, etc.). However, studies aimed at corroborating our

findings on a different set of systems would be worthwhile.

At the same time, we gathered opinions from 57 developers.

Most of them had more than five years of programming

and testing experience and, therefore, this limited possible

threats to the validity and generalizability of the reported

answers. Nevertheless, also in this case a replication with more

developers would be beneficial to corroborate our findings.

VI. CONCLUSION

The role of developer’s experience for software maintenance

and evolution tasks has been widely explored in the past [2],

[3], [8]–[10]. Similarly, initial compelling evidence showed

that experience is also relevant in the context of software

testing [1], [4]–[7]. In this paper, we aimed at expanding on

this line of research by proposing an empirical study on the

role of development teams’ experience when writing assertions.

We first performed a quantitative study aimed at under-

standing the relation of experience to assertion density from

a statistical perspective on a set of 12 software systems.

Afterwards, we conducted a survey study that triangulated

the results and proposed insights coming from 57 developers.

To sum up, this paper proposed the following contributions:

1) Empirical evidence of the relation between the experience

of development teams and assertion density of test classes.

Our findings suggest that the higher the experience, the

higher the number of assertions present in a test. Given

previous findings that successfully related assertion density

to source code quality [15], our results highlight that the

composition of testing teams might represent an important

aspect to take into account to assist and improve both

software quality and reliability;

2) Insights from practitioners of how more expert developers

can produce better test cases, possibly discovering a

higher number of faults in production code. Furthermore,

our investigation provided hints on the decision-making

process followed by developers to decide on whether to

add new assertions in test code: this information may be

further explored to devise novel recommendation systems

that assist developers when writing test code;

3) A replication package containing all data and scripts used

to conduct our study [38].

Our findings represent the main input for our future research

on the topic. We aim at corroborating our findings on a larger set

of systems, possibly considering how the individual developer’s

experience plays a role in this context. Moreover, it would be

also interesting analyze how others factors, e.g., occurrences
of test smells or mutation coverage, are correlated to the

assertion density. Finally, more analyses on the way developer-

related factors influence software testing practices are part

of our research agenda, as well as the definition of novel

methodologies to help developers writing effective test code.
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