
Traffic optimization using a novel traffic
controller featuring distributed agents and

forecasting
Damian M. Voorhout

Computer science department, Delft University of Technology, Netherlands

Using some sort of adaptive traffic light control system is be-
coming standard policy among metropolitan areas. However,
controlling traffic lights efficiently on a city-wide scale is compu-
tationally intensive and theoretically complex. This paper aims
to show a proof of concept of an efficient and modular traffic
light controller with comparatively little computational over-
head. The proposed system features distributed agents, each
representing an intersection, capable of making individual de-
cisions. These agents base their decisions on short term traf-
fic flow forecasting and received information from neighbour-
ing agents on incoming traffic. Testing shows the proposed con-
troller being more efficient than less adaptive systems in terms
of reduced average vehicle time loss and reduced average vehicle
stop time. This paper describes the attractive properties of the
system in detail, shows the shortcomings of the design choices
and gives suggestions on how to improve the system in the fu-
ture.

| traffic light controller | traffic flow | traffic optimization | adaptive | forecasting
| distributed | ARIMA | SUMO |

I Introduction
Traffic, specifically traffic congestion, negatively impacts
several societal aspects such as worker productivity, eco-
nomic growth, commuter health and safety, travel reliability
and the environment (1, 2). Traffic intersections with
traffic lights are a way to alleviate some of the congestion
as they give a great amount of control over the flow of
traffic. Vast amounts of research has already taken place
in optimizing traffic intersections with the use of advanced
traffic controllers. More and more cities are starting to
employ such systems (3–6). Studer & Ketabdari (2015)
(7) show that existing adaptive traffic light controllers are
already showing significant improvement over more static
alternatives, with an up to 40% reduction of travel times.
However, many of these controllers have weak points such
as high computational requirements and a dependence on
vehicle detectors. The aim of this paper is not to show off
the most efficient traffic light controller, instead it aims to
show a proof of concept of a controller that tries to fix the
mentioned weak points of existing controllers while still

outperforming more basic models in terms of efficiency.
The main goal of this research is to find out whether
this could be achieved using an agent based system and
forecasting. These are the main aspects this paper focuses on.

Section II explains terms used in popular literature related to
traffic light control. Section III shows some of the existing
literature and controllers. Furthermore, it highlights the ad-
vantages and disadvantages of those controllers and serves as
an explanation for the design choices of the proposed con-
troller in section IV. Those design choices try to solve the
shortcomings of existing controllers while iterating on their
strong features.
In order to test the controller’s efficiency, multiple test re-
sults were obtained which can be found in section VI, section
V explains the method used to create the controller and how
the test results were obtained. Finally, section VII covers the
interpretation of the results section, gives a conclusion based
on the interpretations and gives suggestions on what future
work could be done on the proposed controller.

II Definitions
Before we take a look at some existing traffic control systems
and the proposed traffic controller, some definitions are in
order. Most of the upcoming explanations are from Warberg,
Larsen & Jørgensen (2008) (8) and Mathew (2014) (9).

• Lost time / time loss: The difference in time between
a trip where a vehicle can drive the speed limit at all
times and a trip where the vehicle needs to brake and
wait for any external factors such as other vehicles, in-
tersections and traffic jams.

• Stop time: Denotes the time a vehicle stands still.

• Controller efficiency / traffic flow optimization: The ef-
ficiency of a traffic light controller, or the optimization
of traffic flow, can have different meanings depending
on the context. The most common metric to measure
is the average time loss (sometimes also referred to as

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

the total delay) of all traffic participants in the network.
Others include total average trip time, total average
stop time and maximum stop time or some combina-
tion of those. The total average time loss, total average
stop time and maximum stop time will be considered in
this paper. Also, when no specific metric is mentioned
when discussing optimization or efficiency, the mini-
mization of those three metrics is implicitly meant.

• Cycle: All traffic lights on an intersection follow a cy-
cle. A cycle is complete when a certain traffic light
turns green, yellow and red and eventually green again.
Note that not all traffic lights need to turn green during
a cycle.

• Cycle time: The time it takes for a cycle to complete.

• Phase: A phase corresponds to a particular state of the
red, yellow and green lights of the traffic lights on an
intersection. For instance, on an intersection where ve-
hicles can only go straight, there are only four phases
that can take place: GRGR, YRYR, RGRG, and RYRY,
where each letter stands for the color of the traffic light
on a lane and the first letter corresponds to the top lane.
The order of the letters follows a clockwise scheme. So
a phase where the vertical lanes have green light while
the horizontal lanes have red light can be denoted with
GRGR. We then say the vertical lanes are experiencing
a green phase while the horizontal lanes are experienc-
ing a red phase, even though it is just one phase that is
taking place.

• Skipping phases: Iterating on the example of the pre-
vious item in this list about phases, the simple inter-
section has four phases: GRGR, YRYR, RGRG, and
RYRY. A traditional controller simply execute those
phases in order each cycle. However, more unconven-
tional controllers may skip a phase.
When a phase is skipped, one of the green phases is
not executed. If we assume the controller is currently
in the GRGR phase and it decides switching to RGRG
is inefficient, it may skip that phase entirely. It does
not switch to RGRG so YRYR does not need to be ex-
ecuted either, and neither does RYRY as the controller
does not need to switch back to GRGR as it is already
in that phase.
So when we talk about skipping a phase we always
implicitly refer to a green phase. Skipping a phase
ultimately results in the skipping of three phases, one
green phase and two yellow phases.

