
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Improving DRL Of
Vision-Based
Navigation By Stereo
Image Prediction
Thesis Report

AE5310: Thesis Control and Operations
Luc den Ridder

Improving DRL Of
Vision-Based

Navigation By Stereo
Image Prediction

Thesis Report

by

Luc den Ridder
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday June 20, 2023 at 9:30 AM.

Student number: 4543165
Project duration: July 12, 2022 – June 20, 2023
Thesis committee: Prof. dr. ir. G. C. H. E. de Croon, TU Delft, supervisor

Dr. Ir. C. de Wagter TU Delft
Dr. Ir. B. F. Lopes Dos Santos, TU Delft
Ir. Y. Wu, TU Delft

Cover: Flying Drone by Josue Bautista Garcia on Pexels (Modified)
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

Nomenclature ii

Preface v

Abstract vi

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 1
1.3 Report Structure . 2

I Scientific Paper 3

II Literature Study 29
2 Geometry-Free Monocular-to-Stereo Image View Synthesis 30

2.1 Literature Overview . 30
2.1.1 Historical Context of Computer Vision . 30
2.1.2 General Developments within Computer Vision 33
2.1.3 Adjacent Fields of Research . 40
2.1.4 Discussion . 47

2.2 Research Plan . 48
2.2.1 Architecture . 49
2.2.2 Implementation Details . 51
2.2.3 Experiments . 52

2.3 Conclusion . 57

3 Deep Reinforcement Learning for Monocular Vision-Based Drones trained with Stereo Vi-
sion 58
3.1 Literature Overview . 58

3.1.1 Deep Reinforcement Learning in Today’s World 58
3.1.2 Reinforcement Learning for Drone Navigation . 59
3.1.3 Vision-Based Deep Reinforcement Learning . 62

3.2 Research Plan . 67
3.2.1 Simulation Environment . 67
3.2.2 Architecture . 68

4 Conclusion 72

References 73

i

Nomenclature

Abbreviations

Abbreviation Definition
A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
ACER Actor-Critic with Experience Replay
ACKTR Actor-Critic with Kronecker Factored Trust Region
Adam Adaptive Moment Estimation
BN BatchNorm
CNN Convolutional Neural Network
CPU Central Processing Unit
CV Computer Vision
DCNN Deep Convolutional Neural Network
DNN Deep Neural Network
DPG Deterministic Policy Gradient
DDPG Deep Deterministic Policy Gradient
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DRNN Deep Recurrent Neural Network
ELU Exponential Linear Unit
FID Frechet Inception Distance
FCN Fully Convolutional Network
GAN Generative Adversarial Network
GELU Gaussian Error Linear Unit
GPS Global Positioning System
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
LDI Layered Depth Image
LN LayerNorm
LPIPS Learned Perceptual Image Patch Similarity
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MDP Markov Decision Process
MLP Multilayer Perceptron
MPI Multiplane Image
MSA Multi-head Self-Attention
MSE Mean Squared Error
MS-SSIM Multi-Scale SSIM
NLP Natural Language Processing
NeRF Neural Radiance Fields
NVS Novel View Synthesis
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
PSRN Peak Signal-to-Noise Ratio
RGB Red, Green and Blue
RGB-D Red, Green, Blue and Depth

ii

Contents iii

Abbreviation Definition
RL Reinforcement Learning
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
ROS Robot Operating Systems
SAC Spft Actor-Critic
SGD Stochastic Gradient Descent
SSIM Structural Similarity Index Measure
Swin Shifted Windows
SW-MSA Multi-head Self-Attention in Shifted Windows
Tanh Tangent Hyperbolic
TD3 Twin Delayed Deep Deterministic
TRPO Trust Region Policy Optimization
TPU Tensor Processing Unit
UAV Unmanned Aerial Vehicle
VAE Variational Autoencoder
VQ-GAN Vector Quantized Generative Adversarial Networks
VQ-VAE Vector Quantized Variational Autoencoder
ViT Vision Transformer
W-MSA Multi-Head Self-Attention in Windows

Symbols

Symbol Definition
𝑎 Action
𝒜 Action Space
�̂� Bias Matrix
𝐶 Number of Channels
𝑑 Depth
𝑑𝑘 Key Dimension
𝑑𝑣 Value Dimension
𝐷 Disparity
𝐸 Embedded Patch
𝐸 Error
E Expected Value
ℎ Interaction History
ℎ Height
𝐻 Height
𝐼 Image
𝐽 Reward Function
𝐾 Key
𝑘1 Constant
𝑘2 Constant
𝐿 Dynamic Range of Pixel Values
𝑀 Million
𝑀2 Number of patches in window
𝑁 Total number of Images
𝑜 Observation
𝒪 Observation Space
𝑃2 Resolution of Image Patches
𝑄 Query
𝑄 Action-value
𝑟 Real-Valued Reward

Contents iv

Symbol Definition
𝑅 Expected Discounted Cumulative Reward
R Set of Real Numbers
𝑡 Time
𝑠 State
𝒮 State Space
𝒰 Uniform Distribution
𝑣 velocity
𝑉 Value
𝑉 State-Value
𝑤 Width
𝑊 Width
𝑥 Image
𝑥 Coordinate on X-Axis
𝑥𝑝 Image Patches
𝑦 Target Image
𝑦 Coordinate on Y-Axis
𝑦∗ Predicted Image
�̂� Predicted Image
𝑧 Coordinate on Z-Axis
𝛽 Behaviour policy
𝛿 intensity
𝜇 Mean
𝛾 Discount Factor
𝜎 Standard Deviation
𝜋 Policy
𝜙𝜋𝜃 State Visitation Probability
𝜃 Target Policy

Preface

Welcome to my master’s thesis: "Improving Deep Reinforcement Learning Of Vision-Based Navigation By
Stereo Image Prediction." It’s a fascinating topic, blending artificial intelligence and computer vision to make a
real difference in the world of autonomous systems.

I have many people to thank for their help in bringing this work to life. First and foremost, Yilun Wu, my super-
visor, who was always ready with his sharp remarks and expert guidance. His assistance has been invaluable,
and this thesis wouldn’t be what it is without him.

My responsible supervisor, Guido de Croon, also deserves special recognition. Though our meetings were on a
biweekly basis, his insights and advice significantly influenced my work.

The computational resources for this research were indispensable. I extend my gratitude to Yilun for the use of
his personal server, and Jesse Hagenaars, who managed another server that was integral to my research. I’m
grateful for their support.

In addition, Hang Yu developed the AvoidBench code that was integral to my research. His help in implement-
ing it made a big difference to my work.

My family and friends have been a steady source of support throughout this journey, and for that, I am grateful.
Special thanks to my friends who shared the study room 2.56 with me. Your company made the long hours of
work enjoyable and worthwhile.

In the pages that follow, I present my research on enhancing autonomous systems through stereo image predic-
tion. I hope you find it as interesting to read as I found it to conduct.

Lastly, I want to extend my heartfelt thanks to everyone who’s been a part of this journey. I’ve learned so much
along the way, and I’m excited to see where these advancements in deep reinforcement learning lead us.

Luc den Ridder
Delft, June 2023

v

Abstract

Although deep reinforcement learning (DRL) is a highly promising approach to learning robotic
vision-based control, it is plagued by long training times. This report introduces a DRL setup that
relies on self-supervised learning for extracting depth information valuable for navigation. Specifi-
cally, a literature study is conducted to investigate the effects of learning how to synthesize one view
from the other in a stereo-vision setup without relying on any preliminary knowledge of the cam-
era extrinisics and how it can be integrated for its downstream use for an obstacle avoidance task.
As such, the literature study concludes that competitive geometry-free monocular-to-stereo image
view synthesis is feasible due to recent developments in computer vision. The scientific paper further
develops concepts proposed in the literature study and benchmarks the proposed architectures on
depth estimation benchmarks for KITTI. Competitive results are achieved for view synthesis and
despite sub-optimal performance compared to state-of-the-art monocular depth estimation, an ability
to encode depth and detect shapes is present and, therefore, satisfactory for the application to DRL.
Additionally, the research examines the benefits of using the latent space of a view synthesis archi-
tecture compared to other feature extractor methods as an input to the PPO agent implemented as
auxiliary tasks. This method achieves quicker convergence and better performance for an obstacle
avoidance task in a simulated indoor environment than the autoencoding feature extractor and end-
to-end DRL methods. It is only outperformed by the monocular depth estimation feature extractor
method. Overall, this research provides valuable insights for developing more efficient and effective
DRL methods for monocular camera-based drones. Finally, the complementary code for this research
can be found: https://github.com/ldenridder/drl-obstacle-avoidance-view-synthesis.

vi

https://github.com/ldenridder/drl-obstacle-avoidance-view-synthesis

List of Figures

2.1 Architecture of Rosenblatt’s perceptron . 31
2.2 Architecture of deep neural network . 32
2.3 Gradient descent on a simple loss function . 32
2.4 Tanh and Sigmoid activation functions . 34
2.5 GELU, RELU and ELU activation functions . 34
2.6 Transformer model architecture by (Vaswani et al., 2017) 36
2.7 Multi-Head Attention mechanism by (Vaswani et al., 2017) 36
2.8 Scaled Dot-Product function by (Vaswani et al., 2017) . 36
2.9 Vision Transformer Model architecture for image classification by (Dosovitskiy et al.,

2020) . 37
2.10 Hierarchical feature maps compared to constant feature maps by (Z. Liu et al., 2021) . . 38
2.11 Shifted windows approach for self-attention by (Z. Liu et al., 2021) 38
2.12 Multipurpose Swin Transformer model architecture by (Z. Liu et al., 2021) 38
2.13 End-to-end architecture for pixel-wise predictions by (Long et al., 2015) 39
2.14 Implementation of the skip connection in (Long et al., 2015) 39
2.15 U-net architecture for pixel-wise predictions by (Ronneberger et al., 2015) 40
2.16 Swin-Unet architecture pixel-wise predictions by (Cao et al., 2021) 40
2.17 Model architecture for monocular depth estimation by (Eigen et al., 2014) 42
2.18 Model architecture for self-supervised monocular depth estimation by (Garg et al., 2016) 44
2.19 Model architecture for self-supervised monocular depth by (Luo et al., 2018) 45
2.20 Illustration of data grafting by (Peng et al., 2021) . 45
2.21 Model architecture for view synthesis by (Tatarchenko et al., 2016) 46
2.22 VQGAN architecture for geometry-free view synthesis by (Esser et al., 2021) 47
2.23 SRT architecture for geometry-free view synthesis by (Sajjadi et al., 2021) 48
2.24 Simple end-to-end architecture for pixel-wise predictions 49
2.25 Redrawn U-net architecture for pixel-wise predictions . 50
2.26 Redrawn Swin-Unet architecture for pixel-wise predictions 50
2.27 Proposed Swin-U-Net architecture for pixel-wise predictions 50
2.28 Proposed Swin-U-Net architecture for monocular-to-stereo image view synthesis 50
2.29 Swin-U-Net architecture for direct monocular depth estimation 51
2.30 Swin-U-Net architecture with a warping mechanism for self-supervised monocular

depth estimation . 51
2.31 Swin-U-Net architecture with stereo matching for self-supervised monocular depth

estimation . 51
2.32 Predicted right image without skip connections . 54
2.33 Predicted right image without the bottleneck . 54
2.34 Predicted right image including the skip connection at 1/8 54
2.35 Predicted right image excluding the skip connection at 1/8 54
2.36 Predicted right image including the skip connection at 1/4 54
2.37 Predicted right image excluding the skip connection at 1/4 54
2.38 Predicted right image including the skip connection at 1/2 55
2.39 Predicted right image excluding the skip connection at 1/2 55
2.40 Predicted right image including the skip connection at 1/1 55
2.41 Predicted right image excluding the skip connection at 1/1 55
2.42 Original right image . 55
2.43 Predicted right image . 55

3.1 Information flow of reinforcement learning algorithms 59

vii

List of Figures viii

3.2 Information flow of reinforcement learning algorithms for UAVs by (AlMahamid &
Grolinger, 2022) . 60

3.3 Distribution of simulation software used by papers that use reinforcement learning for
UAVs by (AlMahamid & Grolinger, 2022) . 60

3.4 Simulation environments created in Flightmare by (Loquercio et al., 2021a) 63
3.5 Depth and RGB images of a simulation environment in Flightmare by (Loquercio et al.,

2021a) . 63
3.6 Architecture of a reinforcement learning algorithm using an A3C agent with pixel

control, reward prediction and value function replay as auxiliary tasks by (Jaderberg
et al., 2016) . 64

3.7 Architecture of a reinforcement learning algorithm with two depth predictions and
loop detection as auxiliary tasks by (Mirowski et al., 2016) 65

3.8 Deep Reinforcement Learning architecture for obstacle avoidance 68
3.9 Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary

task for monocular-to-stereo image view synthesis . 69
3.10 Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary

task for monocular depth estimation . 69
3.11 Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary

task for monocular-to-stereo image view synthesis with a warping mechanism 70

List of Tables

2.1 Datasets used in adjacent fields of research . 41
2.2 Benchmark the proposed architectures for monocular-to-stereo image view synthesis

on reconstruction realism . 52
2.3 Results of the proposed architectures for monocular-to-stereo image view synthesis on

reconstruction realism . 52
2.4 Latent space size of the proposed architectures . 53
2.5 Ablation studies on the impact of the skip connections in both training and testing for

monocular-to-stereo image view synthesis on reconstruction realism 53
2.6 Ablation studies on the impact of the skip connections after training in testing for

monocular-to-stereo image view synthesis on reconstruction realism 53
2.7 Results of Experiment 1-6 and Experiment 1-7 . 54
2.8 Benchmark the proposed architectures for monocular-to-stereo image view synthesis

on reconstruction realism . 55
2.9 Ablation studies on the impact of the applied data augmentation techniques to the

KITTI dataset for monocular-to-stereo image view synthesis on reconstruction realism . 56
2.10 Ablation studies on the impact of the loss function for monocular-to-stereo image view

synthesis on reconstruction realism . 56
2.11 Ablation studies on the impact of the dataset for monocular-to-stereo image view syn-

thesis on reconstruction realism . 56
2.12 Benchmark the proposed architecture for monocular-to-stereo image view synthesis

extended with stereo matching on depth estimation . 57
2.13 Ablation studies on the impact of the skip connections in both training and testing for

monocular-to-stereo image view synthesis extended with stereo matching on depth
estimation . 57

2.14 Ablation studies on the impact of the skip connections after training in testing for
monocular-to-stereo image view synthesis extended with stereo matching on depth
estimation . 57

3.1 Ablation studies on the impact of the environmental complexity 69
3.2 Ablation studies on the impact of pre-training and the auxiliary task 70
3.3 Ablation studies on the impact of the dynamic fidelity . 70
3.4 Ablation studies on the impact of the type of auxiliary task 70
3.5 Ablation studies on the impact of the skip connections . 71

ix

1
Introduction

With computing power becoming cheaper and neural networks becoming ever more powerful, they
get more instrumental in aiding research to improve quality of life and reduce the costs of products
and services. The research presented in this report is such a tale, showing the versatility of deep
reinforcement learning agents trained on stereo vision applied to monocular vision-based drones,
reducing the need for expensive and heavy depth sensing technologies.

1.1. Background
LIDAR sensors use laser beams to create a three-dimensional representation of the surveyed envi-
ronment. In doing so, they create a depth map, which is essential for the navigation of autonomous
drones. With the costs of batteries and processors going down, these LIDAR sensors are becoming
more expensive relative to other parts. As such, a priority within the computer vision industry is
to reduce dependency on these sensors. Cameras are, however, reasonably cheap, and as implied
by its name, the computer vision domain tries to extract as much understanding from the cameras’
output. Inspired by humans and other animals, this domain succeeded in estimating depth by using
the disparities of matching pixels from two images taken by cameras parallel to each other, so-called
stereo vision. Humans, however, rely not solely on the geometric method but also on monocular
cues. Exclusively depending on monocular vision is sufficient for humans to perceive depth (Walk
& Dodge, 1962). These cues include monocular parallax and pictorial cues based on the relation of
objects within the frame and their location within the three-dimensional space. The geometry and
size of things, where things vertically begin and end in the frame, and the horizon are the dominant
cues learned. We have observed these relations while interacting with and growing up in our envi-
ronment. As these features are thought through experience, a neural network should also be able to
learn this. Indeed, there has been steady progress in the ability of neural networks to estimate depth
with monocular vision. For instance, a supervised learning approach that accounts for both local
and global image features was proposed (Saxena et al., 2005). A couple of years later, an architecture
was developed using two deep networks, one of them to estimate the global depth structure and the
other to refine the details locally (Eigen et al., 2014). As stated earlier, depth is geometrically related
to stereo images. Consequently, this also means that once depth and a single image are known, the
other image could be obtained through geometry, except for the occluded parts in the first image that
are visible in the second image. Training a network on stereo cameras to predict one of the images
from the other image could be helpful. Once a network can predict the second image with decent
accuracy, it should understand the geometric relation and depth, which would be encoded in the
latent space of the network architecture.

1.2. Problem statement
So for which cases is this specifically helpful? Monocular camera-based drones require few compo-
nents, making them cheap and lightweight. Being able to navigate efficiently and avoid obstacles
consistently is of significant relevance to the use case of such autonomous drones. One method to
train these drones is with deep reinforcement learning (DRL). Within DRL, an agent receives rewards

1

1.3. Report Structure 2

based on the results of actions taken by the agent. The agent takes an action based on available infor-
mation. In the case of a drone with a monocular camera, it is a sequence of RGB images. The most
traditional setup for vision-based navigation is an end-to-end approach trained by relying solely on
obstacle avoidance and path planning rewards. However, currently in most state-of-the-art meth-
ods (e.g. (Ha & Schmidhuber, 2018)), the images are encoded by a deep neural network so that only
essential information is presented to the agent, and a sound decision follows regarding navigation.
For instance, the encoder could be trained with autoencoding. (B. Zhou et al., 2019) showed the im-
portance of feature extraction for the navigational performance of several tasks. Specifically intrinsic
surface, color, optical flow, depth, and semantic segmentation. Furthermore, (Sax et al., 2018) con-
cluded that adding other intermediate representations, such as curvature and denoising, enhances
performance. These feature extractors often have to be trained with a different model on a dataset
in a supervised manner and then finetuned to the reinforcement learning task. It is also possible to
train the encoder as an auxiliary task, which runs parallel to the main task of the reinforcement learn-
ing network (X. Li et al., 2015). These auxiliary tasks can be trained unsupervised (Jaderberg et al.,
2016) or self-supervised (Mirowski et al., 2016). The prediction network earlier described becomes
relevant for this goal. Training the agent parallel on image synthesis could improve the quality of
the encoded information that the agent receives for the main task. Besides the cost advantage of a
stereo-camera-based drone over a drone with depth sensors, a second advantage is that the agent
of a monocular-based drone could reason about the environment outside its field of view. It should
be able to imagine what occluded regions could contain and understand the shape of objects better.
This leads to the following research question encompassing both experimental phases and will be
answered in the succeeding thesis report.

Research Question: How can geometry-free monocular-to-stereo image view synthesis be
used as an auxiliary task to improve the navigation task performance and data efficiency of
the reinforcement learning agent from a monocular vision-based drone?

1.3. Report Structure
This is the thesis report with the topic: Combining Stereo Image Prediction With Deep RL On Sin-
gle Camera Drones. The content and structure of this report correspond to guidelines provided for
’Master Thesis AE’1. The body of the report is divided into two parts.
Part I contains the scientific paper presenting the main research contributions for this project. Struc-
tured as a stand-alone document, it can be read independently of the other material presented in
this report. The most relevant literature to the research is summarized within the related work. The
geometry-free monocular-to-stereo view synthesis architecture is first proposed, implemented, and
results are analyzed. Afterward, a method is proposed to integrate this into the DRL-based drone
navigation setup. Which is compared to other setups and in different environments. Finally, the main
conclusions are drawn, and future work is suggested.
Part II contains the literature study preceding the scientific paper. The research is split similarly to
the method and results sections in the scientific paper and reflects the two experimental phases of
the research. The first experimental phase, Chapter 2, aims to prove that end-to-end geometry-free
monocular-to-stereo image view synthesis is possible and achieves good performance compared
to other monocular-to-stereo image view synthesis methods, both geometric and geometry-free.
Besides, proof that depth is encoded within the network is provided. In the second experimental
phase, Chapter 3, deep reinforcement learning for monocular vision-based drones is trained with
stereo vision. This phase aims to improve the performance and data efficiency of navigational tasks.
The second objective is to demonstrate the effectiveness of training the prediction network as an
auxiliary task parallel to the navigational task. Chapter 4 provides a conclusion to the literature
study.

1https://brightspace.tudelft.nl/d2l/home/43776 [Accessed 30 May 2023]

https://brightspace.tudelft.nl/d2l/home/43776

Part I

Scientific Paper

3

Improving Deep Reinforcement Learning Of
Vision-Based Navigation By Stereo Image

Prediction
Luc den Ridder

Micro Air Vehicle Laboratory
Faculty of Aerospace Engineering

Delft University of Technology
Delft, The Netherlands

Yilun Wu
Micro Air Vehicle Laboratory

Faculty of Aerospace Engineering
Delft University of Technology

Delft, The Netherlands

Guido de Croon
Micro Air Vehicle Laboratory

Faculty of Aerospace Engineering
Delft University of Technology

Delft, The Netherlands

Abstract—Although deep reinforcement learning (DRL) is
a highly promising approach to learning robotic vision-based
control, it is plagued by long training times. In this article, we
introduce a DRL setup that relies on self-supervised learning
for extracting environmental features such as depth information
valuable for navigation. Specifically, we investigate the effects of
learning how to synthesize one view from the other in a stereo-
vision setup without relying on any preliminary knowledge of
the camera extrinsics and its downstream use for an obstacle
avoidance task. As far as the writers are aware, this is the
first paper to leverage novel view synthesis for DRL, making
a significant contribution to the field. First, the study evaluates
the performance of the proposed architectures on view synthesis
and depth estimation benchmarks for KITTI. Competitive perfor-
mance is achieved for view synthesis. Although the performance
is sub-optimal compared to the state-of-the-art for monocular
depth estimation, an ability to encode depth and detect shapes is
present and, therefore, satisfactory for the application to DRL.
Furthermore, a simple stereo-matching algorithm was used to
obtain the results, and the network does not directly optimize
for depth prediction. Additionally, the research examines the
benefits of using the latent space of a view synthesis architecture
compared to other feature extractor methods as an input to
the PPO agent implemented as auxiliary tasks. This method
achieves quicker convergence and better performance for an
obstacle avoidance task in a simulated indoor environment than
the autoencoding feature extractor and end-to-end DRL methods.
It is only outperformed by the monocular depth estimation
feature extractor method. Overall, this research provides valuable
insights for developing more efficient and effective DRL methods
for monocular camera-based drones.

Index Terms—autonomous navigation, UAV, drones, deep re-
inforcement learning, self-supervised learning, auxiliary tasks,
monocular vision, depth estimation, feature extraction, simulation

I. INTRODUCTION

As the weight, power usage, and cost of active depth
sensors remain high, drones increasingly rely on cameras
for autonomous navigation. Deep Reinforcement Learning
(DRL) has shown promising results in training drones to
navigate complex environments. However, extracting the best
environmental features from camera images remains a crucial
challenge.

The most traditional DRL setup for vision-based navigation
is an end-to-end approach. In this setup, an image is directly
fed to the network, which outputs the control actions. This
setup is appealing as it involves minimal assumptions on the
part of the human designer. However, it is disadvantageous that
all the weights must be learned based on low-dimensional and
potentially sparse rewards. This substantially increases sample
complexity and hence training time.

For this reason, most state-of-the-art methods (e.g., [1, 2])
pre-process an incoming image to reduce the dimensionality
before reinforcement learning. A popular setup is to feed the
image to an autoencoder, trained to reconstruct the same image
while passing through a much lower-dimensional ”bottleneck”
hidden layer. The activities of the hidden layer are then termed
the ”latent state” and used by DRL. This approach is often
combined with additional neural structures that map the cur-
rent latent state to the next one to learn to capture the robot’s
dynamics. Although this effectively reduces dimensionality,
the autoencoder may not capture the most relevant features to
autonomous navigation tasks.

Alternatively, vision tasks such as depth estimation or
optical flow could be performed, with their dense outputs fed
to a deep neural network for DRL. In Zhou et al. [3], it has
been shown convincingly that such generic but task-relevant
inputs benefit DRL performance. A downside of this method
is that it requires fully convolutional networks for generating
dense flow or depth inputs, which are then encoded again.
To deal with this, an alternative approach is to learn depth
estimation as an ”auxiliary task” for the encoding part of the
network [4]. The encoding part of the network is then bound
to contain depth information valuable to the visual navigation
task. This approach does raise the question of how optical flow
or depth perception should be learned if there is no access to
ground truth depth data in the test environment.

In this article, we introduce a novel DRL setup for monocu-
lar navigation in which the robot uses self-supervised learning
(SSL) to extract task-relevant depth features. Specifically, the
robot trains a deep network that maps each image to the
other image in a stereo-vision setup. This view synthesis can

only be successful if the network extracts depth information,
as the differences between the images of a stereo-vision
setup are primarily due to the displacements caused by depth
differences. In contrast to most of the SSL monocular depth
literature, we focus on a geometry-free approach, i.e., without
knowledge of camera extrinsics. Few have attempted view
synthesis with geometry-free architectures, as the performance
is considered worse compared to architectures that include
warping functions [5] or more extensive scene representations.
However, recent advancements, such as the Transformer [6]
with the ability to capture long-range dependencies, have
enabled geometry-free novel view synthesis of scenery [7, 8].

This paper shows how geometry-free monocular-to-stereo
image view synthesis can be leveraged as a feature extractor
to improve the navigation task performance and data efficiency
of an RL agent from a monocular vision-based drone. Such
a feature extractor does not primarily have to be excellent at
view synthesis but has to extract depth for downstream use
by DRL. The ability of these geometry-free view synthesis
networks to reason about scenery has yet to be extensively
studied. Therefore the proposed architecture is analyzed on
performance for a variety of datasets [9, 10] and transfer
between the datasets, on its ability to produce depth maps,
and on the importance of the camera setup, design features,
and training routines. This analysis shows that such a network
synthesizes the other image in the image pair and encodes the
relevant scenic features.

Training a drone to navigate with RL requires a simulation
environment. The quality of simulation environments is con-
stantly developing, with environments becoming more realistic
in their dynamics, scenery, and sensor handling [11–13]. In our
case, the integration and development of DRL and control over
the stereo setup are necessities, which the Flightmare lineage
provides [10, 11].

In this paper, we propose an implementation of the Swin
Transformer [14] in the view synthesis domain and, for the
first time, showcase competitive results compared to geometry-
induced architectures on the KITTI dataset. The superiority
compared to CNNs [15], especially without skip connections,
is demonstrated. The ability of geometry-free architectures
to encode depth is quantified. The feasibility of these archi-
tectures as feature extraction methods are demonstrated and
the importance of the feature structure for view synthesis is
discussed. This leads to the three main contributions:

1) The first implementation of the Swin Transformer in the
view synthesis domain leading to the first competitive
performance of a geometry-free model on the KITTI
dataset.

2) The first method that quantifies the ability to encode
depth of geometry-free view synthesis architectures.

3) The first DRL setup that uses a self-supervised view
synthesis feature extractor for monocular camera-
based drone navigation, leading to quicker convergence
and higher performance than vanilla end-to-end or
autoencoder-based setups.

II. RELATED WORK

A. Reinforcement Learning for Drone Navigation

In recent years, DRL has evolved into a mature field of
research. OpenAI Gym [16] standardized environment devel-
opment and performance benchmarks for RL agents. The state-
of-the-art algorithms, such as (Proximal Policy Optimization
(PPO) [17], were standardized and centralized with the intro-
duction of OpenAI Baselines [18], structures were unified with
Stable-Baselines [19], new algorithms, such as Soft Actor-
Critic (SAC) [20] and Twin Delayed DDPG (TD3) [21], were
added in Stable-Baselines3 [22].

At the same time, the subdomain that applies RL to Un-
manned Aerial Vehicles (UAV) is diverse but lacks standard-
ization. AlMahamid and Grolinger [23] recently created a
systematic review of this field of study as an extension of
their previous work, a systemic review of the RL domain [24].
They recognize four drone navigation objectives: UAV control,
obstacle avoidance, path planning, and flocking. These can
differ from the objectives a software framework has: energy-
aware UAV navigation, path planning, flocking, and vision-
based frameworks and identify several papers that use the
vision-based framework for drones [25–28]. Besides an RL
agent, the simulation software requires a UAV flight simulator
and a 3D graphics engine. They recognize that architectures
using Robot Operating Systems (ROS) [29] integrated with
Gazebo [12] and Microsoft AirSim [13] using the Unreal
Engine [30] are the most popular.

