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Abstract
The rate reduction models have been widely used to
model the recurrent failure data for their capabilities in
quantifying the repair effects. Despite the widespread
popularity, there have been limited studies on statisti-
cal inference of most failure rate reduction models. In
view of this fact, this study proposes a semiparamet-
ric estimation framework for a general class of such
models, called extended geometric failure rate reduction
(EGFRR) models. Covariates are considered in our anal-
ysis and their effects are modeled as a log-linear factor
on the baseline failure rate. Unlike the existing inference
methods for the EGFRR models that assume the fail-
ure data are censored at a fixed number of failures, our
study considers covariates and time-censoring, which
are more common in practice. The semiparametric max-
imum likelihood (ML) estimators are obtained by care-
fully constructing the likelihood function. Asymptotic
properties including consistency and weak convergence
of the ML estimators are established by using the prop-
erties of the martingale process. In addition, we show
that the semiparametric estimators are asymptotically
efficient. A real example from the automobile industry
illustrates the usefulness of the proposed framework and
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extensive simulations show its outstanding performance
when comparing with the existing methods.

K E Y W O R D S

imperfect repair, martingale, recurrent events, repairable systems,
semiparametric efficiency

1 INTRODUCTION

Many physical systems such as vehicles, commercial products, and manufacturing equipment are
repairable in the sense that they are repaired rather than replaced in the presence of failures. Reli-
ability evaluation of these systems is mainly based on modeling of the recurrent failure processes.
Due to the complicated effects of the repair actions on the system health, however, modeling of
the repairable systems is not an easy task, and it is much more difficult than modeling of the
nonrepairable systems.

In the literature, a multitude of models have been proposed to account for the repair effects in
the recurrent failures. Most of these models can be defined based on the intensity process. Con-
sider a repairable system observed over time t ≥ 0, and let S1, S2,… be the failure time sequence
of the system. Denote N∗(t) as the number of failures/repairs in the time interval [0, t]. Define
 (t) = 𝜎{N∗(s) ∶ 0 ≤ s ≤ t} to be the filtration, that is, the history of the process up to time t.
The intensity process v(t) ≡ v(t;t−) of the counting process N∗(t) is defined as the conditional
probability that an event occurs in [t, t + dt) given the filtration t−, that is,

v(t)dt = P{dN∗(t) = 1|t−}.

Let 𝜆0(t) be the baseline intensity function, and Λ0(t) = ∫ t
0 𝜆0(u)du be the corresponding baseline

cumulative intensity function. The intensity processes of many imperfect maintenance models
are based on a modification of the baseline intensity 𝜆0. When the repair effect is assumed to be
as good as new (AGAN), {N∗(t), t ≥ 0} is a renewal process and the intensity process is given by
v(t) = 𝜆0

{
t − SN∗(t−)

}
. If the repair is as bad as old (ABAO), {N∗(t), t ≥ 0} is a nonhomogeneous

Poisson process and the intensity process is the same as 𝜆0, that is, v(t) = 𝜆0(t). In practice, it is
more common that the repair effect is between AGAN and ABAO, which is known as imper-
fect repair. In terms of modeling of the imperfect repair, Kijima’s Type I and Type II models
(Kijima, 1989) represent the first attempts by introducing the concept of virtual age. The Kijima’s
models have been further extended in many follow-up studies with applications to optimal deci-
sions in preventive maintenance. For an overview of these extensions, see Finkelstein (2008),
Zhang and Xie (2017) and Alaswad and Xiang (2017).

The Kijima’s models treat the repair effect as a shift on the original survival function with
a virtual age. In the literature, models with a change on the failure rate after repair have also
been widely used for imperfect repairs. Among them, the Geometric Failure Rate Reduction
(GFRR) model proposed by Finkelstein (2008) is a flexible model with a simple intensity pro-
cess 𝜆(t) = 𝜌N∗(t−)𝜆0

(
t − SN∗(t−)

)
, where the parameter 𝜌 > 0 characterizes the repair effect. The

empirical studies in Doyen et al. (2017) and Syamsundar and Kumar (2017) have revealed
that the GFRR model outperforms most existing imperfect repair models when fitting to real
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datasets. To mitigate the explosion problem, for which 𝜌N∗(t−) becomes too large when 𝜌 is far
from 1 or when N∗(t) is large, Dauxois et al. (2019) proposed an Extended GFRR (EGFRR)
model with the intensity process v(t) = 𝜌𝛼(N

∗(t−)+1)𝜆0
(

t − SN∗(t−)
)
, where 𝛼(k) is a known non-

decreasing function such that 𝛼(1) = 0. This model implies that the hazard function of the
kth interoccurence time equals 𝜌𝛼(k)𝜆0(⋅). The EGFRR model degenerates to the GFRR model
when 𝛼(k) = k − 1. For the EGFRR model, Dauxois et al. (2019) have developed a semipara-
metric inference procedure assuming that the failure data are censored at a fixed number of
failures.

In most maintenance applications, however, the observed repair process is time-censored
because of an end-of-study date (Ye & Ng, 2014), which is also called administrative censor-
ing in biostatistics. This time-censoring assumption is widely used in recurrence data; see Pena
et al. (2001), Pena et al. (2007) and Rahman et al. (2014). In addition, the covariates may also
play a critical role in affecting the failure rates; see Cox (1972), Wang and Xu (2010) and Qu
et al. (2016). In view of this fact, we propose a semiparametric inference procedure for the recur-
rent failure data by considering the covariates and the time-censoring scheme. That is, in each
experiment, we can only observe the failures/repairs before a censoring or follow-up time, which
might incorporate the covariates. In specific, the intensity process considered is

v(t;X) = 𝜌𝛼(N
∗(t−)+1)e𝜷

⊤X𝜆0
(

t − SN∗(t−)
)
, (1)

where 𝜷 is a p × 1 vector and X = (x1, x2, ..., xp)⊤ is a p-dimensional covariate, such as the use rate,
brand, and other observable features that vary from unit to unit. In this study, the maximum like-
lihood (ML) estimators and their asymptotic properties are thoroughly investigated. In particular,
semiparametric efficiency properties, which are important in knowing how much the estimators
can be improved, are established for the proposed estimators. The semiparametric efficiency is
rarely discussed in the literature of statistical inference for the repairable systems, and our study
bridges this gap by examining the efficiency of both the parametric and the nonparametric parts of
the estimators.