• Phase length: Denotes the length of a particular phase.

• Green time: Denotes the duration of a green light one
or multiple lanes get assigned during a cycle.

• Yellow time: Denotes the duration of a yellow light one
or multiple lanes get assigned during a cycle.

• Intergreen time: Denotes for a given phase all time a
vehicle could be moving through the intersection, but is
not. This includes yellow time, driver’s reaction time to
the green light and vehicles getting up to speed. It can
also be described as the time lost by switching phases.

• Artery: The dominant path most of the traffic follows
in a traffic network. This can either be one way, both
ways or alternating (morning commute, evening com-
mute etc.).

• Green wave: A green wave occurs when traffic along
the artery is given precedence over other traffic flows.
Traffic along this dominant path will experience cas-
cading green lights and can therefore continue their
journey without having to stop. Doing so leads to re-
duced waiting times and congestion for the masses.
This often disadvantages traffic participants on non-
dominant paths.

• Platoon: Denotes a large group of vehicles.

• Lag: Time interval in the context of statistics.

III Background
When designing a traffic light controller many design choices
need to be taken into account. This section will go over some
of these choices, the rationale behind choosing one option
over the other, and some existing systems which showcase
some of those features. The aim is to give a better under-
standing of the choices that were made for the proposed con-
troller, which can be found in section IV.

Static vs adaptive. When a traffic light controller is
considered static, it means the controller does not dynami-
cally adapt to external factors such as an increase in traffic.
This does not mean the controller runs the same cycle with
the same phase times all the time. It can for example change
its timings during rush hour. This is however set to happen
during a specific time interval.
The strength of these controllers lie in their simplicity.
They require little to no computing power and are easily
understood. They also don’t rely on detectors and other tools
outside of the junction. Static controllers are however often
less efficient as their adaptive counterparts since they can’t
adapt to ever changing traffic situations, both Gershenson &
Rosenblueth (2012) (10) and Gu et al.(2012) (11) show these

Page 2 of 12

III.2 Distributed vs centralized.

findings.

Adaptive controllers react and adapt to the incoming traf-
fic. By measuring or predicting traffic at incoming lanes the
traffic light controller can decide to change phases or phase
lengths. The obvious upside is the increase in control and
flexibility over static controllers which can lead to an increase
in efficiency (10, 11). However, they are often more compli-
cated and computationally intensive.

Distributed vs centralized. Coordination of traffic
lights can be achieved either via a distributed system, where
each agent acts on its own merit but can communicate
with other agents, or via a centralized system where one
server determines all actions of the network. Centralized
systems have an overview of the whole system and can make
informed decisions based on this information. Distributed
systems often have to make decisions based on information
gained from nearby nodes and usually make more short
term decisions. Optimal short term decisions can due to a
domino effect have negative effects in the long run (12).
However, it has been shown that a generalized form of traffic
light control, namely optimizing queuing network control,
is considered an EXP-complete problem, assuming P != NP
(13). This means the computational complexity increases
exponentially as the network size grows.

Tubaishat et al. (2012) (14) proposes a distributed sys-
tem with individual agents. These agents consist of control
agents, which each control an intersection, and communica-
tion agents, which relay information between agents. The
communication agents supervise a small number of control
agents and relay information between them and other con-
trol agents. This way no single agent needs to supervise the
whole network, decreasing computational complexity dra-
matically while still maintaining coordination between indi-
vidual agents.

Green wave modeling. When a controller employs
green wave modeling, it tries to enforce a green wave in some
way. Many systems have been proposed that aim to optimize
traffic flow by doing so. It has a number of advantages over
more static and traditional controller techniques. Some ad-
vantages are described by Gartner and Stamatiadis (2002)
(15):

• Overall reduction in congestion because of reduced de-
lay for the majority of traffic.

• Overall less stops by vehicles, which in turn reduces
vehicle emission because of cars needing to get back
up to speed.

• Vehicle speeds are more uniform, there is no incentive
to speed up, this only causes the driver to arrive at a red
light.

• Because of the more uniform speed and less overall
stops, the likelihood of accidents will decrease.

So the advantages of giving the masses preferential treatment
are vast. Some examples of controllers which incorporate
some form of green wave modeling are RHODES (16),
DOGS (17) and Phase-by-Phase (PP) (18).

RHODES is a triple layered system where the highest layer
is concerned with the macroscopic scale and keeps track of
changes in the whole network. The middle layer, the meso-
scopic layer, keeps track of large platoons going through
the artery of the network. The lowest layer, the microscopic
layer, keeps track of individual vehicles, increasing the
flexibility of the controller, giving it the option to give
preferential treatment to vehicles such as firetrucks and
police cars. RHODES is able to predict incoming individual
vehicles on a lane in the range of 20-40 seconds based
on measurements of nearby intersections. It can predict
platoons up to 150 seconds ahead of arrival. Because of
the complex implementation of RHODES, large amounts of
computing power are required.

DOGS uses a combination of static and adaptive techniques
to find a middle ground between computational complexity
and accuracy. When traffic load increases DOGS increases
the throughput of the arterial paths. During low traffic
periods, DOGS switches to a static algorithm with predeter-
mined cycle times and paths. It uses no forecasting methods
to predict traffic but instead uses measurements only. This
limits the flexibility of the controller as it relies solely on
detectors. When a detector fails, the system is updating
or maintenance is performed on a detector, DOGS cannot
switch to an adaptive system.

