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We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc
iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method.
Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates
with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic
moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic
fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the
present study we show that this assumption is not valid when the coupling between vibrations and magnetism is
taken into account. At the γ –δ transition temperature (1662 K), the lattice distortions cause very similar magnetic
moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced
back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with
increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results
illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic
properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ –δ transition temperature
electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

DOI: 10.1103/PhysRevB.93.224411

I. INTRODUCTION

Iron and its alloys form the material backbone for construc-
tions, vehicles, and tools. The magnetic properties of Fe render
it important for electrical motors, generators, and magnetic
data storage applications. Besides its industrial relevance, Fe
is also particularly interesting from a fundamental perspective
and has attracted enormous experimental and theoretical
attention. One of the key problems which has been studied
by various research groups for almost half a century is the
phase stability and the related bcc-fcc-bcc phase transition
sequence observed in Fe with increasing temperature [1–7].

Many studies have been devoted to the description of the
magnetic degree of freedom, and in particular the magnetic
Gibbs free energy contribution to the phase stability of Fe, in
the ferromagnetic and paramagnetic regimes. The employed
methods range from phenomenological approaches [1] to
quantum mechanical theories [2]. With the advent of high per-
formance computational resources, advanced first-principles
techniques can now be applied to study the magnetic and
electronic structure of Fe at elevated temperature. These
include the dynamical mean field theory (DMFT) [5,8–14],
Hubbard models [15], the dynamical coherent potential
approximation [16], extended Heisenberg models based on
parameters calculated with density functional theory [17–21],
spin cluster expansions [22–24], or spin-fluctuation theory [6].
For an overview of the recent advances in this field see, e.g.,
Refs. [4,25].

At ambient pressure, the structural phase transitions of Fe
take place in the paramagnetic state, at temperatures 65%
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(T α–γ = 1185 K) and 92% (T γ –δ = 1662 K) of the melting
temperature (TM = 1811 K). Thus, both magnetic disorder
and lattice vibrations are relevant for their understanding
and for accurate thermodynamic modeling. In recent years
the theoretical approaches have been further advanced to
study even the coupling between magnetic disorder and lattice
vibrations. Among the new approaches are the disordered local
moment molecular dynamics (DLM-MD) [26], spin-lattice
dynamics [27], DMFT based techniques [28], a spin-wave
method [29,30], and the spin-space averaging method [31–35].
All of these methods have revealed the importance of magnetic
fluctuations on finite-temperature lattice excitations. The
discussion of the role of vibrational entropies to the phase
stabilities has further been reignited by recent high temperature
phonon measurements [32,36,37].

Most of above works focused on the impact of magnetic and
electronic excitations on the atomic motion [28–36]. Much less
attention has been paid to the reverse effect, i.e., the impact of
atomic motion on the magnetic and electronic properties. Yin
et al. [38] studied the effect of lattice vibrations, employing
classical molecular dynamics, on the magnetic order-disorder
transition in bcc-Fe, and found a small effect on the calculated
Curie temperature but a large impact on the entropy change
of the transition. On the other hand, for the paramagnetic
state of Fe at the temperatures of relevance for the structural
transitions, the effect of lattice vibrations on the magnetic and
electronic structure is basically unknown. As subtle energetic
differences of only 1 meV/atom are known to be crucial even
for a qualitative description of the phase stabilities in Fe [3,39],
the effect of mutual magnetic-vibrational interactions needs
to be quantitatively assessed. We address this question by
employing the DLM-MD method, where the vibrations are
modeled according to ab initio molecular dynamics with
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interatomic forces calculated from density functional theory
in a series of rapidly changing disordered magnetic states
according to the concept of temporarily broken ergodicity [40].
This allows us to explicitly investigate effects of vibrational
excitations in the paramagnetic state and to compare the
magnetic and electronic properties of bcc (α and δ) and fcc
(γ ) Fe from 0 K up to the γ –δ transition temperature.