The rest of the paper is organized as follows. In Section 2 we derive the likelihood and the
ML estimators based on the time-censored repair data with covariates. Section 3 establishes the
asymptotic properties including the consistency, the weak convergence and the semiparametric
efficiency for the ML estimators. Comprehensive simulations are conducted in Section 4, and a
real example from the automobile industry is used to illustrate the proposed inference procedures
in Section 5. At last, Section 6 concludes the paper.

2 DATA AND LIKELIHOOD

Consider a system whose failure/repair process {N∗(t), t ≥ 0} is governed by the EGFRR model
(1) with a covariate vector X. By letting 𝛾 = log(𝜌), the intensity can be written as

v(t;X) = e𝛾⋅𝛼(N∗(t−)+1)+𝜷⊤X𝜆0
(

t − SN∗(t−)
)
.

Denote Tj as the interoccurence time between the (j − 1)th and the jth failures, and Sj =
∑j

l=1Tl
as the occurrence time of the jth failure, j = 1, 2, · · ·. For notational convenience, we stipulate
T0 = 0 and S0 = 0. Let C denote the censoring or follow-up time of the system. The censoring
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mechanism is supposed to be conditionally independent of the failure process, that is, C and
N∗(t) are independent conditional on X for any t ≥ 0. Define Ñ(t) = N∗(t ∧ C) and Ỹ (t) = I{C ≥
t}, where a ∧ b = min{a, b}, and I{A} is the indicator function that equals 1 if A is true, and
0 otherwise. The observed failure data from the system is {X,Ñ(⋅), Ỹ (⋅)}. We are interested in
estimating the true parameters, denoted as 𝛾0, 𝜷0 and Λ0, from the data.

2.1 The likelihood

Based on the above problem setting, Ñ(s) is a submartingale with respect to the filtration s with
compensator Ã(s; 𝛾0, 𝜷0,Λ0) = ∫ s

0 Ỹ (u)e𝛾0⋅𝛼(Ñ(u−)+1)+𝜷⊤
0 X𝜆0 (R (u)) du, where R(u) = u − SÑ(u−) is the

time from the last failure to time u. However, the compensator is a complicated function of the
model parameters since the integrand contains a random argument R(u). Therefore, decompo-
sition of this submartingale may not be useful in parameter estimation. In this study, we follow
Pena et al. (2001) and introduce a two-dimensional counting process

N(s, t) = ∫
s

0
Z(u, t)dÑ(u), (2)

where Z(u, t) = I{R(u) ≤ t}. Here, N(s, t) is the failure count in the time window [0, s] whose
interoccurence times are shorter than t. It is readily seen that N(s, t) = N(s) when s < t. Let
s = 𝜎{X,Ñ(u), Ỹ (u+) ∶ 0 ≤ u ≤ s} be the event history up to time s. The following lemma sum-
marizes the decomposition results for N(s, t), which can be easily verified by proposition 31.1 in
Pena et al. (2000).

Lemma 1. For each fixed t, consider the counting process {N(s, t) ∶ 0 ≤ s ≤ 𝜏} indexed by s
as defined above. Then there exists a unique increasing right-continuous s-predictable process
{A(s, t; 𝛾0, 𝜷0,Λ0) ∶ s ≤ 𝜏} given by

A(s, t; 𝛾, 𝜷,Λ) = ∫
t

0
e𝜷

⊤XY (s, x; 𝛾)Λ(dx), (3)

such that N(s, t) − A(s, t; 𝛾0, 𝜷0,Λ0), denoted by M(s, t; 𝛾0, 𝜷0,Λ0), is a right-continuous local mar-
tingale with respect to the filtration s for fixed t. Here,

Y (s, t; 𝛾) =
Ñ(s−)∑

j=1
I{Tj ≥ t} ⋅ e𝛾⋅𝛼(j) + I{R(s ∧ C) ≥ t} ⋅ e𝛾⋅𝛼(Ñ(s−)+1).

In the lemma, Y (s, t; 𝛾) can be roughly understood as the weighted count of subintervals in
[0, s ∧ C] whose lengths are longer than t, where [0, s ∧ C] is partitioned by the mesh defined
by all failure times within this time interval. The lemma above enables us to write the likeli-
hood function. According to corollary II.7.3 in Andersen et al. (2012), the likelihood based on the
observation {X,Ñ(u), Ỹ (u+),u ∈ [0, s]} is

L(𝜏, 𝜏; 𝛾, 𝜷,Λ) =
∏

u∈[0,𝜏]
A(du, 𝜏; 𝛾, 𝜷,Λ)N(du,𝜏) ⋅ exp {−A(u, 𝜏; 𝛾, 𝜷,Λ)} ,
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where we stipulate 00 = 1. Based on the definition of N(s, t) and A(s, t; 𝛾, 𝜷,Λ), the log-likelihood
function can be derived as

𝓁(𝛾, 𝜷,Λ) = ∫
𝜏

0
log(Λ{R(u)})Z(u, 𝜏)Ñ(du) − ∫

𝜏

0
e𝜷⊤XY (𝜏, x; 𝛾)Λ(dx)

+∫
𝜏

0

(
𝛾 ⋅ 𝛼(Ñ(u−) + 1) + 𝜷⊤X

)
Z(u, 𝜏)Ñ(du), (4)

where Λ{x} denotes the pointmass of the baseline cumulative intensity function Λ(x), which
equals 𝜆(x) when Λ(x) is differentiable (Van der Vaart, 2000, pp. 425). By proposition 1 in Pena
et al. (2001), the first term of the right-hand side of the above display can be expressed as

∫
𝜏

0
log(Λ{R(u)})Z(u, 𝜏)Ñ(du) = ∫

𝜏

0
log(Λ{x})N(𝜏, dx).