PP tries to solve some of the issues of other controllers such
as fixed cycle lengths or fixed increments of step variation of
cycle length. It also does not have fixed coordination between
intersections about green wave timings. It tries to track indi-
vidual vehicles with great accuracy and does so per junction.
Junctions are separate agents who do not communicate with
other agents and receive no information from a centralized
system. PP follows a set order of phases.

Forecasting vs Measuring. Traffic flow can be mea-
sured with the use of detectors. These consist of for example
cameras or magnetic strips that respond to changes in pres-
sure exerted on the road. Measuring cars is an easy and accu-
rate way of predicting short term incoming traffic. This can

Page 3 of 12

simply be done by placing a detector some distance in front
of the location in question.
Forecasting requires a model with parameters and data, but
does come with a number of benefits over just using measure-
ments to predict traffic flow. Below some of those advantages
are listed, do note that at least for forecasting short term traf-
fic flow, the data the model runs on will be collected with live
measurements. So forecasting does still make use of detec-
tors. For example, this means traffic forecasts for the next
minute are based on measurements of the past 10 minutes.

• Relying solely on measurements can be impractical as
we saw with the DOGS traffic controller: If a mea-
suring device fails or maintenance is performed, the
controller will in the best case have to fall back to a
static model. An adaptive model that uses forecasting
can still rely on earlier forecasts, or make new forecasts
based on historic data.

• When relying solely on measurements, the question
arises of where to place the measuring device. If the
measuring device is not placed far back enough on the
lane, it can happen that traffic backs up beyond the
measurement device. This leads to inaccurate data be-
ing provided to the controller. If the device is placed
too far back it can happen that it misses other sources
of vehicles, such as intersections with no traffic lights.
This also leads to inaccurate data. The only solution
would be to place multiple measuring devices per lane
per intersection, quickly increasing complexity and be-
coming impractical.

• Once a phase has been assigned it’s not efficient to sud-
denly switch to a different phase, this could lead to
very short phase times and therefor cost a lot of time in
terms of overhead. By predicting traffic and scheduling
phases ahead of time, no pre-emption of a phase has to
take place when a bad decision has been made, assum-
ing the predictions are accurate. This is related to the
second point in this list as there is a limit to how far a
measuring device can be placed from the traffic lights
and therefor a limit to the information the controller
has when it makes a decision. A decision that makes
sense the moment it is made, can become nonsensical
moments later as for example more traffic appears on
the lane that was just given a red light than the lane that
was given green light.

IV Design choices
In this section the proposed traffic light controller and the
rationale behind it are explained. The main goal of the
controller is to fix some of the weak points of existing

controllers such as high computational requirements and
a reliance on vehicle detectors. Other requirements for
the proposed controller include simplicity, flexibility and
modularity while still being efficient. The design choices
were made with those ideas in mind.

Overview. Each intersection acts as an individual agent
and makes its own decisions. It has full control over the
phase assignment and phase time. During the initialization
of a new intersection, the agent will be told by a centralized
system which of its lanes it shares with which neighbouring
agents and the time it takes to reach that intersection given
the allowed speed of that lane. Each agent is able to send
messages to neighbouring agents informing them of incom-
ing traffic it just let through its intersection. The intersection
which received information will use that to get an accurate
description of the incoming traffic of that lane. For the lanes
that are not directly connected to other agents, forecasting is
used to predict incoming traffic.
The controller is able to switch between two different modes,
reactive and predictive. The default mode is predictive,
but the controller can only switch to predictive when it has
gathered enough data to make forecasts. Also, when traffic
volume is low predicting vehicles is difficult, being off by
one can have a much larger impact when traffic volume is
low versus when it is high. Therefor the controller always
starts out in reactive mode and also switches to reactive
mode when traffic volume falls below a certain threshold.
Algorithm 1 shows roughly how the reactive mode works
in the context of a simple intersection where vehicles are
only allowed to go straight. In this mode no forecasting
is performed and information from neighbouring agents is
ignored, instead the controller relies solely on measurements
to make decisions. It simply looks at which lanes currently
contain the most cars and gives that lane a certain amount
of green time in order for all cars on that lane to pass
the intersection. In section III it was stated that relying
completely on measurements can be troublesome. However,
this controller only does so during specific times and can
always fall back to its predictive mode if it deems necessary.
Since not much more can be said about the reactive mode,
from now on when the controller is mentioned, we implicitly
refer to its predictive mode.

As the literature showed, some form of green wave model-
ing is beneficial for overall traffic efficiency. The proposed
model does not aim to enforce this explicitly but rather im-
plicitly by favouring lanes that have a large influx of traf-
fic. If every agent acts according to this logic a platoon will
form, which will enforce the upcoming traffic lights to act

Page 4 of 12

IV.2 Details.

