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A B S T R A C T

A micromechanical model for simulating failure of unidirectional composites under cyclic
loading has been developed and tested. To efficiently pass through the loading signal, a two-
scale temporal framework with adaptive stepping is proposed, with a varying step size between
macro time steps, and a fixed number of equally spaced micro time steps in between. With the
focus on matrix dominated failure under off-axis loading, viscoplasticity and microcracking are
included in the model for the polymer matrix, while carbon fibers are modeled as elastic. For
a proper representation of viscous deformation in the matrix under cyclic loading, a two-scale
version of the Eindhoven Glassy Polymer constitutive model is formulated, that is based on
time homogenization with an effective time increment. The failure state of the representative
volume element is reached by the initiation and damaging of cohesive microcracks. Cyclic and
static degradation are represented by using Dávila’s fatigue damage function, which is built
on top of Turon’s quasi-static cohesive model. The model results are compared with available
experimental data on unidirectional carbon/PEEK composites tested at different stress levels,
load ratios, frequencies and off-axis angles. Plasticity controlled and crack growth controlled
failure mechanisms, characteristic of the long-term response of polymeric composites, are
captured by the model, as well as their distinct frequency dependence. As a limit case, the
model is able to reproduce the time to failure in creep loading, where the heterogeneous
microstructure and viscoplastic flow of the matrix trigger the evolution of quasi-static damage.
However, for the studied material system, the present model does not accurately reproduce the
load ratio dependence and the off-axis angle dependence of the crack growth controlled failure
mechanism.

. Introduction

The problem of fatigue in composites sparks research effort in experimental characterization as well as in computational
odeling. Experiments represent the starting point to understand the thermo-mechanical behavior of the material under different

oading conditions. However, experimental campaigns for characterizing composites under fatigue loading are expensive and time
onsuming (Dávila, 2020). In that regard, modeling offers the possibility to reduce the number of required experiments, but also to
etter understand the mechanisms underlying the fatigue failure process.
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Usually two failure regimes are observed in composites under long-term loading. These two failure regimes are sometimes called
plasticity controlled failure, for ductile failure, creep rupture or low-cycle fatigue, and crack growth controlled failure for brittle
racture or high-cycle fatigue (Kanters et al., 2016). When fatigue results are plotted in the form of 𝑆-𝑡 curves (maximum applied

stress versus time to failure in a double logarithmic plot), the plasticity controlled regime is insensitive to the loading frequency,
i.e., the material response can be approximated with a single line for different frequencies (Kanters et al., 2018). On the other hand,
the time to failure in the crack growth controlled regime shows dependence on the loading frequency and shifts towards shorter
imescales with increasing frequency. Alternatively, and more commonly in the composites literature, fatigue results can be reported
n the form of 𝑆-𝑁 curves (maximum applied stress versus number of cycles to failure in a loglog plot). In this representation, the
lasticity controlled mechanism is frequency-dependent, while the crack growth controlled fatigue behavior is often regarded as
requency-independent. However, frequency dependency of the crack growth mechanism was reported for glass fiber-reinforced
olyphenylene-ether (PPE)/polystyrene (PS) blend by Kanters et al. (2018), depending on the load ratio 𝑅:

𝑅 = 𝜎min

𝜎max (1)

where 𝜎min and 𝜎max stand for the minimum and the maximum stress in the experiment, respectively. For lower values of the load
ratio, the number of cycles to failure is largely independent of frequency (Kanters et al., 2018), and can be approximated with a
single line. However, as the load ratio increases, the measured number of cycles to failure in the crack growth regime varies with
frequency (Kanters et al., 2018).

The literature on micromechanical modeling of composites is rich, where representative volume elements (RVEs) with a random
fiber distribution have been used to model different features of the material: stiffness (Melro et al., 2012), plastic flow (Van der
Meer, 2016), strength (Totry et al., 2008), water diffusion (Rocha et al., 2017), in-situ effects (Arteiro et al., 2014), etc. However,
he number of numerical models dealing with the long-term time-dependent behavior of the material, including fatigue, is limited.
he majority of microscale models for fatigue are based on the mean-field homogenization techniques (Reifsnider and Gao, 1991;

Hessman et al., 2023; Mohammadi et al., 2021), which are computationally efficient but miss the actual geometry of the material
icrostructure. In a multiscale approach, a unit cell was used by Fish and Yu (2002), and Crouch et al. (2013) to simulate the

fatigue response of structural components. A model developed by Ni et al. (2023) takes into account the more detailed geometry of
omposites in a bond-based peridynamics framework. Although dimensionally not the microscale, an example presented in that paper

closely resembles the composites microstructure loaded in transverse tension. Rocha et al. (2019) also introduced a micromechanical
odel for high-cycle fatigue under transverse loading together with techniques to speed-up the simulations. To the best of our

knowledge, there is no computational model in the literature able to reproduce the observed frequency dependency of the 𝑆-𝑁 (or
𝑆-𝑡) curve, for both plasticity controlled and crack growth controlled regimes. We aim to develop a model that can capture these
dependencies, believing that such ability indicates that the model describes the relevant physics for time- and cycle-dependent failure
of thermoplastic composites. Here, we tackle this issue by introducing a microscale spatial and two-scale temporal framework to
predict failure of unidirectional (UD) composites under cyclic loading.

To impose an off-axis stress on the RVE, kinematical and stress relations inherit the form from our previously published RVE
model for creep rupture (Kovačević et al., 2024). Two important requirements are set for numerical models describing the long-
erm behavior under cyclic loading. Firstly, the loading strategy must ensure computational feasibility, where tracing the loading

path in detail is too demanding, and secondly, the material models must be formulated such that deformation of the constituents
under the simplified loading strategy matches the deformation obtained for the actual loading scheme. Accordingly, we propose an
adaptive two-scale time stepping scheme with time homogenization including the macro time steps where viscoplasticity evolves in
the polymer matrix, and micro time steps where the material response is elastic, but the stress evolution over the cycle is recorded.
The polymer response under cyclic loading is represented with the Eindhoven Glassy Polymer (EGP) material model (Van Breemen
et al., 2011) for which a two-scale temporal version is formulated. The state variables of the two-scale EGP model are updated at

acro time steps using an effective time increment, based on information collected at micro time steps. Carbon fibers are modeled
ith a hyperelastic transversely isotropic constitutive model (Bonet and Burton, 1998). Microcracking of the matrix due to cyclic

loading is accounted for by means of Dávila’s cycle-dependent cohesive model (Dávila, 2020), with the fatigue damage function as
presented in Joosten et al. (2022). Cohesive segments are added on the fly (Camacho and Ortiz, 1996), when a suitable initiation
criterion is satisfied (Hofman et al., 2024), for which we introduce a small modification in this study. The cohesive model is able
o represent the kink point in 𝑆-𝑁 curve distinguishing between the low- and high-cycle failure mechanisms, but not the frequency
ependency of each failure mechanism. Its formulation is built on the notion that for a given stress, the number of cycles governs
ailure, and includes no frequency or time dependence. The timescale, and correspondingly the observed frequency dependency,

is introduced in the model through the viscous response of the matrix represented with the (two-scale) EGP model. To make the
ohesive zone model compatible with the two-scale EGP model, cohesive initiation and damage evolution are blocked at micro
ime steps. The RVE model results are compared with available experimental 𝑆-𝑁 (or 𝑆-𝑡) curves of UD carbon/PEEK thermoplastic
omposite material, tested at different load ratios, frequencies and loading angles (Sundararajan, 2024).

The content of the paper includes the following topics: homogenized kinematical and stress relations to impose an off-axis stress
on the RVE; description of the bulk material models including the formulation of the two-scale EGP model; review of the cohesive
zone model (CZM); introduction of the adaptive time stepping strategy; evaluation of the model performance in comparison with
experimental results and conclusions.
2 
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Fig. 1. Cyclic stress applied on unidirectional composite material under off-axis angle (left); deformed material (middle); Cauchy stress components on the
material in local frame (right).

Fig. 2. Homogenized Cauchy stresses on RVE faces (left) as a result of the force vector components applied on the master nodes (right); nonzero displacements
of master nodes also indicated in the right figure.

2. Off-axis loading: homogenized kinematics and stress

Uniaxial cyclic loading is applied on a unidirectional composite material under an off-axis angle, see Fig. 1 (left), where the
initial off-axis angle 𝜒 is defined as: 𝜒 = 90◦−𝜃0, 𝜃0 being the initial angle between the global 𝑥-direction and the local 𝑒1-direction.
In this setting, the orthotropic material deforms in extension as well as in shear, see Fig. 1 (middle). Allowing for finite strains in
the material, the local coordinate frame aligned with the reinforcement may change orientation from the angle 𝜃0 to a new angle
𝜃1. In this deformed configuration, the stress state can be transformed from the global coordinate system to the local frame, to
obtain the Cauchy stress components shown in Fig. 1 (right). The goal is to simulate this deformation process on the microscale by
means of a thin slice 3D RVE, aligned with the local frame. The homogenized deformation and stress state of the RVE must be the
same as that in Fig. 1. Correspondingly, the homogenized Cauchy stress components acting on the RVE faces are shown in Fig. 2
(left). This stress state is imposed on the RVE with periodic boundary conditions through the force vector components applied on
the four master nodes of the RVE, see Fig. 2 (right). In the same figure, along with the force vector components, the corresponding
nonzero displacements of the master nodes are also indicated. A detailed discussion on this choice of boundary conditions is part
of Kovačević and Van der Meer (2022). The boundary conditions enforce periodicity in the deformation process (Van der Meer,
2016), also allowing for microcracking (Ke and Van der Meer, 2022).

Equations needed to impose an off-axis loading on the RVE assuming finite deformations were introduced in Kovačević and
Van der Meer (2022). A small adjustment to impose an off-axis creep stress, including a constant engineering stress, was presented
in Kovačević et al. (2024). Exactly the same framework is used here, with the adjustment that the applied stress 𝜎𝑦𝑦 cyclically
changes its magnitude. Relevant equations are repeated here, without detailed explanation. Expressions for the nonzero force vector
components on the master nodes read:

𝑓11 = 𝜎𝑦𝑦𝐴
0
1𝐽

(

𝑠21
𝐹11

− 𝑐1𝑠1
𝐹12

𝐹11𝐹22

)

𝑓21 = 𝜎𝑦𝑦𝐴
0
2𝐽

𝑐1𝑠1
𝐹22

𝑓 = 𝜎 𝐴0𝐽
𝑐21

(2)
22 𝑦𝑦 2 𝐹22
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where 𝐴0
𝑖 is the initial surface on which the corresponding stress component is acting, 𝐽 is the determinant of the RVE homogenized

eformation gradient in local frame �̄�, 𝑠1 and 𝑐1 are sin(𝜃1) and cos(𝜃1) respectively, while 𝐹𝑖𝑗 are components of �̄�:

�̄� =

⎡

⎢

⎢

⎢

⎣

𝐹11 𝐹12 0

0 𝐹22 0

0 0 𝐹33

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝑢11
𝑙01

𝑢21
𝑙02

0

0 1 + 𝑢22
𝑙02

0

0 0 1 + 𝑢33
𝑙03

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

Here, 𝑢𝑖𝑗 is the displacement of master node 𝑖 in direction 𝑗, whereas 𝑙0𝑖 is the initial length of the RVE in direction 𝑖. �̄� can be
related to the homogenized deformation gradient in global frame 𝐅 through the following relation:

𝐅 = 𝐐T
1 �̄�𝐐0 (4)

where 𝐐0 is the transformation matrix:

𝐐0 =

⎡

⎢

⎢

⎢

⎣

cos(𝜃0) sin(𝜃0) 0

− sin(𝜃0) cos(𝜃0) 0
0 0 1

⎤

⎥

⎥

⎥

⎦

(5)

The transformation matrix 𝐐1 shares the same form with 𝐐0, but depends on the angle 𝜃1. This angle is computed as: 𝜃1 = 𝜃0 + 𝜙,
where the angle 𝜙 measures reorientation of the RVE in the deformation process. The procedure to compute the angle 𝜙 is detailed
in Kovačević and Van der Meer (2022).