2.2 ML estimator

For notational convenience, we let 𝜽 = (𝛾, 𝜷⊤)⊤. Based on the log-likelihood in (4), the score
function for the parametric part 𝜽 is

�̇�1(𝛾, 𝜷,Λ) = −∫
𝜏

0

(
e𝜷⊤XY (1)(𝜏, x; 𝛾)
e𝜷⊤XY (𝜏, x; 𝛾)X

)
Λ(dx) + ∫

𝜏

0

(
𝛼(Ñ(u−) + 1)

X

)
Z(u, 𝜏)Ñ(du), (5)

where Y (k) represents the kth derivative of Y with respect to 𝛾 , k = 1, 2, … . In order to derive the
ML estimator for the nonparametric part, for a fixed Λ and each h(⋅) ∈ 𝓁∞([0, 𝜏]), which is the
space of uniform bounded functions, we consider the parametric submodel Λ𝜖,h indexed by 𝜖 in
a neighborhood of zero given by

𝜖 → Λ𝜖,h(⋅) ∶ Λ𝜖,h(u) = ∫
u

0
(1 + 𝜖h(x)) Λ(dx).

Notice that Λ𝜖,t is nonnegative and monotone increasing when 𝜖 takes its value in a neighbor-
hood of zero. Intuitively, an optimal nonparametric estimator should maximize the log-likelihood
among submodels going through it. We will first show that the nonparametric part is unique
under the submodel, and demonstrate the asymptotic properties of the estimator in the next
section. For this submodel, we can calculate the score function by

�̇�2(𝛾, 𝜷,Λ)(t) =
𝜕

𝜕𝜖
𝓁(𝛾, 𝜷,Λ𝜖,h)

||||𝜖=0
= ∫

𝜏

0
h(t)

(
N(𝜏, dx) − e𝜷

⊤XY (𝜏, x; 𝛾)Λ(dx)
)
.

Now, suppose we observe n i.i.d. copies of {X,Ñ(⋅), Ỹ (⋅)}, denoted as {X, Ñi(⋅), Ỹi(⋅)}, i = 1, 2,
· · · ,n. Let Pn be the empirical measure based on the n i.i.d. realizations. By fixing 𝛾 , we can solve
Pn�̇�2(𝛾, 𝜷,Λ)(t) = 0 for any h(⋅) ∈ 𝓁∞([0, 𝜏]) to get

Λ̂n(t; 𝛾, 𝜷) = ∫
t

0

I
{∑n

i=1e𝜷⊤Xi Yi(𝜏, x; 𝛾) > 0
}∑n

i=1e𝜷⊤Xi Yi(𝜏, x; 𝛾)
N(𝜏, dx), (6)
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where N(𝜏, dx) =
∑n

i=1Ni(𝜏, dx), as with Fleming and Harrington (2005). By substituting the
expression (6) into (4), the profile log-likelihood function for 𝜽 = (𝛾, 𝜷⊤)⊤ can be obtained as

𝓁n(𝛾, 𝜷) =
1
n

n∑
i=1

∫
𝜏

0

(
𝛾 ⋅ 𝛼(Ñi(u−) + 1) + 𝜷⊤Xi

)
Zi(u, 𝜏)Ñi(du)

− 1
n∫

𝜏

0
log

(
1
n

n∑
i=1

e𝜷
⊤Xi Yi(𝜏, x; 𝛾)

)
N(𝜏, dx). (7)

Here we multiply the log-likelihood by n−1 for notational convenience when we consider the
asymptotic properties. The following proposition shows that 𝓁n is concave.

Proposition 1. The function 𝓁n ∶ R × Rp → R defined in (7) is continuous and concave.

Let �̂�
⊤

n = (�̂�n, 𝜷
⊤

n ) be a solution to the estimating equation 𝜕

𝜕𝜽
𝓁n(𝛾, 𝜷) = 0. Because of the con-

cavity, existing convex optimization packages can be used to find �̂�n numerically and stably. Then
the estimator of the nonparametric part is Λ̂n(t; �̂�n, 𝜷n).

2.3 Time-varying covariates

In this section, we consider the case of time-varying covariates. The intensity function is given by

v(t;X) = e𝛾⋅𝛼(N∗(t−)+1)+𝜷⊤X(t)𝜆0(t − SN∗(t−)),

where X(t) is the time-dependent covariate. As we have shown in Section 2.2, according
to Cox (1972), Lin (1991) and Huang et al. (2010), the log-likelihood based on the data
{X(⋅),Ñ(⋅), Ỹ (⋅)} is given by

𝓁(𝛾, 𝜷,Λ) = ∫
𝜏

0
log(Λ{x})N(𝜏, dx) − ∫

𝜏

0
Y̌ (𝜏, x; 𝛾, 𝜷,X)Λ(dx)

+ ∫
𝜏

0

(
𝛾 ⋅ 𝛼(Ñ(u−) + 1) + 𝜷⊤X(u)

)
Z(u, 𝜏)Ñ(du),

where the weighted count Y̌ (s, t; 𝛾, 𝜷,X) is

Y̌ (s, t; 𝛾, 𝜷,X) =
Ñ(s−)∑

j=1
I{Tj ≥ t} ⋅ e𝛾⋅𝛼(j)+𝜷

⊤X(t+Sj−1) + I{R(s ∧ C) ≥ t} ⋅ e𝛾⋅𝛼(Ñ(s−)+1)+𝜷⊤X(t+SÑ(s−)).