Recently, Flightmare [11] was introduced as a flexible
quadrotor simulator with a configurable rendering engine and
a flexible physics engine. It has a sizeable multi-modal sensor
suite, and wrappers are available for OpenAI Gym [16] and
Stable Baselines [19]. Loquercio et al. [31] showed good real-
life transfer using Flightmare with the RotorS Gazebo plugin
[32] and rendering engine Unity [33].

There is an ongoing discussion on how to use vision
within an RL framework for navigation. Due to its small
feature space, many frameworks make use of monocular
depth prediction as a feature extractor [34–37], or combine it
with ego-motion [38]. Others use optical flow with semantic
segmentation [39] or pretrained encoders [40] on ImageNet
[41] classification.

Zhou et al. [3] researches the importance of feature ex-
traction and what type of feature extraction is most effective.
They analyze this for the extraction of intrinsic surface, color,
optical flow, depth, and semantic segmentation and conclude
that depth and semantic segmentation are most important to
navigational performance for several tasks. Sax et al. [42]
showed that adding other intermediate representations, such
as curvature, denoising, and occlusion edges, can enhance
performance even more.

Most previous work uses pretrained encoders and relies on
sparse rewards. However, within the RL vision domain, the
use of auxiliary tasks has also been researched. Jaderberg et al.
[43] explored the use of unsupervised auxiliary tasks, whereas

Mirowski et al. [4] showcased the utility of supervised tasks,
such as depth estimation.

B. Monocular Depth Estimation and View Synthesis

Within the domain specializing in monocular depth esti-
mation, it was already proven that a neural network could
learn to estimate depth from a single image [44]. Their
network was trained and tested on the KITTI dataset [9].
The Eigen et al. [44] split created for training and testing
would become the leading benchmark for monocular depth
estimation and is known as the Eigen Split. Their method
relies on groundtruth, which is often sparse and hard to obtain.
Therefore self-supervised methods were developed that use a
warping function based on camera knowledge and a stereo
image pair to predict depth maps [45, 46].

Up to the introduction of Transformers [6], CNNs [47]
were considered the standard in computer vision. This neural
network can perform high-quality per-pixel predictions by
using a U-Net architecture with skip connections [48]. The
performance of per-pixel predictions can be further enhanced
by learning structural latent representations of the data. Archi-
tectures renowned for this are VAE [49] and GAN [50]. Using
vector quantization to derive discrete latent representations has
further advanced the field, as VQ-VAE [51] and VQ-GAN [52]
demonstrated.

Being able to capture long-range dependencies Transform-
ers [53] achieved state-of-the-art in Natural Language Process-
ing. Following Vision Transformers (ViT) [6] achieves state-
of-the-art performance in image classification [41] by applying
the Transformers to patches of 16× 16 pixels. The Swin [14]
Transformer achieves state-of-the-art in semantic segmentation
[54] and object detection [55] by using shifted windows and
a hierarchical structure inspired by CNNs.

Dosovitskiy et al. [56] describes a method that synthesizes a
novel view of different chairs, which learns their 3D represen-
tations. Tatarchenko et al. [57] changed the architecture and
was able to synthesize images of more complicated objects.
Zhou et al. [5] developed a network able to predict appearance
flow instead of direct pixel generation. As the appearance flow
network outperformed direct pixel generation, more extensive
scene representations, and warping functions were proposed
[58–60] and applied to view synthesis [61–63]. These view
synthesis architectures benchmarked on a split on KITTI
proposed by Tulsiani et al. [61].

VQ-GAN uses Transformers to do vector quantization, and
for the task of novel view synthesis, it was implemented by
Rombach et al. [7] on RealEstate10K [59] and ACID [64].
These datasets contain images from continuous trajectories,
and VQ-GAN is trained to synthesize views from a new
viewpoint on these trajectories. Their method does not require
geometrically induced biases. By using linear probing [65],
they proved that depth was encoded in their architecture. Fol-
lowing, Sajjadi et al. [8] developed an architecture integrating
ViT and CNNs to predict new poses from a collection of
images from the same scene and, again, does not require
geometrically induced biases.

The implementation of Swin Transformers enables per-
pixel predictions. Able to capture long-range dependencies,
it seems more suitable than CNNs for end-to-end geometry-
free image view synthesis. The network extracts high-quality
geometric features if the translation to another viewpoint is
done accurately.

III. GEOMETRY-FREE MONOCULAR-TO-STEREO VIEW
SYNTHESIS

This section proposes the geometry-free monocular-to-
stereo view synthesis architecture and experiments on this
architecture are performed.

A. Proposed Method

To gain insight into the competitiveness and potential of
the view synthesis architecture, it is designed for the KITTI
[9] dataset and the LDI [61] split. This view synthesis split
requires bi-directional image predictions, so information re-
garding the direction of translation for synthesis (left-to-right
or the other way around) is provided to the network. Inspired
by Zhou et al. [5], Tatarchenko et al. [57], the information
is given as a token in the bottleneck. It is after the token
is introduced that translation is performed. Consequently,
geometric information has to be present at the bottleneck. This
makes the encoder suitable for the navigation task.

Two architectures similar to U-Net [48] are proposed. The
first architecture uses two subsequent convolutional layers
[15] for feature extraction, pooling layers for downsampling,
and a convolutional layer followed by an upsample layer
for upsampling. Before the feature extraction blocks in the
encoder, the skip connections concatenate the features from
the encoded and upsampled layers. The second architecture
uses two subsequent Swin [14] layers for feature extraction
and fully connected layers for downsampling. Changed from
the original Swin architecture to make the architecture more
similar to a U-Net architecture, embedding is done with a
patch size of two. The implementation of upsampling and skip
connections follow Cao et al. [66]. Modified from their archi-
tecture is a skip connection introduced at the original image
resolution to make the architecture more similar to a U-Net.
The general structure of both architectures is shown in Fig. 1.
The Swin and CNN architecture uses an embedding dimension
of 96 and 56 channels, respectively. These architectures will
also be compared to Encoder-Decoder variants, which exclude
the skip connections. For the CNN architecture, this means
that the number of channels for the first convolutional layer
after upsampling stays constant. Whereas for the architecture
including Swin Transformers, the fully connected layer after
upsampling is removed.

B. Training Details

The framework is designed in PyTorch [67]. The loss func-
tion selected is the Smooth L1 Loss, covering the advantages
of both the L1 and L2 Loss. The cosine learning rate scheduler
[68] is used as implemented by Dosovitskiy et al. [6], Liu
et al. [14]. AdamW [69] is state-of-the-art and therefore used.

W/2 x H/2 x C

W/4 x H/4 x 2C

W/8 x H/8 x 4C

W/16 x H/16 x 8C

0

1

W x H x 3

W/2 x H/2 x C

W/4 x H/4 x 2C

W/8 x H/8 x 4C

W/16 x H/16 x 8C

W x H x 3

W x H x C

Predicted
Right Image

Feature Extraction

Left Image Right Image
Predicted
Left Image

Downsampling

Feature Extraction

Downsampling

Feature Extraction

Upsampling

Feature Extraction
Skip Connection 1/1

Upsampling

Feature Extraction

Downsampling

Feature Extraction

Upsampling

Feature Extraction

Downsampling

Feature Extraction

Upsampling

Feature Extraction

Skip Connection 1/2

Skip Connection 1/4

Skip Connection 1/8

Merging

Fig. 1: U-Net architecture for geometry-free
monocular-to-stereo view synthesis

For data augmentation, we predominately follow horizontal
flipping and color augmentation from Godard et al. [70] and
data grafting from Peng et al. [71].

C. Results and Discussion

The view synthesis architecture is benchmarked on the split
proposed by Tulsiani et al. [61], as this split benchmarks
bi-directional stereo view synthesis. The split contains 28
predetermined city scenes from the KITTI-raw dataset, of
which 20 sequences are used for training, 4 for validation,
and 4 for testing. The images are used as inputs at their
original resolution (1280 × 384). During training, the output
resolution is downsized from the original resolution by 1/3,
and 5% of the edges on the left and right sides are removed.
These are removed as many artifacts were generated by their
architecture in these regions. During testing, they render the
output downsized by two to avoid cracks. Both images will
have the same resolution for the application to a stereo-camera-
based drone. Therefore we test our architecture with equal
input and output resolution and only remove the edges in
post-processing. Some papers also trained and tested with the
output resolution at 1/3 of the original resolution. The metrics
used by Tulsiani et al. [61] for benchmarking are SSIM [72]
and Peak Signal-to-Noise Ratio (PSNR). Since then, LPIPS
[73] with VGG features became a popular metric for view
synthesis due to its effectiveness in measuring perceptual
realism. The benchmark results are shown in Table I. Training
for this benchmark is computationally intensive due to the
image resolution and a large number of epochs. As such, only
the best-performing network, Swin (U-Net), is benchmarked.

All other methods that benchmark on the split rely on
geometric models. LDI [61] has an associated depth value
for each pixel, and MPI [62] uses multiple semi-transparent
planes at different depths. MINE [63] and VEST [74] use
NeRF [60], which learns volume density and color at each
3D location. VEST [74] uses sequential information about the
relative change in viewpoint from one image pair to the next in
theirs. As such, these methods have an inherent advantage to

a model directly predicting pixels. Rombach et al. [7], Sajjadi
et al. [8] introduce architectures that do not create implicit or
explicit geometric models but are not tested on comparable
datasets. On the SSIM and PSNR metrics, the Swin (U-Net)
outperforms LDI [61] and MPI [62]. It is worse on all metrics
compared to MINE [63] and is better on the PSNR metric
compared to VEST [74], while worse than on the SSIM and
LPIPS metrics. Presently, LDI and MPI are commonly used
techniques to encode geometric information. Therefore, they
can serve as a standard for evaluating the effectiveness of
geometric encoding methods in this context. The performance
of Swin (U-Net) exceeds that of LDI and MPI, therefore
achieving a reasonable ability to encode geometric informa-
tion.

Subsequently, we analyze whether the network captures
depth information on the Eigen [44] Split for monocular depth
estimation. By using StereoSGBM from OpenCV [75], the
original and predicted image are matched to predict disparity,
from which depth is obtained. As this method leaves a border
of the image that is the size of the number of disparities (64)
empty, stereo-matching is also done in the other direction.
Where the two depth maps overlap, their average is taken, and
on the sides, the depth map with values is used. The depth map
is then resized to overlap with the ground truth, and predictions
are limited to 80 meters as stated by Garg et al. [45]. The
architecture is compared to Eigen et al. [44] and two self-
supervised methods [45, 46]. These are not state-of-the-art, as
the primary purpose of our method is not depth estimation
accuracy. The self-supervised methods are of interest as they
are not trained on depth directly but have an induced geometric
advantage through their warping mechanism. The results are
shown in Table II.

Comparing the results from Swin (U-Net) to Eigen et al.
[44], it performs better on the absolute relative error and a delta
criterion while worse on the squared relative error, root mean
squared error, its logarithmic domain, and two delta criteria.
Compared to the self-supervised methods, it performs worse
on all metrics. It should be noted that the matching algorithm
limits the architecture’s benchmark performance. By using this
algorithm on the original images to obtain depth maps, it is
outperformed by Godard et al. [46] on six of the seven metrics.
The earlier proposed architectures are also benchmarked on
this split. CNN (U-Net) achieves slightly worse scores, while
removing skip connections reduces the performance. Overall,
these architectures encode depth, although at lower accuracy.

The different architectures are further analyzed by compar-
ing them for view synthesis on the LDI [61] Split as well as on
a generated dataset. Ordinarily, 5% of the edges are removed,
resulting in images of 128 × 384. Swin uses a fixed window
size, so the images must be padded up to 128× 512. Able to
directly scale to 128×384 without removing the edges would
reduce the network size significantly. This is done for the
experiments that compared the performance of the proposed
architectures. The generated dataset is obtained in the outdoor
environment of AvoidBench [10]. Two baselines between the
cameras are used to study further the ability to predict images

TABLE I: Comparison of the view synthesis performance of the Swin (U-Net) architecture trained for 500 epochs on KITTI
with the LDI split compared to existing geometrically-included view synthesis methods

LDI [61] Split Method LPIPS ↓ SSIM↑ PSNR↑

train 256 × 768
test 128 × 384

LDI [61] N/A 0.572 16.5
MPI [62] N/A 0.733 19.5
MINE [63] 0.108 0.820 21.3
VEST [74] 0.085 0.825 21.6

train 128 × 384
test 128 × 384

MINE [63] 0.129 0.812 21.4
VEST [74] 0.097 0.818 21.1

Ours [Swin (U-Net)] 0.161 0.787 21.3

TABLE II: Comparison of the monocular depth performance of the four proposed view synthesis architectures trained for 60
epochs on KITTI with the Eigen Split using a stereo matching algorithm compared to the original (self-)supervised methods

Eigen [44] Split Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

80 meter
1242 × 375

Eigen [44] 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Garg [45] 0.152 1.226 5.849 0.246 0.784 0.921 0.967
MonoDepth [45] 0.133 1.142 5.533 0.230 0.830 0.936 0.970

Ours [Swin (U-Net)] 0.199 2.196 6.976 0.425 0.707 0.887 0.945
Ours [CNN (U-Net)] 0.211 2.519 7.228 0.451 0.701 0.878 0.937

Ours [Swin (Encoder-Decoder)] 0.202 2.075 7.086 0.427 0.690 0.880 0.941
Ours [CNN (Encoder-Decoder)] 0.232 2.588 7.940 0.497 0.629 0.846 0.925

Stereo Matching Algorithm 0.136 2.120 5.954 0.435 0.857 0.930 0.955

(0.5m and 1.0m). The images are generated at a resolution
of 224 × 224. Both training datasets contain 20,000 images,
and testing datasets contain 4,000 images. Table III shows the
results for the four architectures.

In general, Swin (U-Net) outperforms the other architectures
on all datasets for LPIPS. For the synthetic dataset with
the smaller baseline, the LPIPS score is almost identical to
CNN (U-Net). Swin (U-Net) also achieves the best score on
SSIM for the LDI Split. However, the Swin (Encoder-Decoder)
scores higher on both synthetic datasets. SSIM measures struc-
tural similarity, so the Encoder-Decoder preserves structural
patterns better but is less accurate at capturing fine-grained
details and textures. For the PSNR metric, Swin (Encoder-
Decoder) performs the best. It should be noted that some argue
that PSNR is not a suitable metric for comparing quality and
performance over different scenes [76]. Nevertheless, Swin
is a better-performing layer compared to CNN. The skip
connections aid in the performance significantly. However,
without the skip connections, the Swin architecture maintains
performance better, indicating that it relies less on the skip
connections. It further shows that the image prediction per-
formance is reduced for all architectures with an increased
baseline. Most notable is that CNN (U-Net) loses more perfor-
mance than Swin (U-Net), although the reduction is significant
in both cases. An example of the predicted images and their
corresponding depth maps through stereo matching for the
Swin architectures are shown in Fig. 2. Fig. 2b is obtained
through stereo matching of the original images. Visually it
looks like Swin (Encoder-Decoder) produces structures such
as the tree and poles more accurately. Nevertheless, analyzing
the depth map, it seems that the depth map of Swin (U-Net)

is overall better, and as such, the placement of objects is
more accurate. This would make sense as the skip connections
could help with pixel precision, but as such, ignore the shapes
of these objects from the deeper layers. More examples are
available in Appendix VII-E.

(a) original image (b) depth map

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
Swin (Encoder-Decoder)

(f) depth map
Swin (Encoder-Decoder)

Fig. 2: Example of predictions and depth maps through
stereo matching of predicted images and input images on the

KITTI dataset

Ablation studies are done on augmentation techniques and
the type of loss function. Details on these studies are dis-
cussed in Appendix VII-A and Appendix VII-B. The main
takeaways are that color augmentation and image flipping aid
performances, while data grafting does less so. Smooth L1
Loss achieves better performances compared to L1 and L2

TABLE III: Comparison of the view synthesis performance of the proposed architectures on KITTI with the LDI split and
two generated datasets with AvoidBench for two baselines.

Split Method LPIPS ↓ SSIM↑ PSNR↑
LDI Split
train 128 × 384
test 128 × 384
150 Epochs

Swin (U-Net) 0.163 0.790 20.8
CNN (U-Net) 0.176 0.787 20.7
Swin (Encoder-Decoder) 0.201 0.781 21.0
CNN (Encoder-Decoder) 0.438 0.658 18.8

AvoidBench - Outdoor
Baseline: 0.5m
224 × 224
50 Epochs

Swin (U-Net) 0.197 0.752 21.2
CNN (U-Net) 0.196 0.754 21.1
Swin (Encoder-Decoder) 0.232 0.769 21.5
CNN (Encoder-Decoder) 0.411 0.624 19.4

AvoidBench - Outdoor
Baseline: 1.0m
224 × 224
50 Epochs

Swin (U-Net) 0.260 0.694 19.6
CNN (U-Net) 0.304 0.681 18.4
Swin (Encoder-Decoder) 0.311 0.716 20.3
CNN (Encoder-Decoder) 0.464 0.591 17.3

Loss.
The view synthesis analysis concludes that a geometry-free

monocular-to-stereo image view synthesis achieves good view
synthesis performance and can encode depth reasonably well.

IV. VIEW SYNTHESIS FOR DRL-BASED DRONE
NAVIGATION

Able to encode depth and geometric information, the
geometry-free monocular-to-stereo image view synthesis will
be applied to drone navigation in this section.

A. Proposed Method

The simulation environment selected is AvoidBench [10],
based on Flightmare [11]. Similar to Loquercio et al. [31], the
RotorS Gazebo plugin [32] and rendering engine Unity [33]
are used. To have more control over the process and system
communication, the OpenAI Gym [16] and Stable Baselines
[19] wrappers are not used. However, they are integrated into
the existing code structure. PPO [17] is used from Stable
Baselines3 [22]. Minor adjustments are made to the algorithm,
such as removing a feature extraction layer and using AdamW
[69] as the optimizer instead of Adam [77].

AvoidBench [10] uses a stereo camera setup aligned to
the center of the drone. Although our architecture relies on
stereo vision in training, the drone only uses a single camera
during evaluation. Therefore in our simulator, the left camera
is aligned to the center of the drone, and the right camera
images are obtained by a virtual camera 0.48 meters from the
center. The camera resolution is set to 64× 64 and the frame
rate to 10 Hz in simulation time. The policy frequency of the
RL agent is set equal to the camera frame rate.

An indoor and an outdoor environment are avail-
able. For training, the indoor environment is used for
all experiments, except when it is explicitly stated that
the experiment is done in the outdoor environment.
Each run spawns red cylinders with shape (x, y, z) ∼
U((0.5m, 0.5m, 2.6m)(1.0m, 1.0m, 3.8m)) using Poisson-disk
sampling. During training, the radius of the Poisson disk
sampling: r ∼ U(1.5m, 3m) and during evaluation, r = 3.
The radius was kept constant during evaluation to get more

consistent test results. The drone is spawned on a line with
coordinates (−1.8m, y, 3m), where y ∼ U{−8m, . . . , 8m}
and the goal is to fly to a target on a line with coordinates
(32m, y, 3m), where y ∼ U{−6m, . . . , 6m}, with objects in
between. Drone control is of lower interest, so the mission is
completed once the drone passes x = 32m and is within a 6-
meter radius of the target. Fig. 3 shows the indoor environment
and a sketch of the top view, including spawn points and
targets in blue and green, respectively. The outdoor environ-
ment contains bushes and trees, and the experimental setup
is similar. Due to the increased size of these objects during
training, the radius r ∼ U(3m, 5m) and during evaluation,
r = 5. The outdoor environment does not contain natural
boundaries like the warehouse walls in the indoor environment.
Therefore the drone is limited to flying within the area with
coordinates spanning y ∼ U(−10m, . . . , 10m).

(a) indoor environment

Y
X

(b) top view

Fig. 3: Indoor Simulation Environment

The architecture proposed has an encoder trained by an
auxiliary task, with an RL agent trained on an observation
that includes the extracted features from the image. Asyn-
chronous parallel training should foster feature representation
and encourage the policy to use the feature representation. The
mission task is path planning, therefore, the agent requires ex-
tra information besides the image features. Giving the relative
position to the target in the body frame

(
xb
t , y

b
t , z

b
t

)
and the

velocity and the yaw rate in the body frame
(
vbx, v

b
y, v

b
z, ω

b
z

)
,

should provide enough information for drone control and path
planning. To prevent the drone from flying out of bounds in the
outdoor environment, the position of the drone in the global

frame is provided to the agent (xg
d, y

g
d , z

g
d).

In Flightmare, a PID controller manages velocity control
in the global frame. When actions from the RL policy are
transformed from the body frame to the global frame, the
RL agent supplies target velocities and yaw rates in the
body frame. At every timestep, a reward equal to the relative
distance from the previous to the current timestep for the
drone to the target (∆r⃗bt) is provided to the RL agent. This
is visualized in Fig. 4. Besides, there is a minor penalty for
collision and a small reward for reaching the target. The reward
function is concisely presented in Eq. 1. After each collision,
the environment is reset, and the run ends. The architecture is
shown in Fig. 5.

Fig. 4: The current relative displacement (blue arrow) is
subtracted from the previous relative displacement (red

arrow) to obtain the reward

Reward =

20 if target reached
−5 if collision
∆r⃗bt otherwise

(1)

Feature Extraction

Encoder

Left Image Right Image

Decoder

Predicted
Right Image

Predicted
Left Image

Concatenation

Feature Extraction

ValuePolicy

0

1

Fig. 5: Deep RL architecture for path planning with an
auxiliary task

In practice, the RL agent is trained after a rollout that
receives images and provides actions. After 2048 steps, back-
propagation is performed on all images. The Encoder-Decoder
is trained on images collected every step in batches of 8
images. The images are trained with color augmentation to
make transfer better and with a learning rate scheduling policy
that decays the learning rate from 10−3 to 10−6 with a constant
factor.

B. Results and Discussion

The four geometry-free monocular-to-stereo image view
synthesis architectures (Swin (U-Net), CNN (U-Net), Swin
(Encoder-Decoder), and CNN (Encoder-Decoder)) were
ranked based on view synthesis performance. This order is
not guaranteed to translate to navigational performance. The

RL agent receives feature spaces from the extractors. In the
experiments, the feature extractors will be the same size.
However, due to the skip connections in the U-Net architecture
and these containing relevant features for view synthesis, they
are also provided in the feature space to the RL agent, making
it significantly more extensive compared to the feature space of
the Encoder-Decoder. The embeddings produced by the Swin
Transformer do not conform to the grid-like activation patterns
typically generated by convolutional layers. This divergence
could impact the complexity of training the reinforcement
learning algorithm.

For this and the following experiments, the networks are
trained in the indoor environment of AvoidBench. After every
100,000 steps, the architectures are validated for ten simulation
runs, and the experiment is repeated four times. All feature
extractors are trained as an auxiliary task, and the mission
progress is measured as the percentage of the distance the
agent has traversed relative to the total distance between the
starting point and the target. As previously noted, hitting the
target with absolute precision is not obligatory. Consequently,
a mission is completed without achieving 100%. Comparing
three of the four proposed view synthesis architectures yields
the results in Fig. 6.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

20

40

60

80

100

M
iss

io
n

Pr
og

re
ss

 %

CNN (Encoder-Decoder)
Swin (Encoder-Decoder)

CNN (U-Net) Without Vision

Fig. 6: Mean mission progress (± standard deviation) for RL
agent with the proposed view synthesis tasks, averaged over
4 training sessions, 10 evaluation runs per session, every 105

timesteps.

Fig. 6 shows that the CNN (Encoder-Decoder) setup
achieves the quickest convergence and the best performance.
Due to the increased feature space of the CNN (U-Net),
learning the essential features for obstacle avoidance takes
longer. The Swin (Encoder-Decoder) setup does not improve
over time at all. Its performance is limited to flying in the
direction of the target without avoiding obstacles. As the Swin
(Encoder-Decoder) setup does not improve, it was decided not
to show the Swin (U-Net) setup results as they will be similar.
A feature ablation study is performed to determine whether
the RL agent uses the features from the Swin (Encoder-
Decoder). The features are split into two groups. The first
group contains the features yielded from the feature extractor,
and the second group contains the seven navigational features(
xb
t , y

b
t , z

b
t , v

b
x, v

b
y, v

b
z, ω

b
z

)
. Each group of features is masked

during the run to study the impact of those features in the
decision-making of the RL agent. Masking the features is done
by providing randomized values within the limits defined in
the observation space, and results are shown in Table IV.
As expected, the CNN architecture relies entirely on the
image features, whereas the change in performance of the
Swin architecture is negligible, seemingly optimized to fly
straight toward the target. Therefore, from this point on CNNs
(Encoder-Decoder) will be used. An example of images used
and produced by the network is Fig. 7 and examples of the
trajectories this setup flies are sown in Fig. 8.

Furthermore, in Appendix VII-C, an ablation study on the
performance of each of the seven navigational features are also
done. xb

t has the most considerable contribution to the naviga-
tional performance, whereas randomized inputs for zbt and ωb

t

even improved performance. This implies that outcomes could
be further enhanced through more strategic feature selection
or by fine-tuning the neural network to leverage these features
better.

(a) left (b) right (c) predicted right

Fig. 7: Indoor environment of AvoidBench during evaluation
from the POV of the drone with the predicted right image

Fig. 8: Top view of the indoor environment in the first
evaluation map with different trajectories from a trained

CNN (Encoder-Decoder) setup

It is compared to other setups to study the navigation task
performance and data efficiency of the reinforcement learning
agent using monocular-to-stereo image view synthesis as an
auxiliary feature extractor. The first setup is designed such that
the RL agent receives the images directly without a feature
extractor, which means that it is trained end-to-end by the RL
agent. The second setup uses the encoder of an autoencoder
as the feature extractor. A third setup uses the output of a
depth prediction encoder-decoder. This setup is trained on

groundtruth depth available in the simulator. A fourth setup
is proposed that again is trained on depth prediction, but this
time the latent space at the bottleneck is provided to the RL
agent instead of the output. The second, third, and fourth
architectures are identical in size to the novel view synthesis
feature extractor. Again all feature extractors are trained in an
auxiliary fashion, and the mission progress is measured as the
percentage of the distance to the target point. For these runs,
the result is Fig. 9.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

20

40

60

80

100

M
iss

io
n

Pr
og

re
ss

 %
None
Depth Prediction

Autoencoder
Depth Prediction (latent space)

Monocular-to-Stereo
Without Vision

Fig. 9: Mean mission progress (± standard deviation) for RL
agent with various auxiliary feature extractors, averaged over
4 training sessions, 10 evaluation runs per session, every 105

timesteps in the indoor environment.

The results of the architectures, including monocular-to-
stereo view synthesis and monocular depth prediction, clearly
show two training phases. During the first 200,000 timesteps,
there is a steep learning curve, whereas afterward, it seems
stable. Architectures including an autoencoder and no feature
extractor learn slower, and therefore the distinction between
these two phases is less clear. Depth prediction achieves
better results compared to monocular-to-stereo view synthesis.
However, even after 1,000,000 timesteps, monocular-to-stereo
view synthesis still performs better than autoencoding and
no feature extractor. For all methods, the reward, mission
progress, and success rate after training are stated in Table V.
As expected, given enough time, the RL agent can determine
the relevant features of an image for navigation. Autoencoding
follows a similar trend. This indicates that no specific features
in constructing an image are present that specifically aid
directly with obstacle avoidance, and the RL agent has to find
correlations between multiple features and obstacle avoidance
again.

Looking at the auxiliary Loss in Fig. 10, it is clear that
all tasks converge relatively quickly. Autoencoding converges
the quickest, whereas depth prediction takes the longest. As
monocular-to-stereo view synthesis more quickly converges
and is tasked with learning both to predict depth and to
generate a view, this could indicate that the potential ability of
this network to encode depth is more limited. Which is likely
due to a feature space that is more limited in allocating its
features for depth estimation.