By knowing 𝐅, different strain measures in the global loading direction can be computed. For example, the true (logarithmic)
strain reads:

𝜀𝑦𝑦 = ln(𝐹𝑦𝑦) (6)

where 𝐹𝑦𝑦 is a component of 𝐅. Alternatively, the engineering strain can be computed as:

𝜀eng
𝑦𝑦 = 𝐹𝑦𝑦 − 1 (7)

If a constant engineering stress is considered in the analysis, the actual stress 𝜎𝑦𝑦 in Eq. (2) is obtained by correcting the engineering
stress for the previous deformation:

𝜎𝑦𝑦 =
𝜎eng
𝑦𝑦

𝐹𝑥𝑥𝐹𝑧𝑧
(8)

where 𝐹𝑥𝑥 and 𝐹𝑧𝑧 are components of 𝐅.
The expression for the internal force vector in the presence of cohesive microcracks and the absence of body forces is adopted

according to Kovačević et al. (2022).

3. Constitutive models

In this section, the different constitutive models used in this study are described. The material parameter values that are used
in the numerical simulations are also given. In the Appendix, an overview of all model parameters is given, along with a discussion
n how they can be identified from experiments.

3.1. Eindhoven Glassy polymer constitutive model

To represent the behavior of the polymer matrix under cyclic loading we formulate a two-scale temporal version of the EGP
material model. The governing equations of the EGP model are briefly reviewed, in order to set the stage for the two-scale version
f the model.

Different from many material models dealing with plasticity, the EGP does not define a yield surface. Instead it features a viscosity
unction, which changes with the stress applied on the material (Tervoort et al., 1997), such that the yielding is considered as the
tress-induced melting (Van Breemen et al., 2011). Several assumptions are introduced in the EGP formulation, starting with the

multiplicative decomposition of the deformation gradient into elastic and plastic parts:

𝑭 = 𝑭 e ⋅ 𝑭 p (9)

In this equation the italic font is used to distinguish the deformation gradient at the integration point level, from the homogenized
deformation gradient of the RVE, Eq. (4). The plastic deformation is assumed volume preserving, i.e.:

𝐽 = det (𝑭 ) = det (𝑭 e) (10)

Yet another assumption says that the Cauchy stress is additively decomposed in three stress tensors:

𝝈 = 𝝈h + 𝝈r + 𝝈d (11)
4 
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Fig. 3. Mechanical analog for driving stress of the EGP model; multiple Maxwell elements connected in parallel can also distinguish between two different
elaxation processes: 𝛼 and 𝛽.

where 𝝈h is the hydrostatic, 𝝈r the hardening, and 𝝈d the driving stress tensor. The hydrostatic stress tensor is defined as:

𝝈h = 𝜅(𝐽 − 1)𝐈 (12)

in which 𝜅 is the bulk modulus and 𝐈 is the second-order unit tensor. The hardening stress tensor 𝝈r represents the effect of
reorientation of the molecular network in a loading process, and has the following form:

𝝈r =
1
𝐽
𝐺r�̃�d (13)

Here, 𝐺r is the hardening modulus, whereas �̃�d is the deviatoric part of the isochoric left Cauchy–Green deformation tensor defined
s:

�̃� = 𝐽−2∕3 (𝑭 ⋅ 𝑭 T) (14)

One should note that there are alternative definitions of the hardening stress in the EGP, which may be elastic or viscoelastic (Senden
et al., 2012).

Together with the hydrostatic stress, the driving stress represents intermolecular interactions of a polymer (Van Breemen et al.,
2011). The mechanical analog for the driving stress of the EGP is shown in Fig. 3. This part of the total stress tensor admits multiple
relaxation processes in the model, representing the thermorheologically complex behavior of the material (Klompen and Govaert,
1999). Each process may be modeled with multiple modes, that is with multiple Maxwell elements connected in parallel. Assuming
wo relaxation processes 𝛼 and 𝛽, the definition of the driving stress tensor 𝝈d reads (Khaleghi et al., 2022):

𝝈d =
𝑝
∑

𝑘=1
𝝈𝛼 ,𝑘 +

𝑞
∑

𝑙=1
𝝈𝛽 ,𝑙

= 1
𝐽

𝑝
∑

𝑘=1
𝐺𝛼 ,𝑘�̃�d

e𝛼 ,𝑘 +
1
𝐽

𝑞
∑

𝑙=1
𝐺𝛽 ,𝑙�̃�d

e𝛽 ,𝑙
(15)

Here, 𝐺𝑥,𝑗 is the shear modulus of Maxwell element 𝑗 from process 𝑥, where 𝑥 is either 𝛼 or 𝛽 and 𝑗 is either 𝑘 or 𝑙; �̃�d
e𝑥,𝑗 is the

eviatoric part of the isochoric elastic left Cauchy–Green deformation tensor in Maxwell element 𝑗 belonging to process 𝑥; 𝑝 and 𝑞
epresent the total number of 𝛼 and 𝛽 modes, respectively. To compute �̃�d

e𝑥,𝑗 it is necessary to integrate the rate equation:
̇̃𝐁e𝑥,𝑗 =

(

�̃� − 𝐃p𝑥,𝑗
)

⋅ �̃�e𝑥,𝑗 + �̃�e𝑥,𝑗 ⋅
(

�̃�T − 𝐃p𝑥,𝑗
)

(16)

where �̃� is the isochoric velocity gradient and 𝐃p𝑥,𝑗 is the plastic part of the rate of deformation tensor belonging to process 𝑥 and
Maxwell element 𝑗. This tensor is defined by introducing a constitutive relation of the following form:

𝐃p𝑥,𝑗 =
𝝈𝑥,𝑗

2𝜂𝑥,𝑗 (𝜏𝑥, 𝑝, 𝑆𝑥, 𝑇 )
(17)

where 𝜂𝑥,𝑗 is the viscosity of the corresponding Maxwell element. In the context of the EGP model, the viscosity function motivated
y the Eyring flow theory (Eyring, 1936) depends on the equivalent stress 𝜏𝑥, the hydrostatic stress 𝑝 = −𝜅(𝐽− 1), the state parameter

𝑆𝑥 and the absolute temperature 𝑇 :

𝜂𝑥,𝑗 = 𝜂0𝑥,𝑗
𝜏𝑥∕𝜏0𝑥

sinh(𝜏𝑥∕𝜏0𝑥)
exp

(

𝜇𝑥𝑝
𝜏0𝑥

)

exp(𝑆𝑥) exp
[

𝛥𝐻𝑥
𝑅

(

1
𝑇

− 1
𝑇ref

)]

(18)

In this equation 𝜂0𝑥,𝑗 is the initial viscosity of the corresponding Maxwell element, 𝜏0𝑥 the characteristic shear stress, 𝜇𝑥 the pressure
dependency parameter, 𝛥𝐻𝑥 the activation enthalpy, 𝑅 the gas constant, and 𝑇ref = 298.15 K is the reference absolute temperature.
The equivalent stress reads:

𝜏𝑥 =
√

1
2
𝝈𝑥 ∶ 𝝈𝑥 (19)

where 𝝈𝑥 =
∑

𝝈𝑥,𝑗 . The characteristic shear stress reads:

𝜏0𝑥 =
𝑘B𝑇
𝑉𝑥

(20)

in which 𝑘B is the Boltzmann constant, and 𝑉𝑥 is the activation volume.
The state parameter 𝑆𝑥 takes into account the thermodynamic history of the material, and is defined as a product of the aging

parameter 𝑆a𝑥 and the softening function 𝑅𝛾 𝑥 (Klompen et al., 2005). However, following earlier work on creep rupture (Kovačević
et al., 2024), the aging parameter is set to zero.
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Table 1
EGP model parameters.
𝜅 [MPa] 𝐺r [MPa] 𝑉𝛼 [nm3] 𝑉𝛽 [nm3] 𝛥𝐻𝛼 [kJ/mol] 𝛥𝐻𝛽 [kJ/mol] 𝜇𝛼 = 𝜇𝛽 𝑆𝛼 = 𝑆𝛽

2600 25 3.518 3.518 375.87 325.28 0.08 0

Table 2
Relaxation spectrum of the EGP model.
𝑥, 𝑗 𝐺𝑥,𝑗 [MPa] 𝜂0𝑥,𝑗 [MPa⋅s]

𝛼 , 1 521.96 1.992⋅1026
𝛽 , 1 455.96 4.965⋅1022
𝛽 , 2 385.58 5.518⋅1021
𝛽 , 3 312.50 6.761⋅1020
𝛽 , 4 238.85 2.108⋅1019
𝛽 , 5 166.87 1.591⋅1015
𝛽 , 6 98.51 2.571⋅1012
𝛽 , 7 35.14 7.086⋅109

In the EGP model, the equivalent plastic strain �̄�p is obtained by integrating the corresponding rate equation:

̇̄𝛾p =
𝜏𝛼 ,1
𝜂𝛼 ,1

≡ 𝐶 , 𝜏𝛼 ,1 =
√

1
2
𝝈𝛼 ,1 ∶ 𝝈𝛼 ,1 (21)

where 𝜏𝛼 ,1 is the equivalent stress of the mode with the highest viscosity 𝜂𝛼 ,1. For the sake of time homogenization procedure, this
ratio is also denoted by 𝐶.