II. COMPUTATIONAL DETAILS

All calculations were performed using density functional
theory (DFT) and the projector augmented wave (PAW)
method [41], as implemented in the Vienna Ab initio Sim-
ulation Package (VASP) [42,43]. The generalized gradient
approximation (GGA) as formulated by Perdew et al. [44]
was used to treat exchange correlation effects. We employed a
Fe PAW potential considering the 3d and 4s electronic states
as valence. For comparison, selected calculations within the
local density approximation (LDA) [45,46] were performed
on top of the geometries obtained with GGA. The calculations
were based on 125-atom supercells consisting of 5 × 5 × 5
repetitions of the bcc and fcc primitive unit cells. A plane-wave
energy cutoff of 350 eV was used. For the molecular dynamics,
gamma-point sampling of the k space was employed, but
up-sampling to a 2 × 2 × 2 k-point grid was performed to
compute accurate local magnetic moments. Convergence tests
with a 3 × 3 × 3 k-point grid showed differences in local
magnetic moments of less than 0.01μB compared to the
2 × 2 × 2 grid.

For each considered temperature, calculations were per-
formed at the corresponding reported experimental [47] lattice
parameter or at the values from a quadric interpolation
or extrapolation from the experimentally reported values.
The total pressure of our DLM-MD simulations reveals for
all considered temperatures approximately the same small
negative pressure of about −7 GPa, irrespective of the
considered crystal structure, fcc or bcc. This is consistent with
the well-known underestimation of lattice spacing of bcc Fe
within GGA. The temperature-independent constant negative
pressure also indicates that theoretical and experimental
thermal expansion are very similar.

The paramagnetic state of Fe was modeled by the DLM-
MD [26] at five temperatures: 300, 1085, 1185, 1425, and
1662 K. This method has been applied previously to param-
agnetic materials, e.g., to study the bulk moduli [26], phonon
spectra and phase stability [48], alloying effects [49,50], and
defects [51] in CrN. To elucidate the separate and combined
impacts of magnetic disorder and lattice vibrations, we
additionally performed ferromagnetic MD simulations at two
selected temperatures, i.e., at 300 and 1085 K, the latter being
close to TC . We furthermore carried out static calculations
without vibrations, without and with magnetic disorder, the
latter modeled with the magnetic sampling method, a supercell
implementation of the disordered local moments method
where in the present case 21 different randomly generated
collinear disordered magnetic structures were evaluated and
averaged, as described in Ref. [52].

The MD simulations were performed using a time step
of 1 fs in a canonical ensemble (NV T ). The standard Nosé
thermostat [53] as implemented in VASP was used to maintain

the temperature and to avoid artificial energy drifts. The
corresponding Nosé-mass was set to a 40 time step period.
After every 5 MD timesteps, i.e., every 5 fs, the magnetic state
was rearranged using a random equal probability for spin-up
and spin-down moments on each site in the supercell, while the
positions and velocities of the atoms were unaltered. Thus the
magnetic state was changed often on the phonon timescale.
Simulating the magnetic disordered state by collinear disor-
dered spin configurations is assumed to accurately describe
the magnetic energetics in the fully magnetically disordered
state [40,52] and should thus also provide reliable, effective,
magnetically averaged interatomic forces in the adiabatic limit.
The MD simulations were carried out for up to 5000 fs,
of which a 1000 fs equilibration period was allowed in
all cases before statistical properties were evaluated. Local
magnetic moments were calculated with the PAW-projection
procedure of VASP. We note that the exact value of the obtained
local magnetic moments in itinerant magnetic systems (such
as Fe) depends on the chosen sphere radius in which the
magnetization density is evaluated. We carefully evaluated
different integration radii for the moments between 1.0 and
1.5 Å. No relevant changes are found for the investigated
temperature dependencies of physical quantities. Further, no
influence is observed by varying the initial magnetic moments
magnitude (between 1.8μB and 2.1μB ) or by changing the
density and magnetization density mixing coefficients during
the electronic minimization. During the 5 ionic steps of
MD, between re-initiations with new random magnetic states,
less than 1% of the magnetic moment changed sign. This
ensures that the transverse magnetic configuration remains
globally disordered with, on average, vanishing short-range-
order parameters. The theoretical relationship between a DLM
based model of the paramagnetic state and explicit many-body
theories, e.g., DMFT, is discussed in detailed in Ref. [25]

III. RESULTS AND DISCUSSION

A. Average local magnetic moments

We first consider in Fig. 1(a) the evolution with temper-
ature of the mean value of the magnitude of the local Fe
moments, as they are a key ingredient in many magnetic
theories and studies on Fe-based systems, both in historically
pioneering studies [54–56] and in recent works (see, e.g.,
Refs. [3,5,9–14,17,57,58]).