These setups are also trained for the outdoor environment

TABLE IV: Comparison of the path planning performance of the RL agent with the monocular-to-stereo view synthesis
feature extractor with masked image features

View Synthesis Method Reward (µ± σ) Mission Progress (µ± σ) Success Rate

Swin (Encoder-Decoder) 2.0 ± 4.0 20.6% ± 11.5% 0%
Swin (Encoder-Decoder) w. Masked Image Features 3.3 ± 4.5 24.6% ± 13.4% 0%

CNN (Encoder-Decoder) 21.5 ± 15.2 59.7% ± 28.3% 25%
CNN (Encoder-Decoder) w. Masked Image Features -2.4 ± 2.7 7.6% ± 7.9% 0%

TABLE V: Comparison of the path planning performance of different RL architectures after 1,000,000 steps averaged for
four runs

Environment Feature Extraction Method Reward (µ± σ) Mission Progress (µ± σ) Success Rate

indoor

None 14.6 ± 9.5 54.3% ± 18.4% 5%
View Synthesis (Autoencoder) 15.1 ± 11.4 53.8% ± 23.5% 7.5%
View Synthesis (Monocular-to-Stereo) 21.5 ± 15.2 59.7% ± 28.3% 25%
Depth Prediction 30.3 ± 9.8 74.6% ± 10.3% 40%
Depth Prediction (Bottleneck) 30.4 ± 17.2 73.2% ± 24.6% 42.5%

outdoor
None 2.6 ± 7.2 22.5% ± 21.4% 0%
View Synthesis (Monocular-to-Stereo) 7.8 ± 8.4 37.8% ± 24.9% 0%
Depth Prediction 2.6 ± 7.2 22.5% ± 21.4% 0%

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Lo
ss

Autoencoder
Monocular-to-Stereo
Depth Prediction

Fig. 10: Auxiliary loss for the various feature extractors
(different kinds of losses) averaged over 4 training sessions.

to show generalizability and learning ability in other environ-
ments. The outdoor environment is designed similarly to the
indoor environment, with a different density of objects. As
stated previously, the RL agent is provided with the coordi-
nates in the global frame. Still, learning in this environment
was more difficult, as shown in Fig. 11. A reason for this could
be the high complexity of the objects within this environment
and an inability to use the correct features. From visual
inspection, it seems that the drone detects obstacles but is
unsure of the appropriate behavior to fly past them.

The stereo setup was assumed. Both image size and stereo
baseline affect the path planning ability, as evidenced by the
analysis in Appendix VII-D. The main takeaway is that for
a symmetric stereo camera setup with a baseline of 12cm,
improvements of the navigational performance compared to
the autoencoder are already clearly present. Increasing the
baseline to 48cm does increase the convergence speed but
does not improve the performance significantly after 1,000,000
timesteps. Reducing the resolution lowers the convergence but

does not significantly impact the overall performance.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

20

40

60

80

100

M
iss

io
n

Pr
og

re
ss

 %

None Depth Prediction Monocular-to-Stereo Without Vision

Fig. 11: Mean mission progress (± standard deviation) for
RL agent with various auxiliary feature extractors, averaged

over 4 training sessions, 10 evaluation runs per session,
every 105 timesteps in the outdoor environment.

V. CONCLUSION

This study has presented a novel method for Deep Rein-
forcement Learning (DRL) to enhance the performance of
vision-based obstacle avoidance. We demonstrated that utiliz-
ing the view synthesis as a feature extractor has shown that
the learning speed and navigation potential can be improved.
The proposed view synthesis architectures were tested against
established benchmarks, where they demonstrated competitive
performance in view synthesis and satisfactory results in
monocular depth estimation through stereo matching.

The paper underscores the advantage of employing the
latent space of view synthesis architectures as input to PPO
agents over other feature extractors. While the study affirmed
the advantage of depth estimation, it also showed that our
proposed method offers quicker convergence and superior

performance compared to using autoencoding as a feature
extractor and training end-to-end with DRL.

Moreover, the study presented the first implementation of
the Swin Transformer in the view synthesis domain, demon-
strating its competitive edge, especially compared to Convo-
lutional Neural Networks (CNNs) without using skip connec-
tions. This work also quantified the ability of geometry-free
architectures to encode depth and discussed the importance of
feature structure for view synthesis.

Despite the promising results, this study acknowledges
certain limitations. For instance, while our approach outper-
forms autoencoding and end-to-end DRL methods, monocular
depth estimation still outperforms our method. Future work
could explore the benefits of increasing the view synthesis
architecture and feature space size. The architectures also
make limited use of sequential information, and adding an
LSTM layer could aid performance. Besides, increased image
size and action frequency should eventually help performance.
However, all suggestions increase the network’s complexity
and will likely reduce the convergence speed of the RL agent.
Secondly, the performance could likely be enhanced through
more strategic navigational feature selection or by fine-tuning
the neural network to leverage these features better. Finally, all
results in the outdoor environment are worse compared to the
indoor environment and the outcomes of both experiments do
not align. Therefore, transferability and navigational feature
selection should be studied better.

In conclusion, the research contributes significantly to the
field of DRL for monocular camera-based drones by show-
casing the potential of view synthesis as a feature extractor.
It opens up new possibilities for improving drone navigation
and provides valuable insights for future research. Ultimately,
our findings cement the vital role of innovative methods and
architectures in advancing the performance and efficiency of
DRL systems for monocular vision-based drones.

VI. FUTURE RESEARCH

This research focused on mapping a single image to another
and extracting geometric information in the process. If a drone
has stereo, it can use the two images even better by entering
both into a predictive framework. On the other hand, in a
purely monocular framework, the current image can also be
used to predict the next image via pose and depth prediction.
These alternative learning setups will be explored in future
work.

REFERENCES

[1] D. Ha and J. Schmidhuber, “World models,” arXiv
preprint arXiv:1803.10122, 2018.

[2] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Con-
trol of a quadrotor with reinforcement learning,” IEEE
Robotics and Automation Letters, vol. 2, no. 4, pp. 2096–
2103, 2017.

[3] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer
vision matter for action?” Science Robotics, vol. 4,

no. 30, p. eaaw6661, 2019. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.aaw6661

[4] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J.
Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning
to navigate in complex environments,” CoRR, vol.
abs/1611.03673, 2016. [Online]. Available: http://arxiv.
org/abs/1611.03673

[5] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A.
Efros, “View synthesis by appearance flow,” in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds. Cham: Springer International
Publishing, 2016, pp. 286–301.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, “An image is worth 16x16
words: Transformers for image recognition at scale,”
CoRR, vol. abs/2010.11929, 2020. [Online]. Available:
https://arxiv.org/abs/2010.11929

[7] R. Rombach, P. Esser, and B. Ommer, “Geometry-
free view synthesis: Transformers and no 3d priors,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2021, pp. 14 356–
14 366.

[8] M. Sajjadi, H. Meyer, E. Pot, U. Bergmann, K. Greff,
N. Radwan, S. Vora, M. Lucic, D. Duckworth,
A. Dosovitskiy, J. Uszkoreit, T. A. Funkhouser, and
A. Tagliasacchi, “Scene representation transformer:
Geometry-free novel view synthesis through set-latent
scene representations,” CoRR, vol. abs/2111.13152,
2021. [Online]. Available: https://arxiv.org/abs/2111.
13152

[9] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,” in
2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3354–3361.

[10] H. Yu, G. C. de Croon, and C. De Wagter, “Avoid-
bench: A high-fidelity vision-based obstacle avoidance
benchmarking suite for multi-rotors,” arXiv preprint
arXiv:2301.07430, 2023.

[11] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and
D. Scaramuzza, “Flightmare: A flexible quadrotor
simulator,” CoRR, vol. abs/2009.00563, 2020. [Online].
Available: https://arxiv.org/abs/2009.00563

[12] N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in
2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 3, 2004, pp. 2149–2154 vol.3.

[13] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Air-
sim: High-fidelity visual and physical simulation for
autonomous vehicles,” in Field and service robotics.
Springer, 2018, pp. 621–635.

[14] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,
and B. Guo, “Swin transformer: Hierarchical vision

transformer using shifted windows,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV),
2021, pp. 9992–10 002.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Backpropaga-
tion applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989.

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”
CoRR, vol. abs/1606.01540, 2016. [Online]. Available:
http://arxiv.org/abs/1606.01540

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[18] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plap-
pert, A. Radford, J. Schulman, S. Sidor, Y. Wu,
and P. Zhokhov, “Openai baselines,” https://github.com/
openai/baselines, 2017.

[19] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kan-
ervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,
A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

[20] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,
J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al.,
“Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[21] S. Fujimoto, H. Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” in
International conference on machine learning. PMLR,
2018, pp. 1587–1596.

[22] A. Raffin, A. Hill, A. Gleave, A. Kanervisto,
M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,”
Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

[23] F. AlMahamid and K. Grolinger, “Autonomous
unmanned aerial vehicle navigation using reinforcement
learning: A systematic review,” Engineering Applications
of Artificial Intelligence, vol. 115, p. 105321,
2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S095219762200358X

[24] ——, “Reinforcement learning algorithms: An overview
and classification,” in 2021 IEEE Canadian Confer-
ence on Electrical and Computer Engineering (CCECE),
2021, pp. 1–7.

[25] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-
based deep reinforcement learning for obstacle avoid-
ance in uav with limited environment knowledge,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 1, pp. 107–118, 2021.

[26] L. He, N. Aouf, J. F. Whidborne, and B. Song, “In-
tegrated moment-based lgmd and deep reinforcement
learning for uav obstacle avoidance,” 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),

pp. 7491–7497, 2020.
[27] W. Andrew, C. Greatwood, and T. Burghardt, “Deep

learning for exploration and recovery of uncharted
and dynamic targets from uav-like vision,” in 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE Press, 2018, p. 1124–1131.
[Online]. Available: https://doi.org/10.1109/IROS.2018.
8593751

[28] M. A. Akhloufi, S. Arola, and A. Bonnet, “Drones
chasing drones: Reinforcement learning and deep search
area proposal,” Drones, 2019.

[29] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, A. Y. Ng et al., “Ros: an open-
source robot operating system,” in ICRA workshop on
open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[30] B. Karis and E. Games, “Real shading in unreal engine
4,” Proc. Physically Based Shading Theory Practice,
vol. 4, no. 3, p. 1, 2013.

[31] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller,
V. Koltun, and D. Scaramuzza, “Learning high-
speed flight in the wild,” Science Robotics, vol. 6,
no. 59, p. eabg5810, 2021. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.abg5810

[32] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart,
RotorS—A Modular Gazebo MAV Simulator Framework.
Cham: Springer International Publishing, 2016, pp.
595–625. [Online]. Available: https://doi.org/10.1007/
978-3-319-26054-9 23

[33] A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry,
M. Mattar, and D. Lange, “Unity: A general platform for
intelligent agents,” CoRR, vol. abs/1809.02627, 2018.
[Online]. Available: http://arxiv.org/abs/1809.02627

[34] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens,
T. Tuytelaars, and L. Van Eycken, “Cnn-based single
image obstacle avoidance on a quadrotor,” in 2017 IEEE
International Conference on Robotics and Automation
(ICRA), 2017, pp. 6369–6374.

[35] L. Xie, S. Wang, A. Markham, and N. Trigoni,
“Towards monocular vision based obstacle avoidance
through deep reinforcement learning,” CoRR, vol.
abs/1706.09829, 2017. [Online]. Available: http://arxiv.
org/abs/1706.09829

[36] Z. Xue and T. Gonsalves, “Monocular vision obstacle
avoidance uav: A deep reinforcement learning method,”
in 2021 2nd International Conference on Innovative and
Creative Information Technology (ICITech), 2021, pp. 1–
6.

[37] M. Kim, J. Kim, M. Jung, and H. Oh, “Towards
monocular vision-based autonomous flight through
deep reinforcement learning,” Expert Systems with
Applications, vol. 198, p. 116742, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0957417422002111

[38] K. Yokoyama and K. Morioka, “Autonomous mobile
robot with simple navigation system based on deep

reinforcement learning and a monocular camera,” in
2020 IEEE/SICE International Symposium on System
Integration (SII), 2020, pp. 525–530.

[39] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Obstacle
avoidance drone by deep reinforcement learning and
its racing with human pilot,” Applied Sciences, vol. 9,
no. 24, 2019. [Online]. Available: https://www.mdpi.
com/2076-3417/9/24/5571

[40] F. Sadeghi and S. Levine, “Cad2rl: Real single-image
flight without a single real image,” in Proceedings
of Robotics: Science and Systems, Cambridge, Mas-
sachusetts, July 2017.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.

[42] A. Sax, B. Emi, A. Zamir, L. J. Guibas, S. Savarese,
and J. Malik, “Mid-level visual representations improve
generalization and sample efficiency for learning active
tasks,” CoRR, vol. abs/1812.11971, 2018. [Online].
Available: http://arxiv.org/abs/1812.11971

[43] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z.
Leibo, D. Silver, and K. Kavukcuoglu, “Reinforcement
learning with unsupervised auxiliary tasks,” CoRR,
vol. abs/1611.05397, 2016. [Online]. Available: http:
//arxiv.org/abs/1611.05397

[44] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map pre-
diction from a single image using a multi-scale deep
network,” in Proceedings of the 27th International Con-
ference on Neural Information Processing Systems -
Volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT
Press, 2014, p. 2366–2374.

[45] R. Garg, V. K. B.G., G. Carneiro, and I. Reid, “Unsuper-
vised cnn for single view depth estimation: Geometry to
the rescue,” in Computer Vision – ECCV 2016, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 740–756.

[46] C. Godard, O. M. Aodha, and G. J. Brostow, “Un-
supervised monocular depth estimation with left-right
consistency,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 6602–
6611.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Communications of the ACM, vol. 60, pp. 84 – 90, 2012.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, N. Navab, J. Hornegger,
W. M. Wells, and A. F. Frangi, Eds. Cham: Springer
International Publishing, 2015, pp. 234–241.

[49] D. P. Kingma and M. Welling, “Auto-encoding
variational bayes,” 2013. [Online]. Available:
https://arxiv.org/abs/1312.6114

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial networks,” Communications of
the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[51] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neu-
ral discrete representation learning,” in Proceedings of
the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA:
Curran Associates Inc., 2017, p. 6309–6318.

[52] P. Esser, R. Rombach, and B. Ommer, “Taming trans-
formers for high-resolution image synthesis,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 12 868–12 878.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[54] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and
A. Torralba, “Scene parsing through ade20k dataset,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 633–641.

[55] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in European confer-
ence on computer vision. Springer, 2014, pp. 740–755.

[56] A. Dosovitskiy, J. T. Springenberg, and T. Brox, “Learn-
ing to generate chairs with convolutional neural net-
works,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 1538–1546.

[57] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Multi-
view 3d models from single images with a convolutional
network,” in European Conference on Computer Vision.
Springer, 2016, pp. 322–337.

[58] J. Shade, S. Gortler, L.-w. He, and R. Szeliski, “Layered
depth images,” in Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques,
1998, pp. 231–242.

[59] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely,
“Stereo magnification: Learning view synthesis using
multiplane images,” ACM Trans. Graph., vol. 37, no. 4,
jul 2018. [Online]. Available: https://doi.org/10.1145/
3197517.3201323

[60] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes
as neural radiance fields for view synthesis,” in Computer
Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox,
and J.-M. Frahm, Eds. Cham: Springer International
Publishing, 2020, pp. 405–421.

[61] S. Tulsiani, R. Tucker, and N. Snavely, “Layer-structured
3d scene inference via view synthesis,” in Computer
Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchis-
escu, and Y. Weiss, Eds. Cham: Springer International
Publishing, 2018, pp. 311–327.

[62] R. Tucker and N. Snavely, “Single-view view synthesis
with multiplane images,” in CVPR, 2020. [Online].
Available: https://arxiv.org/abs/2004.11364

[63] J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and

G. H. Lee, “Nemi: Unifying neural radiance fields
with multiplane images for novel view synthesis,”
CoRR, vol. abs/2103.14910, 2021. [Online]. Available:
https://arxiv.org/abs/2103.14910

[64] A. Liu, A. Makadia, R. Tucker, N. Snavely, V. Jampani,
and A. Kanazawa, “Infinite nature: Perpetual view gen-
eration of natural scenes from a single image,” in 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 14 438–14 447.

[65] M. Chen, A. Radford, J. Wu, H. Jun, P. Dhariwal,
D. Luan, and I. Sutskever, “Generative pretraining from
pixels,” in International Conference on Machine Learn-
ing, 2020.

[66] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang,
Q. Tian, and M. Wang, “Swin-unet: Unet-like pure trans-
former for medical image segmentation,” arXiv preprint
arXiv:2105.05537, 2021.

[67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in pytorch,” 2017.

[68] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gra-
dient descent with warm restarts,” arXiv preprint
arXiv:1608.03983, 2016.

[69] ——, “Fixing weight decay regularization in adam,”
ArXiv, vol. abs/1711.05101, 2017.

[70] C. Godard, O. M. Aodha, M. Firman, and G. Brostow,
“Digging into self-supervised monocular depth estima-
tion,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 3827–3837.

[71] R. Peng, R. Wang, Y. Lai, L. Tang, and Y. Cai, “Excavat-
ing the potential capacity of self-supervised monocular
depth estimation,” 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 15 540–15 549,
2021.

[72] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image
quality assessment: from error visibility to structural sim-
ilarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, 2004.

[73] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and
O. Wang, “The unreasonable effectiveness of deep fea-
tures as a perceptual metric,” in 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018,
pp. 586–595.

[74] Y. Zhang and J. Wu, “Video extrapolation in space and
time,” in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XVI. Springer, 2022, pp. 313–333.

[75] OpenCV, “StereoSGBM Class Reference,” Online:
https://docs.opencv.org/3.4/d2/d85/classcv 1
1StereoSGBM.html, 2021, accessed: 2023-05-02.

[76] Q. Huynh-Thu and M. Ghanbari, “The accuracy of psnr
in predicting video quality for different video scenes
and frame rates,” Telecommun. Syst., vol. 49, no. 1,
p. 35–48, jan 2012. [Online]. Available: https://doi-org.
tudelft.idm.oclc.org/10.1007/s11235-010-9351-x

[77] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

VII. APPENDIX

A. Ablation: Augmentation Techniques

During the view synthesis experiments on the KITTI
dataset, four augmentation techniques are applied to the im-
ages the architectures are trained on. These techniques include
image flipping and color augmentation from Godard et al. [46],
data grafting from Peng et al. [71], and bi-directional training.
This ablation study performs training regimes that exclude
each of these techniques. Instead of bi-directional training,
the architecture is trained from left to right. This means that
the layer adding the token at the bottleneck is also removed.
The LDI split Eigen et al. [44] is used. However, a slight
adjustment is made to the image size. The LDI split removes
5% of the edges and results in images of 128×384. This size is
suitable for the hierarchical Swin architecture with a window
size of 8. As the edges are removed after the architecture
produces a result, the images must be padded to a width of 512
pixels. This increased size is not ideal for training. Therefore
the images are directly scaled to 128×384 and trained on this
size. This results in Table VI.

At the bottom of the table, the network’s performance,
including all techniques, is shown, which is the benchmark
the ablation study is compared against. Looking at the results,
training without color augmentation reduces the performance
of the architecture the most. No image flipping follows closely
after. Prediction of the right image from the left image even
improves the performance. This is expected as this is a more
specialized task compared to bi-directional predictions. Bi-
directional predictions are preferred in the context of obstacle
avoidance, as it learns to generalize information in both direc-
tions. However, the architecture trained without data grafting
also performed better than the benchmark. This indicates its
limited value and will not be used for drone navigation.

B. Analysis: Loss Function

During the view synthesis experiments on the KITTI
dataset, the Smooth L1 Loss was used as the loss function for
training. This function combines the more popular L1 loss (2),
and L2 loss (3), in one function (4). The loss function is
studied as well. Smooth L1 Loss is seen less in the literature
compared to the more popular L1 Loss and L2 Loss. Similar
to the study of the augmentation techniques, the split is trained
by scaling to 128× 384 without removing the edges, and the
results are shown in Table VII.

L1 (y, ŷ) =

N∑

i=1

|yi − ŷi| (2)

L2 (y, ŷ) =
N∑

i=1

(yi − ŷi)
2 (3)

L1smooth (y, ŷ) =

{
1
2 (y − ŷ)

2 if|y − ŷ| < 1

|y − ŷ| − 1
2 otherwise

(4)

TABLE VI: Comparison of the view synthesis performance of the Swin (U-Net) architecture without certain augmentation
techniques on KITTI with the LDI split and two generated datasets with AvoidBench for two baselines.

Split Augmentation LPIPS ↓ SSIM↑ PSNR↑

LDI split
train 128 × 384
test 128 × 384
150 Epochs

No Color Augmentation 0.169 0.777 20.7
No Image Flipping 0.164 0.782 20.7
Only Left-to-Right 0.148 0.800 21.0
No Grafting 0.145 0.792 21.0

All techniques 0.163 0.790 20.8

TABLE VII: Comparison of the view synthesis performance of the Swin (U-Net) architecture with different loss functions on
KITTI with the LDI split and two generated datasets with AvoidBench for two baselines.

Split Loss LPIPS ↓ SSIM↑ PSNR↑
LDI split
train 128 × 384
test 128 × 384
150 Epochs

L1 Loss 0.198 0.778 21.1
L2 Loss 0.190 0.782 21.0

Smooth L1 Loss 0.163 0.790 20.8

The performance of the network trained with the Smooth
L1 Loss on the LPIPS metric significantly improved compared
to the network trained on L1 Loss and L2 Loss. Likewise, the
performance is improved on the SSIM metric and only slightly
reduced on the PSNR metric.

C. Ablation: Features for Navigation

During the navigation experiments, seven features were al-
ways provided to the RL agent as they were deemed necessary
for path planning. These were the relative position to the target
in the body frame

(
xb
t , y

b
t , z

b
t

)
and the velocity and the yaw rate

in the body frame
(
vbx, v

b
y, v

b
z, ω

b
z

)
. Here it is studied whether

all these features were necessary for the path planning tasks.
This experiment will be performed on the network with the
monocular-to-stereo view synthesis feature extractor, shown in
Table VIII.

Fascinating is the improved navigational ability by pro-
viding randomized values instead of zbt and ωb

z . Such an
improvement is not feasible if the RL agent does not know
how to use these features. Instead, the drone’s behavior in
the evaluation should differ significantly from the behavior of
the drone in training. During training, the actions the drone
receives are stochastic, while in evaluation, the actions are
deterministic. As the target is on the same height as the spawn
position, there is little need for moving up and down, but
due to the stochastic nature in training, zbt will fluctuate a bit
around zero. Therefore, the agent does not learn a strong policy
regarding this and will likely output actions for vbz equal to
zero, which might not excite the network correctly. Besides,
it should be noted that the features in the direction of x are
the most critical navigational features for the performance of
this model.

D. Analysis: Stereo Setup

During the path planning experiments, a particular stereo
setup was decided on. This setup was a trade-off of potential
performance gains and computational power. It was decided to
use a resolution of 64 × 64, whereas the selected baseline was

0.48m. Shorter baselines are also trained to test the importance
to the navigational performance potential and the convergence
speed of such a large baseline. Firstly, a realistic real-life
setup is proposed. This setup has both cameras aligned to
the center of the drone and a baseline of 0.12m. A second
setup is proposed that doubles this baseline but aligns the left
camera to the center. Finally, a setup is proposed that reduces
the image resolution to 32 × 32. Fig. 12 shows the mission
progress over time, and Table IX shows the reward, mission
progress, and success rate after training.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

20

40

60

80

100

M
iss

io
n

Pr
og

re
ss

 %

Autoencoder
S-B12-R64

A-B24-R64
A-B48-R64

A-B48-R32
Without Vision

Fig. 12: Mean mission progress (± standard deviation) for
RL agent with various camera setups, averaged over 4

training sessions, 10 evaluation runs per session, every 105

timesteps in the indoor environment. In the labels, ”A”
denotes an asymmetric camera, ”S” denotes a symmetric

camera, ”B” followed by a number indicates the baseline in
centimeters, and ”R” followed by a number refers to the

resolution (e.g., ”R64” signifies a 64x64 resolution).

Fig. 12 indicates a correlation between the length of the
baseline and the convergence speed. Larger baselines converge
quicker compared to smaller baselines. It is, however, expected
that increasing the baseline further than 0.48cm will start
to reduce the performance, as the improvements are already
reducing from 0.24cm to 0.48cm. Interestingly, a reduction in

TABLE VIII: Comparison of the navigational performance of an RL agent with the monocular-to-stereo view synthesis
feature extractor with masked path planning features

Masked Path Planning Feature Reward (µ± σ) Mission Progress (µ± σ) Success Rate

Feature: xb
t 18.4 ± 15.8 56.1% ± 25.4% 17.5%

Feature: ybt 23.9 ± 15.0 64.9% ± 23.5% 27.5%
Feature: zbt 25.4 ± 15.6 65.9% ± 23.5% 32.5%
Feature: vbx 20.2 ± 14.1 61.4% ± 22.2% 17.5%
Feature: vby 23.4 ± 16.1 63.7% ± 25.9% 27.5%
Feature: vbz 21.3 ± 17.4 59.1% ± 24.7% 25.0%
Feature: ωb

z 27.5 ± 14.7 71.9% ± 16.9% 32.5%

All Path Planning Features 21.5 ± 15.2 59.7% ± 28.3% 25%

feature space due to the reduction in image size to 32 × 32
does not increase the convergence speed but seems to reduce
it slightly.

E. Additional: Image from KITTI

Additional examples of monocular-to-stereo image view
synthesis predictions and depth maps obtained through stereo
matching with the original images of the KITTI dataset are
shown for Swin (U-Net), CNN (U-Net), Swin (Encoder-
Decoder) and CNN (Encoder-Decoder) in Figs. 13–22

TABLE IX: Comparison of the navigational performance of the RL agent with the monocular-to-stereo view synthesis feature
extractor for different stereo setups

Symmetrical Baseline Resolution Reward (µ± σ) Mission Progress (µ± σ) Success Rate

Monocular - 64×64 15.1 ± 11.4 53.8% ± 23.5% 7.5%
Symmetric 0.12m 64×64 19.2 ± 11.3 64.2% ± 19.9% 10%
Asymmetric 0.24m 64×64 21.3 ± 14.2 63.0% ± 25.7% 20%
Asymmetric 0.48m 32×32 23.4 ± 15.3 69.1% ± 22.8% 20%

Asymmetric 0.48m 64×64 21.5 ± 15.2 59.7% ± 28.3% 25%

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 13: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 14: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 15: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 16: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 17: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 18: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 19: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 20: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 21: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

(a) original image (b) depth map (through stereo matching)

(c) predicted image
Swin (U-Net)

(d) depth map
Swin (U-Net)

(e) predicted image
CNN (U-Net)

(f) depth map
CNN (U-Net)

(g) predicted image
Swin (Encoder-Decoder)

(h) depth map
Swin (Encoder-Decoder)

(i) predicted image
CNN (Encoder-Decoder)

(j) depth map
CNN (Encoder-Decoder)

Fig. 22: Examples of predicted images for the different architectures and their depth maps obtained through stereo matching
with the input image on the KITTI dataset

Part II

Literature Study

29

2
Geometry-Free Monocular-to-Stereo

Image View Synthesis

Following the extensive introduction, this chapter will discuss all aspects surrounding the geometry-
free monocular-to-stereo image view synthesis. First, a literature overview is composed, which con-
sists of three themes, followed by a discussion to bring everything together. The first theme delves
into the historical context of computer vision in Subsection 2.1.1. It explains general computer vision
concepts, what neural networks are and how they came onto the scene, and what kind of hardware
is used in computer vision. The second theme follows the historical context by providing general
developments within computer vision and artificial intelligence in Subsection 2.1.2. Current relevant
architectures in computer vision, different kinds of optimisers, training schedules and loss functions
are explained. The limitations and potential of the state-of-the-art networks on both the hardware
and software side are discussed. The final theme is discussed in Subsection 2.1.3, where the fields of
research adjacent to the research topic of geometry-free monocular-to-stereo image view synthesis
are analysed. Research has shown up fairly similar to this topic in the last few years. The merging
of different subdomains and the emergence of better architectures enabled a trend that converges to
the creation of the subdomain of geometry-free monocular-to-stereo image view synthesis. The con-
text of this convergence, the datasets that benchmark the performance of the algorithms, as well as
state-of-the-art practices, are discussed. Subsection 2.1.4 brings these three themes together in a short
discussion. After the literature overview, the research plan for this phase is proposed in Section 2.2.
The research plan contains the goals, proposes a method and architecture and explains the execution
of the experiments. It provides an overview of the datasets and metrics that show the performance
and hypothesis about possible results. Besides, it already shows preliminary results and discusses
the impact of these results on the application of the neural network to deep reinforcement learning.