Since the time derivative of the isochoric elastic left Cauchy–Green deformation tensor, Eq. (16), is not an objective tensor,
he formulation for the driving stress is cast into a form relying on the plastic right Cauchy–Green deformation tensor 𝐂p that is
nvariant. A relation between this tensor and the tensor �̃�e can be derived. In the context of the Updated Lagrangian formulation,
his relation in the modal form reads:

𝐂p𝑥,𝑗 = 𝛥�̃� T�̃�−1
e𝑥,𝑗𝛥�̃� (22)

where 𝛥�̃� is the incremental isochoric deformation gradient. Once 𝐂p𝑥,𝑗 at current time step is computed, Eq. (22) can be used to
express �̃�e𝑥,𝑗 that is further used in the driving stress update, Eq. (15). To this end, the rate equation for 𝐂p𝑥,𝑗 is considered:

�̇�p𝑥,𝑗 =
𝐺𝑥,𝑗

𝜂𝑥,𝑗

(

𝛥�̃� − 1
3

tr
(

̄̃𝐁e𝑥,𝑗

)

𝐂p𝑥,𝑗

)

(23)

Because the right Cauchy–Green deformation tensor and its derivatives are invariant, while the left Cauchy–Green deformation
ensor is objective, the rotation neutralized version of �̃�e𝑥,𝑗 is considered in the previous equation, which is defined as:

̄̃𝐁e𝑥,𝑗 = 𝛥𝐑T�̃�e𝑥,𝑗𝛥𝐑 (24)

Assuming that tr( ̄̃𝐁e𝑥,𝑗 )∕3 ≈ 1 in Eq. (23), the expression for 𝐂p𝑥,𝑗 at current time step 𝑛 can be derived as:

𝐂𝑛
p𝑥,𝑗 = (1 − 𝜆𝑛𝑥,𝑗 )𝛥�̃�

𝑛 + 𝜆𝑛𝑥,𝑗𝐂
𝑛−1
p𝑥,𝑗 (25)

where the plasticity parameter 𝜆𝑛𝑥,𝑗 measures the amount of plastic deformation in the time step and emerges as:

𝜆𝑛𝑥,𝑗 =
1

1 + 𝛤 𝑛
𝑥,𝑗𝛥𝑡

(26)

where 𝛤 𝑛
𝑥,𝑗 = 𝐺𝑥,𝑗∕𝜂𝑛𝑥,𝑗 is the ratio between the modal shear modulus and viscosity, and 𝛥𝑡 is the time increment. When 𝜆𝑛𝑥,𝑗 = 1 the

deformation increment is purely elastic; when 𝜆𝑛𝑥,𝑗 = 0 the increment is completely plastic. The modal plasticity parameters depend
on the viscosity through 𝛤 𝑛

𝑥,𝑗 , which in turn depends on the equivalent stress that defines the equivalent plastic strain rate, Eq. (21).
With this in mind, a coupled system of equations is iteratively solved, whereby the plasticity parameters are computed together

ith the equivalent plastic strain, assuming the backward Euler integration scheme:
𝜆𝑛𝑥,𝑗

(

1 + 𝛤 𝑛
𝑥,𝑗𝛥𝑡

)

= 1
�̄�𝑛p − ̇̄𝛾𝑛p𝛥𝑡 = �̄�𝑛−1p

(27)

Values of the model parameters used in this work are listed in Table 1, followed by the relaxation spectrum in Table 2. All these
EGP model inputs are the same as in Kovačević et al. (2024).

3.2. Two-scale Eindhoven Glassy polymer constitutive model

In this work, a two-scale version of the EGP model is developed to efficiently take into account the high-cycle loading scenario.
Following the concept of time homogenization (TH), see e.g. Rocha et al. (2019), Yu and Fish (2002), Oskay and Fish (2004) and
Haouala and Doghri (2015), the model distinguishes between two timescales: micro timescale (𝑡 ) and macro timescale (𝑡 ). In that
𝜇 𝑀
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regard, the physical time 𝑡 is represented as a combination of the slowly varying time coordinate 𝑡𝑀 and the rapidly varying time
oordinate 𝑡𝜇 :

𝑡 = 𝑡𝑀 + 𝑇 𝑡𝜇 (28)

where 𝑇 is the load period and 𝑡𝜇 ∈ [0, 1]. With this decomposition in mind, any field variable 𝜁 can be expressed as a function of
he initial position 𝐗 and two time coordinates: 𝜁 (𝐗, 𝑡𝑀 , 𝑡𝜇). Since the whole consideration concerns an integration point initially

located at 𝐗, the position coordinate is dropped from further equations. The total derivative of 𝜁 with respect to the physical time
then reads:

�̇� =
𝜕 𝜁
𝜕 𝑡𝑀

+ 1
𝑇

𝜕 𝜁
𝜕 𝑡𝜇

(29)

The field variable 𝜁 can be asymptotically expanded in a series:

𝜁 (𝑡𝑀 , 𝑡𝜇) =
∞
∑

𝑖=0
𝑇 𝑖𝜁𝑖(𝑡𝑀 , 𝑡𝜇) (30)

where 𝜁𝑖(𝑡𝑀 , 𝑡𝜇) is almost periodic in 𝑡𝜇 due to the evolving viscosity in the EGP model, and its relative contribution to 𝜁 decays as
the power 𝑖 increases.

If a field quantity, e.g. the equivalent plastic strain rate in Eq. (21), admits a gradient at a point, its first-order asymptotic
expansion can be written as the following (Haouala and Doghri, 2015):

𝐶 = 𝐶0 + 𝑇 𝐷 𝐶(𝜏0, 𝜂0) ⋅ (𝜏1, 𝜂1) + 𝑂(𝑇 2) (31)

where 𝑂 is the Landau notation for higher-order terms, 𝐷 𝐶(𝜏0, 𝜂0) ⋅ (𝜏1, 𝜂1) is the inner product of the gradient of 𝐶 with respect to 𝜏0
and 𝜂0 with the corresponding quantities of the order 1 (𝜏1, 𝜂1). The subscripts here should not be confused with different modes of
the EGP model: they represent quantities of different order associated with the mode of highest viscosity. Applying the asymptotic
expansion on �̄�p and performing the total time differentiation, Eqs. (30) and (29), yields an expression for the equivalent plastic
strain rate:

̇̄𝛾p =
𝜕 ̄𝛾p0

𝜕 𝑡𝑀
+ 1

𝑇
𝜕 ̄𝛾p0

𝜕 𝑡𝜇
+ 𝑇

𝜕 ̄𝛾p1

𝜕 𝑡𝑀
+

𝜕 ̄𝛾p1

𝜕 𝑡𝜇
+ 𝑇

𝜕 ̄𝛾p2

𝜕 𝑡𝜇
+ 𝑂(𝑇 2) (32)

If we now group the terms of the same order of 𝑇 in Eqs. (31) and (32) the following relations are obtained (up to order 0):
(

𝑇 −1) ∶
𝜕 ̄𝛾p0

𝜕 𝑡𝜇
= 0

(

𝑇 0) ∶
𝜕 ̄𝛾p0

𝜕 𝑡𝑀
+

𝜕 ̄𝛾p1

𝜕 𝑡𝜇
= 𝐶0

(33)

It follows from the (𝑇 −1) problem that the zero-order equivalent plastic strain does not evolve with the micro time coordinate,
i.e., �̄�p0 = �̄�p0(𝑡𝑀 ). Further, 𝜕 ̄𝛾p1∕𝜕 𝑡𝜇 ≈ 0 in Eq. (33), since �̄�p1 is almost periodic in 𝑡𝜇 and the equivalent plastic strain is a non-
ecreasing function. Therefore, by solving the zero-order problem we update the material state elastically at 𝑡𝜇 , and account for
iscoplastic deformation at 𝑡𝑀 , i.e., at macro time steps. Because the analysis is geometrically nonlinear, it is still necessary to utilize
n iterative Newton–Raphson solver at micro time steps.

3.2.1. Effective time increment
At the micro timescale, the cyclic variation of the load is accounted for, but the constitutive response is simplified. At the macro

imescale, a constant load is applied and the complete constitutive model is used, but information from the micro time steps is used
o perform the update. The stress-dependent plastic flow is averaged over the load cycle by replacing 𝛥𝑡 in Eq. (27) with an effective
ime increment 𝛥𝑡eff.

One load cycle with the proposed time stepping scheme is illustrated in Fig. 4, where the load period coincides with the time
ncrement 𝛥𝑡. The loading cycle is divided into micro time steps at which the information necessary to compute 𝛥𝑡eff for the macro
ime step is collected. The material update at micro time steps is elastic, without evolution in viscoplastic deformation, which means
hat 𝜆𝑛𝑥,𝑗 = 1, see Eq. (25). However, in order to compute the effective time increment at an integration point, ̇̄𝛾p is computed from

Eq. (21) in the elastic micro time steps. Also, symmetry is used at 𝑡𝜇 , such that ̇̄𝛾p is mirrored to the corresponding micro time step,
ee Fig. 4.

When all micro time steps for a single cycle are completed, a macro time step is made, with a jump from the previous converged
macro time step to the current one. Macro time steps 𝑛 − 1 and 𝑛 correspond to the same load level, that is 𝜎max

𝑦𝑦 in this case. If
o information is conveyed from micro time steps, the standard update of the EGP model would lead to a creep response, with the

actual time increment 𝛥𝑡. In order to include the effect of cyclic loading, an effective time increment is introduced to correct for
he variation in equivalent plastic strain rate over the cycle:

̇̄𝛾𝑛p𝛥𝑡eff = ∫

𝑡𝑛

𝑡𝑛−1
̇̄𝛾p𝑑 𝑡 (34)
7 
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Fig. 4. One load cycle divided in micro time steps (squares) and macro time steps (circles); increment in deformation gradient 𝛥𝐅𝑡𝜇 computed with respect to
previous converged macro time step for the first micro time step, and with respect to previous micro time step for other micro time steps; 𝛥𝐅𝑡𝑀 computed with
respect to previous converged macro time step.

Table 3
Elastic constants of the transversely isotropic constitutive model.
𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 [GPa] 𝜈12 𝜈23
125 15 5 0.05 0.3

where the integral on the right hand side is evaluated with a trapezoidal integration rule using ̇̄𝛾p from the micro time steps of the
last cycle, as well as from the previous and current macro time steps, ̇̄𝛾𝑛−1p and ̇̄𝛾𝑛p , respectively. From Eq. (34) the expression for
𝑡eff emerges as:

𝛥𝑡eff =
∫ 𝑡𝑛
𝑡𝑛−1

̇̄𝛾p𝑑 𝑡
̇̄𝛾𝑛p

(35)

The concept of effective time in the EGP model was used by Janssen et al. (2008a) to capture the endurance limit in polymers at
cyclic loading. It was computed employing stress- and temperature-based shift functions on the actual time, and used to evolve the
ging parameter in a phenomenological way. Despite the similar terminology in Janssen et al. (2008a), our approach shows more

resemblance to another paper by Janssen et al. (2008b), in which the so-called acceleration factor was computed as the ratio of the
incremental equivalent plastic strain in cyclic loading to that in static loading, for one typical load cycle. The acceleration factor
ventually multiplies the plastic strain rate due to static stress, in an analytical framework (not used in the EGP model) determining

the time to failure in static as well as in cyclic loading. In our case, the product of the effective time increment and the equivalent
plastic strain rate in static loading equals an increment in the equivalent plastic strain due to cyclic loading, Eq. (34).

3.3. Transversely isotropic constitutive model for carbon fibers

Assuming absence of failure in the reinforcement, we use a hyperelastic transversely isotropic constitutive model for carbon
fibers formulated by Bonet and Burton (1998), with a minor modification reported in Kovačević and Van der Meer (2022). Since
no additional changes are made to the model, only the elastic constants used to run simulations are listed here, see Table 3. The
adopted values are the same as in Kovačević et al. (2024). 𝐸1 is the Young’s modulus in the preferential stiffness direction of the
material, that is the fiber direction in this case; 𝐸2 and 𝜈23 are the Young’s modulus and the Poisson’s ratio defining the material
behavior in the plane of isotropy; 𝐺12 and 𝜈12 are the shear modulus and the Poisson’s ratio for the planes perpendicular to the
isotropic plane.