As a reference, we start with ferromagnetic (FM) bcc Fe
with the magnetic moments computed at a static lattice. The
temperature dependence of the moments is in this case only
caused by the thermal lattice expansion and electronic Fermi
smearing. In this static FM bcc case, the moments increase
linearly from 2.25μB at 300 K to 2.45μB at 1662 K, which
is a direct consequence of the increased distance between
the atoms due to thermal expansion resulting in stronger
localization of d electrons. Indeed, the isolated effect of
temperature induced electronic smearing is known to be a
small, less than 0.1μB , decrease of the moments in this
temperature range [59]. If in addition magnetic disorder is
taken into account by means of the DLM method but keeping
a static bcc lattice, the temperature-dependent trend originating
in thermal expansion remains similar (increase from 2.16μB
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FIG. 1. (a) Mean magnitude of local magnetic moments M̄ per
atom as a function of temperature in paramagnetic (DLM) bcc and
fcc Fe. All data points are calculated at the respective experimental
volumes. Electronic contributions are considered for the static and
the MD calculations by the corresponding Fermi smearing. The
shown MD calculations include effects of vibrationally distorted
local geometries on the magnetic moments. For comparison, static
FM calculations for bcc are shown. (b) Electronic and magnetic free
energy contributions to the bcc-fcc competition in Fe as a function of
temperature, with and without explicit vibrational effects.

at 300 K to 2.33μB at 1662 K) although the mean magnetic
moments are overall lower compared to the ferromagnetic
calculations. Due to the volume expansion, the mean moments
in fcc Fe in the DLM state calculated on a static lattice
are also increasing with temperature (1.85μB at 300 K to
2.24μB at 1662 K), but are lower compared to the bcc Fe
DLM moments. Thus, any analysis of paramagnetic Fe, based
on static lattice calculations within a DFT level of theory,
will likely conclude that bcc Fe has larger local moments
than fcc Fe. Including thermal expansion does not change
this, although the difference in moment for the two structures
becomes smaller.

Next we investigate the explicit effects of lattice vibrations
on the local moment mean values by applying DLM-MD,
with atoms vibrating around rather than being fixed on ideal
lattice sites. When including lattice vibrations, the mean local
moments of DLM bcc Fe decrease with increasing temperature
from 2.11μB at 300 K to 1.97μB at 1662 K. Thus, the effect of
thermal lattice expansion, which increases the bcc moments,
is more than compensated when the full vibrational degree
of freedom is taken into account. For DLM fcc Fe, explicit
vibrations also have a decreasing effect on the mean magnetic
moments, but to a smaller degree than for the bcc phase. Thus,
taking all effects of vibrations into account, mean magnetic
moments still increase with temperature in fcc Fe, from 1.77μB

at 300 K to 1.96μB at 1662 K. Our analysis shows that at

the γ → δ transition temperature, the average local magnetic
moments of paramagnetic fcc and bcc Fe are almost identical.

In order to verify that the effect of vibrations on magnetic
moments observed above is not artificially caused by our use of
the GGA approximation for the exchange-correlation energy,
we also carried out LDA calculations. The results obtained
with LDA show the very same trends with temperature
and the same effect of vibrations. The small difference is
that, in DLM-MD simulations at 1662 K, the LDA bcc Fe
moment, 1.59μB , is still slightly larger than the LDA fcc Fe
moment, 1.52μB .