2.1. Literature Overview
Significant trends and subdomains are dismantled into sections and structured chronologically to
bring structure. The terms to find the research include, but are not limited to, the following: CNN,
Convolution, Deep, Depth, End-to-end, Estimation, Geometry-free, Image, Generation, Monocular, Multi,
Network, Neural, Prediction, Self-Supervised, Single, Stereo, Synthesis, Supervised, Swin, Transformer, U-Net,
Unsupervised, View, Vision

2.1.1. Historical Context of Computer Vision
Computer vision is the field of study that enables computers to derive meaningful information from
digital images, videos and other visual inputs and use it to take appropriate actions or make valu-
able recommendations, simulating and automating human capabilities. As an extension of robotics
and artificial intelligence, computer vision has a rich history in pop culture dating back to the 1950s
(Asimov, 1950).
It was not until the early 1970s that computer vision became a topic of interest in the research field.
Similar to how it was utilised in science fiction, the research field viewed computer vision as the vi-

30

2.1. Literature Overview 31

sual perception component of a larger goal to create robots with intelligent behaviour by mimicking
human intelligence. Until the early 2000s the algorithms were mathematical and became more and
more complicated. However, from this point on machine learning techniques became essential to the
computer vision domain. This change was made possible due to two developments. The first one
was the continued increase in the computational power of computers. The exponential growth had
been happening for decades and was already recognised by Gordon Moore, (Moore et al., 1965), in
1965. The second development was that due to the internet, large amounts of data, often partially
labelled, could be shared by and was available to everybody. Machine learning techniques could be
trained on this data without the use of careful human supervision.
In the 2010s, this trend pushed through and started dominating the entire field. Large-scale, high-
quality annotated datasets became available in the form of ImageNet, by (Deng et al., 2009), Microsoft
COCO, by (T.-Y. Lin et al., 2014) and LVIS, by (Gupta et al., 2019). Each had sufficient labelled data
so that solutions based entirely on machine learning came to exist. It also saw a deep neural network
become state-of-the-art for the first time in the form of AlexNet, by (Krizhevsky et al., 2012). After
which many neural networks would follow.

Neural Networks
The idea of a machine being able to emulate the human brain is ancient. (Fitch, 1944) suggested mim-
icking the behaviour of neurons by using binary thresholds to Boolean logic. From this, (Rosenblatt,
1958) developed Rosenblatt’s perceptron, a single-layer perceptron. The architecture is shown in
Figure 2.1. A vector of inputs is multiplied by a series of corresponding weights, whose sum plus a
bias is compared to a threshold. If the sum exceeds the threshold, the "neuron" fires and takes the
activated value; if not, the deactivated value is taken. Equation 2.1 is the formula for the first step and
Equation 2.2 describes how the node is activated. Rosenblatt’s perceptron consists of a single node.

Figure 2.1: Architecture of Rosenblatt’s perceptron1

net input =
𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 + ... + 𝑤𝑛𝑥𝑛 + 𝑏 (2.1)

activation =

{
1 if

∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏 ≥ 0

0 if
∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏 < 0

(2.2)

A multilayer perceptron (MLP), also known as a position-wise fully connected feed-forward network,
has many nodes per layer, each activated separately. These layers can also be stacked one after the
other, meaning that the first layer’s output becomes the second layer’s input. An example of such
an architecture is Figure 2.2, where the layers between the input and output layers are called hidden
layers. Historically the activation functions of neurons in neural networks are not binary but are
sigmoids which can have values between 0 and 1. The outputs are either part of a classification or a
regression, and whether they are accurate is evaluated by a cost or loss function. The model adjusts
its weights and bias based on the outcome to reduce the loss.

1https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png [Accessed 2 November 2022]

https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png

2.1. Literature Overview 32

In Figure 2.3, a loss function for a weight is shown. At a certain weight, the loss function has a global
minimum. For the optimisation to this minimum, gradient descent is used. A gradient is the deriva-
tive of the loss with respect to the weight, 𝑑𝐿

𝑑𝑤
. To decrease the loss, the weight should move in the

direction the gradient is negative. The learning rate determines by how much the weights should be
moved. This process of determining the direction in which the weights have to move is often not as
simple. For instance, a loss function of a neural network does not only have a global minimum but
many local minima as well. Besides, neural networks do not have a single layer of nodes with weights
but have multiple layers that need to be optimised. The weights have to be optimised for all nodes,
so a gradient needs to be obtained for all nodes: 𝑑𝐿

𝑑𝑊
for𝑊 ∈ R𝑛𝑚 , where 𝑛𝑚 is the total number of

nodes. The loss is calculated as a function of the outputs: 𝐿 = 𝑓
(
y𝑜𝑢𝑡𝑝𝑢𝑡

)
. The outputs follow from

activations as a result of the summation of the product of the weights and outputs of the previous
layers: y𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑜𝑢𝑡𝑝𝑢𝑡

(
w𝑗:𝑜𝑢𝑡𝑝𝑢𝑡 , y𝑗

)
for w𝑗:𝑜𝑢𝑡𝑝𝑢𝑡 , y𝑗 ∈ R𝑛 , where 𝑗 is the last hidden layer and n

the number of nodes within the last hidden layer. By combining both functions, the derivative of the
loss with respect to the weights of the last hidden layer can be obtained. The gradients of weights in
earlier layers can be obtained similarly. This process is called backpropagation.
Batch Gradient Descent takes the average of the gradients over the entire dataset and uses the mean
gradient to update the parameters. This is impossible for large datasets as the entire dataset has to
be saved in the memory simultaneously. Stochastic Gradient Descent (SGD) updates the weights
for each training sample and can therefore be used on large datasets. The disadvantage is that the
network is trained to generalise solutions applicable to all inputs and targets. Therefore, the weights
should not be tuned based on individual training examples but on several examples. This is called
Mini Batch Gradient Descent. In this case, the number of examples per forward and backward pass
is called the batch size. A pass is called an iteration and an epoch is when all training examples go
through the network.

Figure 2.2: Architecture of deep neural network2
Figure 2.3: Gradient descent on a simple loss

function2

Software
As using deep learning became more prominent, the implementation of neural networks became
more standardised, and frameworks were designed to facilitate their usage. One of the most preva-
lent frameworks is PyTorch, (Paszke et al., 2017). This framework was designed primarily for the
programming language python. Besides providing a framework for neural networks, PyTorch has a
class called Tensor, which stores and operators homogeneous multidimensional rectangular arrays
of numbers. These Tensors can be operated on GPUs, speeding up the learning process. It also pro-
vides an autograd module, which handles the backpropagation and computes the gradients, the most
common optimisers, and standard layers and tools to develop the neural networks.

2https://www.ibm.com/cloud/learn/neural-networks [Accessed 2 November 2022]

https://www.ibm.com/cloud/learn/neural-networks

2.1. Literature Overview 33

Hardware
In general, more extensive networks are better able to perform complicated tasks. For more extensive
networks, better hardware is required. As a result, the choice in architecture design depends on the
hardware available. Not only is the application of monocular-to-stereo image view synthesis trained
and run on a server relevant. The follow-up, applying reinforcement learning to a drone in real-time,
has to be considered. From this, it follows that the sensors used to receive the input, the hardware to
train the neural network and the hardware to use the neural network in real time are most relevant.
The motivation to use stereo images instead of depth information is a result of the hardware. LIDAR,
short for "laser imaging, detection, and ranging", directly measures depth. It targets an object or a
surface with a laser and measures the time for the reflected light to return to the receiver. As a result,
it can determine ranges. Even more budget-friendly LIDAR sensors2, become a significant expense
compared to other drone components and cameras. As the navigation task will first be performed
in simulation, the network does not have to be designed with a specific drone and GPU in mind. An
architecture will be developed that can be transferred to a real drone. For this thesis, the student is
limited to the NVIDIA GeForce GTX 1080Ti (2x) to run experiments on.

2.1.2. General Developments within Computer Vision
Activation Functions
A couple of different activation functions are used in machine learning and computer vision. The
activation function introduces linearity and has two general applications in a neural network. The
first application is to activate neurons and enable the flow of information to other neurons, while
the second is to activate neurons and output the prediction. For the task of regression, the target
often has values within a range, and in such a case, the sigmoid activation function or the tangent
hyperbolic (tanh) function is used. These functions are plotted in Figure 2.4 and scale all outputs
between (0,1) and (-1,1), respectively. Both are S-shaped and push the input values to the end of their
curves.
These activation curves, however, are not useful for the neurons in a deep neural network. Bounded
activation functions become less effective after backpropagating through each hidden layer as the gra-
dients vanish. Which therefore prevents changes in the values of the weights. (Nair & Hinton, 2010)
introduced a more suitable activation function named Rectified Linear Unit (ReLU). They proposed a
gated activation that lets values through when they are larger than zero. For years ReLUs were part
of state-of-the-art architectures. (Clevert et al., 2016) introduced Exponential Linear Unit (ELU), with
an activation curve similar to ReLU, but differs in that it is non-linear and can output negative values.
This activation curve sometimes increases training speed. To prevent overfitting, network designers
often include stochastic regularisers such as applying dropout, which can lead to better accuracy. The
dropout randomly alters the activation decision through stochastic zero multiplication. The dropout
acts irrespective of the activation function, which limits the potential. (Hendrycks & Gimpel, 2016)
recognised this and proposed the Gaussian Error Linear Unit (GELU). Similar to dropout the GELU
stochastically multiplies inputs by zero or one, however, it keeps dependency upon the input value.
GELU is approximated with Equation 2.3 to decrease computational time. It is currently used in most
state-of-the-art architectures. Figure 2.5 shows the activation function of ReLU, GELU and ELU.

𝐺𝐸𝐿𝑈(𝑥) ≈ 0.5𝑥

(
1 + tanh

[√
2
𝜋

(
𝑥 + 0.044715𝑥3

)])
(2.3)

Normalisation
All layers try to learn a function that maps the input to an output within a deep neural network. They
receive their inputs from previous layers, which are also learning to map their input to an output.
As a result of training, their output and distribution of outputs change, resulting in the next layer
receiving an input with a different distribution. This distribution is new to the layer, and the layer
can not apply the learned behaviour. The change in distribution is called an internal covariance shift.
Batch normalisation, proposed in (Ioffe & Szegedy, 2015), tries to solve this by standardising the
distribution of inputs per neuron. Standardisation shifts data to a mean of 0 and a standard deviation

2https://www.garmin.com/en-US/p/557294 [Accessed 2 November 2022]

https://www.garmin.com/en-US/p/557294

2.1. Literature Overview 34

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

1.0

0.5

0.0

0.5

1.0
Tanh
Sigmoid

Figure 2.4: Tanh and Sigmoid activation functions

4 3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
GELU
RELU
ELU

Figure 2.5: GELU, RELU and ELU activation functions

of 1. In the case of batch normalisation, the output of the previous activation layer is subtracted from
the batch mean and then divided by the standard deviation of the batch. This batch-normalised
layer than is transformed by two trainable parameters, a mean and a standard deviation. As such
the optimum distribution of each hidden layer can be chosen. Layer normalisation, introduced by
(Ba et al., 2016), is similar in its approach to solving this distribution problem by standardising the
distribution of inputs per layer. Again the optimum distribution is chosen with trainable parameters
through gradient descent.

Optimisers
Optimising the weights of a neural network is done based on gradient descent. Better algorithms
to optimise the loss function have been developed compared to previously presented methods. Fig-
ure 2.3 shows the loss function. It should be noted that the loss function drops rapidly with large
gradients but does not at smaller gradients. To prevent the convergence of the loss function to local
minima, momentum is used. This means using the average over previous gradients to determine
the impact of the learning rate. Especially useful is the exponential moving average, as this assigns
greater weight to more recent values. The method RMSProp, by (Hinton et al., 2012), uses the ex-
ponentially weighted average method to the second moment of the gradients. It, however, lacks a
bias-correction term, which is problematic in the case of sparse gradients. An algorithm that does
work well for sparse gradients is AdaGrad (Duchi et al., 2011). (Kingma & Ba, 2015) combined the
advantages of both and created Adaptive Moment Estimation (Adam). This achieved state-of-the-art
for many years. (Loshchilov & Hutter, 2019) decoupled the optimal choice of weight decay factor
from the learning rate setting for Adam. In doing so, creating the optimiser AdamW improved the
generalisation performance of Adam. Besides using an optimiser, the learning rate is often scheduled
as weights should move less significantly after longer training durations. (Loshchilov & Hutter, 2016)
shows that a warm restart mechanism accelerates training, which means that after slowly decreasing
the learning rate, the learning rate jumps to an increased value followed by a slow decrease in the
rate. This is called cosine annealing or a cosine learning rate scheduler.

Losses and Evaluation Metrics
In the case of view synthesis, continuous values are predicted. The goal of the loss function is to
regress to a set of target values of continuous nature. The loss function, therefore, should show an
error from the prediction �̂� to the target 𝑦. Two standard functions that compute this difference are
the L2 loss and the L1 loss, displayed by Equation 2.4 and Equation 2.5, respectively. The L2 loss is
also known as the Squared Error, and aggregating this loss value over an entire dataset gives the
Mean of Squared Errors (MSE) cost function. The L1 loss is, however, known as the Absolute Error
and aggregating this loss value over an entire dataset gives the Mean of Absolute Errors (MAE). In
general, the L2 loss converges faster and oscillates less for slight differences than the L1 loss. How-
ever, it tends to over-smooth an image and has less steady gradients at more significant differences.
For the view synthesis task, the L1 loss is often used. The features advantageous to both losses can

2.1. Literature Overview 35

also be combined in Equation 2.6, known as the Smooth L1 Loss. The loss is L1 for higher values, and
for lower values, the loss is L2.

𝑓 (𝑦, �̂�) =
𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (2.4)

𝑓 (𝑦, �̂�) =
𝑁∑
𝑖=1

|𝑦𝑖 − �̂�𝑖 | (2.5)

𝑓 (𝑦, �̂�) =
{

1
2 (𝑦 − �̂�)

2 if|𝑦 − �̂� | < 1
|𝑦 − �̂� | − 1

2 otherwise
(2.6)

Although these functions are excellent at converging the loss and, as a result, help generate images
close to the targets, more sophisticated equations are necessary for evaluation. Noise is not beneficial
for an image and the Peak Signal-to-Noise Ratio (PSNR), in Equation 2.7, represents the amount of
noise compared to the highest RGB values. PSNR is not a suitable metric for comparing the quality
and performance over different scenes, states (Huynh-Thu & Ghanbari, 2012). The Structural Simi-
larity Index Measure (SSIM), by (Wang et al., 2004), measures the similarity of the predicted image
to the target image by analysing their distributions, with Equation 2.8. L is the dynamic range of
the pixel values, 𝑘1 = 0.01, and 𝑘2 = 0.03. Multi-Scale SSIM (MS-SSIM), by (Wang et al., 2003), sub-
samples the images to multiple stages to perform the SSIM at multiple scales. The Frechet Incep-
tion Distance (FID), by (Heusel et al., 2017), is also used to assess the image quality of generative
models. This compares their multivariate normal distributions, estimated by Inception v3 features.
Finally, the Learned Perceptual Image Patch Similarity (LPIPS) measures perceptual similarity be-
tween images. (R. Zhang et al., 2018) found that the similarity in activations of images through a
pretrained neural network is an excellent indication of perceptual similarity for the human eye. By
default, LPIPS uses a pre-trained AlexNet, by (Krizhevsky et al., 2012), or VGG, by (Simonyan &
Zisserman, 2015), as the neural network for the comparison of activations between images.

PSNR (𝑦, �̂�) = 10 log10

(
max(𝑦)2

(𝑦 − �̂�)2

)
(2.7)

SSIM (𝑦, �̂�) =

(
2𝜇𝑦𝜇�̂� + (𝑘1𝐿)2

) (
2𝜎𝑦�̂� + (𝑘2𝐿)2

)(
𝜇2
𝑦 + 𝜇2

�̂�
+ (𝑘1𝐿)2

) (
𝜎2
𝑦 + 𝜎2

�̂�
+ (𝑘2𝐿)2

) (2.8)

Transformers
Attention Is All You Need

by (Vaswani et al., 2017)

Natural Language Processing is the branch of computer science that uses machine learning to un-
derstand the structure and meaning of text. Language modelling and machine translation are large
subdomains within NLP. Neural sequence transduction models are used to tackle these tasks. At
the time of the publication of this paper, long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) and gated recurrent units (GRU) (Chung et al., 2014) were the state-of-the-art approaches.
These recurrent networks are combined with an attention mechanism to improve performance.
(Vaswani et al., 2017) proposes the Transformer architecture, which uses an attention mechanism
to draw global dependencies between input and output. A significant benefit is that compared to
recurrent models, this allows for more parallelisation.
For transduction learning, the output is often shifted to the right, therefore learning to predict the
following word. This prediction requires both the input, as well as previous outputs. Shared with
most competitive neural sequence transduction models, the model this paper describes also has
an encoder-decoder structure. The encoder and decoder are shown on the left and right side, re-
spectively, in Figure 2.6. The input tokens are first embedded with learned embeddings to 𝑑model-
dimensional vectors and positionally encoded as the sequential order is otherwise unknown by the

2.1. Literature Overview 36

model. Then they go through N identical Transformer layers, each consisting of a multi-head self-
attention (MSA) mechanism and an MLP. A residual connection around both parts followed by layer
normalisation is employed. The decoder requires an embedded output with positional encoding and
has N identical layers. The output first goes through a masked MSA mechanism followed by a MSA
mechanism which uses the outputs of the encoder as well. Finally, an MLP completes the layer. After
these layers, the output is linearised, and a SoftMax is applied to output probabilities.
The attention function described here maps a query and a set of key-value pairs to an output. To
do so, a compatibility function of a query with a corresponding key assigns a weight to each value.
The weighted values are then added up to an output. The queries, keys, and values are simultane-
ously packed together into matrices 𝑄, 𝐾 ∈ Rx× 𝑑𝑘 and 𝑉 ∈ Rx× 𝑑𝑣 respectively. 𝑑𝑘 is the size of the
dimensions of the queries and keys, 𝑑𝑣 is the size of the dimensions of the values and x is the data.
Equation 2.9 formulates the method, and Figure 2.8 visualises it in a block diagram. The scaling fac-
tor 1√

𝑑𝑘
is there to prevent the SoftMax function from only using extremely small gradients as a result

of large 𝑑𝑘 . In the MSA layer, the queries, keys and values are linearly projected h times in parallel.
Equation 2.9 is then applied to each of the h different projected versions. Their outputs are concate-
nated and linearly projected again, which is visualised in Figure 2.7.

Attention (𝑄, 𝐾,𝑉) = SoftMax
(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 (2.9)

Figure 2.6: Transformer model architecture
by (Vaswani et al., 2017)

Figure 2.7: Multi-Head Attention
mechanism by (Vaswani et al., 2017)

Figure 2.8: Scaled Dot-Product
function by (Vaswani et al., 2017)

They achieved state-of-the-art on both WMT 2014 English-to-German and WMT 2014 English-to-
French translation tasks and transformers are still state-of-the-art for both tasks3 4.

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
by (Dosovitskiy et al., 2020)

This paper presents the Vision Transformer (ViT) and follows the architecture of the Transformer
used in NLP from (Vaswani et al., 2017) as closely as possible. Figure 2.9 shows the model architec-
ture of the Vision Transformer for image classification. Pixels in images are often significantly larger
than words in a text. This paper, therefore, proposes to use the attention mechanism on patches of
16 × 16 pixels instead of per pixel. The ViT receives images x ∈ R𝐻×𝑊×𝐶 , where 𝐻 and𝑊 make the
resolution of the original image and C, the number of channels, is three in the case of RGB. The trans-
former encoder requires patches to train on, so the images are reshaped to patches x𝑝 ∈ R𝑁×(𝑃2 ·𝐶),

3https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german [Accessed 31 October 2022]
4https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-french [Accessed 31 October 2022]

https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german
https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-french

2.1. Literature Overview 37

where 𝑃2 is the resolution of the image patches (16 × 16), and N is the resulting number of patches.
The patches are embedded similarly to the original Transformer. Again this is combined with an en-
coded position, as well as a classification label of the image, formulated in Equation 2.10. The patches
then go through a series of Transformer layers, identical to the one from (Vaswani et al., 2017) Finally,
an MLP outputs a class-label prediction.
This method achieved state-of-the-art on ImageNet, by (Deng et al., 2009). The ILSVRC-2012 Ima-
geNet already contains 1.3M images. The paper describes, however, that as self-attention does not
use image-specific inductive biases, it needs to learn these and requires much pre-training on even
large datasets. The model was pretrained on ImageNet-21k and JFT, by (Chollet, 2017; Hinton et
al., 2015), with respectively 14M and 303M images. The size of the ViT-Base, ViT-Large, and ViT-
Huge are also significant, with 86 million, 307 million and 632 million parameters. These models are
trained on TPU v3 hardware, which the hardware available for the thesis cannot compete with.

Figure 2.9: Vision Transformer Model architecture for image classification by (Dosovitskiy et al., 2020)

z0 =
[
xclass; x𝑝,1E; x𝑝,2E; · · ·; x𝑝,𝑁E

]
+ Epos , E ∈ R(𝑃2 ·𝐶)×𝐷 , E𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷 (2.10)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
by (Z. Liu et al., 2021)

This is another fundamental paper showing the significant potential of transformers within computer
vision. It addresses the two main problems of ViT: (1) scaling the network with increased image size
becomes exponentially expensive computation-wise, which limits the applicability to datasets with
high-resolution images and (2) the lack of local attention to images. As such, it proposes a hierarchi-
cal Transformer whose representation is computed with Shifted windows (Swin).
Hierarchical structures are seen in CNNs. After a convolutional layer, the input size is quartered
(halved horizontally and halved vertically) by a pooling layer. Consequently, the kernels of the follow-
ing convolutional layer explore portions of the picture that are four times as large, even though the
kernel size is the same. By not applying all transformers to patches of the entire image but instead
applying them to patches of smaller windows, local attributes can be learned. Merging neighbouring
windows and increasing the size of patches lets the network learn regional attributes, and repeat-
ing this process lets the network learn global attributes. This structure is shown on the left side of
Figure 2.10, while the structure of the ViT is shown on the right side. As this structure enables the
network to learn local and global attributes, it can be applied as a general-purpose backbone for im-
age classification and dense recognition tasks.
A shifted window approach is used to counteract the problem that local attributes may bridge neigh-
bouring windows and are therefore overlooked by the network. Within the same hierarchical layer
succeeding windows are shifted to form new windows with patches that have not applied attention
to each other. This is visualised in Figure 2.11.
In Figure 2.12, the model architecture is shown. Like ViT, the input images are split into patches
and treated like tokens. For the input layer, the patch size Swin uses is 4 × 4, and the RGB values

2.1. Literature Overview 38

Figure 2.10: Hierarchical feature maps compared to constant
feature maps by (Z. Liu et al., 2021)

Figure 2.11: Shifted windows approach for self-attention by
(Z. Liu et al., 2021)

are concatenated, resulting in a feature dimension per patch of 48. Again similar to ViT, a linear
embedding layer is applied. The MSA module of the ViT has a quadratic computational complexity
with increased resolution. The exact formula without accounting for SoftMax computation is given in
Equation 2.11. With a consistent patch size, increases in height and width result in more patches. The
self-attention increases quadratically as all new patches are attended to by all patches. In the case of
a multi-head self-attention in non-overlapped windows (W-MSA) module, with a consistent window
size, the number of windows will increase linearly with increases in height and width. This formula
is given in Equation 2.12 with M being the window size. Besides this change, the Swin Transformer
block is identical to the ViT Transformer block.

Figure 2.12: Multipurpose Swin Transformer model architecture by (Z. Liu et al., 2021)

Ω (MSA) = 4ℎ𝑤𝐶2 + 2 (ℎ𝑤)2 𝐶 (2.11)

Ω (W-MSA) = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶 (2.12)

In the next Transformer block, the W-MSA is replaced by the multi-head self-attention in the non-
overlapped shifted windows (SW-MSA) module to learn local attributes that overlap neighbouring
windows in the layer before. In the second stage of the hierarchical architecture, a patch merging
layer is introduced. This layer merges 2 × 2 neighbouring patches by concatenating them, which
increases the dimensionality by four. Through a linear layer, the patch merging layer halves the di-
mensionality, thus increasing the patch area by four and the number of channels by two. Stage 2
continues with two successive Swin Transformer blocks. Stages 3 and 4 also have a patch merging
layer followed by successive Swin Transformer blocks. Stage 3 has six blocks instead of two. Instead
of encoding the position bias at the patch embedding, Swin encodes it directly in the attention layer,
with Equation 2.13. The query, key and value matrices are 𝑄, 𝐾,𝑉 ∈ R𝑀2 × 𝑑𝑘 with 𝑑𝑘 being the query
and key dimension and 𝑀2 the number of patches in a window. The relative position along each axis
lies in the [−𝑀 + 1, 𝑀 − 1] range. A bias matrix �̂� ∈ R(2𝑀−1)×(2𝑀−1) is parameterised where 𝐵 takes
values from �̂�.

2.1. Literature Overview 39

Attention (𝑄, 𝐾,𝑉) = SoftMax
(
𝑄𝐾𝑇√
𝑑𝑘

+ 𝐵
)
𝑉 (2.13)

For both the pre-training, training and fine-tuning, the AdamW optimiser is employed, and a cosine
decay learning rate scheduler with a linear warm-up is used. Fine-tuning, however, uses significantly
lower learning rates. Concluding, the Swin Transformer achieved state-of-the-art performance on
COCO object detection by (T.-Y. Lin et al., 2014) and ADE20K semantic segmentation by (B. Zhou
et al., 2017).

End-to-End for Pixel-wise Predictions Networks
ViT and Swin Transformer propose very detailed encoder architectures but are brief about their de-
coder. (Z. Liu et al., 2021), proposes an architecture capable of making per-pixel predictions with
excellent performance. Improvements can be made with a more flashed-out and better decoder. Pa-
pers that propose architectures specialised for per-pixel predictions are discussed next.

Fully Convolutional Networks for Semantic Segmentation
by (Long et al., 2015)

This is the first paper to present an end-to-end trained neural network for pixel-wise predictions.
They introduce the "skip" architecture to combine deep, coarse information and shallow, fine, appear-
ance information. Their architecture is shown in Figure 2.13. The encoder consists of conventional
convolutional layers with pooling layers. For the decoder, they use in-network upsampling, more
specifically, deconvolution filters. The idea behind the skip connections is that the encoder encodes
different kinds of information at different levels. Fine details and local attributes can be encoded in
the upper levels. However, due to the reduced size of the lower-level layers, these can not be encoded
here, while more global features are encoded at these lower levels as larger parts of the images are
visible to the kernels. For per-pixel predictions, the details in the upper and lower levels are rele-
vant. Therefore, the information encoded at the various encoder levels are relevant to the output.
The pooled layers of the encoder are added to the upsampled layers of the decoder to connect all
levels of the encoder to the decoder. Thus combining the coarse and finer details. Which is shown in
Figure 2.14

Figure 2.13: End-to-end architecture for pixel-wise
predictions by (Long et al., 2015)

Figure 2.14: Implementation of the skip connection in (Long
et al., 2015)

U-Net: Convolutional Networks for Biomedical Image Segmentation
by (Ronneberger et al., 2015)

This paper builds upon the previous paper but modifies and extends the structure. Their architec-
ture is shown in Figure 2.15. Their implementation of the skip connection is different because they
propose to concatenate instead of adding up the pooling and upsampling layer. After the concate-
nation, the output is linearised to the dimensions of the upsampling layer. Their upsampling layer
also differs; they use a trainable upsample layer, followed by a convolutional layer with a kernel size
of 2. The pooling layer of the encoder has a larger size than the upsampling layer of the decoder
and is therefore cropped. They argue that this is beneficial due to the loss of border pixels in every
convolution. The other convolutional layers have a kernel size of 3.

2.1. Literature Overview 40

Figure 2.15: U-net architecture for pixel-wise predictions by
(Ronneberger et al., 2015)

Figure 2.16: Swin-Unet architecture pixel-wise
predictions by (Cao et al., 2021)

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
by (Cao et al., 2021)

This paper is the first to integrate the Swin Transform block into the previously discussed U-Net ar-
chitecture. Figure 2.16 shows the architecture and immediately many similarities are clear between
the two. Both contain an encoder, bottleneck and decoder, with skip connections directly connecting
the encoder and decoder. Following (Z. Liu et al., 2021), a patch size of 4 × 4 is used for the patches,
which are embedded to an arbitrary dimension C. Until the bottleneck, the structure of Swin Trans-
former blocks followed by Patch Merging blocks is identical, except that all layers contain two Swin
Transformer blocks. Whereas the decoder of the U-Net uses up-convolution for upsampling from
one hierarchical layer to the next, followed by convolutional layers, this paper proposes to use patch
expansion to transition to the following hierarchical layer and Swin Transformer blocks instead of the
convolutional layers.
As previously explained, the patch merging layer merges neighbouring patches into a large patch,
which keeps the same dimensionality except for doubling the number of channels. The patch expand-
ing layer tries to do the opposite by splitting one patch into 2 × 2 neighbouring patches, each with
half the number of channels compared to the original patch. Finally, the patches are expanded by the
patch size to scale to the original image resolution, which is 4 × 4. Similar to the U-Net, the skip con-
nections concatenate the output from the encoder with the output of the decoder. However, a linear
layer is used to reduce and match the dimensions to that of the patch-expanding layer. It should also
be noted that the skip connections are present at 1/4, 1/8 and 1/16 of the image resolution compared to
skip connections being present at 1/1, 1/2, 1/4 and 1/8 of the image resolution.
A recent paper, (A. Lin et al., 2022), also integrated the Swin Transformer in a U-Net. Their architec-
ture, DS-TransUNet, uses a dual-scale encoding mechanism: two parallel hierarchical structures with
patch embedding performed with different patch sizes. A Transformer Interactive Fusion Module
combines the feature representation of the different structures at the same hierarchical layer. The
decoder is similar to that of the Swin-Unet. The DS-TransUNet is superior in image segmentation
compared to Swin-Unet and other transformer U-net architectures.