3.4. Fatigue cohesive zone model

To model microcrack propagation through the polymer matrix under the high- and low-cycle fatigue loading we utilize the
cohesive zone model formulated by Dávila (2020), in its implicit formulation with consistent linearization by Hofman et al. (2024).
Dávila’s model, originally developed for problems of delamination in composites, assumes a damage variable which grows with
either quasi-static or fatigue loading. It is meant to represent creation of microcracks at a lower scale of observation. We apply the
same CZM in the RVE, also assuming that the damage variable represents corresponding cracking processes in the polymer matrix
at a yet lower scale.

The cohesive model is formulated in local orthonormal coordinate frame (𝐧, 𝐬, 𝐭), which defines the orientation of the cohesive
urface at the integration point: 𝐧 is the unit vector in the normal direction associated with the normal dummy stiffness 𝐾𝑛; 𝐬 and
are the unit vectors tangent to the surface, associated with the shear dummy stiffness 𝐾𝑠ℎ. Cohesive segments are inserted on the

fly (Camacho and Ortiz, 1996) when a suitable initiation criterion is satisfied, meaning that zero displacement jump corresponds
8 
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with a nonzero traction vector. Because this combination may lead to the singularity problem in mixed-mode loading (Van der Meer
nd Sluys, 2009), the cohesive model is evaluated with the shifted displacement jump [[𝐮]] (Hille et al., 2009):

[[𝐮]] = [[𝐮]]fe + [[𝐮]]0 (36)

where [[𝐮]]fe is the displacement jump obtained from the finite element space, and [[𝐮]]0 is the displacement shift:

[[𝐮]]0 =
(

𝑡0𝑛
𝐾𝑛

,
𝑡0𝑠
𝐾sh

,
𝑡0𝑡
𝐾sh

)T

(37)

with 𝑡0𝑛, 𝑡0𝑠 , 𝑡0𝑡 the traction vector components at initiation.

3.4.1. Quasi-static damage
The evolution of damage under quasi-static loading is described with Turon’s cohesive model (Turon et al., 2018), which can be

written in the following form:

𝐭 = (𝐈 −Ω)𝐊[[𝐮]] = (𝐈 −Ω)𝐭eff (38)

where 𝐭eff is the effective traction on the cohesive surface; 𝐈 is the identity matrix and 𝐊 is the dummy stiffness matrix:

𝐊 =
⎡

⎢

⎢

⎣

𝐾𝑛 0 0
0 𝐾𝑠ℎ 0
0 0 𝐾𝑠ℎ

⎤

⎥

⎥

⎦

(39)

In Eq. (38), Ω is the damage tensor defined as:

𝛺𝑖𝑗 = 𝑑 𝛿𝑖𝑗
(

1 + 𝛿𝑖1
⟨−𝑡eff

𝑛 ⟩

𝑡eff
𝑛

)

(40)

The Kronecker delta 𝛿𝑖𝑗 ensures nonzero components only on the main diagonal of Ω, while the Macaulay brackets restore the dummy
stiffness in the normal direction, in the case of compression. The damage variable 𝑑 measures the stiffness loss in a mixed-mode
loading scenario, and its thermodynamically consistent evolution is ensured by relating the dummy stiffnesses:

𝐾𝑠ℎ = 𝐾𝑛
𝐺𝐼 𝑐
𝐺𝐼 𝐼 𝑐

(

𝑓𝑠ℎ
𝑓𝑛

)2
(41)

Here, 𝐺𝐼 𝑐 and 𝐺𝐼 𝐼 𝑐 are the fracture energies for the mode I and mode II loading, while 𝑓𝑛 and 𝑓𝑠ℎ are the quasi-static strength
parameters in the normal and shear direction, respectively. To compute the stiffness loss 𝑑, the cohesive model can be represented
with an equivalent 1D traction-separation relation:

𝜎 = (1 − 𝑑)𝐾B𝛥 (42)

where 𝜎 is the equivalent stress, 𝐾B the mixed-mode dummy stiffness, and 𝛥 is the equivalent displacement jump. The mixed-mode
ummy stiffness reads:

𝐾B = (1 − B)𝐾𝑛 + B𝐾𝑠ℎ (43)

where B is the mode-mixity variable defined as:

B =
𝐾𝑠ℎ[[𝑢]]2𝑠ℎ

𝐾𝑛⟨[[𝑢]]𝑛⟩2 +𝐾𝑠ℎ[[𝑢]]2𝑠ℎ
(44)

In this expression [[𝑢]]𝑠ℎ is the Euclidean norm of the displacement jump sub-vector corresponding with the shear components:

[[𝑢]]2𝑠ℎ = [[𝑢]]2𝑠 + [[𝑢]]2𝑡 (45)

The equivalent stress 𝜎 is defined as:

𝜎 =
[

⟨𝑡𝑛⟩
2 + 𝑡2𝑠 + 𝑡2𝑡

]1∕2 (46)

whereas the equivalent displacement jump emerges as:

𝛥 =
𝐾𝑛⟨[[𝑢]]𝑛⟩2 +𝐾𝑠ℎ[[𝑢]]2𝑠ℎ

[

𝐾2
𝑛 ⟨[[𝑢]]𝑛⟩2 +𝐾2

𝑠ℎ[[𝑢]]
2
𝑠ℎ
]1∕2

(47)

To track the damage process, the state variable D is introduced as an energy-based damage variable:

D ≡
𝐺𝑑
𝐺𝑐

=
𝛥 − 𝛥0
𝛥𝑓 − 𝛥0

(48)
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Fig. 5. The quasi-static cohesive model (Turon et al., 2018) represents the failure envelope of the traction-separation response in fatigue loading (left). The
evolution of fatigue damage is such that the CZM is able to reproduce an 𝑆-𝑁 curve, but does not account for actual loading frequency (right).

Fig. 6. Graphical representation of the quantities used in formulation of fatigue cohesive zone model.

D represents the ratio between the dissipated energy 𝐺𝑑 and the fracture energy 𝐺𝑐 , and alternatively can be written as a function
of the equivalent displacement jump. The state variable is evaluated by knowing the equivalent displacement jump at initiation 𝛥0,
nd at the moment of fracture 𝛥𝑓 :

𝛥0 =

[

𝐾𝑛([[𝑢]]0𝑛)
2 +

(

𝐾𝑠ℎ([[𝑢]]0𝑠ℎ)
2 −𝐾𝑛([[𝑢]]0𝑛)

2)B𝜂BK

𝐾B

]1∕2

𝛥𝑓 =
𝐾𝑛[[𝑢]]0𝑛[[𝑢]]

𝑓
𝑛 +

(

𝐾𝑠ℎ[[𝑢]]0𝑠ℎ[[𝑢]]
𝑓
𝑠ℎ −𝐾𝑛[[𝑢]]0𝑛[[𝑢]]

𝑓
𝑛

)

B𝜂BK

𝐾B𝛥0

(49)

In this equation 𝜂BK is the Benzeggagh–Kenane (B-K) interaction parameter (Benzeggagh and Kenane, 1996), while the pure mode
I and the pure mode II displacement jump at initiation (superscript 0) and the moment of fracture (superscript 𝑓 ) are defined as:

[[𝑢]]0𝑛 =
𝑓𝑛
𝐾𝑛

, [[𝑢]]𝑓𝑛 =
2𝐺𝐼 𝑐
𝑓𝑛

[[𝑢]]0𝑠ℎ =
𝑓𝑠ℎ
𝐾𝑠ℎ

, [[𝑢]]𝑓𝑠ℎ =
2𝐺𝐼 𝐼 𝑐
𝑓𝑠ℎ

(50)

Finally, the relation between the energy-based damage variable D and the damage variable 𝑑 is:

𝑑 = 1 − (1 − D)𝛥0

D𝛥𝑓 + (1 − D)𝛥0
(51)

3.4.2. Fatigue damage
Taking the quasi-static cohesive model as the failure envelope, Dávila formulated a fatigue cohesive zone model (Dávila, 2020).

In the model, the state variable D may evolve before the quasi-static strength 𝑓B is reached, given an increment in the number
f load cycles 𝛥𝑁 . When the pair (𝜎max, 𝛥) reaches the softening line of the quasi-static CZM, failure of the material ensues, see

Fig. 5 (left). The fatigue damage variable D𝑓 is defined in such a way that the model reproduces the 𝑆-𝑁 curve of the material, but
without considering effects of the actual loading frequency. The fatigue damage changes with the number of cycles 𝑁 according to
the evolution law:

dD𝑓

d𝑁
= 𝑓D(𝛥, 𝛥∗,D) (52)

where 𝛥∗ is the equivalent displacement jump corresponding with the residual strength 𝜎res, see Fig. 6, defined as:

𝛥∗ = D(𝛥𝑓 − 𝛥0) + 𝛥0 (53)
10 
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Table 4
Values of cohesive zone model parameters; last three related to fatigue damage.
𝐾𝑛 [N/mm3] 𝐺𝐼 𝑐 [N/mm] 𝐺𝐼 𝐼 𝑐 [N/mm] 𝑓𝑛 [N/mm2] 𝑓𝑠ℎ [N/mm2] 𝜂BK 𝜖 𝜂 𝑝

108 0.03 0.095 117.5 80 2.284 0.5 0.39 𝛽 + 1

To make sure that the traction-separation curve in fatigue scenarios remains inside the failure envelope, the quasi-static damage
variable D𝑠 is also computed:

D𝑠 =
𝛥 − 𝛥0
𝛥𝑓 − 𝛥0

(54)

Finally, the state variable D is the maximum of D𝑠 and D𝑓 :

D = max
(

D𝑠,D𝑓
)

(55)

The fatigue damage function, Eq. (52), is integrated numerically using the trapezoidal rule (Hofman et al., 2024):

D𝑛
𝑓 = D𝑛−1

𝑓 + 1
2
𝛥𝑁

[

𝑓 𝑛−1
D + 𝑓 𝑛

D
]

(56)

The evolution of fatigue damage, Eq. (52), is represented with the CF20 function (Joosten et al., 2022):

𝑓CF20
𝐷 = 1

𝛾
(1 − D)𝛽−𝑝

𝐸𝛽 (𝑝 + 1)
( 𝛥
𝛥∗

)𝛽
(57)

Here, 𝛾 = 107 is the number of cycles without failure at the relative endurance limit 𝐸, 𝑝 is a fitting parameter adopted as: 𝑝 = 𝛽+ 1,
nd 𝛽 is the parameter defining the slope of the 𝑆-𝑁 curve:

𝛽 =
−7𝜂
log𝐸

(58)

In this equation, 𝜂 is the brittleness parameter which marks the kink in the 𝑆-𝑁 curve, that distinguishes between the low-cycle
fatigue and the high-cycle fatigue regime. The relative endurance limit is defined as:

𝐸 =
2𝐶𝑙𝜖

𝐶𝑙𝜖 + 1 + 𝑅(𝐶𝑙𝜖 − 1) (59)

where 𝜖 is the relative endurance limit at 𝑅 = −1 and mode I loading, while 𝐶𝑙 is the correction factor that takes into account
mixed-mode loading (Juvinall and Marshek, 2020):

𝐶𝑙 = 1 − 0.42B (60)

To evaluate Eq. (59) the load ratio 𝑅 is computed locally for every cohesive surface, following the idea presented by Joosten et al.
(2022). With a small adjustment that the Macaulay operation is not performed on 𝑡𝑛, the severity vector is defined as:

�̄� =
(

𝑡𝑛
𝑓𝑛

,
𝑡𝑠
𝑓sh

,
𝑡𝑡
𝑓sh

)T
(61)

In a loading scenario where the only nonzero traction component is 𝑡𝑛 and the Macaulay brackets are included, it is not possible to
distinguish between 𝑅 = 0 and negative R. Eventually, 𝑅 is computed as:

𝑅 = �̄�min ⋅ �̄�max

‖�̄�max
‖

2
(62)

where �̄�min and �̄�max are the minimum and the maximum severity vector encountered in one loading cycle, respectively. For this
purpose, the severity vectors computed at 𝑡𝑛−1 macro time step and at the micro time step with the minimum applied stress are
tilized (�̄�𝑀 and �̄�𝜇 , respectively). Of these two vectors, the one with larger Euclidean norm is assigned to �̄�max in Eq. (62).