Algorithm 1: Reactive mode

1 function queueNewDecision():
2 if (totalIncoming+ totalWaiting < 7 or size(totalMeasurements)< 10) and size(decisionQueue) == 0 then
3 if switchingGreenPhase then
4 /* switching phases, find out which phase we are in and append the relevant yellow phase to the queue */
5 yellowPhase = newY ellowPhase(currentPhase);
6 decisionQueue.append(Y ellowPhase);
7 else
8 /* we stay in the same green phase, no need to add a yellow phase */
9 end

10 if verticalWaiting > horizontalWaiting then
11 /* create a green phase with length based on the amount of waiting vehicles and append it to the queue */
12 verticalGreenPhase = newGreenPhase(verticalWaiting);
13 decisionQueue.append(verticalGreenPhase);
14 else
15 ... /* queue up horizontal green phase */
16 end
17 else
18 ... /* go into predictive mode */
19 end

as a green wave. Most existing models model this explicitly
by giving the artery lanes a minimum amount of green time
and increasing this duration according to the incoming load.
Often this is coupled with a set timing, which can be off due
to the nature of traffic. This makes it so the green wave is
enforced, but also makes the system less flexible. When for
example a sudden large influx of vehicles takes place on a
lane that is not considered the artery, those vehicles will not
be given priority.
Originally, this system also tried to tackle a shortcoming of
some existing models; the predetermined order of phases.
Most existing models like the PP model are very adaptive,
they have great predictive abilities, are able to change cy-
cle length and phase lengths. They do however still follow
a set order of phases each cycle and don’t skip phases, even
though this may lead to an increase in efficiency when a lane
with little incoming traffic is not granted green time for a cy-
cle. However, skipping phases needs to be done with care and
can have the opposite desired effect when done wrong. The
proposed controller skips phases when there are no vehicles
currently waiting in that lane and there are no vehicles pre-
dicted to arrive in the relevant time span. It also skips phases
that are allotted less time than a certain threshold. For the
sake of simplicity any other type of phase skipping was left
out of this prototype. Skipping cycles is discussed in more
detail in section VII.

Fig. 1. Cycle length versus total average delay. Image from Ahmed Y. Zakariya
& Sherif I. Rabia (2016) (19).

Details. During predictive mode the controller has to
decide on the order and length of the phases. It does so by
looking at the amount of incoming vehicles and currently
waiting vehicles. It can track currently waiting vehicle by
using two detectors per lane. one detector is placed some
distance before the traffic light, the other at the beginning of
the outgoing lane. When a vehicle passes the first detector
it is added to a queue. When a vehicle passes the outgoing
detector, it is removed from the queue. Each lane has its own
queue, this way the controller is able to accurately track what

Page 5 of 12

lanes should get priority.

Weights. When precedence is given to a large influx of vehi-
cles, the number of waiting vehicles on the non-artery lanes
will start to increase until their numbers are greater than the
incoming vehicles along the artery. This can make for high
wait times. In order to ensure fairness, instead of just taking
into account the number of waiting vehicles, the weight of
each vehicle is considered. When a vehicle just showed up
to a stoplight it has a weight of one, the longer it is forced
to wait the more its weight grows. This is done in a linear
fashion where a constant is added to the a vehicle’s weight
during each simulated time step, the constant is based on the
cycle length:

wn = wo + 1
Co

where:

• wn: The new weight of a particular vehicle.

• wo: The previous weight of a particular vehicle.

• Co: The optimum cycle time that is used by the con-
troller.

It should be noted that this formula has no mathematical
foundation as fairness is subjective and cannot be expressed
in mathematical fashion. The formula and its parameters
were simply chosen to find a balance between the maximum
wait time of a vehicle and overall average time loss in the
network.

Cycle time. In order for the controller to determine the phase
lengths, it first needs to know the cycle time and divide that
according to the demand, where lanes with more incoming
and waiting vehicles get more green time. If the cycle time is
too long a vehicle which has just missed the green light may
have to wait a long time, causing delay. If the cycle time is
too short, too much time gets wasted in terms of yellow time
and lost time (Fig. 1) (19). The optimal cycle time can be
found using Webster’s equation (20):

Co = 1.5L+5
1−

∑
(V/s)

Where:

• Co: Optimum cycle length in seconds.

• L: Sum of all intergreen times.

• V : The expected amount of traffic on a particular lane
in number of vehicles per second.

• s: The maximum amount of traffic on a particular lane
in number of vehicles per second.

Taking V as the maximum amount of expected traffic gives
us a cycle time of approximately 61.5 seconds. This is
rounded down to 60 seconds for simplicity. The values
that were used in this formula are found in the simulation
environment that was used to create the controller, more on
the simulation environment can be found in section V.

Phase order & importance factor. The order of the phases
is determined by something called the importance factor:

I = igp +wgp

it +wt

Where:

• I: The importance factor.

• igp: The total amount of vehicles that are incoming on
the relevant lanes of a particular green phase.

• wgp: The total weights of the queues on relevant lanes
of a particular green phase.

• it: The total amount of incoming vehicles on all lanes.

• wt: The total weight of all queues.

So for example, let’s again assume an intersection where
vehicles are not allowed to turn right or left. This intersection
has two green phases, namely the green phase for the vertical
lanes when the horizontal lanes have a red light, and the
green phase for the horizontal lanes, when the vertical lanes
experience a red light. In order to determine how important
it is that for example the vertical lanes get assigned a green
phase, the controller looks at the incoming vehicles and the
weights of the vertical lanes and compares that value to the
total incoming vehicles and weights. The phase with the
highest importance factor gets assigned first, then the one
with the next highest importance factor etc.

Phase length. As was said earlier, the controller determines
the phase lengths by dividing up the cycle length among the
phases according to priority and demand. The controller as-
signs green light to the lane with the highest importance fac-
tor first. Then with the cycle time that remains it assigns
green time to the lane with the second highest importance
factor etc. The amount of green time each lane gets is based
on demand and can be found with the following formula:

G= (lq+ igp)∗f +yt+ bt

Where:

• G: Green time in seconds.

Page 6 of 12

IV.2 Details.

• lq: The maximum length of all queues in question. For
example on an intersection where vehicles are only al-
lowed to cross the intersection and not turn left or right,
the relevant queues could be the two horizontal queues.
When the green time is determined according to the
longest queue, the shorter queue will by definition also
be granted enough green time to clear out.