2.1.3. Adjacent Fields of Research
Besides the general developments in computer vision, there are adjacent research fields with papers
containing goals overlapping with ours. Specifically of interest are the choice of datasets, data treat-
ment and processing techniques, the proposed architectures and how they are benchmarked. First,
the datasets will be discussed in general, followed by monocular depth prediction and the appli-
cation of self-supervision in this field. Afterwards, the view synthesis field will be reviewed, and
finally, the development of geometry-free approaches in this field will be discussed.

2.1. Literature Overview 41

Datasets
Datasets are fundamental to the task objective and often influence architecture designs. They are a
means to an end. Middlebury, (Scharstein et al., 2001) contributed the first attempt to standardise
a dataset for stereo disparity estimation, which could be used to characterise the performance of
different algorithms. The dataset is small for today’s standards. MPI Sintel, (Butler et al., 2012), in-
troduced a synthetic dataset for this goal. It was sourced from an animated 3D movie and provided
dense ground truth. KITTI was originally introduced in 2012, (Geiger et al., 2012), and extended in
2015, (Menze & Geiger, 2015). It contains stereo images from real road scenes, and ground truth is
obtained with LIDAR but sparse. Some objects, such as cars, have point clouds from CAD models
to provide denser groundtruth. Cityscapes, (Cordts et al., 2016), contains real road scenes as well.
Its groundtruth is partly labelled at pixel level and partly sparse. (Mayer et al., 2016) provides three
synthetic datasets. The first is FlyingThings3D, which has 25,000 stereo frames and includes ran-
domly placed objects in a three-dimensional space. The second dataset is named Monkaa, and like
MPI Sintel includes an animated 3D movie. The stereo images contain nonrigid and softly articulated
motion, making algorithms challenging. Finally, they created a dataset inspired by KITTI containing
synthetic road scenes. NYU Depth V2, (Silberman et al., 2012), contains indoor RGBD images. It is
a good benchmark for the task of monocular depth estimation. However, it does not contain stereo
images. CamVid, (Brostow et al., 2009), is similar in that it only provides RGBD images without
stereo information. Their images were taken from road scenes. Two other datasets in the literature
are RealEstate10K, (T. Zhou et al., 2018), which contains 10 million frames from 80,000 video clips
capturing many real estates, both indoor and outdoor. The relative camera poses are known, and as
such, they can be used for view synthesis. ACID, (A. Liu et al., 2021), contains coastline imagery, in a
similar format as RealEstate10K. All previous discussed dataset are organised within Table 2.1

Table 2.1: Datasets used in adjacent fields of research

Dataset Type Size Stereo Vision Depth Synthetic

Middlebury Indoor Small Stereo Dense Real
(Scharstein et al., 2001)
MPI Sintel 3D Animated Medium Stereo Dense Synthetic
(Butler et al., 2012) Movie

CamVid Road Small Monocular Dense Real
(Brostow et al., 2009)
NYU Depth V2 Indoor Medium Monocular Dense Real
(Silberman et al., 2012)

KITTI Road Large Stereo Sparse (LIDAR) Real
(Geiger et al., 2012) + Dense (3D Model Objects)
Cityscapes Road Large Stereo Sparse (LIDAR) Real
(Cordts et al., 2016) + Dense (3D Model Objects)

FlyingThings3D Random Objects Large Stereo Dense Synthetic
(Mayer et al., 2016) in 3D
Monkaa 3D Animated Medium Stereo Dense Synthetic
(Mayer et al., 2016) Movie
Driving Road Medium Stereo Dense Synthetic
(Mayer et al., 2016)

RealEstate10K Real Estate Very Large Monocular No Real
(T. Zhou et al., 2018)
ACID Coastline Very Large Monocular No Real
(A. Liu et al., 2021)

Monocular Depth Prediction
The research on monocular-to-stereo view synthesis is rather lacking. The likely reason for the lack of
research in this domain is that its use case is significantly more limited than other larger subdomains.
The interest of this thesis in this topic follows from the specific application of deep reinforcement
learning for monocular vision-based drones. Therefore to find relevant papers, other subdomains
are thoroughly examined. Monocular depth prediction is the subdomain that shares many similar-
ities with monocular-to-stereo view synthesis. More specifically, the category of monocular depth
prediction that is self-supervised by being trained on stereo images. Self-supervision is a way of

2.1. Literature Overview 42

training a neural network that does not require the ground truth of the to-be-predicted information,
instead training on other information that can be related to the predicted information. For monocular
depth prediction, stereo images are a good substitute to train on due to the disparity between the
two images inversely correlating to the depth. This section continues by dissecting several papers
and judging which components of these papers should be adopted. The discussion is done per paper,
and the starting point will be a well-known paper that standardises the performance analysis on the
KITTI dataset.

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
by (Eigen et al., 2014)

This paper starts by expressing the practicality of monocular depth estimation over stereo depth
estimation. The task of monocular depth estimation can not rely on geometry and is therefore in-
herently ambiguous. The paper proposes a new approach for estimating depth from a single image.
The presented network consists of two component stacks. The first one is a coarse-scale network
that estimates the depth of global structures, while the second one is a fine-scale network that can
refine the predictions of the coarse-scale network to incorporate finer-scale details. In Figure 2.17,
this architecture is visualised. Within the coars=scale network, the lower and middle layers consist
of convolutional and pooling layers, while the upper layers are fully connected. Their model was
pretrained on ImageNet. The local fine-scale network only has convolutional layers and a pooling
layer at the first stage. The output of the course-scale network is concatenated with the output of the
first fine-scale layer, which has an equal spatial size. The coarse-scale network is trained first. After-
wards, the local fine-scale network is trained, with the coarse-scale network being excluded from the
backpropagation.
This paper also sets the standard for how to use the KITTI dataset. They use 56 scenes from the "city",
"residential", and "road" categories of the raw data. Half of these scenes were used for training and
the other half for testing. Besides, the images are downsampled by half from 1224 × 368 to 612 ×
184. The depth for this dataset is captured by a rotating LIDAR scanner and is therefore sampled
at irregularly spaced points. They choose to match each pixel of the image to the depth nearest to
that pixel. The LIDAR scanner only provides that to the bottom part of the image, however the entire
image is fed to the network for additional context. The training set has 800 images per scene. Shots
in which the car is stationary are excluded to avoid duplicates. They also use both left and right
RGB cameras, but the images are treated as unassociated. The Eigen Split therefore ends up with a
training set of 20,000 unique images.

Figure 2.17: Model architecture for monocular depth estimation by (Eigen et al., 2014)

Besides presenting the first end-to-end depth prediction network and standardising the KITTI dataset,
they also standardised the baselines used to determine the performance of the depth prediction.
These followed from prior work and are the following:

2.1. Literature Overview 43

Threshold: % of 𝑦𝑖 s.t. max
(
𝑦𝑖
𝑦∗
𝑖
,
𝑦∗
𝑖

𝑦𝑖

)
= 𝛿 < 𝑡ℎ𝑟 RMSE (linear):

√
1
|𝑇 |

∑
𝑦∈𝑇 ∥𝑦𝑖 − 𝑦∗𝑖 ∥

2

Abs Relative difference: 1
|𝑇 |

∑
𝑦∈𝑇

|𝑦−𝑦∗ |
𝑦∗ RMSE (log) :

√
1
|𝑇 |

∑
𝑦∈𝑇 ∥ log 𝑦𝑖 − log 𝑦∗

𝑖
∥2

Squared Relative difference: 1
|𝑇 |

∑
𝑦∈𝑇

∥𝑦−𝑦∗∥2

𝑦∗

Self-Supervised Monocular Depth Prediction
The following three papers came out less than a year apart from each other. They are similar in what
they achieve and how they achieve it.

Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks
by (J. Xie et al., 2016)

Self-supervised learning, in the context of monocular depth estimation, is learning on either stereo
images or sequential images from a monocular video. In this case, the performance of the monocular
depth estimation is of interest. For this thesis, however, the interest is in outputting the other image
from stereo pairs. As is this paper and their method relied on a warping function and, by doing so,
developed an architecture nearly identical to one required to do self-supervised learning for monocu-
lar depth estimation. They use an internal probabilistic disparity representation to render the image,
similar to (Flynn et al., 2016). The loss function is a pixel-wise regression function that compares the
predicted right view from the actual left view to the actual right view. This method is differentiable
and, therefore, can be used in deep neural networks. This representation is similar to a disparity map
but also naturally handles in-painting.
The input image is first downscaled and then goes through a series of convolutional layers. Deconvo-
lutional layers are applied to the feature maps between each convolutional layer. This increases the
feature maps to the original resolution. In a future step, a selection layer is applied that combines the
output with the original image and as such creates a predicted image. Consequently, this means that
the feature maps are similar to disparity maps. This paper states that it is possible to upsample the
feature maps from the convolutional layers as disparity maps usually have less high-frequency con-
tent than the original colour image. A convolution is done on the sum across all up-sampled feature
maps, followed by a SoftMax layer. Each feature map from this convolution represents the probabil-
ity of a specific disparity across the image. The selection layer uses this accordingly and thus predicts
the output right view.
This method does not require depth information. Therefore they are able to train on a large library
of 3D movies. The network is based on VGG16, (Simonyan & Zisserman, 2015), a for then large con-
volutional network trained on ImageNet. It is initialised with VGG16 weights and two randomly
initialised fully connected layers.
As far as the writer knows, this is the first algorithm to train directly on stereo pairs and not use
depth maps. The fascinating part of this paper is the ablation studies it does. It compares the Mean
Average Error without the selection layer to the Mean Average Error with the selection layer. The
architectures had scores of 7.01 and 6.87, respectively. Although the selection layer reduces the er-
ror, the difference between the errors is promising. They state they directly regress on the novel
view without internal disparity presentation and selection layer. This implies that a geometry-free
monocular-to-stereo image view synthesis is possible.

Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
by (Garg et al., 2016)

This paper, published in the same year, is another fundamental paper to the monocular depth estima-
tion community. It is the first paper that uses self-supervision on the KITTI dataset and benchmarks
its depth prediction capabilities. Their CNN encoder takes an image and predicts an inverse depth
(disparity), which then is combined with the other image in an inverse warping resulting in a warped
image. This image is compared to the original image with a reconstruction error. After which the
weights of the network are updated. This process is shown in Figure 2.18. The three significant parts
of this method are the CNN encoder, the inverse warping and the loss function. They use an L2 loss
for their reconstruction error, as shown in Equation 2.14, with D𝑖 being the disparity maps. As such,
the disparity maps are parameterised to be a non-linear function of the input image and weights of

2.1. Literature Overview 44

the CNN encoder. For backpropagation to be possible, the warped image needs to be linearised us-
ing Taylor expansion. The encoder contracts, expands, and has skip connections, inspired by (Long et
al., 2015). As the groundtruth depth ranges between 1 and 50 meters, they fix their prediction range
from 1 to 50 meters. Finally, they do not use data augmentation techniques.

Figure 2.18: Model architecture for self-supervised monocular depth estimation by (Garg et al., 2016)

𝐸𝑖𝑟𝑒𝑐𝑜𝑛𝑠 =

∫
Ω

∥𝐼 𝑖2
(
𝑥 + 𝐷 𝑖(𝑥)

)
− 𝐼 𝑖1 (𝑥) ∥

2𝑑𝑥 (2.14)

Unsupervised Monocular Depth Estimation with Left-Right Consistency
by (Godard et al., 2017)

The third paper is again similar to the previous one and almost feels like a continuation. It improves
upon the flaws of the previous papers. It is also the only paper to acknowledge both previous papers
and compare what they did well and what could be improved. This work uses bilinear sampling, by
(Jaderberg et al., 2015), where the output pixel is the weighted sum of four input pixels, to generate
fully differentiable images. The disparity maps are created at four scales, each doubling in spatial
resolution. Their encoder architecture is different again and inspired by DispNet (Mayer et al., 2016).
The previous paper generates a warped image from the disparity from the left image combined with
the right image. This paper proposes a left-right consistency check. It predicts the left-to-right dis-
parity map, as well as the right-to-left disparity map from one original image. With the disparity
maps and the original images, warped images for both left and right are generated and included in
all losses. Instead of using deconvolutions in their architecture to output disparities, they use upsam-
pling followed by a convolution, which is the change (Ronneberger et al., 2015) proposes compared
to (Long et al., 2015). They combine an L1 with a single scale SSIM, (Wang et al., 2004), for their re-
construction loss. Besides, they experiment with implementing Resnet50, (K. He et al., 2016), for their
encoder.
They introduce data augmentation for self-supervised monocular depth estimation as well. They ran-
domly flip the images horizontally and swap their left-right position. Besides, colour augmentation is
done randomly with gamma, brightness and colour shifts for the individual channels.
The main datasets they evaluate their model on are KITTI (Geiger et al., 2012) and Make3D (Saxena
et al., 2009). In the case of the KITTI, two test splits are used to compare to previous work. The first
split is the standard KITTI split. The evaluation is done on 200 high-quality disparity images, which
cover a total of 28 scenes, while training is done on 29,000 images with lower-quality disparity images
as CAD models are used. The other split is the Eigen Split, proposed by (Eigen et al., 2014), which
has 697 test images covering 29 scenes. For training, they use 22,600 images and 888 images for vali-
dation, similar to (Garg et al., 2016). They note that depth values are present for less than 5% of the
pixels, while the rotation of the Velodyne, the vehicle’s motion and motion of surrounding objects,
and occlusion at object boundaries, result in errors. They achieve better results than previous papers
and dedicate this to their loss function, which enforces the consistency between the predicted depth
maps.

Single View Stereo Matching
by (Luo et al., 2018)

As discussed before, (J. Xie et al., 2016) does not generate disparity maps but maps similar to a dispar-
ity map. To use their architecture, this paper proposes to apply stereo matching to the synthesised

2.1. Literature Overview 45

right image and the original left image. Until this point, stereo matching has not been discussed in
the literature review. The goal of stereo matching is to match the individual pixels of the two stereo
images, which outputs the disparity map. Integrating this after the selection module is visualised in
Figure 2.19. This architecture enables self-supervised learning by first predicting a synthesised right
image and afterwards creating a disparity map and a depth map. This order is reversed compared to
previous self-supervised monocular depth prediction papers while achieving excellent results.

Figure 2.19: Model architecture for self-supervised monocular depth by (Luo et al., 2018)

Papers following have achieved better results by implementing GANs (Aleotti et al., 2019; Pilzer et al.,
2018), cyclic learning (Pilzer et al., 2018) or the use of sequential monocular images instead of stereo
images (Godard et al., 2019). Finally, last year, a paper was published that leads the monocular depth
estimation on KITTI Eigen split unsupervised division of paperswithcode5:

Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
by (Peng et al., 2021)

This paper does many things well. Their performance gains follow mainly from a novel data aug-
mentation approach, self-distillation application and an efficient full-scale network. The usage of
stereo images reduces the data augmentation options. For instance, translation is impossible as the
direction of disparity is not horizontally aligned anymore, and scaling is impossible as the conver-
sion from disparity to depth changes. Their data augmentation method, data grafting, applies to
stereo images. As shown in Figure 2.20, new images are created by combining the top part of one
image with the bottom part of another. When done for both stereo images, it does not disturb the
disparity between the stereo images. The images are chosen from the same batch, and the size differ-
ence between the top and bottom is varied randomly. (Van Dĳk & De Croon, 2019) proved that the
essential feature learned by a neural network for monocular depth estimation is the relation between
the height at which an object is located within the image and the depth of that object to the camera.
Data grafting can prevent the neural network from only learning this feature by flipping the top and
bottom images, which leads to significant performance gains.

Figure 2.20: Illustration of data grafting by (Peng et al., 2021)

View Synthesis
Another field of research relevant to this literature review is that of view synthesis. Predicting both
existing and novel views is central to this domain. These views are generally synthesised with ex-
plicit geometric relations within the model. Improvements in the larger computer vision domain
have enabled the emergence of geometry-free approaches. The first paper discussed, actually, implic-
itly uses geometric relations, but afterwards, the field discovers better performance by using warping
mechanisms.

5https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen-1 [Accessed 27 October 2022]

https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen-1

2.1. Literature Overview 46

(Tatarchenko et al., 2016) describes a method to synthesise a novel view of an object from a single
image and a desired new viewpoint. Their architecture is shown in Figure 2.21. They encode an im-
age with convolutional and pooling layers and combine this with an angle of the desired viewpoint
encoded by fully connected layers. Finally, the decoder uses up-convolutional layers. This method
learns a 3D representation of a single object implicitly. In a previous paper, they proved a network’s
ability to learn a 3D representation of different chairs in (Dosovitskiy et al., 2015). Now they changed
their architecture and proved it for more complicated objects. They do perform some qualitative anal-
ysis, but no benchmarks are done. (T. Zhou et al., 2016) is inspired by this architecture and develops
a network able to predict appearance flow instead of direct pixel generation. The disparity is the ap-
pearance flow in stereo vision. They use bilinear sampling from (Jaderberg et al., 2015) to obtain the
synthesised view similar to (Godard et al., 2017). They also apply their model on the KITTI dataset
and compare the MAE of their network to (Tatarchenko et al., 2016). Again direct pixel generation is
inferior to a warp function.

Figure 2.21: Model architecture for view synthesis by (Tatarchenko et al., 2016)

Therefore, subsequent papers in multi-view image synthesis designed architectures that took ad-
vantage of more extensive scene representations and more complicated warping functions. The
scene representation LDI (Shade et al., 1998), was used in (Tulsiani et al., 2018) to predict a 3D rep-
resentation. Similar to what (Luo et al., 2018) did by adding a stereo matching algorithm to (J. Xie
et al., 2016) (Tulsiani et al., 2018) also added a stereo matching algorithm to their architecture and
compared their results. They could not get state-of-the-art depth predictions, but their results were
competitive. With the paper by (Tucker & Snavely, 2020), this new research field of monocular view
synthesis saw much maturity. Their scene representation is MPI (T. Zhou et al., 2018). They started
benchmarking their depth estimation on the KITTI dataset and comparing the synthesised views on
image quality by using PSNR and SSIM. They evaluate the results at two different sizes: 384 × 128
and 1240 × 375. 22 images of the city category were trained on. Left or right images were randomly
taken. The test sequence has 1079 image pairs. Five per cent is cropped at the edges as many artefacts
are here. They also compare occluded pixels specifically. (J. Li et al., 2021) improved results again by
replacing the MPI with NERF (Mildenhall et al., 2020).
Further improvements were made by not only using spacial extrapolation but extrapolation over time
as well (Y. Zhang & Wu, 2022). This is possible as the sequence of images within the KITTI dataset
is known over time. As far as the writer is aware this is the current state-of-the-art. Some recent
architectures also included modules specifically for occlusion handling (C. Zhang et al., 2022) and
loss functions at a feature level instead of at a pixel level (C. Zhang et al., 2023).

Geometry-Free View Synthesis
Geometry-Free View Synthesis: Transformers and no 3D Priors

by (Rombach et al., 2021)

The conditional synthesis task domain focuses on generating images with non-spatial information
and spatial information. Controlling both enables the generation of images with specific character-
istics. Non-spatial information is defined in object classes, while segmentation structures spatial
information. (Esser et al., 2021) developed an architecture for this task. However, their architecture
can be generalised and applied to the view synthesis domain. The architecture is inspired by VQ-
VAE, (van den Oord et al., 2017). However, it uses a GAN, (Goodfellow et al., 2020), instead of a VAE,
(Kingma & Welling, 2013). The architecture is shown in Figure 2.22. In (Rombach et al., 2021), they
applied their previous work to novel view synthesis. They were most interested in whether a model
requires 3D priors to synthesise novel views in more complicated environments compared to basic
environments such as in (Tatarchenko et al., 2016). The datasets for these novel view synthesis tasks

2.1. Literature Overview 47

are RealEstate10K, (T. Zhou et al., 2018) and ACID, (A. Liu et al., 2021). Their application requires a
single image, meaning the novel view synthesis is extrapolated.

Figure 2.22: VQGAN architecture for geometry-free view synthesis by (Esser et al., 2021)

Six different levels of geometric image warping are proposed to test the need for geometric infor-
mation. Three are explicit geometric transformations, and the others are implicit. For the implicit
transformation, to prove that the geometric information is encoded, depth has to be able to be ex-
tracted. This is achieved by linear probing, (M. Chen et al., 2020), a technique commonly used to
study the feature quality of networks trained in an unsupervised manner. The idea is that a position-
wise linear classifier can be trained to predict the latent representation of a layer in a depth encoder
from an equal-sized layer in the original transformer model. As a result, it can be determined with
what quality depth is encoded and in what layer depth is encoded best. This paper concludes that no
geometric priors are required, and their model can implicitly learn three-dimensional relations be-
tween images. The explicit transformations do not improve the performance significantly. However,
for small viewpoint changes, compression artefacts dominate the error.

Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent
Scene Representations
by (Sajjadi et al., 2021)

As the previous work notes, although the quality of the synthesised views is high, their method cre-
ates individually sampled frames, meaning that artefacts are not consistent over multiple frames.
This paper, (Sajjadi et al., 2021), is intrigued by the model’s lack of required geometric informa-
tion. The goal of this paper differs from the other one in that they want to generate a series of new
poses from a collection of images from the same scene. This collection is encoded with their posi-
tion through a CNN. The CNN outputs embedded patches that go through an encoder consisting of
multiple transformer blocks. They call the output a set-latent scene representation. This becomes the
input for the key and values of the multi-head attention layer of the decoder, with the query taking
a ray corresponding to the pixel to be rendered. The architecture is shown in Figure 2.23, and entire
scenes can be generated from the shared set-latent space representation. This task can both be used
for interpolation, for example, in the Street View dataset and can be trained directly to do semantic
segmentation of novel views. Their architecture, however, has a some limitations. Firstly, the L2 loss
for instance craetes blurriness for more complex datasets. Secondly, they require larger datasets due
to the lack of geometric inductive biases. Finally, they note that for small translations models that
have geometric inductive biases work better.

2.1.4. Discussion
The leading development seen in the broader computer vision domain is the increased use of neural
networks and the size of these networks. These developments are clear when presenting the state-
of-the-art within the domain and with the relevant subdomains. Techniques, such as network reg-
ulation and training scheduling, generally are more advanced in the broader vision domain. Layer
normalisation and AdamW have yet to make their way to the view synthesis domain. As far as the
writer is aware, the Swin Transformer has also not been applied to this field. Many techniques are
available that will slightly improve the network’s performance at the cost of increased model size.
Some might also increase the latent space, which makes it less suitable for the navigational task of the

2.2. Research Plan 48

Figure 2.23: SRT architecture for geometry-free view synthesis by (Sajjadi et al., 2021)

next chapter. Therefore VAEs, GANs or self-distillation are not implemented. Performance measur-
ing of reconstruction realism has seen significant standardisation in the last few years, which helps
determine the value of our contributions.

2.2. Research Plan
Following the extensive literature review, a research plan can be decided on. The goal to perform
geometry-free monocular-to-stereo image view synthesis seems feasible, and encoding depth infor-
mation and environmental cues in the latent space seems realistic.

Dataset
A dataset should be defined to measure the ability of the architecture to perform the view synthesis.
Firstly, to understand the value and limitations of architecture, the stereo images within the dataset
should be equally as or more complicated than that of the stereo imagery obtained by a drone in
a simulation. Secondly, a comparison to other architectures would be of use to judge the competi-
tiveness of this architecture and if this path is worth further pursuing. Therefore datasets that other
researchers use to test their architectures quantitatively on, with competing results are preferred.
These two reasons result in selecting KITTI, (Geiger et al., 2012), as the chosen dataset. The KITTI
dataset includes left images, right images and depth information.
The literature provides roughly three different splits. The KITTI split, (Geiger et al., 2012), the Eigen
split, (Eigen et al., 2014) and a split we will call the Tulsiani split, (Tulsiani et al., 2018). The KITTI
and Eigen split are used for monocular depth prediction, both supervised6 and self-supervised7. The
Tulsiani split is used for view synthesis. To compare our results, we must similarly use the splits
and follow the same routines. However, the Eigen split uses 22,600 training image pairs, whilst the
Tulsiani split is limited to 6000 image pairs in training. As our network is trained end-to-end without
implicit geometric understanding, it is assumed that a larger dataset to train on is more beneficial
to our architecture compared to our counterparts. Therefore we will consider two cases. During
the first case, the model is trained on the 6000 image pairs originally available in the Tulsiani split.
The other one is pre-trained on the Eigen split, modified to exclude test images from the Tulsiani
split. Ideally, the training and testing are done on images with the original resolution provided by
KITTI, which is R1280×384. However, the images are often scaled down in literature for computational
purposes, resulting in quicker learning processes. Besides, (Tulsiani et al., 2018) defines a resolution
not seen for monocular depth estimation and that papers following their split sometimes do not
adhere to. The Tulsiani split downsizes the original resolution by three whilst shortening the width
by 5% on both sides. This results in images of R384×128.

6https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen [Accessed 20 November 2022]
7https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen-1 [Accessed 20 November 2022]

https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen
https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen-1

2.2. Research Plan 49

2.2.1. Architecture
As the dataset is defined, the architecture can be specified. U-Net, (Ronneberger et al., 2015), and
Swin-Unet, (Cao et al., 2021), are elegant architectures that produce pixel-wise predictions and are
trained end-to-end. The U-net was originally proposed as a non-symmetrical architecture with an
encoder receiving larger images than the decoder produces. Swin-Unet, however, in its presented
design, is symmetrical. For the sake of computational efficiency and practicality concerning the rein-
forcement learning model, the architecture proposed here is also symmetrical. Therefore both ends
of the network are identical in size, with input, output ∈ R𝑊×𝐻×3 with W and H being the image
width and height, respectively. For the simple case, from which the architecture will be further de-
veloped, the receiving image is the left image, and the predicted image is the right one from a stereo
couple. The left image first goes through the encoder, followed by the bottleneck and finally through
the decoder, resulting in a predicted right image. As a result, the basic architecture should look like
Figure 2.24.

Figure 2.24: Simple end-to-end architecture for pixel-wise predictions

For the sake of clarity, the U-net and Swin-Unet architectures are redrawn in a corresponding style
to better showcase their relevant components and differences. They are shown in Figure 2.25 and
Figure 2.26, respectively. Although (Cao et al., 2021) claim to have based their Swin-Unet architecture
on the U-net architecture, from (Ronneberger et al., 2015), there are, surprisingly, some significant
differences. In their respective first layer, the U-Net directly applies a convolutional layer to the in-
put increasing the dimensions from R𝑊×𝐻×3 to R 𝑊× 𝐻×𝐶 with C being the number of channels. For
Swin-Unet, the first layer performs patch embedding. Consequently, the input resolution is directly
divided by the size of the patches. In their case, they use a patch size of four, equivalent to the orig-
inal Swin design, (Z. Liu et al., 2021), resulting in the output of the embedding layer being R𝑊

4 × 𝐻
4 ×𝐶 .

These dimensions are unchanged after the consecutive Swin Transformer blocks. As a result of trying
to follow the U-Net closely, a skip connection is present directly after the first layer. However, the
skip connection of the U-Net has a resolution four times larger than Swin-Unet.
Following this first layer, the U-Net has four subsequent hierarchical layers, whereas the Swin-Unet
has only three. Consequently, the Swin-Unet has only three instead of four skip connections. In ad-
dition, the resolution of the data in the bottleneck of the Swin-Unet is smaller with R𝑊

32× 𝐻
32×8𝐶 , com-

pared to the resolution of the data in the bottleneck of the U-Net with R𝑊
16×

𝐻
16×16𝐶 . Noting these differ-

ences, the latent space of the U-Net, which includes four skip connections and the bottleneck, all have
a larger resolution than their counterpart.
Therefore some changes to the architecture of Swin-Unet are proposed. Henceforth, the architecture
including these changes will be called Swin-U-Net. The first change is an additional skip connection
at the highest resolution. As patch embedding reduces the size, this connection takes the input image.
This skip connection will have dimensions R𝑊×𝐻×3 compared to the dimensions of the skip connec-
tion in the U-Net architecture of R 𝑊× 𝐻×𝐶 . The second change is to reduce the patch size from four
to two, creating layers of equivalent size to U-Net. This new Swin-U-Net architecture is shown in
Figure 2.27.
This architecture still needs to be tailored to monocular-to-stereo image view synthesis. Most liter-
ature for self-supervised learning does a left-to-right prediction. Most literature for view synthesis
does, however, train in both directions. Besides the increased training set, our case has an extra ben-
efit. The network has to be trained with knowledge of the direction of translation. Therefore before
the network receives this information, it cannot execute a shift but can only encode the original infor-
mation and a bidirectional disparity or a unitless depth. Inspired by (Tatarchenko et al., 2016) and
(T. Zhou et al., 2016), the information to determine which way the image should warp to is given in
the bottleneck. If this was given at the start of the encoder or was not given at all, the warp could
already be performed in the first layer. Consequently, the following layers encode the warped image,

2.2. Research Plan 50

Figure 2.25: Redrawn U-net architecture for pixel-wise
predictions

Figure 2.26: Redrawn Swin-Unet architecture for pixel-wise
predictions

meaning that the depth information is already lost in the bottleneck. This limits the capability of the
reinforcement learning algorithm significantly. Provided these augmentations, the architecture of the
geometry-free monocular-to-stereo image view synthesis network is shown in Figure 2.28.