Parameters used to run simulations with the presented cohesive model are tabulated in Table 4, where the last three parameters
are related to the fatigue damage part. The dummy stiffness acquires the high value in order to reduce the compliance effect
introduced in the RVE by the presence of many cohesive segments. The fracture energies are adopted according to Kovačević et al.
(2022). The relation for 𝑝 follows the form presented in Raimondo et al. (2022). The B-K interaction parameter has a value according
o Turon et al. (2006). The strength parameters 𝑓𝑛 and 𝑓𝑠ℎ, as well as the fatigue damage parameters 𝜖 and 𝜂, are calibrated on
xperimental 𝑆-𝑡 curves for 𝑅 = 0.1, 𝑓 = 1 Hz, 𝜒 = 90◦ and 𝜒 = 45◦, see Section 5.2.

3.5. Cohesive microcrack initiation

Inter-element cohesive segments are included in the RVE on the fly, when an initiation criterion is satisfied. Dealing with the
low- and high-cycle fatigue, in this study we use the endurance limit-based initiation criterion introduced in Hofman et al. (2024).
In the criterion, the equivalent endurance limit (stress) is defined as:
𝜎end = 𝐸 𝑓B (63)
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where 𝐸 is computed with Eq. (59), and 𝑓B is the mode-dependent quasi-static strength, 𝑓B = 𝐾B𝛥0. It can be expressed in terms
of the cohesive model input parameters and the mixed-mode variable B:

𝑓B =
([

(1 − B)𝐾𝑛 + B𝐾𝑠ℎ
] [
𝑓 2
𝑛 ∕𝐾𝑛 +

(

𝑓 2
𝑠ℎ∕𝐾𝑠ℎ − 𝑓 2

𝑛 ∕𝐾𝑛
)

B𝜂BK
])1∕2 (64)

When the cohesive initiation criterion is checked, the corresponding cohesive segment is not present and the displacement jump is
a zero vector. Therefore, the direct application of Eq. (44) to compute B is not possible, and B is expressed through the traction
ector components on a potential cohesive surface:

B =
𝑡2𝑠ℎ∕𝐾𝑠ℎ

⟨𝑡𝑛⟩2∕𝐾𝑛 + 𝑡2𝑠ℎ∕𝐾𝑠ℎ
(65)

where a potential cohesive surface is any surface between bulk finite elements in the matrix, or on the fiber/matrix interface, and
he traction vector is obtained from the local stress as 𝐭 = 𝝈𝐧. Finally, a cohesive segment will initiate if the equivalent stress on

the potential cohesive surface, Eq. (42), is larger than the relative endurance limit stress:
𝜎

𝜎end
> 1 (66)

In this study we introduce a modification when checking for cohesive initiation by not letting the 𝑅 used for computing 𝐸 exceed
a value of 0.1, i.e., for the initiation criterion 𝐸(𝑅) is replaced with 𝐸(min(𝑅, 0.1)). The reason for this constraint can be explained
considering the creep rupture problem. In that case 𝑅 = 1 → 𝐸 = 1, and 𝜎end = 𝑓B in Eq. (63). By setting the initiation threshold to
quasi-static strength a large range of applied stresses is cut off from possible creep rupture. Therefore, we found this adaptation to
be crucial for obtaining creep rupture at relevant stress levels. In this regard, the value of 0.1 was prescribed, but detailed sensitivity
analysis on its value was not performed.

Given the endurance limit based initiation criterion, cohesive segments may initiate almost everywhere in the matrix and the
fiber/matrix interface, see Section 5.2.3. To reduce computational complexity, cohesive initiation is allowed if the angle between
 potential cohesive surface normal and the projection of maximum principal stress in the 𝒆2-𝒆3 plane (plane perpendicular to the
iber direction, see Fig. 2) is less than 45◦.

4. Adaptive time stepping

The time stepping procedure outlined in the two-scale EGP formulation (Fig. 4) is part of a bigger, adaptive time stepping scheme.
In this scheme, time increments between macro time steps vary depending on the convergence rate of the global Newton–Raphson
scheme. If the number of iterations in a converged macro time step is less than a prescribed optimal number of iterations, the time
increment of the next macro time step will increase, and vice versa. The change in time increment is according to (Verhoosel et al.,
2009):

𝛥𝑡𝑛 = 𝛥𝑡𝑛−1
( 1
2

)

(

𝑛𝑛−1iter −𝑛
opt
iter

)

∕4
(67)

where 𝑛𝑛−1iter is the number of iterations in the last converged macro time step, and 𝑛opt
iter is the prescribed optimal number of iterations.

The updated time increment is then used to evaluate the integral in Eq. (35), to obtain the effective time increment for the bulk
material.

This computational procedure assumes that the time increment equals the loading period 𝑇 , which is then changing throughout
he analysis. This change in 𝑇 is obviously in contrast with the experimental situation, where 𝑇 (or the load frequency 𝑓 ) is constant.
he assumption of changing 𝑇 in the simulation can be introduced given the fact that the EGP response under cyclic loading is largely
requency independent. To support this statement, the full-field response of a single hexahedral finite element with the EGP model
ubject to different loading frequencies, with load ratio 𝑅 = 0.1 and engineering stress 𝜎max = 90 MPa, is shown in Fig. 7. As observed

from the figure, there is practically no influence of 𝑓 on the time-dependent response. A very minor influence is observed for the
evolution of the strain at 𝜎min, and even less for the evolution of the strain at 𝜎max. This frequency independence allows for adaptive
time stepping and taking that 𝛥𝑡 = 𝑇 , because the time homogenized response aims at capturing the maximum deformation in the
matrix. Note that changing the load frequency also changes the strain rate, and the results in Fig. 7 show that the total accumulation
f viscous deformation over time under cyclic loading does not have a strong dependence on loading rate.

Given the elastic updates at micro time steps (𝑡𝜇), the time increment size is irrelevant for these computations, and the data
ollected at 𝑡𝜇 for computing the effective time increment is not altered if the macro time update is repeated due to the lack of
onvergence. Other implications of elastic updates at 𝑡𝜇 are that cohesive initiation is not allowed, and that the cycle increment to
he cohesive model is nonzero only at 𝑡𝑀 . Given the actual time increment, the cycle increment at macro time steps is computed
s:

𝛥𝑁𝑛 = 𝛥𝑡𝑛 ⋅ 𝑓 (68)

where 𝑓 has a constant value equal to the actual frequency in the analysis. With 𝛥𝑁 ≠ 0 only at macro time steps, the fatigue cohesive
model can also be regarded as time-homogenized. Although not derived from the TH formalism, see Section 3.4, by following the
similar reasoning as in Section 3.2, it can be shown that in the zero-order approximation (𝑇 0) the fatigue damage variable does not
volve with 𝑡 , i.e., D = D (𝑡 ).
𝜇 𝑓 𝑓 𝑀
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Fig. 7. Strain response of single finite element with EGP model under uniaxial cyclic loading, where engineering stress 𝜎max = 90 MPa and 𝑅 = 0.1.

Table 5
Algorithm for adaptive time step 𝑛.

(1) update 𝛥𝑡, Eq. (67)
(2) perform 𝑛𝜇∕2 micro time steps

- record ̇̄𝛾p, Eq. (21); elastic update of the matrix; no damage evolution in CZM
(3) macro time update; matrix plasticity with 𝛥𝑡eff from Eq. (35); cohesive initiation with Eq. (66) and
damage evolution with 𝛥𝑁 from Eq. (68)

- if converged, go to (1)
- if not converged, reduce 𝛥𝑡 and repeat (3)

Fig. 8. EGP response under uniaxial cyclic loading: 𝑅 = 0.1, 𝜎max = 70 MPa (left) and 𝜎max = 90 MPa (right); full-field response compared with TH response for
different number of micro time steps; the creep response corresponding to 𝜎max is also included.

An algorithm for update of material models in one time step is shown in Table 5. Other implementation details on setting the
external force vector, checking for cohesive initiation, etc., can be found in Kovačević et al. (2024), that is based on the algorithm
presented in Van der Meer (2012). The model is implemented in Jive: a C++ library aimed for numerical simulations (Nguyen-Thanh
et al., 2020).

5. Results and discussion

5.1. Time homogenization

The performance of the model is checked with several examples. In all reported cases cyclic engineering stress is applied. To begin
ith, the accuracy of the time homogenization procedure is examined on a single hexahedral finite element with the EGP material
odel. The time homogenized response for different number of micro time steps 𝑛𝜇 is compared with the fully-resolved response,

which is evaluated with the constant time step of 𝑇 ∕40 at a frequency of 0.1 Hz. The results are plotted in Fig. 8, for 𝑅 = 0.1 and two
maximum stress levels, where the creep response for the same stress level (at 𝑅 = 1) is also included. As noticed from the figure, all
time homogenized cases yield a lower strain compared to the creep response, which is in line with the observation that less plastic
strain accumulates in cyclic loading. Furthermore, as the number of micro time steps increases, the TH response approaches the
full-field response. For 𝜎max = 70 MPa already at 𝑛𝜇 = 16 the TH response matches the reference result. For 𝜎max = 90 MPa, however,
much more plastic deformation develops during cyclic loading and the TH response slightly deviates from the reference result: for
𝑛 = 16 the relative error in the 𝜀eng at 𝑡 = 5 ⋅ 104 s is 0.74%.
𝜇 𝑦𝑦
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Fig. 9. Unit cell RVE under cyclic loading: 𝑅 = 0.1, 𝜎max
𝑦𝑦 = 100 MPa, 𝜒 = 45◦; creep and full-field cyclic response (𝑓 = 0.1 Hz) compared with TH response for

different number of micro time steps (left); TH response in scatter form illustrates adaptive stepping (right).

Fig. 10. Unit cell RVE under cyclic loading: 𝑅 = −1, 𝜎max
𝑦𝑦 = 100 MPa, 𝜒 = 45◦ (left), 𝜒 = 90◦ (right); TH response compared with creep and full-field cyclic

results; 𝜂𝜇 is viscosity computed at micro time steps and 𝜂𝑀 is viscosity from last macro time step.