Therefore, we can again consider the family of submodels Λ𝜖,h(u) = ∫ u
0 (1 + 𝜖h(x))Λ(dx) for

h(⋅) ∈ 𝓁∞([0, 𝜏]) to see that the nonparametric estimator by fixing 𝛾 is

Λ̂n(t; 𝛾, 𝜷) = ∫
t

0

I
{∑n

i=1Y̌ i(𝜏, x; 𝛾, 𝜷,Xi) > 0
}∑n

i=1Y̌ i(𝜏, x; 𝛾, 𝜷,Xi)
N(𝜏, dx),

which simply replaces e𝜷⊤XY (𝜏, x; 𝛾) by Y̌ (𝜏, x; 𝛾, 𝜷,X) in (6). The parametric estimator can then
be readily obtained by maximizing the profile likelihood function. For the purpose of concise
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presentation, we use X to denote the covariate vector in the remaining of the paper. In the presence
of time-varying covariates, the derivatives of Y̌ (s, t; 𝛾, 𝜷,X) with respect to 𝛾 and 𝜷 can replace the
derivatives of e𝜷⊤XY (s, t; 𝛾) in all the theoretical findings.

2.4 Failure censoring

In this section, we verify that the derived ML estimators in Section 2.2 remain valid when the data
are failure censored, which is the setting in Dauxois et al. (2019). The authors considered a single
recurrent event with imperfect maintenances in their paper. Assume that the number of imperfect
maintenances of a repairable system is censored at m, which is a positive integer-valued random
variable upper bounded by a fixed given number N. Further assume that the distribution of m
does not involve the parameters 𝜽 and Λ. Based on the observation (T1, · · · ,Tm), the likelihood
function can be written as

L(𝛾, 𝜷,Λ) =
m∏

j=1

{
𝜆j(Tj) exp

[
−Λj(Tj)

]}
=

m∏
j=1

{
e𝛾𝛼(j)+𝜷

⊤X𝜆(Tj) ⋅ exp
[
−e𝛾𝛼(j)+𝜷

⊤XΛ(Tj)
]}

.

This likelihood is equal to (4) by letting C = Sm, where Sm is the occurrence time of the mth
failure. Therefore, the estimators �̂�n and Λ̂(⋅) given in Section 2.2 are also ML estimators under the
failure censoring mechanism. In Section 4, extensive simulations will be conducted to compare
the proposed ML estimators with the estimators in Dauxois et al. (2019) based on the failure
censored data.

3 ASYMPTOTIC PROPERTIES

In this section, we study the asymptotic properties of the estimators derived in Section 2, including
the consistency, weak convergence, and semiparametric efficiency.

3.1 Consistency and asymptotic normality

Following the conventional notation in the large sample theory in survival analysis, we let

S(0)
n (s, t; 𝛾, 𝜷) = n−1

n∑
i=1

e𝜷
⊤Xi Yi(s, t; 𝛾),

S(1)
n (s, t; 𝛾, 𝜷) =

(
n−1∑n

i=1e𝜷⊤Xi Y (1)
i (s, t; 𝛾)

n−1∑n
i=1e𝜷⊤Xi Yi(s, t; 𝛾)Xi

)
,

S(2)
n (s, t; 𝛾, 𝜷) =

(
n−1∑n

i=1e𝜷⊤Xi Y (2)
i (s, t; 𝛾) n−1∑n

i=1e𝜷⊤Xi Y (1)
i (s, t; 𝛾)X⊤

i

n−1∑n
i=1e𝜷⊤Xi Y (1)

i (s, t; 𝛾)Xi n−1∑n
i=1e𝜷⊤Xi Yi(s, t; 𝛾)X⊗2

i

)
,

where X⊗2 = XX⊤. Notice that S(1)
n is the gradient of S(0)

n and S(2)
n is the Hessian matrix of S(0)

n with
respect to the parametric part (𝛾, 𝜷⊤)⊤ ∈ Rp+1. Further define

Vn(s, t; 𝛾, 𝜷) =
S(0)

n (s, t; 𝛾, 𝜷)S(2)
n (s, t; 𝛾, 𝜷) − S(1)

n (s, t; 𝛾, 𝜷)⊗2

S(0)
n (s, t; 𝛾, 𝜷)2

, (8)
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and s(k)(𝜏, t; 𝛾, 𝜷) = E[S(k)
1 (𝜏, t; 𝛾, 𝜷)], for k = 0, 1, 2. It is obvious that supt∈[0,𝜏] ||S(k)

n (𝜏, t; 𝛾, 𝜷) −
s(k)(𝜏, t; 𝛾, 𝜷)|| →P 0 for every fixed 𝛾 and 𝜷 satisfying s(k)(𝜏, 0; 𝛾, 𝜷) < ∞. Furthermore, we can
obtain a result of uniform convergence with respect to 𝜽 according to the following lemma.

Lemma 2. Consider a convex neighborhood 𝚯 of 𝜽0. Let M𝛾 and M𝜷 be the supremum of |𝛾| and||𝜷|| in 𝚯. Suppose supt∈[0,𝜏] |X(t)| < MX, and the random variables defined below has finite second
moment:

Y (k)(𝜏, 0;M𝛾 ) =
Ñ(𝜏−)∑

j=1
𝛼k(j)eM𝛾 𝛼(j) + 𝛼k (Ñ (𝜏−) + 1

)
eM𝛾 𝛼(Ñ(𝜏−)+1),

where k= 0, 1, 2, and 3. Then

sup
t∈[0,𝜏],𝜽∈𝚯

||S(k)
n (𝜏, t; 𝛾, 𝜷) − s(k)(𝜏, t; 𝛾, 𝜷)|| →P 0.

We should remark that the conclusion in Lemma 2, that is, the last display, is usually treated as
a regularity condition in the literature of survival analysis. Using the advanced tools of empirical
process, the above lemma directly establishes these uniform convergence results, which will be
useful in establishing the asymptotic properties of our estimators. Actually, under the conditions
given in Lemma 2, it is easy to see that

sup
t∈[0,𝜏],𝜽∈𝚯

||s(k)(𝜏, t; 𝛾, 𝜷)||2 ≤ E||Y (k)(𝜏, 0;M𝛾 )||2e2𝜷⊤X < ∞.