• igp: The total amount of vehicles that are incoming on
the relevant lanes of a particular green phase.

• f : A constant that represents how fast vehicles are able
to clear out when they have reached the speed limit, in
seconds.

• yt: Time of the yellow light in seconds, only taken into
account when phase switching takes place.

• bt: Time needed for the drivers to react to the green
light and get up to speed, in seconds.

This formula makes sure each lane gets allotted green time
according to its demand. If the allotted time for a lane falls
below a threshold, that phase gets skipped. This threshold is
just to make sure a phase gets enough time to make at least
a single vehicle cross the intersection before the lights turn
yellow again. As was said before, any more complicated
phase skipping techniques are left out of this prototype.

Forecasting. To forecast incoming vehicles the controller
makes use of an autoregressive integrated moving average
(ARIMA) model. An ARIMA model is made up of three
parts; an autoregressive model (AR), the order of integration
(I) and a moving average model (MA).
The autoregressive model indicates that at time time t the
values Xt of the model are based on a linear weighted com-
bination of values at previous times:

Xt+1 =
p∑

i=0
φiXt−i + εt

where:

• Xt+1: The value at time t+1.

• p: The order of the autoregressive model, determines
how many previous values are taken into account to
forecast the value at time t+1.

• φi: The weight that is assigned to a value at time i.

• εt: A random value at time t called white noise. White
noise samples are a sequence of random uncorrelated
variables with zero mean and finite variance.

The moving average model is similar to the autoregressive
model in the sense that it makes forecasts based on a linear
combination of previous values. However, instead of relying
on the previous values themselves, the moving average model
relies on the error of the previous forecasts compared to the
actual value:

Xt+1 =
q∑

i=1
φiεt−i + εt +µ

where:

• Xt+1: The value at time t+1.

• q: The order of the moving average model, determines
how many previous values are taken into account to
forecast the value at time t+1.

• φi: The weight that is assigned to a value at time i.

• εt: The white noise error term. It describes the error
of the forecast at time t compared to the actual value at
time t. These terms are represented as white noise.

• µ: The mean of the data series.

Finally, the order of integration value reports the minimum
number of differences required for the data series to become
stationary. Differencing a series gives instead of two neigh-
bouring values nt and nt+1 the difference between those
values. A series is considered stationary when its statistical
properties are no longer dependent on time. This often
means the series doesn’t contain a clear seasonal trend.

The ARIMA model can be described in terms of its non-
negative parameters p, d and q which represent the orders of
the autoregressive, integrated and moving average indicators
respectively. For example, an ARIMA(1,2,0) model is simi-
lar to a twice differenced first order autoregressive model.
The quality of a model can be described, among other meth-
ods, by the Akaike information criterion (AIC):

AIC = 2k−2ln(L̂)

where:

• AIC: The Akaike information criterion.

• k: The total value of the parameters in the model. For
example, ARIMA(1,2,0) has a k of three.

• L̂: The maximum value of likelihood function of the
constructed model. Simply put, it estimates the prob-
ability that the given data is represented by the con-
structed model and its parameters.

Page 7 of 12

The AIC tries to find a balance between the simplicity of the
constructed model and the accuracy of the model. A lower
AIC is better.
Hamed et al. (1995) (21) showed that ARIMA(0,1,1) is
able to accurately predict traffic flow for a one minute
horizon. Furthermore, Williams et al. (2003) (22) showed
that even though traffic flow can be considered a non-linear
time series, and ARIMA is a linear model, it does well in
predicting short term traffic data.

The controller makes forecasts one lag ahead, so for the up-
coming cycle, which in this case is 60 seconds. It makes use
of auto ARIMA to construct a new model for every forecasted
lag and does so for every lane that requires forecasting. Auto
ARIMA is a way to brute force the three parameters of an
ARIMA model which minimize its AIC. While this does re-
quire some computing power, sticking to a single model for
each lane is not an option. In a short time frame such as 60
seconds, models change continually, the controller needs to
be able to adapt to those changes.

V Method
This section describes the steps and tools that were required
to create the controller, run simulations and gather meaning-
ful test results.

SUMO. Simulation of Urban MObility (SUMO) "is an open
source, highly portable, microscopic and continuous road
traffic simulation package" (23). SUMO was used to create
and test controller, the controller itself is written in Python.
SUMO offers the ability to retrieve and sometimes alter val-
ues such as the speed of vehicles, the gap between vehicles,
total average delay , total average trip time, total average stop
time and maximum stop time. The TRaCI library that comes
with SUMO was used to control the traffic lights during sim-
ulations. TRaCI offers the ability to switch between phases,
set phase lengths and implement completely new cycles dur-
ing simulation.

Scenario. To test the proposed controller a simple custom
scenario was built with the help of the SUMO net editor. The
scenario consists of two intersections located next to each
other in a horizontal fashion. On the intersection vehicles are
only allowed to go straight, figure 2 shows one of the inter-
sections. Each lane includes ingoing and outgoing detectors,
even the lanes that are connected to another intersection so
the controller can keep track of waiting vehicles on that lane.