Figure 2.27: Proposed Swin-U-Net architecture for pixel-wise
predictions

Figure 2.28: Proposed Swin-U-Net architecture for
monocular-to-stereo image view synthesis

For other architectures that are tested, such as the U-Net architecture, the identity token is integrated
similarly. A fully connected layer is used to reduce the dimensions of the combined skip connection
and upsampled layer to the original number of channels. During the upcoming analysis, when the
skip connections are removed, and the architecture is trained from the start, the layers are not com-
bined, and the fully connected layer is removed. However, when certain skip connections are tested,
the skip connection tensor is replaced by a tensor of equal size consisting of zeros only.
As one of the primary goals of the monocular-to-stereo image view synthesis is to encode depth, the
encoder should be tested on its ability to predict depth. One way is to swap out the decoder of the
architecture and replace it with a decoder that outputs a depth image. The weights and biases of the
encoder will remain fixed. This architecture is shown in Figure 2.29. Depth could also be predicted
in a self-supervised manner. The first way would be to use a warp function, similar to (Garg et al.,
2016) and (Godard et al., 2017). This architecture is shown in Figure 2.30. Finally, a stereo matching
network could be used, similar to (Luo et al., 2018). This architecture is visualised in Figure 2.31.

2.2. Research Plan 51

Figure 2.29: Swin-U-Net architecture for direct monocular depth estimation

Figure 2.30: Swin-U-Net architecture with a warping
mechanism for self-supervised monocular depth estimation

Figure 2.31: Swin-U-Net architecture with stereo matching for
self-supervised monocular depth estimation

2.2.2. Implementation Details
The model is implemented with (Paszke et al., 2017). Regarding the training regime, some details
have to be specified. The Smooth L1 Loss, from Equation 2.6, is used for the loss function. It seems
to cover both advantages of the L1 and L2 loss. The cosine learning rate scheduler, (Loshchilov &
Hutter, 2016), was implemented in ViT, (Dosovitskiy et al., 2020) and follow-up papers. Therefore
it is implemented here as well. The optimizer (Z. Liu et al., 2021) uses is AdamW, (Loshchilov &
Hutter, 2019), which we will continue using. All parameter values not specified in this paper can be
assumed to be adopted from (Z. Liu et al., 2021). The data augmentation regime is partially taken
over from (Godard et al., 2019) and (Peng et al., 2021). The code for horizontal flipping and colour
augmentation, which include random changes to brightness ∈ (0.8, 1.2), contrast ∈ (0.8, 1.2), saturation
∈ (0.8, 1.2) and hue ∈ (−0.1, 0.1), was used from the former. In contrast, the code for data grafting was
used from the latter. The Swin Transformer uses windows for its multi-head attention mechanism.
As a consequence, the image size should be such that image size % window size = 0. This holds for the
deeper layers of the model, so image size

patch size·22 % window size = 0. Images from the KITTI dataset (Geiger
et al., 2012) at one-fourth of the original resolution are R320×96. The previous formula is correct at
this image height for a window size of 6. The image is padded on both sides by 32 to create an image

2.2. Research Plan 52

width of 384, which also works for the deeper layers with a window size of 6. Standard training is
done on 60 epochs, of which the first 10 are for warm-up. For batch size selection, there is a trade-off
between learning stability and occupation of memory on the GPU. A batch size of 8 was selected as a
result.

2.2.3. Experiments
With all the ingredients listed, the model can be assembled. This will be done slowly with unit tests
and general tests for bugs. When the network is developed, the dataset is in place, augmentations can
be performed, training can be scheduled, and certain experiments can be performed.
The first experiment is shown in Table 2.2. It is to benchmark the proposed architectures on recon-
struction realism. The first architectures tested are U-Net and Swin-Unet, as described in Subsec-
tion 2.2.1. The Swin-U-Net follows this. The first configuration has a patch size of 2, and the second
configuration has a patch size of 4. The training split that will be used at first is the Eigen split, as
this dataset is large and therefore reflects the network’s capabilities better. The metrics to measure
reconstruction realism are PSNR, SSIM, and LPIPS.

Table 2.2: Benchmark the proposed architectures for monocular-to-stereo image view synthesis on reconstruction realism

Architectures: 1. U-Net 2. Swin-Unet 3. Swin-U-Net 4. Swin-U-Net
patch size = 4 patch size =2

Dataset: KITTI
Image Resolution: 320 × 96
Training Split: Eigen Split
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

This experiment is relevant to the feasibility of implementing this architecture in a RL algorithm.
Therefore this experiment is already performed. The developed architectures are trained on Nvidia
GeForce GTX 1080 Ti. Training a single architecture for 60 epochs can take around five days. As
such, not all suggested architectures and experiments were trained and tested at the time of writing.
Table 2.3 shows the results of this experiment. Looking at these results, it can be concluded that
Swin-U-Net achieves better reconstitution realism than U-Net and Swin-Unet. It should be noted
that the difference with the original Swin-Unet is quite significant, which might be the result of the
different image sizes. Reducing the patch size also seems to aid performance significantly on all
metrics. Compared to U-Net, the LPIPS metric’s performance is the most impressive of the Swin-U-
Net, which is the most accurate reconstruction realism metric.

Table 2.3: Results of the proposed architectures for monocular-to-stereo image view synthesis on reconstruction realism

Configuration PSNR ↑ SSIM ↑ LPIPS ↓
U-Net 21.365 0.787 0.0977
Swin-Unet𝑏 (original) 20.396 0.730 0.1798
Swin-U-Net (updated with patch size = 4) 21.317 0.783 0.1077
Swin-U-Net (updated with patch size = 2) 21.604 0.797 0.0947

Worth inspecting is the latent space size when considering the preferred architecture for the navi-
gational task. Table 2.4 presents figures regarding the latent space’s size and the entire network’s
parameter count. The U-Net has by far the largest latent space size, mostly due to its highest skip
connection. The Swin-Unet, in comparison, has a latent space size ten times smaller. It can also be
noted that the addition of skip connections does not impact the number of trainable parameters. An
architecture that does not include skip connections would also be significantly smaller and, therefore,
might be more efficient for the navigational task.
The impact of the skip connections is also relevant, as these will be part of the latent space connected
to the reinforcement learning model discussed in Chapter 3. First, the network will be trained with-
out skip connections. This is followed by training an architecture with the deepest skip connection.
Afterwards, the second deepest skip connection is added, and the entire architecture is trained from
scratch again until all skip connections are present. This experiment is shown in Table 2.5.

2.2. Research Plan 53

Table 2.4: Latent space size of the proposed architectures

Configuration Feature Channels in Layer 1 Space (H × W) × C Total Size Parameters

Bottleneck (6 × 24) × 896 0.13M
Skip connection 1/8 (12 × 48) × 448 0.26M
Skip connection 1/4 (24 × 96) × 224 0.52M
Skip connection 1/2 (48 × 192) × 112 1.03M
Skip connection 1/1 (96 × 384) × 56 2.06M +

U-Net 56 4.00M 27.2M

Configuration Patch Size Embed Dimension Space (H × W) × C Total Size Parameters

Bottleneck (3 × 12) × 768 0.03M
Skip connection 1/16 (6 × 24) × 384 0.05M
Skip connection 1/8 (12 × 48) × 192 0.11M
Skip connection 1/4 (24 × 96) × 96 0.22M +

Swin-Unet (original) 4 96 0.41M 27.8M

Bottleneck (3 × 12) × 768 0.03M
Skip connection 1/16 (6 × 24) × 384 0.05M
Skip connection 1/8 (12 × 48) × 192 0.11M
Skip connection 1/4 (24 × 96) × 96 0.22M
Skip connection 1/1 (96 × 384) × 3 0.11M +

Swin-U-Net (updated) 4 96 0.53M 27.7M

Bottleneck (6 × 24) × 768 0.11M
Skip connection 1/8 (12 × 48) × 384 0.22M
Skip connection 1/4 (24 × 96) × 192 0.44M
Skip connection 1/2 (48 × 192) × 96 0.88M
Skip connection 1/1 (96 × 384) × 3 0.11M +

Swin-U-Net (updated) 2 96 1.77M 27.6M

Table 2.5: Ablation studies on the impact of the skip connections in both training and testing for monocular-to-stereo image
view synthesis on reconstruction realism

Included skip connection: 1. - 2. 1/8 3. 1/8 and 1/4 4. 1/8, 1/4
and 1/2

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 96 × 320
Training Split: Eigen Split
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

More quantitative analyses can be done on skip connections. A completely trained network will
be tested in Table 2.6 by including individual skip connections in different runs. Following certain
skip connections and even the bottleneck are excluded. The goal of this study is also to support the
qualitative results from the analysis of the different parts of the architecture with statistics about
reconstruction realism. The qualitative results aim to show the function of each layers in the architec-
ture.

Table 2.6: Ablation studies on the impact of the skip connections after training in testing for monocular-to-stereo image view
synthesis on reconstruction realism

Included skip connection: 1. - 2. 1/8 3. 1/4 4. 1/2 5. 1/1

Excluded skip connection: 6. w/h bottleneck 7. 1/8 8. 1/4 9. 1/2 10. 1/1

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 96 × 320
Training Split: Eigen Split
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

2.2. Research Plan 54

These experiments are also already performed although partly as training architectures from scratch
is time-consuming. The most relevant configuration was excluding all skip connections and noting
the difference in performance. As shown in Table 2.7, it achieves 21.446, 0.787 and 0.1198 for PSNR,
SSIM and LPIPS, respectively. Although worse than including all skip connections, it achieves com-
parable results to U-Net in PSNR and SSIM. This indicates that it is an interesting architecture to use
for the navigation task. Other things to note in this table are the seemingly little contribution of the
skip connection at 1/8 to the performance and the low performance of the architecture only using the
first skip connection and not using the first skip connection at all.

Table 2.7: Results of Experiment 1-6 and Experiment 1-7

Configuration during training Configuration during testing PSNR ↑ SSIM ↑ LPIPS ↓
Excl. all skip connections Excl. all skip connections 21.446 0.787 0.1198

Incl. all skip connections Incl. bottleneck 6.994 0.038 0.7225
Incl. all skip connections Incl. skip connections 1/8 7.249 0.037 0.6785
Incl. all skip connections Incl. skip connections 1/4 12.842 0.292 0.4543
Incl. all skip connections Incl. skip connections 1/2 15.888 0.440 0.3056
Incl. all skip connections Incl. skip connection 1/1 6.594 0.024 0.7263

Incl. all skip connections Excl. bottleneck 15.840 0.491 0.3741
Incl. all skip connections Excl. skip connections 1/8 20.876 0.779 0.1014
Incl. all skip connections Excl. skip connections 1/4 17.430 0.534 0.3063
Incl. all skip connections Excl. skip connections 1/2 11.855 0.355 0.3382
Incl. all skip connections Excl. skip connection 1/1 4.554 0.069 0.6182

Incl. all skip connections Incl. all skip connections 21.604 0.797 0.0947

Looking at a test example, Figure 2.42 shows the original right image and Figure 2.43 shows the pre-
dicted right image. The results are relatively similar. Figure 2.32 shows the output of the bottleneck,
and Figure 2.33 shows the output without the bottleneck. Although the colouring is done well, a lot
of the detail is missing from this image, and the alignment also seems incorrect, indicating that depth
is encoded here. Looking at the skip connection at 1/8 and corresponding figures, Figure 2.35 and
Figure 2.34, its contribution seems minor, as the results earlier already indicated. The skip connection
at 1/4 with corresponding figures, Figure 2.37 and Figure 2.36 seem to encode some of the depth as
well.

Figure 2.32: Predicted right image without skip connections Figure 2.33: Predicted right image without the bottleneck

Figure 2.34: Predicted right image including the skip
connection at 1/8

Figure 2.35: Predicted right image excluding the skip
connection at 1/8

Figure 2.36: Predicted right image including the skip
connection at 1/4

Figure 2.37: Predicted right image excluding the skip
connection at 1/4

2.2. Research Plan 55

The skip connection at 1/2 with corresponding figures, Figure 2.39 and Figure 2.38 show that the
general colouring is done in this layer. The outputs that only include the skip connection show some-
what realistic colouring, while the output excluding the skip connection shows a saturated version
of the correct image. Finally, the skip connection at 1/1 with corresponding figures, Figure 2.41 and
Figure 2.40 indicate that fine colouring is done in this layer.

Figure 2.38: Predicted right image including the skip
connection at 1/2

Figure 2.39: Predicted right image excluding the skip
connection at 1/2

Figure 2.40: Predicted right image including the skip
connection at 1/1

Figure 2.41: Predicted right image excluding the skip
connection at 1/1

Figure 2.42: Original right image Figure 2.43: Predicted right image

Following those experiments, now experiments will be stated that have not been performed yet, but
will be necessary to draw strong conclusion from this research. The first experiment that will be
done is to benchmark against state-of-the-art architectures. The experiment is stated in Table 2.8. The
Swin-U-Net architecture with a patch size of 2 is expected to be the best-performing architecture
from the first experiment and will be used for all succeeding experiments. It will be trained on the
original Tulsiani split at first, and afterwards, the architecture will be pre-trained on the Eigen split
that excludes images that are part of the test set of the Tulsiani split. The image resolution is changed
to match that of other architectures, and PSRN, SSIM, and LPIPS will be used, following the other
papers.

Table 2.8: Benchmark the proposed architectures for monocular-to-stereo image view synthesis on reconstruction realism

Training Split: 1. Tulsiani Split 2. Tulsiani Split + pre-training

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 384 × 128
Training Split: Tulsiani Split
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

After benchmarking, ablation studies can be performed to measure the impact of certain design
choices. As proposed in Table 2.9, the first ablation study measures the impact of the applied data
augmentation techniques. These include colour augmentation and image flipping. However, bi-
directional training is specifically of interest instead of training to predict from left to right. Besides,
due to the novelty of data grafting, the impact of this augmentation technique is also studied.
The second ablation study is about the impact of the loss function, shown in Table 2.10. The model
will be trained on an L1 Loss, an L2 Loss and a Smooth L1 Loss. Besides, it is noted that other litera-

2.2. Research Plan 56

Table 2.9: Ablation studies on the impact of the applied data augmentation techniques to the KITTI dataset for
monocular-to-stereo image view synthesis on reconstruction realism

Augmentation 1. Colour 2. Image 3. Bi-directional 4. Data grafting
Techniques: augmentation flipping training

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 320 × 96
Training Split: Eigen Split
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

ture sometimes combines one of these losses with a perceptual loss. As we identify LPIPS as the best
measure of reconstruction realism, this is the perceptual loss that we will use.

Table 2.10: Ablation studies on the impact of the loss function for monocular-to-stereo image view synthesis on reconstruction
realism

Loss: 1. L1 Loss 2. L2 Loss 3. Smooth L1 Loss 4. Smooth L1 Loss
+ LPIPS

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 320 × 96
Training Split: Eigen Split
Metrics: PSNR SSIM LPIPS

The following ablation study is about the importance of choosing the right dataset. The Swin-U-Net
architectures are likely better for larger disparities than U-Net because of its global attention mech-
anism. The dataset could therefore influence the performance significantly. The KITTI dataset with
the Eigen Split will therefore be compared to another dataset. It was decided not to use Cityscapes
due to its similarities to KITTI. MPI Sintel could be an interesting dataset. However, as this dataset
is synthetic, we could develop a new synthetic dataset with images from a stereo vision camera on a
drone in a simulation environment defined in Chapter 3. The experiment is shown in Table 2.11.

Table 2.11: Ablation studies on the impact of the dataset for monocular-to-stereo image view synthesis on reconstruction
realism

Dataset: 1. KITTI 2. Not yet defined, could be self-generated
Training Split: Eigen Split

Architectures: 1. U-Net 2. Swin-U-Net
patch size =2

Image Resolution: 320 × 96
Metrics: PSNR SSIM LPIPS
Loss: Smooth L1 Loss

Finally, as described earlier, it is interesting to understand the network’s ability to encode depth and
therefore predict depth. In the following experiment, the performance is benchmarked in Table 2.12.
Although it is expected that training directly on depth information might lead to better results than
stereo matching, stereo matching will be used to measure the performance. This is because the quali-
tative results they provide are of higher quality, and the quantitative results following stereo match-
ing are, therefore, more relevant to the combined discussion. The stereo matching network used is
(Yamaguchi et al., 2014). This is the same algorithm as (Tucker & Snavely, 2020) uses. The metrics
that will measure depth estimation performance are the standard Eigen split metrics, from (Eigen
et al., 2014). Analysis of the impact of the skip connections is of interest again. Therefore these exper-
iments will be done again, but while measuring depth performance. The experiments are shown in
Table 2.13 and Table 2.14.

2.3. Conclusion 57

Table 2.12: Benchmark the proposed architecture for monocular-to-stereo image view synthesis extended with stereo
matching on depth estimation

Architecture: Swin-U-Net (patch size = 2)
Stereo Matching: SPS-Stereo
Dataset: KITTI
Image Resolution: 192 × 640
Training Split: Eigen Split
Metrics Abs Rel Sq Rel RMSE RMSE log 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Loss: Smooth L1 Loss

Table 2.13: Ablation studies on the impact of the skip connections in both training and testing for monocular-to-stereo image
view synthesis extended with stereo matching on depth estimation

Included skip connection: 1. - 2. 1/8 3. 1/8 and 1/4 4. 1/8, 1/4
and 1/2

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 96 × 320
Training Split: Eigen Split
Metrics Abs Rel Sq Rel RMSE RMSE log 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Loss: Smooth L1 Loss

Table 2.14: Ablation studies on the impact of the skip connections after training in testing for monocular-to-stereo image view
synthesis extended with stereo matching on depth estimation

Included skip connection: 1. - 2. 1/8 3. 1/4 4. 1/2 5. 1/1

Excluded skip connection: 6. w/h bottleneck 7. 1/8 8. 1/4 9. 1/2 10. 1/1

Architecture: Swin-U-Net (patch size = 2)
Dataset: KITTI
Image Resolution: 96 × 320
Training Split: Eigen Split
Metrics Abs Rel Sq Rel RMSE RMSE log 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Loss: Smooth L1 Loss

2.3. Conclusion
In conclusion, this chapter extensively discusses the topic of geometry-free monocular-to-stereo im-
age view synthesis, which involves predicting a stereo pair from a monocular view using neural
networks without 3D priors. The chapter starts with a literature overview that covers three themes,
namely the historical context of computer vision, general developments in computer vision and artifi-
cial intelligence, and research adjacent to the topic. The chapter brings these themes together in a dis-
cussion, and a research plan is proposed that outlines the goals, methods, experiments, and datasets
involved in the study. The preliminary results are also presented and discussed, highlighting the
potential impact of the research on the application of neural networks to deep reinforcement learning.
Overall, this chapter provides valuable insights into the current state of research on geometry-free
monocular-to-stereo image view synthesis and sets the stage for further studies in this area.

3
Deep Reinforcement Learning for

Monocular Vision-Based Drones
trained with Stereo Vision

The previous chapter, Chapter 2, concluded that geometry-free monocular-to-stereo image view
synthesis is feasible and performs well. Different architectures were proposed that could be trained
end-to-end, and depth and environmental cues are encoded in the latent space of these architectures.
This chapter is the stepping stone to integrating the neural networks in a reinforcement learning al-
gorithm for monocular vision-based drones. First, a literature overview is presented, followed by
a research plan. The literature overview is composed of three themes. The first theme presents the
current application of deep reinforcement learning in Subsection 3.1.1. It demonstrates the versatility
of deep reinforcement learning and the fundamental strength of the components. The goal of this
theme is not to update the reader on techniques relevant to this thesis but to get into the mindset of
how to view deep reinforcement learning. The second theme is the use of reinforcement learning for
drone navigation, described in Subsection 3.1.2. An overview of the driving objectives, the primary
simulation environments and popular reinforcement learning agents will be discussed. Finally, the
more general theme of vision-based deep reinforcement learning approaches is discussed in Subsec-
tion 3.1.3. This section contains an overview of vision-based simulation environments and discusses
different design elements of deep reinforcement learning architectures. Following the literature re-
view, the research plan is presented in Section 3.2.

3.1. Literature Overview
3.1.1. Deep Reinforcement Learning in Today’s World
Reinforcement learning (RL) is the field of making decisions over time through consequences. An
agent tries to maximise the expected cumulative reward, 𝑅 = E [∑𝑡 𝑟𝑡], in an environment by learn-
ing an optimal policy, 𝜋(ℎ𝑡), to take actions, 𝑎𝑡 ∈ 𝒜, from observations, 𝑜𝑡 ∈ 𝒪, with real-valued
reward, 𝑟𝑡 , and the interaction history, ℎ𝑡 for discrete steps t = 1, 2, ..., n. It often includes a discount
factor, 𝛾 ∈ (0, 1), within the expected cumulative reward. In the case of a Markov decision process
(MDP), the states, 𝑠𝑡 ∈ 𝒮, follow directly from observations. This process, where the agent performs
actions impacting the environment, but decided based on states and rewards from the environment,
is schematically shown in Figure 3.1. Often a problem is non-Markovian such as the partially ob-
servable Markov decision process (POMDP). In such a case, the observations only provide partial
information about an unobserved state. Domain knowledge is required for such problems to define
the set of hidden states and observation probabilities. Deep learning can represent and track hidden
states without much domain knowledge. Deep Reinforcement Learning (DRL) uses neural networks
to compress extensive state representations to a manageable representation for the reinforcement
learning algorithm.
DRL has proven to be a powerful tool in creating artificial intelligence. Its application is societal-wide,

58

3.1. Literature Overview 59

Figure 3.1: Information flow of reinforcement learning algorithms

seen in computer applications, but also in the automation and optimisation of jobs, systems and
institutions. At the forefront of development, DeepMind has paved the way for creative and inspiring
applications. First, by learning artificial intelligence to play Atari video games, followed by more
complex games. Their DRL algorithms received global attention by beating the best professionals in
chess1 and Go2. Back then, both games were perceived as too complicated and creative for artificial
intelligence to ever be competitive in. Humans observe their environment through their sensors.
These include their eyes, their ears, and their noses. This information is processed, and together with
memory, the human continuously performs actions and interacts with the environment. To a certain
degree, deep reinforcement learning operates similarly. It can convert an extensive environment into
concrete actions and evaluate the quality of such actions. The earlier breakthroughs showed that
creativity could be thought through incentivising exploration while optimising for performance,
making DRL perfect for creative problem-solving.
(Mnih et al., 2013) is one of the most influential papers regarding DRL. They showed the capabilities
of these algorithms with improved computational power. The simulation environments they chose
to showcase their algorithms on were Atari 2600 games from the Arcade Learning Environment.
These games provide highly-dimensional sensory inputs and clearly defined action spaces. Due to
the recognised potential of deep reinforcement learning following this paper, attempts were made
to standardise protocols and have benchmarks to measure the performance of different algorithms.
OpenAI Gym, (Brockman et al., 2016), is the most successful attempt to standardise the practices.
They only provide the environments, but not the learning agents. The benchmarks measure the per-
formance through sample complexity and final performance. Their tool is for research, not for compe-
tition, so researchers have to describe how they achieved their scores. To standardise and centralise
reinforcement learning algorithms, OpenAI Baselines, (Dhariwal et al., 2017), was introduced. This
was further improved with Stable-Baselines, (Hill et al., 2018), which includes a unified structure for
all algorithms, more complete documentation and state-of-the-art algorithms such as SAC, (Haarnoja
et al., 2018), and TD3, (Fujimoto et al., 2018). The same developers further improved the backend
in (Raffin et al., 2021), which they called Stable-Baselines3. They extensively benchmarked all their
algorithms on Atari games and continuous control PyBullet envs.

3.1.2. Reinforcement Learning for Drone Navigation
By now, reinforcement learning is a mature field of study. There are many attempts to standardise
environments, benchmarks and learning agents. However, unexpectedly no such attempts were
made in the autonomous navigation of the Unmanned Aerial Vehicle subdomain. No benchmarks
are present, and new architectures and research do not slightly alter existing architectures but are
often fundamentally novel. With such diversity of research, structure concerning the presentation
of these papers is lacking. However, recently, (AlMahamid & Grolinger, 2022) provided a systematic
review of this field of study, providing a place or manual from which essential papers can be found,
and new papers can build.

Autonomous Unmanned Aerial Vehicle navigation using Reinforcement Learning: A systematic
review

by (AlMahamid & Grolinger, 2022)

This paper aims to help researchers select the right algorithms for their problem and categorise pa-

1https://www.bbc.com/news/technology-42251535 [Accessed 22 November 2022
2https://www.bbc.com/news/technology-35785875 [Accessed 22 November 2022]

https://www.bbc.com/news/technology-42251535
https://www.bbc.com/news/technology-35785875

3.1. Literature Overview 60

pers in the different navigational problems. 159 relevant papers were found. One of the things they
do in this paper is to explain reinforcement learning and different reinforcement learning algorithms.
Previously they did a general analysis on all reinforcement learning algorithms in (AlMahamid &
Grolinger, 2021).
The architectures of navigation tasks for drones that use a reinforcement learning agent are designed
as shown in Figure 3.2. Drones can access devices that obtain scenery images, depth map images, lo-
calisation information and more. This data is used to determine reward information and calculate the
reward. Besides, it provides a state that is also given to the agent. This provides an action, which can,
for example, be a movement command or location information. This paper divides this navigation
task into four. There is an objective, a resulting framework, the simulation software and an algorithm.
The four drone navigation objectives that use DRL are UAV control, obstacle avoidance, path plan-
ning and flocking. These are further divided into sub-objectives. Obstacle avoidance and path plan-
ning are of most interest to this thesis, as the monocular-to-stereo image view synthesis likely adds
the most benefit in these scenarios. Path planning has two main types: global path planning and lo-
cal path planning. Global path planning plans from start to destination, whereas local path planning
plans from waypoint to waypoint while keeping track of the destination. Besides, a division can be
made in algorithms that use map-based navigation and algorithms that are mapless but require GPS
or IMU.
From this, the objective of the software framework is established. These objectives are the follow-
ing: energy-aware UAV navigation, path planning, flocking, vision-based frameworks and transfer
learning. Specifically, the vision-based frameworks are of interest, as this thesis also intends to use
the cameras as a primary means of navigation. They discuss the need for a recurrent neural network
to capture relations over time. Papers that used vision-based frameworks are, (Akhloufi et al., 2019;
Andrew et al., 2018; L. He et al., 2020; Singla et al., 2021).
The simulation software requires a reinforcement learning agent, a UAV flight simulator and a 3D
graphics engine. As a flight simulator, a Robot Operating Systems (ROS) (Quigley et al., 2009) inte-
grated with Gazebo (Koenig & Howard, 2004), and Microsoft AirSim (Shah et al., 2018). are primarily
used; see Figure 3.3. The 3D Graphics Engine often depends on the flight simulator, and the primary
graphics engines for AirSim is the Unreal Engine (Karis & Games, 2013). There is simulation soft-
ware that combines both, such as MATLAB. AirSim is an open-source photo-realistic simulator with
a tightly coupled physics and rendering engine. This results in limited simulation speeds, which
limits the application of reinforcement learning. ROS has a high-fidelity physics engine, and Gazebo
is used in many competitions for its simulated environments. However, it is limited in its rendering
capabilities, especially by today’s standards.