That is, s(k)(𝜏, t; 𝛾, 𝜷) is uniformly bounded on [0, 𝜏] for k = 0, 1 and 2. In addition, notice that
ES(0)

n (𝜏, 𝜏; 𝛾, 𝜷) ≥ P {C ≥ 𝜏, T1 ≥ 𝜏} ⋅ Ee𝛾𝛼(1)+𝜷⊤X for every fixed 𝛾 and 𝜷. Therefore, if P{C ≥ 𝜏} >

0 and Λ0(𝜏) < ∞, then such s(0)(𝜏, t; 𝛾, 𝜷) is uniformly bounded away from 0.
Before presenting the asymptotic results, we list the following regularity conditions.

(i) P{C ≥ 𝜏} > 0 for the predetermined constant 𝜏, and the baseline cumulative intensity
function satisfies Λ0(𝜏) < ∞.

(ii) The covariate X is uniformly bounded, and there exists an M𝛾 > 𝛾 such that the second
moment of following random variables

Y (k)(𝜏, 0;M𝛾 ) =
Ñ(𝜏−)∑

j=1
𝛼k(j)eM𝛾 𝛼(j) + 𝛼k (Ñ (𝜏−) + 1

)
eM𝛾 𝛼(Ñ(𝜏−)+1),

are finite, where k = 0, 1, 2, 3.
(iii) Define v = s(2)∕s(0) − (s(1)∕s(0))⊗2, where s(k) is the limit of S(k)

n in Lemma 2. The matrix

Σ(𝛾0, 𝜷0) = ∫
𝜏

0
v(𝜏, x; 𝛾0, 𝜷0)s(0)(𝜏, x; 𝛾0, 𝜷0)𝜆0(x)dx,

is positive definite.

Condition (i) is a mild requirement on the underlying intensity process, which is commonly
adopted in recurrent data analysis. See Lin et al. (2000), Gao et al. (2019) and Huang et al. (2010).
Condition (ii) is the sufficient condition for Lemma 2. Conditions (iii) are widely used in survival
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analysis, for example, see Andersen and Gill (1982), Lin et al. (2000) and Adekpedjou and
Stocker (2015), among others.

The consistency of the estimators �̂�n, 𝜷n, and Λ̂n(t; �̂�n, 𝜷n) is summarized as follows.

Theorem 1. Under regularity conditions (i)–(iii), �̂�n = (�̂�n, 𝜷
⊤

n )⊤ converges to 𝜽0 = (𝛾0, 𝜷
⊤
0 )⊤ in

probability and

sup
0≤t≤𝜏

|||Λ̂n(t; �̂�n, 𝜷n) − Λ0(t)
||| → 0

in probability as n → ∞.

Next, we investigate the asymptotic normality of the estimators. For notational convenience,
define

D(t; 𝛾0, 𝜷0,Λ0) = ∫
t

0

s(1)(𝜏, x; 𝛾0, 𝜷0)
s(0)(𝜏, x; 𝛾0, 𝜷0)

Λ0(dx),

and

Dn(t; 𝛾, 𝜷) = ∫
t

0

S(1)
n (𝜏, x; 𝛾, 𝜷)

S(0)
n (𝜏, x; 𝛾, 𝜷)

Λ̂n(dx; 𝛾, 𝜷) = 1
n∫

t

0

S(1)
n (𝜏, x; 𝛾, 𝜷)

S(0)
n (𝜏, x; 𝛾, 𝜷)2

N(𝜏, dx).

By Theorem 1, Lemma 2, and a continuous mapping argument, it is readily seen that Dn(⋅; �̂�n, 𝜷n)
is a consistent estimator of D. Note that Dn(t; 𝛾, 𝜷) defined above is the derivative of Λ̂n(t; 𝛾, 𝜷) in
(6) with respect to 𝜽, and it will naturally appear in the estimator of the asymptotic variance of
Λ̂n(t; �̂�n, 𝜷n) when the delta method is applied. With the regularity conditions (i)–(iii), the weak
convergence results of �̂�n and Λ̂n(t; �̂�n, 𝜷n) are stated below.

Theorem 2. Under regularity conditions (i)–(iii), we have
(i) For the parametric part,

√
n(�̂�n − 𝜽0) is asymptotic normal with mean zero and variance

Σ𝜽 =
(
∫

𝜏

0

s(2)(𝜏, x; 𝛾0, 𝜷0)s(0)(𝜏, x; 𝛾0, 𝜷0) − s(1)(𝜏, x; 𝛾0, 𝜷0)⊗2

s(0)(𝜏, x; 𝛾0, 𝜷0)
Λ0(dx)

)−1

,

which can be consistently estimated by

Σ̂𝜽 =
(

1
n∫

𝜏

0
Vn(𝜏, x; �̂�n, 𝜷n)N(𝜏, dx)

)−1

,

where Vn is given in Equation 8.
(ii) For the nonparameric part, {

√
n(Λ̂n(t; �̂�n, 𝜷n) − Λ0(t))} converges weakly to a mean-zero

Gaussian process with covariance function

ΣΛ(t1, t2) = ∫
t1∧t2

0

Λ0(dx)
s(0)(𝜏, x; 𝛾0, 𝜷0)

+ D(t1; 𝛾0, 𝜷0,Λ0)⊤Σ𝜽D(t2; 𝛾0, 𝜷0,Λ0), (9)

and the covariance function can be consistently estimated by

Σ̂Λ(t1, t2) =
1
n∫

t1∧t2

0

N(𝜏, dx)
S(0)

n (𝜏, x; �̂�n, 𝜷n)2
+ Dn(t1; �̂�n, 𝜷n)⊤Σ̂𝜽Dn(t2; �̂�n, 𝜷n). (10)
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3.2 Asymptotic efficiency of the estimators