Data. The data that was used to generate the simulated
vehicles was obtained from the public database of Highways
England (24), a government-owned company that handles

Fig. 2. Intersection controlled by agent. Shows one of the intersections of the
custom scenario, including its ingoing and outgoing detectors. The controller is
depicting a GRGR phase.

the operation and maintenance of many England roads.
The England Highway data aggregates its data over 15
minute intervals. Simulating a week exactly according
to this data would take 15 ∗ 60 ∗ 4 ∗ 24 ∗ 7 = 604800 time
steps if each second is simulated. Because of the way the
controller works this would take a significant amount of
time to simulate. In order to reduce the simulation time
the average amount of recorded vehicles each second is
calculated from the data and used to generate vehicles for
one minute intervals. This cuts down simulation time by a
factor of 15 while staying true to the original data. One of
the goals of this controller was to implicitly create some sort
of green wave model. This can only be done when there is
an artery among the network. To simulate this two different
data sources were used with similar total amount of traffic
volume on average, one for the vertical lanes and one for
the horizontal lanes. The total amount of vehicles on the
vertical lanes is then reduced by a factor. This simulates
an artery along the horizontal path as there will be more
vehicles on the horizontal path compared to the vertical path.
The vehicles on the vertical and horizontal lanes cannot both
be simulated by the same data source, otherwise incoming
traffic would be too predictable, as the vertical vehicle stream
is just a certain fraction of the horizontal vehicle stream.

Testing. The proposed controller is pitted against two
other models, a static fair model and a static optimized

Page 8 of 12

VI.1 Accuracy of forecasts.

model. These were chosen as they are relatively simple
to implement and are also representative of many existing
traditional controllers that are currently in use.
The fair model simply rotates phases and distributes green
time evenly. As was stated in section IV, the optimal cycle
length is approximately 60 seconds, both competing models
will make use of this. For the static fair model this means
that each green phase plus its previous yellow phase lasts 30
seconds.
The static optimized model also rotates phases determinis-
tically with a cycle time of 60 second, but distributes green
time according to demand. In this custom scenario where
the horizontal path is an artery, that path will experience
significantly more green time than the vertical paths. The
ratio between the horizontal green time and the vertical
green time is set at the beginning of the simulation and is
based on the average of all the traffic data that is used to
generate the vehicles. In a real life scenario this ratio would
be determined from historical data from the intersection in
question, or a similar intersection.

Each test involves 36000 time steps which roughly equates
to seven simulated days. The metrics of relevance are the to-
tal average time loss, total average stop time and maximum
wait time. The three controllers will be tested for those three
metrics in three different settings; low, average and high con-
gestion, which feature approximately 5000, 7800 and 10300
vehicles during the simulation respectively. This is to assess
how models function in different traffic situations and gives a
more complete understanding of the model’s behaviour. The
ratio between the volume of vehicles on non-artery and artery
lanes is approximately 1:4.

VI Results
In this section the acquired results from testing the pro-
posed controller against other models are shown. As the pro-
posed controller depends heavily on forecasts and informa-
tion supplied by neighbours to make decisions, this section
also includes subsections on the accuracy of those informa-
tion streams.

Accuracy of forecasts. Figure 3 shows the controller’s
measurements and forecasts of a horizontal lane that is not
connected to another traffic light intersection. At every lag
the controller forecasted one lag ahead, where each lag is 60
seconds in the simulation, note that 60 seconds within the
simulation does not equate to 60 seconds in real life, as was
discussed in section V. The figure also shows how the con-
troller didn’t make any forecasts for the first 10 lags as it
didn’t have enough historical data to base predictions on. The
controller is able to make fairly accurate predictions about the

Fig. 3. Measurements versus forecasts. Each lag denotes 60 seconds.

Fig. 4. Measurements versus agent supplied information. Each lag denotes 60
seconds.

amount of cars that are incoming, except for when there is a
sudden large drop or spike in traffic volume.

Accuracy of agent to agent communication. Fig-
ure 4 shows the information the agent received from the
neighbouring agent versus the actual measurements that were
done by the agent itself. This information is more accurate
than the forecasts the controller makes. However, there are
still slight inaccuracies.

Simulation results. Figure 5 shows how much time the
controller spent in either predictive or reactive mode. As
can be expected the higher the congestion, the less time the
controller spends in reactive mode. During high congestion
the roads are so congested the controller rarely switches to
the reactive mode at all.

Page 9 of 12

Fig. 5. Time spent in Reactive mode versus Predictive mode. Shows how many
lags, which are 60 seconds each, was spent by the controller in either reactive mode
or predictive mode.

Fig. 6. Average time loss. Shows the average time loss of a vehicle from each
model during low, average and high congestion. Lower values are better.

Figure 6 shows the time the average vehicle loses on a jour-
ney through the custom scenario and figure 7 shows the time
the average vehicle stood still during its journey. As expected
the static fair controller performs worst out of the three and
performs progressively worse as the amount of vehicles in the
simulation increases. While the other controllers also per-
form worse as traffic increases, this only seems to become
significant during high congestion.
The proposed controller performs best overall in average time
loss and average stop time categories, but only marginally.
During low and average congestion the proposed controller
outperforms the static optimized controller on average by
approximately 6% when it comes to average time loss and

Fig. 7. Measurements versus agent supplied information. Shows the average
time vehicles stand still in each model during low, average and high congestion.
Lower values are better.

Fig. 8. Measurements versus agent supplied information. Shows the maximum
time vehicles stand in each model during low, average and high congestion. Lower
values are better.