The accuracy of the TH procedure is also checked on a unit cell RVE. Finite elements representing bulk material are 12-node
wedge-shaped elements, while, if present, cohesive zones are represented with 12-node cohesive elements (Kovačević et al., 2022).
The unit cell consisting of 274 finite elements with the minimum element length of 0.7 𝜇m is loaded under 45◦. The maximum
engineering stress in the global loading direction is 𝜎max

𝑦𝑦 = 100 MPa, see Fig. 1, the load ratio is 𝑅 = 0.1 and cohesive segments are
not included. Comparison of the TH results with the full-field cyclic and creep response is shown in Fig. 9 (left). It is concluded
gain that increasing 𝑛𝜇 leads to more accurate TH results, with convergence around 𝑛𝜇 = 16. In Fig. 9 (right), the TH response

for 𝑛𝜇 = 16 is plotted with markers to indicate the adaptive time stepping feature of the model. If significant plastic deformation
develops in the model, the time step size is reduced to properly capture the equilibrium path, whereas in the absence of significant
lastic deformation, or nonlinearity in general, the time step size is enlarged.

However, the TH procedure is not accurate in all loading situations. Let us consider the case where 𝑅 = −1 and 𝜎max
𝑦𝑦 = 100 MPa,

meaning that significant plastic deformation develops also at reversed loading. The creep and full-field cyclic response are compared
with TH results for two loading angles, 𝜒 = 45◦ and 𝜒 = 90◦, see Fig. 10. It follows from the figure that the TH procedure is
unstable: in the 45◦ case it fails to enter the cyclic loading phase, while in the 90◦ case the TH procedure fails quickly after the
cyclic loading is started. The reason for this instability lies in the elastic updates at micro time steps, where the neglect of significant
plastic deformation in the material leads to an overestimated equivalent stress and, correspondingly, to a lower viscosity, Eq. (18).
Consequently, the equivalent plastic strain rate, Eq. (21), computed at micro time steps acquires high values, which reflects in
n extremely large effective time increment at some integration points, leading to the convergence problems. The computational
nstability may be circumvented by limiting the value of viscosity computed at micro time steps by setting, e.g., 𝜂𝜇 ≥ 𝜂𝑛−1𝑀 . This
ondition says that the viscosity at 𝑡𝜇 cannot be less than the value obtained at the last macro time step. Note that the update of
iscosity at micro time steps is only relevant for the computation of ̇̄𝛾p, since in the elastic update of the stress state there is no
ctual update of the state variables controlling viscoplasticity. With the added condition the computation becomes stable, although
till inaccurate, because the equivalent plastic strain rate does not account for the direction of equivalent plastic strain, but only

for the absolute value of its rate. Therefore, when computing 𝛥𝑡eff, Eq. (35), ̇̄𝛾p from the compression side is added to that from the
tension side, leading to an overestimated effective time increment. It is possible to introduce information on the direction of plastic
deformation by multiplying ̇̄𝛾p with the normalized inner product (𝝈𝑀 ∶ 𝝈𝜇∕|𝝈𝑀 ∶ 𝝈𝜇|) to define its sign, where 𝝈𝑀 is the Cauchy
stress tensor computed at last converged macro time step, and 𝝈𝜇 is the Cauchy stress tensor computed at current micro time step.
However, this action renders unstable computations and does not solve the problem, because ̇̄𝛾p collected at elastic micro time steps
corresponding with high compressive stress levels remains inaccurate.

The conclusion is that the introduced TH procedure is accurate as long as there is no significant reverse plasticity in the cycle.
his claim is confirmed with another example on the unit cell, in which 𝑅 = −0.5 and 𝜎max = 100 MPa. The TH response without
𝑦𝑦
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Fig. 11. Unit cell RVE under cyclic loading: 𝑅 = −0.5, 𝜎max
𝑦𝑦 = 100 MPa, 𝜒 = 45◦ (left), 𝜒 = 90◦ (right); TH response compared with creep and full-field cyclic

esponse; 𝜂𝜇 is viscosity computed at micro time steps and 𝜂𝑀 is viscosity from last macro time step.

limiting viscosity at micro time steps and the response with limited viscosity are compared with the creep and full-field cyclic
response for two loading angles: 𝜒 = 45◦ and 𝜒 = 90◦, see Fig. 11. Although the load ratio is negative, the material behavior at
eversed loading is predominantly elastic with diminishing ̇̄𝛾p, resulting in an accurate TH prediction.

5.2. Failure prediction

Cohesive segments are now also included in the RVE, and a comparison is made with available experiments on fatigue of UD
arbon/PEEK thermoplastic composites (Sundararajan, 2024). All examples assume room temperature conditions, such that 𝑇 = 𝑇ref

in Eq. (18). The fiber volume ratio is 0.4. The number of micro time steps between two macro time updates is 𝑛𝜇 = 16, with actually
running only half of them, see Section 3.2. Since the main intention here is to show the capabilities of the model, a micromodel that is
oo small to be entirely representative with 4 (2 × 2) fibers in total is considered, with a diameter of 5 μm. Similar conclusions on the

mechanical behavior are expected from a bigger RVE size, especially because calibration of the cohesive model parameters was done
articularly for this micromodel, improving its representativeness. Gmsh was used to generate the finite element mesh (Geuzaine

and Remacle, 2009).
The model is calibrated on experimental 𝑆-𝑡 curves obtained for 𝑅 = 0.1, 𝑓 = 1 Hz, 𝜒 = 90◦ and 𝜒 = 45◦, see Fig. 12, where the

experimental data are compared with the model results. Several things can be observed from the figure. First, the model is able to
make a distinction between the plasticity controlled and crack growth controlled failure regimes. However, there is an offset in the
model results from the experimental data in the transition zone between the two failure regimes for 𝜒 = 90◦. It should be noted that
all the EGP parameters, including the relaxation spectrum, were adopted according to our previous work on creep rupture (Kovačević
et al., 2024), and their calibration was not part of this work. Only the four parameters of the cohesive model were calibrated (𝑓𝑛,
𝑓𝑠ℎ, 𝜖 and 𝜂). While the strength parameters 𝑓𝑛 and 𝑓𝑠ℎ have an overall effect on the 𝑆-𝑡 (or 𝑆-𝑁) curve, the two are also controlling
the slope of the plasticity controlled part on which 𝜖 and 𝜂 have no effect, with 𝑓𝑛 being most dominant for the 90◦ loading case,
while the influence of 𝑓𝑠ℎ is stronger in the 45◦ case. The fatigue damage parameter 𝜖 largely controls the slope of the crack growth
failure regime (Joosten et al., 2022), and was adopted such that the slope in 𝜒 = 90◦ loading is properly reproduced, see Fig. 12,
where the last two points of the 90◦ case are considered to define the slope of the crack growth regime. Given all the inputs, the
fatigue damage parameter 𝜂 determines the moment when the transition between the two failure mechanisms occurs, horizontally
shifting the onset of the crack growth controlled regime (Joosten et al., 2022). The value of 𝜂 was adopted such that a good match
was found for the last two points of the 𝜒 = 90◦ case, also checking for the proper transition between the failure mechanisms when
𝜒 = 45◦. Possibly, a further calibration of the constitutive models including the relaxation spectrum of the EGP and the cohesive
model parameters could reduce the error in the results for 𝜒 = 90◦ and 𝑓 = 1 Hz.

Another observation from Fig. 12 indicates a shortcoming of the model related to off-axis dependence of the crack growth
controlled failure mechanism. For the carbon/PEEK composite system considered here, the same slope in 𝑆-𝑡 curves is reported for
different loading angles (Sundararajan, 2024), which is in contrast with the model results, where 𝜒 = 45◦ features a different slope
n the crack growth regime than 𝜒 = 90◦. Although for some composite systems a change in the slope is reported when changing
ff-axis angles (Pastukhov and Govaert, 2021), the reported change is in the opposite direction: lowering the off-axis angle lowers
he slope of the crack growth regime.

The following example considers the RVE loaded under 90◦ off-axis angle. Different stress levels and frequencies are considered
at the load ratio of 0.1. In Fig. 13 (left) the model prediction of the time to failure is compared with the experimental data in
loglog plot. The model is able to properly capture the experimentally observed frequency dependency of the two mechanisms.
hile the plasticity controlled part is insensitive to the loading frequency, the crack growth controlled part is frequency dependent,

eading to shorter lifetimes at higher frequencies. Overall, the accuracy of the model is good, with an already discussed offset from
he experiment at 𝑓 = 1 Hz in the transition zone between two failure regimes. In Fig. 13 (right), the number of cycles to failure

is plotted for different stress levels, showing a different effect of the frequency on the failure regimes. In this representation, the
plasticity controlled regime shows sensitivity to the loading frequency, while the crack growth controlled part is largely independent
of the loading frequency.
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Fig. 12. Maximum stress applied versus time to failure for two off-axis angles; solid lines represent model response, with x marking stress levels considered in
simulations; empty markers represent experimental data used for calibration; 𝑅 = 0.1, 𝑓 = 1 Hz.

Fig. 13. Maximum stress applied versus time to failure for 𝜒 = 90◦, 𝑅 = 0.1 and different frequencies (left); corresponding number of cycles to failure (right);
empty markers represent experimental data, solid lines represent RVE response with x marking stresses considered in simulations.

Fig. 14. Maximum stress applied versus time to failure for 𝜒 = 45◦, 𝑅 = 0.1 and two different frequencies (left); corresponding number of cycles to failure
(right); empty markers represent experimental response, solid lines represent model response with x marking stress levels considered in analyses.

The loading angle of 45◦ is considered next. The time to failure versus stress applied is plotted in Fig. 14 (left) for the load ratio
𝑅 = 0.1 and two different frequencies in a double logarithmic plot. The model response compares satisfactorily with the experiment
results, and again captures two failure mechanisms. A moderate offset from the experimental data is observed in the crack growth
regime. Fig. 14 (right) illustrates the corresponding number of cycles to failure, where the conclusion regarding the frequency
dependency of each failure mechanism follows that observed for 𝜒 = 90◦.

Another aspect in which the model may be improved is the 𝑅-dependence of the crack growth failure mechanism. In Fig. 15 the
model response for 𝑅 = −0.5 and 𝑅 = 0.2 is compared with experimental data for 𝜒 = 90◦. The loading frequency is 1 Hz and 10 Hz,
respectively, and the response for 𝑅 = 0.1 is included for reference. We conclude from the figure that the trend in the number of
ycles to failure with different 𝑅 is captured, but the quantitative prediction is wrong. In the model, the slope of the crack growth

failure mechanism is controlled by the parameter 𝛽, Eq. (57), which in turn depends on the brittleness parameter 𝜂 and the relative
ndurance limit 𝐸, Eq. (58). In the current formulation, the parameter 𝜂 has a constant value, while 𝐸 is locally changing with 𝑅.

This change affects the slope of the crack growth regime and shifts the cycles to failure in the correct direction. Nevertheless, the
experimental data does not show a change in the slope of the crack growth controlled part for different (global) R, indicating that
for the specific material system the brittleness parameter 𝜂 in Eq. (58) may also be a function of 𝑅.
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Fig. 15. Comparison of model response with experiments for 𝜒 = 90◦ and different load ratios: 𝑅 = −0.5 (left), 𝑅 = 0.2 (right); response for 𝑅 = 0.1 included for
reference; empty markers stand for experimental data; in solid lines x marks stress levels considered in simulations.

Fig. 16. Dependence of time to failure on load ratio for 𝜎max
𝑦𝑦 = 85 MPa and different frequencies predicted by the model (left); corresponding number of cycles

o failure versus load ratio (right); 𝜒 = 90◦.