Figure 3.2: Information flow of reinforcement learning algorithms for
UAVs by (AlMahamid & Grolinger, 2022)

Figure 3.3: Distribution of simulation software
used by papers that use reinforcement learning for

UAVs by (AlMahamid & Grolinger, 2022)

3.1. Literature Overview 61

The reinforcement learning algorithms can be divided into three classes, as (AlMahamid & Grolinger,
2021) did. The first class is limited in the number of states and has a discrete action space. The sec-
ond class is not limited in the number of states but still has a discrete action space. The final class is
not limited in the number of states and has a continuous action space. A discrete action space has a
limited number of actions which can be selected. In contrast, a continuous action space provides a
range from which the algorithm can select any number of actions.
The first class consists of two algorithms: Q-Learning, (Watkins & Dayan, 1992) and SARSA, (Rum-
mery & Niranjan, 1994). Within Q-Learning, a Q-table has values for every possible combination of
an action and state, which is updated by using the Bellman equation to obtain the action with the
highest reward after every play. SARSA has a similar Q-table but uses an already-known next action
to update the table.
The second class consists primarily of deep neural network variants of Q-Learning and SARSA. In its
simplest form, the states are reduced by, for example, fully connected layers to an output of equal size
to the action space. The output then corresponds to the Q-values for each action, (Mnih et al., 2013).
More advanced algorithms compensate for overestimating the importance of the highest Q-value by
DQN. Double DQN, (Van Hasselt et al., 2016), for instance, introduces policy and target networks.
These kinds of algorithms cannot be used in the case of a continuous action space.
For the third class, a parameterised policy has to be learned to maximise an expected summation
of discounted rewards. This is considered a maximisation problem, so similar to supervised learn-
ing, a gradient descent method can be used. The reward function looks like Equation 3.1, with state
visitation probability 𝜙𝜋𝜃 , state-value 𝑉𝜋, and action-value function 𝑄𝜋, when following stochastic
policy 𝜋𝜃 and is called the policy gradient theorem. The agents learn two policies: a target policy
𝜃 (𝑎 |𝑠) and a behaviour policy 𝛽 (𝑎 |𝑠) for learning the value function and choosing the action, respec-
tively. An algorithm is on-policy when the target policy collects the training sample and calculates
the expected reward. In the off-policy case, the behaviour policy obtains the training sample, while
the target policy calculates the expected reward. Algorithms that solely focus on improving gradient
descent performance are called policy-based algorithms. Trust Region Policy Optimization (TRPO),
(Schulman et al., 2015), and Proximal Policy Optimization (PPO), (Schulman et al., 2017) are such
algorithms that have seen use in the drone navigation domain as well. Both are on-policy, and the
gradient descent is formalised like Equation 3.2. The off-policy case is formalised like Equation 3.3
and is called the off-policy gradient theorem. Actor-Critic algorithms make use of off-policy, where
the Actor is used to find the optimal policy 𝜋𝜃 and the Critic to estimate the value function 𝑄𝜋𝜃 . De-
terministic Policy Gradients (DPG), (Silver et al., 2014), Deep Deterministic Policy Gradient (DDPG),
(Lillicrap et al., 2015), Twin Delayed Deep Deterministic (TD3), (Fujimoto et al., 2018), change the
stochastic policy to a deterministic policy. This changes the reward function to Equation 3.4 and the
gradient to Equation 3.5. Soft Actor-Critic (SAC), (Haarnoja et al., 2018) adds the entropy to the max-
imisation. Actor-Critic with Experience Replay (ACER), (Wang et al., 2016) as the name indicates,
uses experience replay. Finally, Asynchronous Advantage Actor-Critic (A3C), (Mnih et al., 2016), Ad-
vantage Actor-Critic, (Mnih et al., 2016) (A2C), Actor-Critic with Kronecker Factored Trust Region
(ACKTR), (Wu et al., 2017) differentiate themselves as they are trained in a distributed manner with
multiple agents working in parallel.

𝐽 (𝜋𝜃) =
∑
𝑠∈𝑆

𝜌𝜋𝜃 (𝑠)𝑉𝜋𝜃 (𝑠) =
∑
𝑠∈𝑆

𝜌𝜋𝜃 (𝑠)
∑
𝑎∈𝐴

𝑄𝜋𝜃 (𝑠, 𝑎)𝜋𝜃 (𝑎 |𝑠) (3.1)

∇𝜃 𝐽 (𝜃) = E𝑠∼𝜌𝜋𝜃 ,𝑎∼𝜋𝜃 [𝑄𝜋𝜃 (𝑠, 𝑎) ∇𝜃 ln𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] (3.2)

∇𝜃 𝐽 (𝜃) = E𝑠∼𝜌𝛽 ,𝑎∼𝛽
[
𝜋𝜃 (𝑎 |𝑠)
𝛽𝜃 (𝑎 |𝑠)

𝑄𝜋𝜃 (𝑠, 𝑎) ∇𝜃 ln𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
]

(3.3)

𝐽𝛽 (𝜇𝜃) =
∫
𝑆

𝜌𝛽 (𝑠)𝑉𝜇(𝑠)d𝑠 =
∫
𝑆

𝜌𝛽 (𝑠)𝑄𝜇 (𝑠, 𝜇𝜃 (𝑠))d𝑠 (3.4)

∇𝜃 𝐽𝛽 (𝜇𝜃) = E𝑠∼𝜌𝛽
[
∇𝜃𝜇𝜃 (𝑠) ∇𝑎 𝑄𝜇 (𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)

]
(3.5)

3.1. Literature Overview 62

3.1.3. Vision-Based Deep Reinforcement Learning
The navigation framework most relevant to us, as defined by (AlMahamid & Grolinger, 2022), is the
vision-based framework. Therefore the general vision-based DRL domain is explored for additional
content. First other simulation environments are discussed, followed by a sequence of papers, on the
one hand explaining the usage of auxiliary tasks in this domain and the other hand further investigat-
ing DRL in relation to Vision-Based drone navigation.

Simulation Environments
As the previous decade crossed its halfway point, DRL was tested in more complicated environ-
ments for more complicated tasks. The navigational task received interest at the time, and DeepMind
Lab, (Beattie et al., 2016), also known as Labyrinth, was developed. This three-dimensional environ-
ment was designed for artificial intelligence and machine learning systems and inspired by the game
Quake III Arena. Reinforcement learning is natively integrated into DeepMind Lab, and the render-
ing uses OpenGL, (Shreiner, Group, et al., 2009). It is a first-person game with textures that are often
dynamic and supports continuous motion. The learning agents learn to navigate through randomly
generated mazes. These mazes consist of rooms and corridors, and an agent receives a reward upon
finding apples and portals. Besides the rewards, the agent receives velocity, images and depth infor-
mation, which is given in an RGB-D format with a resolution of R84×84 at each timestep. The action
space of this agent consists of 17 discrete actions and includes control movements, looking and tag-
ging. Four types of levels can be generated. The first one consists of static maps for fruit gathering.
The second types are static maps as well. They are used to train for navigation. The starting point is
always randomised within these maps, and the location of the goal can be fixed or randomised. The
third variant contains maps generated at the start of each episode. These maps test the ability of the
agent to strategise and explore new environments. The final type contains laser-tag levels, in which
bots are tagged and are supposed to imitate Quake III Arena gameplay.
The previous environment is for navigation purposes. However, the MuJoCo physics engine, (Todorov
et al., 2012), is not. Its relevancy is its continuous action space, which architectures can take advan-
tage of. The two outputs are two real number vectors: mean vector 𝜇 and scalar variance 𝜎2, creating
a multidimensional normal distribution with a spherical covariance. A linear layer provides the
mean vector, and a SoftPlus layer provides the scalar variance.
(AlMahamid & Grolinger, 2022) discussed both AirSim (Shah et al., 2018), and ROS, (Quigley et al.,
2009). It, however, did not discuss Flightmare, (Song et al., 2020). Likely, due to the novelty and its
limited use in literature, for now. Flightmare is a flexible quadrotor simulator. Its two main com-
ponents are a configurable rendering engine and a flexible physics engine for dynamics simulation.
It has a large multi-modal sensor suite and an API for reinforcement learning. This paper gives a
demonstration by using deep reinforcement learning and collision-free path planning. Flightmare
offers the ability to control photo-realism from low fidelity to high fidelity and can simulate sen-
sor noise. On the physics side, the user controls the complexity of dynamics, from basic quadrotor
models to advanced rigid-body dynamics. Besides, simulation can be performed in parallel, which
enables fast data collection and training. This is important, especially for deep reinforcement learn-
ing. OpenAI Gym, (Brockman et al., 2016), wrappers are provided by the simulator. They state that
OpenAI baselines, (Dhariwal et al., 2017), are integrated for reinforcement learning algorithms, al-
though they refer to Stable-Baselines, (Hill et al., 2018) in their paper. This would be beneficial as this
contains SAC and TD3. Besides, Flightmare is quite new, so patch updates including integration with
Stable-Baselines3, (Raffin et al., 2021) are expected.
The novelty of this simulation environment means that the full capabilities of this framework have
yet to be explored. (Loquercio et al., 2021a) showed some of the capabilities and came out of the same
research group. Their objective is to fly autonomously through a complex environment by purely
relying on vision and onboard computing. Although their objective is similar to this research, their
approach significantly differs by using stereo matching and imitation learning from a privileged
expert. This means that while training, the privileged expert requires full terrain knowledge and,
consequently, has to have a zero-shot transfer from simulation to reality. For this, they require a series
of simulation environments where the images obtained by the onboard cameras are as diverse as
and similar to reality. They tested their algorithm in dense forests, snow-covered terrains, derailed
trains and collapsed buildings and achieved good performance. The Flightmare simulator was used
with the RotorS Gazebo plugin, (Furrer et al., 2016), and the rendering engine Unity, (Juliani et al.,

3.1. Literature Overview 63

2018). Their environments were developed with off-the-shelf obstacles from the Unity environment
3. These obstacles include simulated trees and a set of convex shapes such as ellipsoids, cuboids and
cylinders. Both were randomised with a continuous uniform random distribution with 𝑥 ∈ 𝒰(0.5, 4,
𝑦 ∈ 𝒰(0.5, 4), and 𝑧 ∈ 𝒰(0.5, 8). Training environments spawn in either the trees or the convex
shapes according to a homogeneous Poisson point process with intensity 𝛿 ∈ 𝒰(4, 7). A total of
850 environments were created. Multiple examples of their environments are shown in Figure 3.4.
Figure 3.5 shows an image and corresponding depth for one example. Their code is provided by
(Loquercio et al., 2021b).

Figure 3.4: Simulation environments created in Flightmare by (Loquercio et al., 2021a)

Figure 3.5: Depth and RGB images of
a simulation environment in

Flightmare by (Loquercio et al.,
2021a)

Auxiliary Tasks and other Architecture Designs
An auxiliary task is, by definition, a second objective next to the main objective. The idea of this is
that an auxiliary task can improve the main objective of a reinforcement learning agent.

Recurrent Reinforcement Learning: A Hybrid Approach
by (X. Li et al., 2015)

This paper proposes using supervised learning on an auxiliary task adjacent to reinforcement learn-
ing, used for the main objective. The term auxiliary task was not coined at this point, so the paper
describes this as a hybrid approach instead. The objective of this paper is to take optimal actions to
maximise total profits regarding customer relationship management. To reduce the problem of par-
tial observability, they deploy a recurrent neural network optimised to predict observations and im-
mediate rewards. This recurrent neural network can be trained by supervised learning and swapped
with an LSTM model. A DQN uses the hidden-state representation resulting from this recurrent

3https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

3.1. Literature Overview 64

neural network to maximise long-term rewards. The DQN architecture shares many similarities with
(Mnih et al., 2015). Their approach to training the RNN as an auxiliary task concurrent to reinforce-
ment learning outperformed previous architectures significantly.

Reinforcement Learning with Unsupervised Auxiliary Tasks
by (Jaderberg et al., 2016)

(Jaderberg et al., 2016) realised the potential of auxiliary tasks to vision-based reinforcement learning.
They opt for the simulation environment Labyrinth, by (Beattie et al., 2016). They call their algorithm
UNREAL, trained with the A3C agent (Mnih et al., 2016) and has a CNN-LSTM architecture. They
use a replay buffer for their auxiliary task, and the motivation to use auxiliary tasks is two-fold. The
first part is similar to the previous paper in that they want to organise intermediate representations
so that important context is more prevalent to the reinforcement learning agent. The second part has
to do with the sparsity of their reward function. Their model can be adjusted consistently during
training by introducing an auxiliary task. To better organise the intermediate representations, the
objective of the different layers of a neural network has to be clear. For instance, the function of a con-
volutional layer is often related to image context, whereas the function of an LSTM is to capture the
sequential relation between images. The LSTM layer is implemented after the convolutional layer to
compare the sequential relation of image context. With the functionality in mind, different network
parts can be trained in parallel. (Jaderberg et al., 2016) introduces reward prediction as an auxiliary
task. For this task, it was decided that only the convolutional part of the network was relevant to
prediction. As such, the optimisation due to this auxiliary task was purely on the convolutional part.
They define pixel control as a second objective, which tries to maximise the change in pixel inten-
sity. They think the sequential relation between these changes correlates to preferred navigation
behaviour. Therefore both the CNN and LSTM are trained on this objective. Finally, a value function
replay uses the CNN and LSTM to train the value function to promote faster value iterations. Their
architecture is sketched in Figure 3.6. What is interesting about their auxiliary tasks is that they are
completely unsupervised and are also trained with reinforcement learning.

Figure 3.6: Architecture of a reinforcement learning algorithm using an A3C agent with pixel control, reward prediction and
value function replay as auxiliary tasks by (Jaderberg et al., 2016)

Learning to Navigate in Complex Environments
by (Mirowski et al., 2016)

This paper and the previous paper share many similarities. For instance, both use the same simu-
lation environment with Labyrinth, (Beattie et al., 2016), and the same algorithm with A3C, (Mnih
et al., 2016). Auxiliary tasks are also implemented concurrently with the main objective. However,
the tasks they choose are fairly different, as well as how they implement them. (Jaderberg et al., 2016)
preferred tasks that are unsupervised. As a result, they are limited in how effectively they can organ-
ise their intermediate representations. This paper uses supervised auxiliary tasks but does not use
any form of replay.

3.1. Literature Overview 65

The algorithm receives a colour image as an input, which is encoded and goes through an LSTM
for memory purposes. A second task, auxiliary to the main task, is to minimise the loss of infer-
ring the depth map from the colour image, sharing the same encoder. This task is similar in spirit
to monocular-to-stereo image synthesis, as both try to encode depth in the latent space, aiming to
improve the algorithm’s performance. A third task, again auxiliary to the main task, is to detect
loop closures, which encourages implicit velocity integration. A weighted sum of the gradients from
the A3C, depth predictions and loop closure is used to train the agent. The architecture is shown
in Figure 3.7. Their observation 𝑠𝑡 includes an image x𝑡 ∈ R3×𝑊×𝐻 with W and H being the image
resolution, the previous reward 𝑟𝑡−1 ∈ R, the agent-relative lateral and rotational velocity v𝑡 ∈ R6,
and the previous action a𝑡−1 ∈ R𝑁𝐴 . The previous reward and the encoder output are introduced in
the first LSTM layer. In contrast, the agent-relative velocity and the previous action are introduced
in the second LSTM layer together with the encoder output and the output of the first LSTM layer.
It should be noted that depth is predicted twice in 𝑔𝑑 (f𝑡) and in 𝑔

′

𝑑
(h𝑡). Finally, 𝑔𝑙 (h𝑡) predicts the

loop closure. They note that they are specifically interested in data efficiency and therefore reduce
the depth map to a resolution of 4 × 16. They also debate about defining depth as a regression or clas-
sification task. Finally, they conclude that supervised learning on depth information as an auxiliary
task significantly improves the algorithm.

Figure 3.7: Architecture of a reinforcement learning algorithm with two depth predictions and loop detection as auxiliary
tasks by (Mirowski et al., 2016)

(Shelhamer et al., 2016) discusses the different ways in which self-supervision can be implemented
subsequent to reinforcement learning and the benefits of those methods. They note that self-supervised
pre-training is advantageous. However, training concurrent to reinforcement learning does improve
data efficiency. They note as well that the auxiliary task does not necessarily have to be accounted for
in the reward function of the reinforcement learning agent.
(Bojarski et al., 2016) does not use reinforcement learning. Instead, it uses an end-to-end approach
to create steering commands from input images. This paper is relevant as it shows other methods to
achieve autonomous driving besides reinforcement learning. It also shows why reinforcement learn-
ing is such an effective tool for this problem. Their input consists of three simultaneous images from
a left, centre, and right-orientated camera. These go through a normalisation layer, followed by con-
volutional layers to learn the image features and fully connected layers, which output a control value.
The idea behind this structure is that the convolutional layers learn features while the fully connected
layers act as a controller for steering. This end-to-end approach requires supervised learning, which
in this case, means a training set of recorded steering commands. There are two problems. First, ob-
taining this data is time-consuming, but the second problem is that the trained network is fragile.
This has to do with the controller copying the human behaviour, but if a slightly different choice is
made, the consequence is that the camera inputs can be completely new. Therefore the network is un-
prepared for such situations and cannot take appropriate action. They do implement augmentation
by adding artificial shifts and rotations to teach the network how to recover from poor position or

3.1. Literature Overview 66

orientation, they say. This however still is very limiting, whereas a reinforcement learning agent can
interact freely in an environment and will receive rewards based on behaviour and therefore is more
suited for the control task.
(Y. Chen et al., 2019) follows up on (Bojarski et al., 2016) by introducing an auxiliary task to their ar-
chitecture. Their auxiliary task is similar to monocular depth prediction and monocular-to-stereo
image view synthesis in that the network has to learn image context to perform their respective tasks
well. This paper implements image segmentation concurrent with the control task. It can be noted
that an auxiliary task effectively means an extended loss function the network is optimised for. There-
fore it can be concluded that many papers that were discussed in Chapter 2 do use auxiliary tasks.
(Garg et al., 2016) and (Godard et al., 2017) use a disparity smoothness loss as an auxiliary task, while
the codebook from (Esser et al., 2021) could be considered as such as well.
Instead of using an auxiliary task, layers from a deep reinforcement learning model could also be pre-
trained on another task. (Chakravarty et al., 2017) is an example where the CNN is pre-trained on
depth prediction. Afterwards, the weights and biases of the neurons within this network are copied
to the reinforcement learning model, which is then trained on obstacle avoidance. (Yokoyama &
Morioka, 2020) pre-trains their navigation network to predict depth and egomotion with a monocu-
lar camera in a self-supervised manner by using monocular videos. This method was proposed by
(Casser et al., 2019).
All previous papers that do obstacle avoidance use a discrete action space, meaning the agent can
choose between specific actions. (Shin et al., 2019) shows that a continuous action space improves per-
formance significantly. The continuous action space provides a spectrum from which an agent selects
a value. This agent has to be Actor-Critic, as other algorithms require discrete actions. In the case of
the discrete action space, they use RGB and depth maps to two CNNs, while a U-Net segmentation
model is used in the continuous action space. Their control command in the continuous action space
are linear velocities in X, Y and Z-direction.
Previously organising the intermediate representation by using auxiliary tasks has been discussed.
Other methods are used to organise the latent space, facilitating improved convergence. The Varia-
tional Autoencoder, (Kingma & Welling, 2013) is one of these mechanisms. (Xue & Gonsalves, 2021)
implements this algorithm with a TD3, (Fujimoto et al., 2018), RL agent and a continuous action
space. A convolutional variational autoencoder is used to predict depth from RGB images. Once
trained, the encoder of this network outputs 32 variables and updates the actor-, target actor-, critic-
and target critic-networks. Their actor networks contain four fully connected layers that output two
values within a spectrum from -1 to 1, representing the velocity in the y-direction and z-direction. At
the same time, the critic networks contain three fully connected layers, which estimate the Q value
twice after two parallel fully connected layers. The Q value is obtained from the selected action and
state input. Their reward function values collisions, reaching the destination, obstacle avoidance and
distancing from obstacles. A replay buffer is used to save previous observations, and the simulation
environment is Airsim, (Shah et al., 2018).
Although (Mirowski et al., 2016) already showed the benefits of LSTM, (Hochreiter & Schmidhuber,
1997), layers in their neural network architectures, it had not been used for vision-based drone nav-
igation. (Singla et al., 2021) does use an LSTM layer combined with temporal attention, (Pei et al.,
2017), to better process sequential information. Temporal attention values the importance of previous
observations and results in improved training speed and better generalisability. A replay buffer is
used as well for the stability of the algorithm. The main argument for these features is the partial ob-
servability that results from the monocular vision in a three-dimensional space. In comparison, they
state that prior work such as (L. Xie et al., 2017) and (Sadeghi & Levine, 2017) assume that monoc-
ular vision, however, gives the complete picture. Like (Xue & Gonsalves, 2021), they implement a
latent space regulator. However, this paper uses conditional GAN, (Isola et al., 2017), which uses
a generator and a discriminator. The network is first trained on depth, like most previous papers.
However, they first train on simulation images, then fine-tune the network with frozen lower layers
on NYU2K, (Silberman et al., 2012). The depth images contain noise for more realistic training. As
a simulation environment, they use Gazebo, (Koenig & Howard, 2004), and 22 different simulated
indoor environments inspired by (Chakravarty et al., 2017). A Kinect sensor obtains RGB-D images in
the simulation. Their reinforcement learning agent is DQN, and their action space is discrete, which
includes going straight, turning right and turning left. Their reinforcement learning model is first
trained in environments with lower complexity. The complexity is gradually increased by narrowing

3.2. Research Plan 67

down pathways and enclosing free space. Finally, they reward higher minimal distances and going
straight. Another paper that uses the Gazebo environment is (Kim et al., 2022). They demonstrate the
transfer of their learned policy to real flight experiments. D3QN is used as a reinforcement learning
agent, and its reward function consists of a velocity component, a depth component and a collision
component. Their action space has linear and angular velocities, with three and five discrete options,
respectively.

Does computer vision matter for action?
by (B. Zhou et al., 2019)

B. Zhou et al. questioned the relevance of computer vision in conjunction with images to the task of
sensorimotor control. Their assessment was performed in three environments: urban driving, off-
road traversal and battle. The intermediate representations that were analysed were intrinsic surface
colour, optical flow, depth and semantic segmentation. The results showed significantly improved
performance with the inclusion of either depth or semantic segmentation to the observation space,
whilst the inclusion of intrinsic surface colour added little to the performance. The impact of optical
flow was also not that significant. (Sax et al., 2018) showed that adding other intermediate representa-
tions, such as curvature, denoising and occlusion edges can aid the performance even more.

3.2. Research Plan
This research aims to be a part of the overarching goal of developing an autonomous drone with a
monocular camera able to navigate reliably through complex environments in real life. The method
this research is developing is for a drone to achieve autonomous flight through reinforcement learn-
ing combined with supervised view synthesis on stereo cameras. The application further down
the line is in real life. However, training a drone to fly in real life with reinforcement learning is te-
dious and expensive. Making sure that all components communicate with each other is often time-
consuming already. In the case of a drone that has to learn how to fly and therefore crashes often,
this problem becomes infinitely more time-consuming. Thus, the algorithm is first trained in a simu-
lated environment. Besides, to understand the benefit and effectiveness of this training regime, tests
are performed at rising levels of fidelity. In this case, the fidelity of two major components is consid-
ered: the dynamic model and the environmental realism. The dynamic model deals with the realism
of flight. Advanced rigid body dynamics, such as friction and rotor drag or hardware properties,
result in different fidelity levels. For navigation, the decision-making process is of the most interest.
Realistic dynamics might make analysing this process more difficult in certain cases. Therefore a
lower level of fidelity might be preferred in the early stages of development. On the contrary, a more
complex, photo-realistic environment might aid the neural network in understanding the environ-
ment. At this point, it is also assumed that the advantage of training on stereo vision grows larger
in more photo-realistic environments compared to training on LIDAR data or a single camera. The
reward function will be focused on obstacle avoidance and therefore be sparse.

3.2.1. Simulation Environment
Most previously examined literature uses Gazebo, (Koenig & Howard, 2004) to develop their environ-
ments. However, these environments are often not at a photo-realistic level. Therefore the Flightmare
quadrotor simulator, (Song et al., 2020), is chosen as the preferred simulator. As a fast, physically ac-
curate and photo-realistic simulator, this fulfils the needs of the experiments. (Loquercio et al., 2021a)
showed that the transfer to real life was excellent for their algorithm, which used Flightmare. This is
due to realistic sensor functioning, such as noise, out-of-focus objects and dynamic lighting. Training
on monocular vision, stereo vision and depth is possible. At the same time, it provides integration
with OpenAI Gym, (Brockman et al., 2016), and OpenAI baselines, (Dhariwal et al., 2017), making
the development of deep reinforcement learning applications with good RL algorithms possible. A
minor concern is that it is not compatible with Stable-Baslines3, (Raffin et al., 2021), which means that
the SAC, (Haarnoja et al., 2018), and TD3, (Fujimoto et al., 2018) algorithms are not built-in, making
it more challenging to use them. Although it is preferred to have a state-of-the-art reinforcement
learning agent, a slightly outdated agent does not interfere with the research objective. The assumed
need for a continuous action space does, however, matter. Therefore the reinforcement learning agent
has to be of the Actor-Critic class. Besides, decisions on the exact action space are also not made yet.

3.2. Research Plan 68

An action space consisting of three velocity vectors is seen in the literature. However, vectors that
account for throttle and attitude might be more stable. To evaluate the performance of obstacle avoid-
ance for Flightmare, AvoidBench4 can be used. As this is developed within the TU Delft MAVlab
group, in-house expertise is available.

3.2.2. Architecture
The main objective of this research is to study the effectiveness of implementing geometry-free
monocular-to-stereo image view synthesis as an auxiliary task to the main navigation task. Therefore
different architectures are tested that make a comparison feasible. The original architecture for the
geometry-free monocular-to-stereo image view synthesis is shown in Figure 2.28. The latent space of
this architecture consists of the bottleneck and four skip connections. These are concatenated to con-
nect this to the second part of the model. This is then connected to an LSTM layer. The LSTM layer
is a recurrent neural network. It is implemented as a one-to-one architecture, meaning that a sin-
gle observation is provided to the LSTM and the temporal information it provides follows from the
memory of the LSTM. Afterwards, this outputs the policy and value or whatever is required for the
reinforcement learning agent. This deep reinforcement learning architecture is shown in Figure 3.8.

Figure 3.8: Deep Reinforcement Learning architecture for obstacle avoidance

A second configuration would be to pre-train the encoder in red and grey on the view synthesis task
and take the weights and biases of the neurons and use these in this architecture. The view synthesis
is incorporated as an auxiliary task by sharing the encoder and bottleneck, as shown in Figure 3.9.
The impact of the skip connections on the convergence speed would be of interest, therefore remov-
ing the skip connections and concatenation layer would result in another architecture.
The general architecture can also be used for other auxiliary tasks. Monocular depth estimation could
be trained on parallel to obstacle avoidance, as shown in Figure 3.10. A warping mechanism could be
implemented as well for the monocular-to-stereo image view synthesis task, as shown in Figure 3.11.

Experiments
The architecture must be implemented in Flightmare, and experiments can be run afterwards. Gain-
ing insight into the impact of the environmental complexity would be relevant to the subsequent
experiments and will therefore be tested first. Therefore the first experiment will be an ablation study
on the impact of environmental complexity as proposed in Table 3.1. From this, it is decided at what
level the upcoming experiments will be performed.
After the first experiment, the main experiment can be performed by studying the impact of pre-
training and implementing the auxiliary task to the deep reinforcement learning model. As proposed
in Table 3.2, the experiment compares four architectures. The first architecture is just the deep rein-
forcement learning model. The second architecture uses the weights of a pre-trained encoder for the

4https://github.com/tudelft/AvoidBench [Accessed 28th November 2022]

https://github.com/tudelft/AvoidBench

3.2. Research Plan 69

Figure 3.9: Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary task for monocular-to-stereo
image view synthesis

Figure 3.10: Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary task for monocular depth
estimation

Table 3.1: Ablation studies on the impact of the environmental complexity

Environmental Complexity: 1. Low 2. Medium 3. High

RL Architecture: pre-trained encoder and auxiliary task
Architecture: Swin-U-Net (patch size = 2)
Simulation: Flightmare
Optimizer: AdamW
Loss: Smooth L1 Loss
Algorithm: SAC/PPO

deep reinforcement learning model. The pre-training is done on the supervised monocular-to-stereo
image view synthesis task. Instead of pre-training, the third architecture extends the model with
monocular-to-stereo image view synthesis as an auxiliary task. Finally, a model with a pre-trained
encoder and the auxiliary task is trained. They are compared on performance and the speed of con-
vergence.
The dynamic fidelity is also important. A higher fidelity is preferred as this reduces the gap to reality.
Training will likely take longer as the reinforcement model has more difficulty controlling the drone.
The expectation is that the auxiliary task will be most useful at high fidelity as this provides the most
context for the drone to react to. The levels of fidelity are defined as low, medium and high, but exact
definitions will be decided later. The experiment is shown in Table 3.3
It is relevant to know how the performance of the monocular-to-stereo image view synthesis as an
auxiliary task compares to the tasks of monocular depth estimation and view synthesis by warping

3.2. Research Plan 70

Figure 3.11: Deep Reinforcement Learning architecture for obstacle avoidance with an auxiliary task for monocular-to-stereo
image view synthesis with a warping mechanism

Table 3.2: Ablation studies on the impact of pre-training and the auxiliary task

RL Architecture: 1. bare RL 2. pre-trained
encoder

3. auxiliary task 4. pre-trained
encoder and
auxiliary task

Architecture: Swin-U-Net (patch size = 2)
Simulation: Flightmare
Optimizer: AdamW
Loss: Smooth L1 Loss
Algorithm: SAC/PPO

Table 3.3: Ablation studies on the impact of the dynamic fidelity

Fidelity: 1. Low 2. Medium 3. High

RL Architecture: pre-trained encoder and auxiliary task
Architecture: Swin-U-Net (patch size = 2)
Simulation: Flightmare
Optimizer: AdamW
Loss: Smooth L1 Loss
Algorithm: SAC/PPO

the original image to a target image. This experiment is shown in Table 3.4.