4% when it comes to average stop time. Interestingly, the
largest performance gap between the proposed controller and
the static optimized controller occurs during high congestion,
which is 11% for the average time loss values and 14% for
the average stop time values.
The maximum stop time in figure 8 tells a less clear cut
story. The maximum stop time of the static fair controller
rises steadily as traffic increases, and so does that of the
static optimized controller. Somewhat surprisingly the pro-
posed controller’s maximum stop time stays constant during
all types of traffic volumes, which makes it so the proposed
controller’s maximum stop time is less than halve the maxi-
mum stop time of the static optimized controller during high

Page 10 of 12

VII.1 Interpretation of results.

congestion. Nearly exactly the opposite is true during low
congestion.

VII Discussion
This section covers the interpretation of the gathered results,
a general conclusion and suggestions on what research can
be done in the future.

Interpretation of results. The ARIMA forecasts are
quite accurate, which is line with the existing literature.
The forecasts could be improved by tuning the amount
of previous lags the ARIMA model takes into account to
make forecasts. Reducing this amount could lead to faster
adaptation to sudden changes in traffic volumes, which the
model is currently somewhat slow to pick up on.

The inaccuracies of the information supplied by a neigh-
bouring agent highlights one of the largest shortcomings of
the proposed controller; the difficulty of synchronization.
The cycle time the controller operates in is different from
the time it takes for a vehicle to get from one junction to the
next. The controller aggregates the data received from the
neighbouring agent into the next forecasted lag, even though
the travel time in between the two intersections may be more
or less than the length of a lag. This can be remedied as long
as the travel time is longer than the lag by aggregating the
received information not into the next lag but into the second
or third next lag depending on the travel time. When the
travel time in between intersections is less than the duration
of a lag, the information received from the neighbouring
agent becomes useless as vehicles often arrive in the same
lag as they left in, which means the information can’t be used
for decisions in the next lag. In other words, vehicles have
already showed up at the intersection before the controller
is able to use the information of those incoming vehicles to
queue up a new decision.

Looking at the average time loss and average stop time, it
seems at least in a simple scenario as this one there is not
much to be gained from a more complex model compared
to a simple model when traffic volumes are low. This could
suggest that when congestion is low there is more room for
error, or the controller simply does not function as well in
those situations. However, the former option is more likely
as the controller switches to reactive mode relatively often
when traffic volume is low, and simply operates according
to demand. In other words, the proposed controller seems to
better live up to its potential during heavy congestion and at
the same time there may be no need for complex controllers
at intersections which experience little traffic.

The maximum stop time results are due to the weight based
system where vehicles that have been waiting for a long time
get priority. When using the proposed controller a vehi-
cle’s weight increases similarly in each setting, regardless of
whether congestion is high or low which explains why the
maximum stop times for the proposed controller stay con-
stant over multiple levels of congestion. Since this is dis-
advantageous at low congestion levels, it again suggests that
switching to a static model during low congestion is benefi-
cial.

Conclusion. The goal of this research was to find out
whether it was possible to create a traffic light controller
that fixes some of the limitations of existing controllers
while also meeting other criteria. The controller had to be
flexible, modular, require little in terms of computing power,
be efficient and not fully rely on detectors. The proposed
controller meets all criteria, to varying degrees.
Testing showed the proposed controller performing well
during multiple stages of traffic congestion, which can be
attributed to its ability to react to different traffic scenarios.
Each controller handles its own computations instead of one
system having to keep track of the whole network, leading to
relatively little required computing power.
In terms of modularity, the software side only requires a
newly initialized agent to know about its neighbouring agent.
However, any agent does need two detectors per lane to
function properly, making the initialization of a new traffic
intersection at least non-trivial.
The proposed controller spends most of its time in predictive
mode, which doesn’t fully rely on detectors and it can also
function without detectors at all.
The proposed controller outperforms the static fair and static
optimized models in terms of total average time loss and
total average stop time, but only marginally. Also, the results
suggest there is merit in switching to a completely static
cycle during low congestion.
Finally, communication between agents has its limitations,
suggesting the use of forecasting on all lanes to be more
advantageous.

We can conclude that although the proposed controller does
meet the criteria, it is hard to recommend the controller in its
current state as the benefits arguably do not weigh up to the
increased complexity compared to static models. The next
section highlights some changes which could make the pro-
posed controller more efficient.

Future work. One of the conjectured reasons the pro-
posed controller only performed slightly better than the
static optimized controller is the simplicity of the scenario.

Page 11 of 12

The scenario featured just two intersection with two phases
on which vehicles can only go straight. It is possible the
controller can better live up to its potential when there are
more phases to assign, so on intersections where cars are able
to also turn left and right. Also, one of its goals was to create
an implicit green wave by making cars move in platoons,
this could be better achieved by having more intersections.
It would be interesting to see if making those changes has
a positive effect on the proposed controller’s performance
compared to the static models.

This paper showcased the latest version of the proposed
controller, which didn’t feature elaborate phase skipping
techniques. However, previous versions of the controller did,
which performed noticeably worse. Intuition would suggest
that making a small amount of vehicles wait for a large
amount of vehicles makes for lower average time loss, and
this is the case, but only up to a certain point. If the controller
decides to make the non-artery lanes wait for a couple of
cycles before it grants them green light and later grants them
enough green light to clear out those lanes, it could actually
cause more average time loss than was initially gained by
giving the artery lanes priority. This is because the vehicles
on the artery lanes quickly pile up as the non-artery lanes
clear out. The time it takes then for the artery lanes to clear
out takes a significant amount time and a lot of time is lost in
terms of start-up. This process repeats itself as the non-artery
lanes pile up again. This suggests that phase skipping needs
to be done with care and is an interesting topic to pursue in
the future.