It is reported in the literature, e.g. Kanters et al. (2018), that for a stress level in the crack growth regime, the number of cycles
to failure changes with frequency for different 𝑅 values. Considering a different composite system Kanters et al. (2018) report an
increase in the cycles to failure when increasing the frequency and the load ratio. How the model proposed here behaves in this
regard is investigated next. The stress level of 85 MPa is chosen, well within the crack growth-controlled regime (cf. Fig. 13).
Load ratios ranging from 0 to 1 are considered, with three different frequencies: 0.1 Hz, 1 Hz and 10 Hz. Fig. 16 (left) shows the
time to failure as a function of 𝑅 and 𝑓 . Like in Kanters et al. (2018), for a given load ratio the time to failure increases with a
ecrease in the frequency. As the load ratio increases, the logarithmic difference in time to failure for different 𝑓 reduces, eventually
onverging to a unique value for 𝑅 = 1. The case of 𝑅 = 0.9 and 𝑓 = 0.1 Hz actually shows longer time to failure than the 𝑅 = 1
ase, since the material here enters the plasticity-controlled regime where low amplitude cyclic loading only prolongs the lifetime.
he corresponding number of cycles to failure is plotted in Fig. 16 (right), and follows the trend reported in Kanters et al. (2018).

For lower load ratios, 𝑁𝑓 shows a small but nonzero dependence on 𝑓 . For larger 𝑅 values, the influence of 𝑓 is much stronger as
plasticity becomes more significant.

5.2.1. Effect of viscoplasticity
The effect of viscoplastic deformation in the matrix, which introduces the timescale to the model and correspondingly the

frequency dependency in the cycles to failure, is discussed next. For 𝑓 = 1 Hz and 𝑅 = 0.1, simulations are repeated for the same
ange of stress levels, but this time assuming an elastic behavior of the matrix (𝜆𝑛𝑥,𝑗 = 1 in Eq. (25)). The results are compared with

the model response allowing for viscoplastic deformation in the matrix, see Fig. 17 (left) for 𝜒 = 90◦ and Fig. 17 (right) for 𝜒 = 45◦.
As calibrated in this study, the cohesive model combined with an elastic matrix represents quite well the crack growth failure
egime for both loading angles, but does not capture the transition to plasticity controlled failure at higher stresses. Although a
edicated calibration of the cohesive model with elastic matrix could improve corresponding results at higher stresses, the adequate
requency dependence of the 𝑆-𝑁 curve would still be absent, since the number of cycles would be the quantity governing the

failure process. Including viscoplastic deformation in the matrix drastically affects the model response at higher stresses for which
significant yielding occurs inside the RVE and viscoplasticity practically dominates the response in this stress range. The mechanism
at which the viscoplastic bulk deformation contributes to failure is the following: under the applied (creep or cyclic) stress the
polymer matrix undergoes viscous deformation that increases in time. In the heterogeneous microstructure of the RVE with already
initiated cohesive segments there may be a nonuniform plastic flow of the material from the two sides of the cohesive segment,
17 
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Fig. 17. Influence of viscoplastic (VP) deformation in the matrix on failure of the RVE; 𝜒 = 90◦ (left), 𝜒 = 45◦ (right), 𝑅 = 0.1; comparison made with simulation
results with elastic matrix.

Fig. 18. RVE prediction of time to failure for different load ratios and off-axis angles, where along dotted and solid lines x marks stress levels considered in
imulations; empty markers represent experimental data on creep rupture (left); influence of dummy stiffness on time to failure in creep loading for two off-axis
ngles (right).

leading to an opening of the cohesive zone and activating the quasi-static damage variable.1 It is known in the polymer literature
that crack propagation in cyclic loading features a static (creep) component and a cyclic component (Dumpleton and Bucknall,
1987; Hu et al., 2003). As for physical interpretation, the cyclic component of crack propagation is due to bending, buckling or
rushing fibrils (Zhou and Brown, 1992), and is represented with the fatigue damage variable in the model. On the other hand,
he creep component relates to failure of the fibrils in the fracture process zone (or craze zone) due to disentanglement or chain
cission (Zhou et al., 2011). In the present model, it becomes dominant at higher stresses applied on the RVE, as opposed to the

cyclic component that is dominant at lower applied stresses. Finally, the small but nonzero influence on the lifetime that is found
rom viscoplasticity in the crack growth regime mirrors the small frequency dependence that was found for the number of cycles to
ailure for low 𝑅-values in Fig. 16. Both observations point at a small but non-negligible influence of time-dependent plasticity on
he lifetime in high-cycle fatigue.

5.2.2. Creep rupture
In order to elucidate the role of the loading amplitude on the time to failure in the plasticity controlled regime, the model response

for 𝑅 = 1 (creep) is compared with the model response for 𝑅 = 0.1 and 𝑓 = 1 Hz, see Fig. 18 (left), where the experimental results
or creep rupture are also included (Sundararajan, 2024). Note that for 𝑅 = 1, there is no micro time stepping in the simulations. As
bserved from the figure, the model predicts well the time to failure in creep, which shifts to shorter timescales as compared to the
lasticity controlled regime in cyclic loading. This shift is due to the faster viscous deformation in the bulk material under a constant
oading than that under cyclic loading. Despite this difference, both cases feature the same slope in the 𝑆-𝑡 curve, indicating the same
ailure kinetics. It is worth noting that the present model better predicts creep rupture than the model we introduced in Kovačević

et al. (2024). There, a general cohesive initiation criterion based on the critical energy stored in the bulk material was considered,
that further required the presence of another failure mechanism on the cohesive surface, to speed up the failure process for different
loading angles. That approach led to a lower predictive accuracy compared to the current results. However, the described mechanism
to activate the quasi-static damage in the current model is not possible in a homogeneous material like neat polymer, where the
uniform viscous deformation of the surrounding bulk material will not change the cohesive zone opening, and the quasi-static
damage variable will never be activated. In such a scenario, the modeling of creep rupture or plasticity controlled failure in fatigue

1 Yet another mechanism at which the quasi-static damage variable can be activated in the present context is the application of the engineering stress, which
eans that in tension the actual stress on the RVE is increasing with deformation, Eq. (8).
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Fig. 19. Homogenized strain rate versus time computed at macro time steps for different maximum stress levels, 𝑓 = 1 Hz, 𝜒 = 90◦ (left) and 𝜒 = 45◦ (right);
ailure of RVE coincides with abrupt increase in strain rate; 153 macro time steps needed to reach point A (𝑡 = 4.217 ⋅ 105 s) and 1008 macro time steps needed
o reach point B (𝑡 = 4.357 ⋅ 105 s).

requires the existence of another failure mechanism if the cohesive zone approach is followed, e.g., viscous degradation on the
cohesive surface (Kovačević et al., 2024).

Another important aspect about the model is that the cohesive model dummy stiffness 𝐾𝑛 affects the model response. An
indication for this is found in the observation that early initiation of cracks (using the endurance limit at 𝑅 = 0.1) is essential
to obtain failure in creep loading that is within the timescale of experimental data, even though the fatigue damage remains inactive
for 𝑅 = 1. To support this claim, the RVE is again exposed to a constant load, 𝑅 = 1, with the dummy stiffness reduced from 108

N/mm3 to 107 N/mm3. The corresponding time to failure curves are shown in Fig. 18 (right), for two off-axis angles. It follows
from the figure that for 𝜒 = 45◦ the response is almost unaltered by the change in stiffness. Nevertheless, the 𝜒 = 90◦ case shows
 significant shift in the lifetime when changing the dummy stiffness. By lowering the value of 𝐾𝑛, it becomes easier for the two
ides of the cohesive segment to detach, increasing the effect of viscoplastic flow in the surrounding matrix.

Although not every mechanism is fully captured, the proposed model shows a very good ability to reproduce highly-complex
ailure behavior.

5.2.3. Failure state of the RVE
A failure state of the RVE is reached by propagating microcracks through the matrix. The RVE is considered to have failed when

he adaptive stepping algorithm cannot find a converging time increment anymore. It is checked from looking at the homogenized
train rates whether this non-convergence is preceded by increased deformation rates, as can be expected to happen just before the

material cannot carry the applied load anymore. The homogenized strain rate is computed at macro time steps, when the applied
stress is at its maximum. Fig. 19 illustrates the evolution of the strain rate for 𝜒 = 90◦ and 𝜒 = 45◦, 𝑅 = 0.1, 𝑓 = 1 Hz and different
stress levels. After the initial loading phase is over (𝑡 = 10 s) and the cycling has started, the homogenized strain rate gradually
decreases. Subsequently, the strain rate reaches a minimum value after which it transitions to an abruptly increasing phase. It is
clear that the non-convergence of the model, that is taken as failure of the material, is caused by instability in the homogenized
material response. A similar evolution of the strain rate is observed experimentally for creep loading, see e.g. Erartsin et al. (2022).

For some loading cases, capturing the equilibrium path after the minimum strain rate is passed, may be computationally
emanding. In Fig. 19 (left), points A and B are indicated for the stress level of 85 MPa, both of which belong to the phase of

quickly increasing strain rate. The number of macro time steps needed to reach the point A (𝑡 = 4.217 ⋅ 105 s, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 4.66 ⋅ 104 s)
is 153, while the point B (𝑡 = 4.357 ⋅ 105 s, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 9.776 ⋅ 104 s) was reached after 1008 macro time steps. Also, in some loading
ases including the considered one, transition from point A to point B is not monotonic, i.e., the strain rate value oscillates, with
he overall trend to increase. Furthermore, it is possible to lose convergence at micro time steps in this last phase of the simulation.
n such a case, the data collected from the last successful micro time stepping are used to compute 𝛥𝑡eff at macro time steps. This is

the reason why the runtime between the points A and B differs by a factor of 2, while the number of macro time steps differs by a
factor of 7, approximately. The clear increase in strain rate that is consistently found in the final phase of the simulation indicates
that the non-convergence with which the simulation ends is indeed caused by the material losing the ability to carry the prescribed
load.

Deformed RVEs at the moment of failure are shown in the contour plots of Fig. 20, where the distribution of the equivalent plastic
strain is illustrated together with cohesive microcracks for two loading angles. Although it features much less equivalent plastic strain
than the 45◦ example, the 90◦ case does not lack yielding in the matrix, which brings it to the plasticity controlled failure regime, see
Fig. 17. The difference in �̄�p for two loading angles is due to the difference in shear deformation, which, by definition, promotes the
accumulation of the plastic strain in the EGP model. In Fig. 20 (right) the discretization and the crack pattern are visualized, where
he thicker lines indicate initiated cohesive segments in one typical simulation. In the depicted example, except for two cohesive
egments (encircled green lines) in the elastic/unloading phase, all other cohesive segments (black lines) are in the loading phase,
.e., the damage increases at the moment of failure.

When changing the mode of failure, the density of developing cohesive microcracks in the domain changes as well. This fact
is illustrated in Fig. 21, where the network of cohesive microcracks is shown for 𝜒 = 90◦ and three stress levels at the moment of
19 
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Fig. 20. Front view of 3D thin slice RVE showing equivalent plastic strain and cohesive microcracks in the matrix at the moment of failure for two loading
angles, 𝑅 = 0.1 and 𝑓 = 1 Hz; gray lines indicating finite element mesh, with thicker lines representing initiated cohesive segments for typical simulation (right);
black lines indicate damaging cohesive segments, while (encircled) green lines represent cohesive segments in elastic/unloading phase.