It is interesting to compare our findings with the results
of Ruban et al. [17] who studied the temperature dependence
of bcc Fe moments caused by entropy driven longitudinal
spin fluctuations on a static lattice, neglecting explicit lattice
vibrations and thermal expansion. It was found that the local
bcc Fe moments decreased from 2.01μB to 1.85μB between
1040 and 1500 K [17]. This decrease is similar to our findings
for bcc Fe once both thermal expansion and explicit vibrational
effects are considered, even though the physical mechanisms
investigated are different. Ruban et al. [17] sampled the longi-
tudinal magnetic degree of freedom explicitly by constrained
spin DFT. In the present work, the longitudinal spin degree
is indirectly sampled by vibrationally induced local atomic
distortions. The qualitatively similar findings by Ruban et al.
and in this work might therefore be explained by the fact
that in both cases the energy scale of longitudinal magnetic
fluctuations of paramagnetic bcc Fe is probed.

A direct comparison between the absolute values of
local moments as obtained in the present work from the
magnetization density with the effective moments obtained
in DMFT or dynamical coherent potential approximation
(CPA) calculations is hindered by the fact that the latter
moments are typically obtained indirectly from fitting to a
Curie-Weiss-type law of the inverse magnetic susceptibilities.
For the temperature trend, Igoshev et al. found a weak decrease
of bcc-Fe effective moments with temperature [14]. Kakehashi
and Patoary found a weak increase in effective moment with
temperature in their dynamical CPA calculations for bcc
Fe [16]. Leonov et al. [5] used GGA+DMFT and calculated
the temperature dependence of the square of the instantaneous
local moments 〈m2

z〉. They found that both bcc and fcc Fe
moments increased with temperature [5]. On the other hand,
Igoshev et al. performed LDA+DMFT calculations and found
that 〈m2

z〉 of bcc Fe decreased at high temperature [11]. Both the
effective local moments and the obtained critical temperature
of DMFT calculations depend heavily on the parameters U and
J [13]. All DMFT calculations so far have been done assuming
an ideal lattice, thus neglecting vibrationally induced disorder.

It is our view that both explicit magnetic and electronic
dynamical excitations—see, e.g., work by Ruban et al. [17]
or results on the DMFT level, which are not included here,
as well as the vibrational dynamics introduced in the present
work—are needed together in a future complete quantitative
description of paramagnetic Fe.

In order to asses the impact of vibrations on magnetic free
energies of paramagnetic Fe, we use the approximation that
the magnetic entropy of a material in the paramagnetic state
is given by Smag = kB ln (M̃ + 1), where M̃ = 1

N

∑N
i |Mi |

denotes the mean local magnetic moments [3]. This expression
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was found to be a good approximation for bcc Fe well above
TC [20]. We thus use it to analyze the impact that changes
in local magnetic moments have on the relative bcc-fcc phase
stability using

�F mag = −T
[
S

mag
bcc (T ) − S

mag
fcc (T )

]
. (1)

The results of static calculations and DLM-MD calculations
are shown in blue in Fig. 1(b). There it is seen that the larger
local moments in bcc Fe result in a relative stabilization
of this phase. In the static calculations, this stabilization is
3 meV/atom at low temperature and increases to 5–4 meV
between 1085 and 1662 K. However, when taking into
account the coupling between lattice vibrations and magnetic
moments, the stabilization diminishes at high temperature as
the bcc and fcc local moments become similar. Thus, the
explicit vibrational impact effectively removes the magnetic
contribution to the stabilization of the bcc phase at the
temperature of the γ –δ transition; the actual value of �F mag

that we find in this case is merely −0.3 meV/atom.