Lastly, it would be worthwhile to test this proposed con-
troller, but maybe more interestingly an improved version of
it, against more elaborate controllers. One of which could be
a static controller which enforces green waves in some way.
Others could also include existing models such as the ones
mentioned in the Background section.

Bibliography
1. Lomendra Vencataya, Sharmila Pudaruth, Ganess Dirpal, and Vandisha Narain. Assessing

the causes and impacts of traffic congestion on the society, economy and individual: A case
of mauritius as an emerging economy. Studies in Business and Economics, 13(3):230–242,
2018. doi: 10.2478/sbe-2018-0045.

2. Kai Zhang and Stuart Batterman. Air pollution and health risks due to vehicle traffic. Science
of The Total Environment, 450-451:307–316, 2013. doi: 10.1016/j.scitotenv.2013.01.074.

3. Megan Stacey. London city hall: Committee briefs, https://lfpress.com/2017/10/24/london-
city-hall-committee-briefs/wcm/bdd9d6ad-2b9b-92e3-0621-58878145fd6d, Oct 2017.

4. Douglas. Fighting miami-dade’s traffic war, one green light at a time,
https://www.miamiherald.com/news/local/community/miami-dade/article156709334.html,
Jun 2017.

5. T4america blog, http://t4america.org/2010/10/13/smarter-transportation-case-study-5-
traffic-signal-optimization-portland-oregon/, transportation for america.

6. Hemanta Pradhan and Tnn. Traffic signals: Adaptive traffic signals in-
stalled at 50 junctions in bhubaneswar | bhubaneswar news - times of india,
https://timesofindia.indiatimes.com/city/bhubaneswar/adaptive-traffic-signals-installed-
at-50-junctions-in-bhubaneswar/articleshow/63400658.cms, Mar 2018.

7. Luca Studer and Misagh Ketabdari. Analysis of adaptive traffic control systems design of a
decision support system for better choices. Journal of Civil & Environmental Engineering,
05(06), 2015. doi: 10.4172/2165-784x.1000195.

8. Andreas Warberg, Jesper Larsen, and Rene Munk Jørgensen. Green wave traffic
optimization-a survey. 2008.

9. Tom V. Mathew. Design principles of traffic signal. Transportation Systems Engineering,
pages 1–13, 2014.

10. Carlos Gershenson and David A. Rosenblueth. Adaptive self-organization vs static opti-
mization: A qualitative comparison in traffic light coordination. Kybernetes, 41(3/4):386–
403, 2012.

11. Yitian Gu, Vipul Singh, Liyan Sun, and Aditi Bhaumick. Adaptive traffic light control of traffic
network. Consumer Communications and Networking Conference, 4:187–191, 2012.

12. Jimmy Krozel, Mark Peters, Karl D. Bilimoria, Changkil Lee, and Joseph SB Mitchell. System
performance characteristics of centralized and decentralized air traffic separation strategies.
Air Traffic Control Quarterly, 9(4):311–332, 2001.

13. Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of optimal queuing network
control. Mathematics of Operations Research, 24(2):293–305, 1999.

14. Malik Tubaishat, Yi Shang, and Hongchi Shi. Adaptive traffic light control with wireless sen-
sor networks. In 2007 4th IEEE Consumer Communications and Networking Conference,
pages 187–191. IEEE, 2007.

15. Nathan H. Gartner and Chronis Stamatiadis. Arterial-based control of traffic flow in urban
grid networks. Mathematical and computer modelling, 35(5-6):657–671, 2002.

16. Pitu Mirchandani and Fei-Yue Wang. Rhodes to intelligent transportation systems. IEEE
Intelligent Systems, 20(1):10–15, 2005.

17. Steen Merlach Lauritzen. Evaluation of dogs. Road Directorate, 2004.
18. Michael Shenoda. Development of a phase-by-phase, arrival-based, delay-optimized adap-

tive traffic signal control methodology with metaheuristic search. PhD thesis, 2006.
19. Ahmed Y. Zakariya and Sherif I. Rabia. Estimating the minimum delay optimal cycle length

based on a time-dependent delay formula. Alexandria Engineering Journal, 55(3):2509–
2514, September 2016. doi: 10.1016/j.aej.2016.07.029.

20. Signal timing design - cycle length determination,
https://www.webpages.uidaho.edu/niatt_labmanual/chapters/signaltimingdesign/
theoryandconcepts/cyclelengthdetermination.htm.

21. Mohammad M. Hamed, Hashem R. Al-Masaeid, and Zahi M. Bani Said. Short-term pre-
diction of traffic volume in urban arterials. Journal of Transportation Engineering, 121(3):
249–254, 1995.

22. Billy M. Williams and Lester A. Hoel. Modeling and forecasting vehicular traffic flow as a
seasonal arima process: Theoretical basis and empirical results. Journal of transportation
engineering, 129(6):664–672, 2003.

23. Simulation of urban mobility, https://sumo.dlr.de/index.html.
24. Highways england, http://tris.highwaysengland.co.uk/detail/trafficflowdata.

Page 12 of 12

	Introduction
	Definitions
	Background
	Static vs adaptive.
	Distributed vs centralized.
	Green wave modeling.
	Forecasting vs Measuring.

	Design choices
	Overview.
	Details.

	Method
	SUMO.
	Scenario.
	Data.
	Testing.

	Results
	Accuracy of forecasts.
	Accuracy of agent to agent communication.
	Simulation results.

	Discussion
	Interpretation of results.
	Conclusion.
	Future work.