We show that the estimators derived above are asymptotically efficient by deriving the efficient
score functions for both the parametric and the nonparametric parts. For this purpose, we con-
sider a generic point (𝜽,Λ) in the parameter space, where𝜽 = (𝛾, 𝜷⊤)⊤. Consider the log-likelihood
function (4) based on the observations from one system. The score function for the parameter 𝜽
can be derived by taking derivative on the log-likelihood with respect to 𝜽, which can be neatly
written as

�̇�1(𝜽,Λ) =
𝜕

𝜕𝜽
𝓁(𝜏, 𝜏; 𝛾, 𝜷,Λ) = ∫

𝜏

0

(
𝛼(Ñ(u−) + 1)

X

)
M(du, 𝜏; 𝛾, 𝜷,Λ). (11)

To derive the tangent space for Λ, consider a parametric path 𝜖 → 𝜆𝜖,h through 𝜆 with

𝜕 log 𝜆𝜖,h(t)∕𝜕𝜖|𝜖=0 = h(t)𝜆(t),

where h ∈ 𝓁∞[0, 𝜏], the space of bounded functions over [0, 𝜏]. For this parametric submodel, as
we have already done in Section 2.2, the score function for the nonparametric part with respect
to this submodel is

B𝜽,Λh = 𝜕

𝜕𝜖

||||𝜖=0
𝓁(𝛾, 𝜷,Λ𝜖,h) = ∫

𝜏

0
h(x)M(𝜏, dx; 𝛾, 𝜷,Λ) = ∫

𝜏

0
h(R(u))M(du, 𝜏; 𝛾, 𝜷,Λ), (12)

where B𝜽,Λ ∶ 𝓁∞[0, 𝜏] → L0
2(P𝜽,Λ) is a linear operator, and L0

2(P𝜽,Λ) is the space of mean-zero func-
tions with finite second moments under P𝜽,Λ. A similar result could be found in proposition 1 of
Pena et al. (2001).

We begin with the efficiency of the parametric estimator �̂�n. Notice that the efficient score for
𝜽 is given by �̃�1(𝜽,Λ) = �̇�1(𝜽,Λ) − Π𝜽,Λ�̇�1(𝜽,Λ), where Π𝜽,Λ�̇�1(𝜽,Λ) is the orthogonal projection
of �̇�1(𝜽,Λ) onto the closure of the linear space spanned by B𝜽,Λh for h ∈ 𝓁∞[0, 𝜏]. In the following,
we show that B𝜽,Λh∗ is the projection of �̇�1(𝜽,Λ) onto the nuisance space, in which

h∗(x) =
s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

. (13)

According to Lemma 2, h∗ ∈ 𝓁∞[0, 𝜏] because s(1)(𝜏, x; 𝛾, 𝜷) is uniformly bounded, and
s(0)(𝜏, x; 𝛾, 𝜷) is bounded from zero. Next, we show that h∗ satisfies the following orthogonal
condition

E𝜽,Λ
[
B𝜽,Λh ⋅

(
�̇�1(𝜽,Λ) − B𝜽,Λh∗)] = 0p+1,

for all h ∈ 𝓁∞[0, 𝜏]. According to the score functions for the parameter part 𝜽 and nonparametric
part Λ in Equations 11 and (12), the left-hand side of the above display can be expressed as

E𝜽,Λ∫
𝜏

0
h (R(u))

[(
𝛼(Ñ(u−) + 1)

X

)
− h∗(R(u))

]
A(du, 𝜏; 𝛾, 𝜷,Λ). (14)
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Use proposition 1 in Pena et al. (2001) to see that the first term in the expectation is

∫
𝜏

0
h(R(u))

(
𝛼(Ñ(u−) + 1)

X

)
A(du, 𝜏; 𝛾, 𝜷,Λ) = ∫

𝜏

0
h(x)

(
e𝜷⊤XY (1)(𝜏, x; 𝛾)
e𝜷⊤XY (𝜏, x; 𝛾)X

)
Λ(dx),

and the second term is

∫
𝜏

0
h(R(u))h∗(R(u))A(du, 𝜏; 𝛾, 𝜷,Λ) = ∫

𝜏

0
h(x)h∗(x)e𝜷

⊤XY (𝜏, x; 𝛾)Λ(dx).

Notice that

E

[(
e𝜷⊤XY (1)(𝜏, x; 𝛾)
e𝜷⊤XY (𝜏, x; 𝛾)X

)]
= s(1)(𝜏, x; 𝛾, 𝜷),

and

E[e𝜷
⊤XY (𝜏, x; 𝛾)] = s(0)(𝜏, x; 𝛾, 𝜷).

Therefore, (14) is equal to

∫
𝜏

0
h(x)

(
s(1)(𝜏, x; 𝛾, 𝜷) − h∗(x)s(0)(𝜏, x; 𝛾, 𝜷)

)
Λ(dx).

With h∗ given in (13), it is readily seen that the above display equals 0p+1 for any h ∈ 𝓁∞[0, 𝜏].
That is, the function h∗ satisfies the orthogonal condition (14). and thus, the efficient score for 𝜽 is

�̃�1(𝜽,Λ) = �̇�1(𝜽,Λ) − Π𝜽,Λ�̇�1(𝜽,Λ)

= ∫
𝜏

0

[(
𝛼(Ñ(u−) + 1)

X

)
−

s(1)(𝜏,R(u); 𝛾, 𝜷)
s(0)(𝜏,R(u); 𝛾, 𝜷)

]
M(du, 𝜏; 𝛾, 𝜷,Λ),

and the efficient information is given by

Ĩ𝜽,Λ = E[�̃�1(𝜽,Λ)�̃�1(𝜽,Λ)⊤] = ∫
𝜏

0

s(2)(𝜏, x; 𝛾, 𝜷) ⋅ s(0)(𝜏, x; 𝛾, 𝜷) − s(1)(𝜏, x; 𝛾, 𝜷)2

s(0)(𝜏, x; 𝛾, 𝜷)
Λ(dx). (15)

Compare (15) with the asymptotic covariance matrix of �̂�n in Theorem 2 to see that the
estimator �̂�n is asymptotically efficient.