Table 3.4: Ablation studies on the impact of the type of auxiliary task

Decoder Prediction: 1. Stereo Image 2. Depth 3. Stereo Image by
Warp

RL Architecture: pre-trained encoder and auxiliary task
Architecture: Swin-U-Net (patch size = 2)
Simulation: Flightmare
Optimizer: AdamW
Loss: Smooth L1 Loss
Algorithm: SAC/PPO

Finally, the impact of the skip connections is studied. The performance of the view synthesis task im-
proves with the inclusion of skip connections. The latent space, however, increases, meaning that the
size of the LSTM layer increases as well. This could reduce the efficiency of the network. Therefore
an analysis is done with Table 3.5.

3.2. Research Plan 71

Table 3.5: Ablation studies on the impact of the skip connections

Skip connections: 1. All 2. None

RL Architecture: pre-trained encoder and auxiliary task
Architecture: Swin-U-Net (patch size = 2)
Simulation: Flightmare
Optimizer: AdamW
Loss: Smooth L1 Loss
Algorithm: SAC/PPO

4
Conclusion

The literature study serves as a guide for the thesis to fall back on and to provide the basis for deci-
sions and goals. Within the introduction, in Chapter 1, the research question is developed utilizing
a problem statement and general context of the research domain. After defining the question, the
different aspects are dismantled and discussed. With more detailed domain knowledge, a general
plan is set out to achieve the goal of the thesis. The subsequent chapters, Chapter 2 and Chapter 3
delve into the two main stages required to answer the thesis question. The literature overview covers
the research and relevant aspects of those fields. By presenting the historical context and connecting
this to the currently relevant research, the reader is given the perspective required to understand the
motivation and decision-making process in this literature review. Both the applicability and limita-
tions of the presented literature are discussed, as well as the coherence and difference between the
different subdomains.
Context is provided to motivate the research plan for the geometry-free monocular-to-stereo image
view synthesis. First, the historical context of computer vision, neural networks and hardware are
discussed. This is followed by a presentation of the current state-of-the-art in computer vision. The
architectures used, their limitations and their potential are also discussed. An in-depth analysis of
the relevant fields for monocular-to-stereo image view synthesis is performed. The clearly defined
subdomains adjacent to this topic are discussed as well as the emergence of the new research do-
main.
Preliminary results following the research plan for the geometry-free monocular-to-stereo image
view synthesis are shown and discussed. Benchmarked on the KITTI dataset, the performance on
reconstruction realism is good for architectures including CNNs and architectures including Swin
Transformers. Skip connections improve the performance of the network. However, results without
skip connections are still fairly good. Through stereo matching, it can be assumed that depth is en-
coded due to the similarity of the disparity maps for prediction and target images. It is concluded
that the architecture is viable to be integrated as an auxiliary task to navigation.
Deep reinforcement learning is used in many applications in today’s world. It is discussed why the
possibilities are endless. The use of reinforcement learning within drone navigation and more gen-
eral vision-based problems are explored. The papers provide a base to motivate the choice for the
simulation environment, type of reinforcement learning agent and proposed architectures. It is dis-
cussed how the monocular-to-stereo image view synthesis task can be implemented to facilitate
quicker convergence of the navigation objective. Finally, clear objectives and experiments are defined
in the research plan.
To conclude, the literature studies define the research question for the subsequent thesis: How can
geometry-free monocular-to-stereo image view synthesis be used as an auxiliary task to improve the
navigation task performance and data efficiency of the reinforcement learning agent from a monocu-
lar vision-based drone? Within the literature studies, a method is developed and built on arguments
provided through knowledge from many papers in the research domains of computer vision and
UAVs. The following experiments are set out to test all critical aspects of the method on quality and
functionality. The literature review finishes by providing a plan containing target deadlines to finish
the main objectives.

72

References

Akhloufi, M. A., Arola, S., & Bonnet, A. (2019). Drones chasing drones: Reinforcement learning and
deep search area proposal. Drones.

Aleotti, F., Tosi, F., Poggi, M., & Mattoccia, S. (2019). Generative adversarial networks for unsuper-
vised monocular depth prediction. In L. Leal-Taixé & S. Roth (Eds.), Computer vision – eccv
2018 workshops (pp. 337–354). Springer International Publishing.

AlMahamid, F., & Grolinger, K. (2021). Reinforcement learning algorithms: An overview and classi-
fication. 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1–7.
https://doi.org/10.1109/CCECE53047.2021.9569056

AlMahamid, F., & Grolinger, K. (2022). Autonomous unmanned aerial vehicle navigation using rein-
forcement learning: A systematic review. Engineering Applications of Artificial Intelligence, 115,
105321. https://doi.org/https://doi.org/10.1016/j.engappai.2022.105321

Andrew, W., Greatwood, C., & Burghardt, T. (2018). Deep learning for exploration and recovery of
uncharted and dynamic targets from uav-like vision. 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 1124–1131. https://doi.org/10.1109/IROS.2018.
8593751

Asimov, I. (1950). I, robot. Gnome Press.
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. https://doi.org/10.48550/ARXIV.

1607.06450
Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A., Green, S.,

Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S., Cant, M., Cain, A., Bolton, A.,
Gaffney, S., King, H., Hassabis, D., . . . Petersen, S. (2016). Deepmind lab. CoRR, abs/1612.03801.
http://arxiv.org/abs/1612.03801

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M.,
Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016). End to end learning for self-
driving cars. CoRR, abs/1604.07316. http://arxiv.org/abs/1604.07316

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. CoRR, abs/1606.01540. http://arxiv.org/abs/1606.01540

Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object classes in video: A high-definition
ground truth database [Video-based Object and Event Analysis]. Pattern Recognition Letters,
30(2), 88–97. https://doi.org/https://doi.org/10.1016/j.patrec.2008.04.005

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A naturalistic open source movie for op-
tical flow evaluation. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.),
Computer vision – eccv 2012 (pp. 611–625). Springer Berlin Heidelberg.

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2021). Swin-unet: Unet-like
pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537.

Casser, V., Pirk, S., Mahjourian, R., & Angelova, A. (2019). Depth prediction without the sensors:
Leveraging structure for unsupervised learning from monocular videos. https://doi.org/10.
1609/aaai.v33i01.33018001

Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., & Van Eycken, L. (2017).
Cnn-based single image obstacle avoidance on a quadrotor. 2017 IEEE International Conference
on Robotics and Automation (ICRA), 6369–6374. https://doi.org/10.1109/ICRA.2017.7989752

Chen, M., Radford, A., Wu, J., Jun, H., Dhariwal, P., Luan, D., & Sutskever, I. (2020). Generative pre-
training from pixels. International Conference on Machine Learning.

Chen, Y., Praveen, P., Priyantha, M., Muelling, K., & Dolan, J. (2019). Learning on-road visual control
for self-driving vehicles with auxiliary tasks. 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), 331–338. https://doi.org/10.1109/WACV.2019.00041

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the
IEEE conference on computer vision and pattern recognition, 1251–1258.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555.

73

https://doi.org/10.1109/CCECE53047.2021.9569056
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105321
https://doi.org/10.1109/IROS.2018.8593751
https://doi.org/10.1109/IROS.2018.8593751
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.48550/ARXIV.1607.06450
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1606.01540
https://doi.org/https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1609/aaai.v33i01.33018001
https://doi.org/10.1609/aaai.v33i01.33018001
https://doi.org/10.1109/ICRA.2017.7989752
https://doi.org/10.1109/WACV.2019.00041

References 74

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by
exponential linear units (elus). arXiv: Learning.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., &
Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 3213–3223. https://doi.org/10.
1109/CVPR.2016.350

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. 2009 IEEE conference on computer vision and pattern recognition, 248–255.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu,
Y., & Zhokhov, P. (2017). Openai baselines.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth
16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929. https://
arxiv.org/abs/2010.11929

Dosovitskiy, A., Springenberg, J. T., & Brox, T. (2015). Learning to generate chairs with convolutional
neural networks. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
1538–1546. https://doi.org/10.1109/CVPR.2015.7298761

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12(null), 2121–2159.

Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-
scale deep network. Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, 2366–2374.

Esser, P., Rombach, R., & Ommer, B. (2021). Taming transformers for high-resolution image synthesis.
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12868–12878.
https://doi.org/10.1109/CVPR46437.2021.01268

Fitch, F. B. (1944). Warren s. mcculloch and walter pitts. a logical calculus of the ideas immanent in
nervous activity. bulletin of mathematical biophysics, vol. 5 (1943), pp. 115–133. Journal of
Symbolic Logic, 9(2), 49–50. https://doi.org/10.2307/2268029

Flynn, J., Neulander, I., Philbin, J., & Snavely, N. (2016). Deep stereo: Learning to predict new views
from the world’s imagery. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 5515–5524. https://doi.org/10.1109/CVPR.2016.595

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic
methods. International conference on machine learning, 1587–1596.

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). Rotors—a modular gazebo mav simulator
framework. In A. Koubaa (Ed.), Robot operating system (ros): The complete reference (volume 1)
(pp. 595–625). Springer International Publishing. https://doi.org/10.1007/978-3-319-26054-
9_23

Garg, R., B.G., V. K., Carneiro, G., & Reid, I. (2016). Unsupervised cnn for single view depth estima-
tion: Geometry to the rescue. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer
vision – eccv 2016 (pp. 740–756). Springer International Publishing.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision
benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3354–3361.
https://doi.org/10.1109/CVPR.2012.6248074

Godard, C., Aodha, O. M., Firman, M., & Brostow, G. (2019). Digging into self-supervised monocular
depth estimation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 3827–
3837. https://doi.org/10.1109/ICCV.2019.00393

Godard, C., Aodha, O. M., & Brostow, G. J. (2017). Unsupervised monocular depth estimation with
left-right consistency. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
6602–6611. https://doi.org/10.1109/CVPR.2017.699

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-
gio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.

Gupta, A., Dollar, P., & Girshick, R. (2019). Lvis: A dataset for large vocabulary instance segmentation.
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 5356–5364.

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.
Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,

Abbeel, P., et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.

https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1109/CVPR.2016.350
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/CVPR.2015.7298761
https://doi.org/10.1109/CVPR46437.2021.01268
https://doi.org/10.2307/2268029
https://doi.org/10.1109/CVPR.2016.595
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/ICCV.2019.00393
https://doi.org/10.1109/CVPR.2017.699

References 75

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.
1109/CVPR.2016.90

He, L., Aouf, N., Whidborne, J. F., & Song, B. (2020). Integrated moment-based lgmd and deep rein-
forcement learning for uav obstacle avoidance. 2020 IEEE International Conference on Robotics
and Automation (ICRA), 7491–7497.

Hendrycks, D., & Gimpel, K. (2016). Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415. http://arxiv.org/abs/1606.08415

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., & Hochreiter, S. (2017). Gans
trained by a two time-scale update rule converge to a nash equilibrium. CoRR, abs/1706.08500.
http://arxiv.org/abs/1706.08500

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov,
O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., & Wu, Y. (2018). Stable base-
lines.

Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8), 2.

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Huynh-Thu, Q., & Ghanbari, M. (2012). The accuracy of psnr in predicting video quality for different
video scenes and frame rates. Telecommun. Syst., 49(1), 35–48. https://doi.org/10.1007/
s11235-010-9351-x

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Proceedings of the 32nd International Conference on International Confer-
ence on Machine Learning - Volume 37, 448–456.

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional ad-
versarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
5967–5976. https://doi.org/10.1109/CVPR.2017.632

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., & Kavukcuoglu, K. (2016).
Reinforcement learning with unsupervised auxiliary tasks. CoRR, abs/1611.05397. http://
arxiv.org/abs/1611.05397

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial transformer networks.
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume
2, 2017–2025.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange, D. (2018). Unity: A general
platform for intelligent agents. CoRR, abs/1809.02627. http://arxiv.org/abs/1809.02627

Karis, B., & Games, E. (2013). Real shading in unreal engine 4. Proc. Physically Based Shading Theory
Practice, 4(3), 1.

Kim, M., Kim, J., Jung, M., & Oh, H. (2022). Towards monocular vision-based autonomous flight
through deep reinforcement learning. Expert Systems with Applications, 198, 116742. https :
//doi.org/https://doi.org/10.1016/j.eswa.2022.116742

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. https://doi.org/10.48550/

ARXIV.1312.6114
Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot

simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), 3, 2149–2154 vol.3. https://doi.org/10.1109/IROS.2004.1389727

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60, 84–90.

Li, J., Feng, Z., She, Q., Ding, H., Wang, C., & Lee, G. H. (2021). Nemi: Unifying neural radiance fields
with multiplane images for novel view synthesis. CoRR, abs/2103.14910. https://arxiv.org/
abs/2103.14910

Li, X., Li, L., Gao, J., He, X., Chen, J., Deng, L., & He, J. (2015). Recurrent reinforcement learning: A hy-
brid approach (ArXiv, tech. rep. MSR-TR-2015-98) [Proceedings of COLING-94, Kyoto, Japan].

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1706.08500
https://doi.org/10.1007/s11235-010-9351-x
https://doi.org/10.1007/s11235-010-9351-x
https://doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1809.02627
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116742
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116742
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.1109/IROS.2004.1389727
https://arxiv.org/abs/2103.14910
https://arxiv.org/abs/2103.14910

References 76

https://www.microsoft .com/en- us/research/publication/recurrent- reinforcement-
learning-a-joint-training-approach/

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., & Zhang, D. (2022). Ds-transunet: Dual swin transformer
u-net for medical image segmentation. IEEE Transactions on Instrumentation and Measurement,
71, 1–15. https://doi.org/10.1109/TIM.2022.3178991

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. European conference on computer vision, 740–755.

Liu, A., Makadia, A., Tucker, R., Snavely, N., Jampani, V., & Kanazawa, A. (2021). Infinite nature:
Perpetual view generation of natural scenes from a single image. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 14438–14447. https://doi.org/10.1109/ICCV48922.
2021.01419

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierar-
chical vision transformer using shifted windows. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation.
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3431–3440. https :
//doi.org/10.1109/CVPR.2015.7298965

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., & Scaramuzza, D. (2021a). Learning
high-speed flight in the wild. Science Robotics, 6(59), eabg5810. https://doi.org/10.1126/
scirobotics.abg5810

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., & Scaramuzza, D. (2021b). Learning
high-speed flight in the wild. Science Robotics.

Loshchilov, I., & Hutter, F. (2016). SGDR: stochastic gradient descent with restarts. CoRR, abs/1608.03983.
http://arxiv.org/abs/1608.03983

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. ICLR.
Luo, Y., Ren, J., Lin, M., Pang, J., Sun, W., Li, H., & Lin, L. (2018). Single view stereo matching. 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 155–163. https://doi.org/10.
1109/CVPR.2018.00024

Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox, T. (2016). A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4040–4048. https :
//doi.org/10.1109/CVPR.2016.438

Menze, M., & Geiger, A. (2015). Object scene flow for autonomous vehicles. Proceedings of the IEEE
conference on computer vision and pattern recognition, 3061–3070.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf:
Representing scenes as neural radiance fields for view synthesis. In A. Vedaldi, H. Bischof, T.
Brox, & J.-M. Frahm (Eds.), Computer vision – eccv 2020 (pp. 405–421). Springer International
Publishing.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M., Goroshin, R., Sifre,
L., Kavukcuoglu, K., Kumaran, D., & Hadsell, R. (2016). Learning to navigate in complex
environments. CoRR, abs/1611.03673. http://arxiv.org/abs/1611.03673

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T. P., Silver, D., & Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning. Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48, 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. A.
(2013). Playing atari with deep reinforcement learning. CoRR, abs/1312.5602. http://arxiv.
org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforce-
ment learning. nature, 518(7540), 529–533.

Moore, G. E., et al. (1965). Cramming more components onto integrated circuits.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. Pro-

ceedings of the 27th International Conference on International Conference on Machine Learning, 807–
814.

https://www.microsoft.com/en-us/research/publication/recurrent-reinforcement-learning-a-joint-training-approach/
https://www.microsoft.com/en-us/research/publication/recurrent-reinforcement-learning-a-joint-training-approach/
https://doi.org/10.1109/TIM.2022.3178991
https://doi.org/10.1109/ICCV48922.2021.01419
https://doi.org/10.1109/ICCV48922.2021.01419
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1126/scirobotics.abg5810
https://doi.org/10.1126/scirobotics.abg5810
http://arxiv.org/abs/1608.03983
https://doi.org/10.1109/CVPR.2018.00024
https://doi.org/10.1109/CVPR.2018.00024
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1109/CVPR.2016.438
http://arxiv.org/abs/1611.03673
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

References 77

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
& Lerer, A. (2017). Automatic differentiation in pytorch.

Pei, W., Baltrušaitis, T., Tax, D. M. J., & Morency, L.-P. (2017). Temporal attention-gated model for
robust sequence classification. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 820–829. https://doi.org/10.1109/CVPR.2017.94

Peng, R., Wang, R., Lai, Y., Tang, L., & Cai, Y. (2021). Excavating the potential capacity of self-supervised
monocular depth estimation. 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 15540–15549.

Pilzer, A., Xu, D., Puscas, M., Ricci, E., & Sebe, N. (2018). Unsupervised adversarial depth estimation
using cycled generative networks. 2018 International Conference on 3D Vision (3DV), 587–595.
https://doi.org/10.1109/3DV.2018.00073

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009).
Ros: An open-source robot operating system. ICRA workshop on open source software, 3(3.2), 5.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268),
1–8. http://jmlr.org/papers/v22/20-1364.html

Rombach, R., Esser, P., & Ommer, B. (2021). Geometry-free view synthesis: Transformers and no 3d
priors. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 14356–
14366.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical image
computing and computer-assisted intervention – miccai 2015 (pp. 234–241). Springer International
Publishing.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological review, 65 6, 386–408.

Rummery, G. A., & Niranjan, M. (1994). On-line q-learning using connectionist systems (Vol. 37). Univer-
sity of Cambridge, Department of Engineering Cambridge, UK.

Sadeghi, F., & Levine, S. (2017). Cad2rl: Real single-image flight without a single real image. Proceed-
ings of Robotics: Science and Systems. https://doi.org/10.15607/RSS.2017.XIII.034

Sajjadi, M. S. M., Meyer, H., Pot, E., Bergmann, U., Greff, K., Radwan, N., Vora, S., Lucic, M., Duck-
worth, D., Dosovitskiy, A., Uszkoreit, J., Funkhouser, T. A., & Tagliasacchi, A. (2021). Scene
representation transformer: Geometry-free novel view synthesis through set-latent scene
representations. CoRR, abs/2111.13152. https://arxiv.org/abs/2111.13152

Sax, A., Emi, B., Zamir, A., Guibas, L. J., Savarese, S., & Malik, J. (2018). Mid-level visual representa-
tions improve generalization and sample efficiency for learning active tasks. CoRR, abs/1812.11971.
http://arxiv.org/abs/1812.11971

Saxena, A., Chung, S., & Ng, A. (2005). Learning depth from single monocular images. In Y. Weiss, B.
Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems. MIT Press. https:
//proceedings.neurips.cc/paper/2005/file/17d8da815fa21c57af9829fb0a869602-Paper.pdf

Saxena, A., Sun, M., & Ng, A. Y. (2009). Make3d: Learning 3d scene structure from a single still image.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 824–840. https://doi.org/
10.1109/TPAMI.2008.132

Scharstein, D., Szeliski, R., & Zabih, R. (2001). A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision
(SMBV 2001), 131–140. https://doi.org/10.1109/SMBV.2001.988771

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization.
International conference on machine learning, 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Shade, J., Gortler, S., He, L.-w., & Szeliski, R. (1998). Layered depth images. Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, 231–242.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. Field and service robotics, 621–635.

Shelhamer, E., Mahmoudieh, P., Argus, M., & Darrell, T. (2016). Loss is its own reward: Self-supervision
for reinforcement learning. CoRR, abs/1612.07307. http://arxiv.org/abs/1612.07307

https://doi.org/10.1109/CVPR.2017.94
https://doi.org/10.1109/3DV.2018.00073
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.15607/RSS.2017.XIII.034
https://arxiv.org/abs/2111.13152
http://arxiv.org/abs/1812.11971
https://proceedings.neurips.cc/paper/2005/file/17d8da815fa21c57af9829fb0a869602-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/17d8da815fa21c57af9829fb0a869602-Paper.pdf
https://doi.org/10.1109/TPAMI.2008.132
https://doi.org/10.1109/TPAMI.2008.132
https://doi.org/10.1109/SMBV.2001.988771
http://arxiv.org/abs/1612.07307

References 78

Shin, S.-Y., Kang, Y.-W., & Kim, Y.-G. (2019). Obstacle avoidance drone by deep reinforcement learn-
ing and its racing with human pilot. Applied Sciences, 9(24). https ://doi . org/10 . 3390/
app9245571

Shreiner, D., Group, B. T. K. O. A. W., et al. (2009). Opengl programming guide: The official guide to learn-
ing opengl, versions 3.0 and 3.1. Pearson Education.

Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference
from rgbd images. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Com-
puter vision – eccv 2012 (pp. 746–760). Springer Berlin Heidelberg.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy
gradient algorithms. International conference on machine learning, 387–395.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recog-
nition. CoRR, abs/1409.1556.

Singla, A., Padakandla, S., & Bhatnagar, S. (2021). Memory-based deep reinforcement learning for ob-
stacle avoidance in uav with limited environment knowledge. IEEE Transactions on Intelligent
Transportation Systems, 22(1), 107–118. https://doi.org/10.1109/TITS.2019.2954952

Song, Y., Naji, S., Kaufmann, E., Loquercio, A., & Scaramuzza, D. (2020). Flightmare: A flexible
quadrotor simulator. CoRR, abs/2009.00563. https://arxiv.org/abs/2009.00563

Tatarchenko, M., Dosovitskiy, A., & Brox, T. (2016). Multi-view 3d models from single images with a
convolutional network. European Conference on Computer Vision, 322–337.

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based control. 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 5026–5033. https://doi.org/
10.1109/IROS.2012.6386109

Tucker, R., & Snavely, N. (2020). Single-view view synthesis with multiplane images. CVPR. https:
//arxiv.org/abs/2004.11364

Tulsiani, S., Tucker, R., & Snavely, N. (2018). Layer-structured 3d scene inference via view synthe-
sis. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision – eccv 2018
(pp. 311–327). Springer International Publishing.

van den Oord, A., Vinyals, O., & Kavukcuoglu, K. (2017). Neural discrete representation learning.
Proceedings of the 31st International Conference on Neural Information Processing Systems, 6309–
6318.

Van Dĳk, T., & De Croon, G. (2019). How do neural networks see depth in single images? 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), 2183–2191. https://doi.org/10.1109/ICCV.
2019.00227

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning.
Proceedings of the AAAI conference on artificial intelligence, 30(1).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.
(2017). Attention is all you need. CoRR, abs/1706.03762. http://arxiv.org/abs/1706.03762

Walk, R. D., & Dodge, S. H. (1962). Visual depth perception of a 10-month-old monocular human
infant. Science, 137(3529), 529–530. https://doi.org/10.1126/science.137.3529.529

Wang, Z., Simoncelli, E., & Bovik, A. (2003). Multiscale structural similarity for image quality assess-
ment. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 2, 1398–
1402 Vol.2. https://doi.org/10.1109/ACSSC.2003.1292216

Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error vis-
ibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https :
//doi.org/10.1109/TIP.2003.819861

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2016). Sample
efficient actor-critic with experience replay. CoRR, abs/1611.01224. http://arxiv.org/abs/1611.
01224

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279–292.
Wu, Y., Mansimov, E., Liao, S., Grosse, R., & Ba, J. (2017). Scalable trust-region method for deep rein-

forcement learning using kronecker-factored approximation. Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, 5285–5294.

Xie, J., Girshick, R., & Farhadi, A. (2016). Deep3d: Fully automatic 2d-to-3d video conversion with
deep convolutional neural networks. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Com-
puter vision – eccv 2016 (pp. 842–857). Springer International Publishing.

https://doi.org/10.3390/app9245571
https://doi.org/10.3390/app9245571
https://doi.org/10.1109/TITS.2019.2954952
https://arxiv.org/abs/2009.00563
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2004.11364
https://arxiv.org/abs/2004.11364
https://doi.org/10.1109/ICCV.2019.00227
https://doi.org/10.1109/ICCV.2019.00227
http://arxiv.org/abs/1706.03762
https://doi.org/10.1126/science.137.3529.529
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224

References 79

Xie, L., Wang, S., Markham, A., & Trigoni, N. (2017). Towards monocular vision based obstacle avoid-
ance through deep reinforcement learning. CoRR, abs/1706.09829. http://arxiv.org/abs/1706.
09829

Xue, Z., & Gonsalves, T. (2021). Monocular vision obstacle avoidance uav: A deep reinforcement
learning method. 2021 2nd International Conference on Innovative and Creative Information Tech-
nology (ICITech), 1–6. https://doi.org/10.1109/ICITech50181.2021.9590178

Yamaguchi, K., McAllester, D., & Urtasun, R. (2014). Efficient joint segmentation, occlusion labeling,
stereo and flow estimation. ECCV.

Yokoyama, K., & Morioka, K. (2020). Autonomous mobile robot with simple navigation system based
on deep reinforcement learning and a monocular camera. 2020 IEEE/SICE International Sym-
posium on System Integration (SII), 525–530. https://doi.org/10.1109/SII46433.2020.9025987

Zhang, C., Lin, C., Liao, K., Nie, L., & Zhao, Y. (2022). Sivsformer: Parallax-aware transformers for
single-image-based view synthesis. 2022 IEEE Conference on Virtual Reality and 3D User Inter-
faces (VR), 47–56. https://doi.org/10.1109/VR51125.2022.00022

Zhang, C., Lin, C., Liao, K., Nie, L., & Zhao, Y. (2023). As-deformable-as-possible single-image-based
view synthesis without depth prior. IEEE Transactions on Circuits and Systems for Video Technol-
ogy.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of
deep features as a perceptual metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 586–595. https://doi.org/10.1109/CVPR.2018.00068

Zhang, Y., & Wu, J. (2022). Video extrapolation in space and time. Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVI, 313–333.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., & Torralba, A. (2017). Scene parsing through
ade20k dataset. Proceedings of the IEEE conference on computer vision and pattern recognition,
633–641.

Zhou, B., Krähenbühl, P., & Koltun, V. (2019). Does computer vision matter for action? Science Robotics,
4(30), eaaw6661. https://doi.org/10.1126/scirobotics.aaw6661

Zhou, T., Tucker, R., Flynn, J., Fyffe, G., & Snavely, N. (2018). Stereo magnification: Learning view
synthesis using multiplane images. ACM Trans. Graph., 37(4). https://doi.org/10.1145/
3197517.3201323

Zhou, T., Tulsiani, S., Sun, W., Malik, J., & Efros, A. A. (2016). View synthesis by appearance flow.
In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision – eccv 2016 (pp. 286–301).
Springer International Publishing.

http://arxiv.org/abs/1706.09829
http://arxiv.org/abs/1706.09829
https://doi.org/10.1109/ICITech50181.2021.9590178
https://doi.org/10.1109/SII46433.2020.9025987
https://doi.org/10.1109/VR51125.2022.00022
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1126/scirobotics.aaw6661
https://doi.org/10.1145/3197517.3201323
https://doi.org/10.1145/3197517.3201323

	Nomenclature
	Preface
	Abstract
	Introduction
	Background
	Problem statement
	Report Structure

	I Scientific Paper
	II Literature Study
	Geometry-Free Monocular-to-Stereo Image View Synthesis
	Literature Overview
	Historical Context of Computer Vision
	General Developments within Computer Vision
	Adjacent Fields of Research
	Discussion

	Research Plan
	Architecture
	Implementation Details
	Experiments

	Conclusion

	Deep Reinforcement Learning for Monocular Vision-Based Drones trained with Stereo Vision
	Literature Overview
	Deep Reinforcement Learning in Today's World
	Reinforcement Learning for Drone Navigation
	Vision-Based Deep Reinforcement Learning

	Research Plan
	Simulation Environment
	Architecture

	Conclusion
	References