B. Local environment effects on magnetic moments

Thermally induced vibrations distort the atomic positions
and invalidate the model of atoms sitting on identical, ideal
lattice sites. In fact, different atoms experience different
and dynamically changing local geometries. In particular,
for a fixed global volume, each atom possesses a different
local volume, which can be evaluated, e.g., via a Voronoi
construction [60]. Our DLM-MD and FM-MD simulations
give us direct access to the spread in local magnetic moments
and their connection to the local geometries as well as to
the global magnetic state. The dependence of the individual
local magnetic moments on the Voronoi polyhedra volumes
is shown in Fig. 2 as a comparison between bcc and fcc Fe
at different temperatures. At 300 K, the FM-MD calculated
local moments in ferromagnetic bcc Fe shown in Fig. 2(a)
are distributed just below the static mean moment (black
dashed line). The small horizontal spread reflects the low
amplitudes of lattice vibrations at room temperature. When
increasing the temperature and considering the paramagnetic
bcc phase at 1185 and 1662 K [panels (c) and (e)] the
distribution of calculated local volumes as well as calculated
values of magnetic moments are much broader. One can
observe that the magnetic moments of atoms with a large local
volume qualitatively follow the line describing the static lattice
moments. However, the moments of atoms that have a smaller
local volume fall below the static lattice line and in addition
display a large spread in moment values for the same local
volumes. This could be understood if the magnetic moments
are sensitive not only to the local volume, which depends
on the distance to all the neighbors, but could be heavily
suppressed even if only one or two of its neighbors are present
at very close distances. The static lattice line corresponds to
the maximum shortest neighbor distance for a given volume.
Thus, the observed distribution of local moments in the MD
simulations, with shorter distance to their closest neighbor for
a given local volume, supports such an interpretation.

Considering paramagnetic fcc Fe, right column of Fig. 2,
we see similar trends as for bcc Fe. However, it is striking that
the DLM-MD simulation of fcc Fe already at 300 K displays

FIG. 2. Contour plots of the distribution of local magnetic
moments versus the corresponding local Voronoi polyhedra volumes
of the atoms of bcc (left) and fcc (right) Fe at different temperatures
obtained with DLM-MD (FM-MD for bcc at 300 K) simulations.
In all cases, the corresponding temperature-dependent experimental
data is used to determine the total volume of the supercell. The mean
local moment of static DLM (FM) bcc and fcc Fe as a function of
volume is shown as solid (dashed) lines for comparison.

a distinct spread in local moment values, even though the low
temperature only induces limited spread in local volumes. This
is an illustration that DLM fcc Fe is a quite itinerant magnetic
system with sensitive values of the local moments. This is in
agreement with the conclusion drawn from DMFT calculations
by Igoshev et al. [11].

Two observations can be done using the local moment
analysis of Fig. 2. First, the mean moments derived from static
DLM calculations are all larger compared to the mean values
from the MD runs, i.e., the black/red lines are higher than
the mean value in the contour plots. This implies that lattice
vibrations weaken the mean local magnetic moments, which is
consistent with Fig. 1. A comparison between Figs. 2(c)–2(f)
reveals that the corresponding effect is stronger in bcc than
in fcc Fe (see the difference between the scatter plot and
the static DLM curve) and results in an effective decrease
of the mean local moments of bcc Fe in the paramagnetic
regime.
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FIG. 3. The calculated total (spin-up + spin-down) electronic
DOS of fcc (red shaded) and bcc (black) Fe. (a) Ferromagnetic state
in a static lattice, (b) ferromagnetic MD at 1085 K, (c) disordered
local moments in static lattice, (d) disordered local moments MD at
1662 K. Calculations are performed at an electronic temperature of
T = 0 K in order to be able to clearly distinguish magnetic from
vibrational disorder which could otherwise be hidden by electronic
smearing.

Second, if the temperature is increased to 1662 K, the
local moment distributions in both crystal structures in Fig. 2
become apparently similar. Thus, the almost identical local
mean magnetic moments close to the γ –δ transition observed
in Fig. 1(a) are not a mere coincidence of the averaging
procedure, but rather a result of the whole distribution of
individual moments becoming similar. The global volumes
of fcc and bcc Fe at 1662 K differ by less than 1% while
the first standard deviations of the local volume distributions,
caused by vibrations, are much larger: more than 15% of
the total volumes. This could explain a similar behavior of
a local property, such as the magnetic moments, even though
the global structural differences between bcc and fcc phases
remain.