Next, we verify the asymptotic efficiency of the nonparametric estimator. Recall that the
statistical model is  = {P𝜽,Λ ∶ 𝜽 ∈ Rp+1,Λ ∈ } where  is the class of nondecreasing and
right-continuous functions with Λ(0) = 0. Define a map 𝜓 ∶  →  as 𝜓(P𝜽,Λ) = Λ. According
to theorem 25.48 of Van der Vaart (2000), verification of the asymptotic efficiency of Λ̂(⋅) at P𝜽,Λ
is equivalent to verifying that

(i) the map 𝜓 ∶  → 𝓁∞[0, 𝜏] is differentiable at P𝜽,Λ in the sense of Van der Vaart (2000); and
(ii) For each fixed t, the estimator Λ̂(t) is asymptotically efficient at P𝜽,Λ for estimating Λ(t) for

every t ∈ [0, 𝜏].
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First, we prove that 𝜓 is differentiable. Consider the submodel {P𝜖, 𝜖 ∈ } defined by P𝜖 =
P𝜽+𝜖a,Λ𝜖,h , where a ∈ Rp+1, Λ𝜖,h(t) = ∫ t

0 (1 + 𝜖h(u))Λ(du), h(t) ∈ 𝓁∞[0, 𝜏] and  = {𝜖 ∶ 𝜖 ≥ 0, 1 +
𝜖h(t) > 0,∀t ∈ [0, 𝜏]}. Hence the score function of this submodel is g(a, h) = a⊤�̇�1(𝜽,Λ) + B𝜽,Λh,
and the tangent space Ṗ𝜽,Λ is the collection of all score functions in this form. Using the definition
in Van der Vaart (2000), 𝜓 is differentiable at P𝜽,Λ relative to a given tangent set Ṗ𝜽,Λ if there exists
a continuous linear map �̇�𝜽,Λ ∶ L0

2(P𝜽,Λ) → 𝓁∞[0, 𝜏], such that for every g ∈ Ṗ𝜽,Λ and a submodel
𝜖 → P𝜖 with score function g,

𝜓(P𝜖) − 𝜓(P)
𝜖

→ �̇�𝜽,Λg. (16)

We show that the linear operator �̇�𝜽,Λ ∶ L0
2(P𝜽,Λ) → 𝓁∞[0, 𝜏] pointwisely defined by

�̇�𝜽,Λ(g)(t) = ⟨�̃�𝜽,Λ(t), g⟩P𝜽,Λ satisfies the above display, where

�̃�𝜽,Λ(t) = ∫
t

0

M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

−
[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]⊤

Ĩ−1
𝜽,Λ�̃�1(𝜽,Λ).

It is obvious that �̇�𝜽,Λ defined above is a linear operator on L0
2(P𝜽,Λ). In the following, we will first

show that it is a continuous operator, and �̇�𝜽,Λ(g) equals ∫ ⋅
0 h(x)Λ(dx), the limit of the left side of

(16). Use the Cauchy–Schwarz inequality to see that

�̇�𝜽,Λ(g)(t) = ⟨�̃�𝜽,Λ(t), g⟩P𝜽,Λ ≤ ||�̃�𝜽,Λ(t)||L0
2(P𝜽,Λ)||g||L0

2(P𝜽,Λ).

Using proposition 1 in Pena et al. (2001), the L2(P𝜽,Λ)-norm of �̃�𝜽,Λ(t) can be expressed as

{
∫

t

0

Λ(dx)
s(0)(𝜏, x; 𝛾, 𝜷)

+
[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]⊤

Ĩ−1
𝜽,Λ

[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]}1∕2

,

which is bounded above by{
∫

𝜏

0

Λ(dx)|s(0)(𝜏, x; 𝛾, 𝜷)| + ∫
𝜏

0

‖‖‖‖‖ s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

‖‖‖‖‖
2

Λ(dx) ‖‖‖Ĩ−1
𝜽,Λ

‖‖‖2

}1∕2

≡ M,

where ‖‖‖Ĩ−1
𝜽,Λ

‖‖‖2
is the largest eigenvalue of Ĩ−1

𝜽,Λ, which is bounded according to assumption
(iii). Besides, according to assumptions (i), (ii), and Lemma 2, we also have Λ(𝜏) < ∞ and
s(k)(𝜏, x; 𝛾, 𝜷) < ∞ for all x ∈ [0, 𝜏], which implies that M < ∞. Notice that the bound M does not
depend on t. Hence we have supt∈[0,𝜏] |�̇�𝜽,Λ(g)(t)| ≤ M||g||L2(P𝜽,Λ), which implies that �̇�𝜽,Λ(g) is a
bounded operator, and thus it is a continuous operator by theorem 1.32 in Rudin (1991).

Next, we show that for every g(a, h) = a⊤�̇�1(𝜽,Λ) + B𝜽,Λh ∈ Ṗ𝜽,Λ, the linear operator �̇�𝜽,Λ

satisfies �̇�𝜽,Λ(g) = ∫ ⋅
0 h(x)Λ(dx), that is, ⟨�̃�𝜽,Λ(t), g⟩P𝜽,Λ = ∫ t

0 h(x)Λ(dx) for every t ∈ [0, 𝜏]. This is
equivalent to show that

E𝜽,Λ
[
�̃�𝜽,Λ(t)�̇�1(𝜽,Λ)

]
= 0(p+1)×1,

E𝜽,Λ
[
�̃�𝜽,Λ(t)B𝜽,Λh

]
= ∫

t

0
h(x)Λ(dx). (17)
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To derive the first equation, we use Equation 12 to see that

∫
t

0

M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

= ∫
𝜏

0

I{x ≤ t}M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

= B𝜽,Λ
I{⋅ ≤ t}

s(0)(𝜏, ⋅; 𝛾, 𝜷)
.