Fig. 21. Density of developing cohesive microcracks at failure for 𝜒 = 90◦, 𝑅 = 0.1, 𝑓 = 1 Hz and three stress levels; 100 MPa belongs to plasticity controlled
failure regime; the other two are in crack growth failure regime, see Fig. 13.

Fig. 22. RVE prediction of 𝑆-𝑁 curves for different mesh sizes defined by minimum length of finite element; 𝜒 = 90◦, 𝑓 = 1 Hz (left); 𝜒 = 45◦, 𝑓 = 3 Hz (right);
𝑅 = 0.1.

failure. In the plasticity controlled regime, 𝜎max
𝑦𝑦 = 100 MPa, two dominant cohesive cracks are running through the RVE. As the

applied stress decreases and the failure mode transitions to the brittle mechanism, the density of developing cohesive microcracks
increases.

5.2.4. Mesh dependency
Finally, 𝑆-𝑁 curves are generated with three different mesh sizes, see Fig. 22 (left) for 𝜒 = 90◦ and Fig. 22 (right) for 𝜒 = 45◦,

where the mesh size is defined by the minimum finite element length. While for 𝜒 = 90◦ refinement of the mesh leads to a similar
model response, for 𝜒 = 45◦ the results indicate a significant dependence on the mesh density. In this regard, careful studies on
mesh dependency of the model are needed, particularly on the objectivity of viscosity evolution in the EGP model, and the influence
of inter-element crack patterns on the model response.

6. Conclusion

In this work, a microscale spatial and two-scale temporal framework is introduced to capture the time- and cycle dependency of
failure in unidirectional composites under cyclic loading. To efficiently pass through the loading signal, an adaptive stepping scheme
is proposed. The scheme consists of macro time steps where viscoplasticity evolves in the polymer matrix, and micro time steps with
an elastic update in the bulk material models, and blocked cohesive initiation and damage evolution in the cohesive zone model.
The response of the matrix in cyclic loading is represented with the Eindhoven Glassy Polymer material model, for which a version
based on two time scales is formulated. Following principles of the time homogenization procedure, an effective time increment is
20 
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computed for integration points representing the matrix, and used in macro time step updates. The carbon fiber reinforcement is
represented with a hyperelastic transversely isotropic material model. For considered examples, the time homogenization approach
s shown to accurately capture the cyclic evolution of viscoplastic deformations for a range of stress ratios from 𝑅 = −0.5 to 𝑅 = 1.
nly for lower negative 𝑅-values, when reverse plasticity becomes significant, the proposed approach loses accuracy.

Failure of the RVE is achieved by propagation of microcracks through the domain, whereby microcracking is represented with
Dávila’s cycle-dependent cohesive model, combined with an endurance limit-based cohesive initiation criterion. Eventually, the
time-dependent failure process features two components. Firstly, there is cyclic failure due to the buckling and crushing of fibrils
n the process zone, represented with the fatigue damage in the cohesive model. Secondly, there is nonuniform viscoplastic flow
n the bulk material around cohesive segments, which may trigger quasi-static damage of the cohesive model. The static (creep)

component is dominant at higher applied stresses, as opposed to the cyclic (fatigue) component, which dominates the response at
lower stresses.

The model performance is compared with available experiments on fatigue of UD carbon/PEEK thermoplastic composites, tested
under different off-axis angles, load ratios and frequencies. The model is able to capture the transition from plasticity controlled to
crack growth controlled failure, and properly captures the frequency dependency of each mechanism. Despite showing very good
performance for the aforementioned cases, the 𝑅-dependence and the off-axis angle dependence of the number of cycles to failure
in the crack growth controlled regime is still not captured well. For the studied material system, modification of the cohesive zone
model will be required to achieve a model that can make accurate predictions for a wider range of load cases.

As a limit case when 𝑅 = 1, the model is able to capture the failure kinetics in creep loading, which are the same as in the
plasticity controlled regime under cyclic loading. The difference is that the creep rupture state shifts toward shorter lifetimes due
to the faster viscoplastic deformation under a constant loading. Regarding the accuracy of the predicted time to failure, the model
proposed here outperforms our earlier model specifically developed for creep rupture (Kovačević et al., 2024). A notable difference
s that here we use a different initiation criterion that allows for early initiation of many cohesive segments. The heterogeneity

of the microstructure allows for nonuniform viscoplastic flow of the matrix around cohesive segments, which triggers quasi-static
damage and leads to creep rupture. However, this mechanism is not possible in neat polymer, where the matrix uniformly flows
around cohesive segments and quasi-static damage does not evolve. In such a scenario, another failure mechanism is required to
trigger the failure process, e.g., viscous degradation on the cohesive surface (Kovačević et al., 2024).
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Appendix

All parameters of constitutive models considered in this paper are listed in Table A.6. An explanation is provided on how
hese parameters can be obtained, and necessary experiments are indicated. Given the large number of parameters governing the

constitutive models, the outlined procedure to determine their values is not unique, but represent one possible way to obtain these
alues.

Regarding the (two-scale) EGP model representing the polymer matrix, the bulk modulus 𝜅 can be obtained from a uniaxial test of
neat polymer, whereby the Young’s modulus and the Poisson’s ratio are determined and used to compute the bulk modulus. To ensure
 homogeneous deformation of the testing sample, compression is preferred over tension. The hardening modulus 𝐺r can be obtained
rom a stress–strain curve in uniaxial compression, as a slope of the curve at large strains (Klompen et al., 2005). The activation
olume 𝑉𝑥 (𝑥 = 𝛼 , 𝛽) is obtained by fitting the slope of the yield stress plotted versus strain rate in a semi-log scale (Van Breemen

et al., 2011). Hence, a series of experiments in uniaxial compression at different strain rates (e.g. 10−5 − 10−2/s) is necessary.
If present, a change in the slope of the plotted curve would indicate the presence of another relaxation process (𝑉𝛽 ≠ 0). The
ctivation enthalpy 𝛥𝐻𝑥 is determined from multiple experiments in uniaxial compression at different temperatures (e.g. 20◦ − 100◦
), where 𝛥𝐻𝑥 is calibrated to match the observed yield stress for different temperatures. Again, if a change in the slope of this

curve is observed, it means that another relaxation process also contributes to the material response in the given temperature
ange (𝛥𝐻𝛽 ≠ 0). The relaxation spectrum (𝐺𝑥,𝑗 and 𝜂0𝑥,𝑗) is determined from one uniaxial test considering the pre-yield response as
xplained in Van Breemen et al. (2011). The reader should note that an alternative exists in calibrating Eyring parameters (activation
21 
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Table A.6
Parameters of constitutive models used in the paper.

Eindhoven Glassy Polymer model (matrix)
𝜅 Bulk modulus
𝐺r Hardening modulus
𝑉𝑥 Activation volume
𝛥𝐻𝑥 Activation enthalpy
𝐺𝑥,𝑗 Shear moduli
𝜂0𝑥,𝑗 Initial viscosities
𝜇𝑥 Pressure dependency
𝑆𝑥 State parameter

Transversely isotropic model (fibers)
𝐸1 Young’s modulus in preferential stiffness direction
𝐸2 Young’s modulus in the plane of isotropy
𝐺12 shear modulus in planes perpendicular to the isotropic plane
𝜈12 Poisson’s ratio in planes perpendicular to the isotropic plane
𝜈23 Poisson’s ratio in the plane of isotropy

Dávila’s cohesive zone model (cracks)
𝐾𝑛 Dummy stiffness in normal direction
𝐺𝐼 𝑐 Mode I fracture energy
𝐺𝐼 𝐼 𝑐 Mode II fracture energy
𝑓𝑛 Quasi-static strength in normal direction
𝑓𝑠ℎ Quasi-static strength in shear direction
𝜂BK Interaction parameter
𝜖 Relative endurance limit at 𝑅 = −1
𝜂 Brittleness parameter
𝑝 Fitting parameter

volume, activation enthalpy, initial viscosities), if these parameters are modeled as deformation dependent (Sundararajan, 2024),
which is not the case in this study. The pressure dependency parameter 𝜇𝑥 is obtained by fitting the yield stress for different values of
imposed hydrostatic pressure (Klompen et al., 2005). Finally, the state parameter 𝑆𝑥 = 𝑆a𝑥 ⋅𝑅𝛾 𝑥 (see Section 3.1) can be determined
from one uniaxial compression test (Klompen et al., 2005), and will be nonzero if there is an intrinsic strain-softening of the material.
n this study, it is set to zero, see Section 3.1.

Given a different crystallinity of neat polymer (PEEK) and the fiber reinforced polymer, a direct application of this set
of parameters would result in an inaccurate prediction of the composite stress–strain response under different loading condi-
tions (Sundararajan, 2024). Therefore, a modification of the initial set of parameters is needed to improve the simulation accuracy.
For example, the relaxation spectrum can be shifted until a satisfactory accuracy is reached. Until a systematic relationship between
he change in material crystallinity and the change in the material properties is established, this shift can be done by trial and error.

As for the transversely isotropic material model representing carbon fibers, the Young’s modulus in the preferential stiffness
direction is obtained from quasi-static experiments on UD material in longitudinal direction. Experimental procedures to obtain
other parameters for the material model are more involved, so their values were in this work adopted from literature. The Young’s
modulus 𝐸2 and the Poisson’s ratio 𝜈23 were adopted according to Miyagawa et al. (2005). The shear modulus 𝐺12 was fitted to

atch the strain-time response under 𝜒 = 45◦ creep loading (Kovačević et al., 2024). The Poisson’s ratio 𝜈12 = 0.05 was adopted
rom Kovačević and Van der Meer (2022), the value of which also ensures the computational stability of the material model.

Finally, the parameters of the cohesive model need to be determined. The value of the dummy stiffness 𝐾𝑛 needs to be high
enough to prevent spurious effects on the homogenized strain of the micromodel in the presence of many cohesive segments, but
ow enough to not cause numerical difficulties. Fracture energies and the quasi-static strength parameters can be obtained from

quasi-static experiments on UD material under 90◦ and 45◦, where fitting the stress at failure and the strain at failure for two
oading angles is enough information to determine these four parameters. In the present study, fracture energies 𝐺𝐼 𝑐 and 𝐺𝐼 𝐼 𝑐 were

adopted from Kovačević et al. (2022), while the quasi-static strength parameters 𝑓𝑛 and 𝑓𝑠ℎ were determined to fit the slope of 𝑆-𝑡
curves in plasticity controlled failure under 𝜒 = 90◦, 𝜒 = 45◦ and 𝑓 = 1 Hz. The interaction parameter 𝜂BK can be determined from
mixed-mode bending tests (Benzeggagh and Kenane, 1996). The fitting parameter 𝑝 can be adopted from literature, e.g. Raimondo
et al. (2022), where different values have been considered for 𝑝. The brittleness parameter 𝜂 is determined such that the transition
from plasticity controlled failure to crack growth controlled failure is captured. The parameter 𝜖 is fitted such that the slope of the
crack growth controlled regime is accurately represented.

Data availability
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