C. Electronic structure

We now consider the impact of magnetic disorder and
lattice vibrations on the electronic structure of Fe. For this
purpose we show in Fig. 3 the total electronic densities of
states (DOS) for bcc and fcc Fe computed under different
conditions. For the sake of clarity, the electronic temperature
is omitted in the derivation of this figure. Figure 3 shows in
(a) results of calculations for a system with ferromagnetic
order at a static lattice and in (b) the electronic structure for a
system with ferromagnetic order including lattice vibrations at
T = 1085 K. We show in (c) the electronic structure for DLM
magnetic disorder at a static lattice, and in (d) DLM magnetic
disorder including lattice vibrations at the T γ –δ = 1662 K. The
most significant difference between bcc and fcc electronic
DOS is found at T = 0 K in the ferromagnetic state. Both
lattice vibrations (b) and magnetic disorder (c) smear out
the DOS to some extent, but distinct characteristics remain,
particular close to the Fermi level. However, when both

magnetic disorder and high temperature lattice vibrations are
considered together in (d), the DOS of the two phases becomes
very similar, showing us an electronic origin to the evolution
of the magnetic moments discussed above.

Using our static and MD electronic structure calculations
we can calculate the electronic free energy contribution to the
relative bcc-fcc phase stability. This is done by subtracting the
electronic 0 K energy from the electronic finite temperature
free energy for each considered lattice geometry and magnetic
state. The difference between bcc and fcc electronic free
energies is plotted in green in Fig. 1(b). Under the assumption
of static lattice positions, the fcc phase is stabilized by the
electronic contributions with 3 meV/atom at 1662 K. On
the other hand, when the impact of lattice vibrations is
taken into account, this difference disappears, leaving only
a 0.3 meV/atom electronic free energy preference for fcc.

To summarize, when the effect of lattice vibrations is
considered, the magnitudes of the magnetic and electronic
free energy contributions to the structural phase transitions in
Fe are each found to be well below 1 meV/atom at the γ –δ

transition and with different sign. If the effects of vibrations
are neglected, they are several meV/atom each, although their
combined effect is smaller due to different sign. These findings
are in line with the recent suggestions by Neuhaus et al., based
on experimental measurements of phonon dispersions, of a
very small impact of electronic and magnetic free energies in
the stabilization of δ-Fe [37].

IV. CONCLUSION

We have employed disordered local moments molecular
dynamics to study the impact of lattice vibrations on magnetic
moments and electronic structure in paramagnetic bcc and fcc
Fe. Lattice vibrations have a strong impact on these properties
with consequences for phase stabilities. In particular, explicit
treatment of the lattice vibrations causes a decrease in the mean
magnetic moments in paramagnetic bcc Fe with increasing
temperature and significantly reduces the increase of the
moments of paramagnetic fcc Fe.

Our work reveals that at the γ –δ phase transition temper-
ature the local magnetic moments as well as the electronic
densities of states of paramagnetic bcc and fcc Fe are nearly
identical. The relative stabilization of bcc compared to the fcc
phase due to the magnetic free energy contributions is found to
be strongly suppressed. Also electronic free energy differences
between fcc and bcc Fe are suppressed due to vibrations.

If neither electronic nor magnetic contributions play a large
role for the high-temperature phase stability of bcc δ-Fe,
as shown in Fig. 1(b), one might anticipate that vibrational
entropy contributions are the driving force for the γ –δ transi-
tion. We note, however, that the Gibbs free energy difference
between bcc and fcc Fe in a large temperature window ranging
from T α–γ to T γ –δ is in the order of 1–2 meV/atom according
to empirical data [61] as well as state-of-the-art first-principles
calculations [3]. This is likely to rule out the possibility
of identifying a single physical mechanism (vibrations, or
magnetic or electronic excitations) being responsible for the
phase stability sequence, and at the same time reveals the
genuine importance of taking into account all excitations,
including their mutual interactions. In particular, we have
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shown that the explicit consideration of vibrationally induced
lattice disorder is crucial for any first-principles based theory
aiming at a quantitative description of paramagnetic iron.
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[32] F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger, B.
Fultz, and J. Neugebauer, Phys. Rev. Lett. 113, 165503 (2014).

[33] Y. Ikeda, A. Seko, A. Togo, and I. Tanaka, Phys. Rev. B 90,
134106 (2014).

[34] L. Zhou, F. Körmann, D. Holec, M. Bartosik, B. Grabowski,
J. Neugebauer, and P. H. Mayrhofer, Phys. Rev. B 90, 184102
(2014).
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