Therefore, the left side of the first equation of (17) is given by

E𝜽,Λ
[
�̃�𝜽,Λ(t)�̇�1(𝜽,Λ)

]
= E𝜽,Λ

[(
∫

t

0

M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

−
[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]⊤

⋅ Ĩ−1
𝜽,Λ�̃�1(𝜽,Λ)

)
⋅ �̇�1(𝜽,Λ)

]
= E𝜽,Λ

[
B𝜽,Λ

I{⋅ ≤ t}
s(0)(𝜏, x; 𝛾, 𝜷)

⋅ �̇�1(𝜽,Λ)
]
− E𝜽,Λ

[
�̃�1(𝜽,Λ)�̇�1(𝜽,Λ)⊤

]
⋅ Ĩ−1

𝜽,Λ ⋅ ∫
t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx).

Note that �̇�1(𝜽,Λ) = �̃�1(𝜽,Λ) + Π𝜽,Λ�̇�1(𝜽,Λ), and E𝜽,Λ�̃�1(𝜽,Λ)B𝜽,Λh = 0(p+1)×1. Hence, the
above display is equal to

E𝜽,Λ

[
B𝜽,Λ

I{⋅ ≤ t}
s(0)(𝜏, ⋅; 𝛾, 𝜷)

⋅ Π𝜽,Λ�̇�1(𝜽,Λ)
]
− Ĩ𝜽,ΛĨ−1

𝜽,Λ ⋅ ∫
t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)

= E𝜽,Λ

[
∫

𝜏

0

I{x ≤ t}M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

⋅ ∫
𝜏

0

s(1)(𝜏, x; 𝛾, 𝜷)M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

]
− ∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)

= 0p+1,

which yields the first half of (17).
In order to verify the second half of (17), recall that E𝜽,Λ�̃�1(𝜽,Λ)B𝜽,Λh = 0p+1. Thus, we have

E𝜽,Λ�̃�𝜽,Λ(t)B𝜽,Λh

= E𝜽,Λ

[(
∫

t

0

M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

−
[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]⊤

⋅Ĩ−1
𝜽,Λ�̃�1(𝜽,Λ)

)
⋅ B𝜽,Λh

]
= E𝜽,Λ

[
∫

t

0

M(𝜏, dx; 𝛾, 𝜷,Λ)
s(0)(𝜏, x; 𝛾, 𝜷)

⋅ ∫
𝜏

0
h(x)M(𝜏, dx; 𝛾, 𝜷,Λ)

]
= ∫

t

0
h(x)Λ(dx).

Therefore, we have shown that the two equations in (17) hold. This implies that �̇�𝜽,Λ(g) =∫ ⋅
0 h(x)Λ(dx) for every g ∈ ̇𝜽,Λ. It is readily seen that �̇�𝜽,Λ is a continuous linear operator. As a

result, 𝜓 is differentiable relative to Ṗ𝜽,Λ at P𝜽,Λ.
Next, we show that Λ̂(t) is asymptotically efficient at P𝜽,Λ for estimating 𝜓(P𝜽,Λ)(t). Notice

that Λ(t) can be considered as a parameter of interest for a fixed t. We use a similar argument
when proving the efficiency of parametric part based on the differentiability of 𝜓 , which implies
that 𝜓(⋅)(t) is differentiable at P𝜽,Λ. Following lemma 25.19 and relevant definitions in Van der
Vaart (2000), it is obvious that the efficient influence function forΛ(t) is �̃�𝜽,Λ(t). Thus, the efficient
information for Λ(t) is given by

E𝜽,Λ
(
�̃�𝜽,Λ(t)

)2 = ∫
t

0

Λ(dx)
s(0)(𝜏, x; 𝛾, 𝜷)

+
[
∫

t

0

s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

Λ(dx)
]2

Ĩ−1
𝜽,Λ.
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Comparing the above display with the covariance function ΣΛ(t, t) stated in Theorem 2, we
can conclude that the estimator Λ̂n(t) for a fixed t with t ∈ [0, 𝜏] is asymptotically efficient. So
far, we have verified all conditions in theorem 25.48 of Van der Vaart (2000). As a result, the
nonparametric estimator Λ̂n(⋅) is asymptotically efficient at P𝜽,Λ.

4 SIMULATION

Simulations are conducted to assess the performance of the proposed semiparametric frame-
work. Because the traditional method in Dauxois et al. (2019) is only applicable to a fixed number
of failures, Section 4.1 first considers the failure censoring case for the comparison purpose. In
Section 4.2, the time censoring setting is then considered and some modifications are made to the
traditional method in order to make it applicable. At last, Section 4.3 considers the scenario with
covariates.

4.1 Scenario without covariates (failure censoring)

In this subsection, we compare the proposed method with the traditional method in the case of
failure censoring. The covariates are not considered here as the traditional method is not able to
incorporate the covariate information. In specific, let Tij be the interoccurence time between the
(j − 1)th and jth failures in the ith system, where i = 1,… ,n and j = 1,… ,ni. Define

Tinf = max
i=1,...,n

min
j=1,...,ni

Tij and Tsup = min
i=1,...,n

max
j=1,...,ni

Tij. (18)

To avoid Tinf > Tsup, let

Tsup = max
{

min
i=1,...,n

max
j=1,...,ni

Tij, (Tinf + 0.1)
}
. (19)

In Dauxois et al. (2019), two estimators of 𝛾 have been proposed and the one with better
performance is considered here. In specific, the estimator of 𝛾 is given by

�̂�1 =

∑N
j=2a(j)∫ Tsup

Tinf
(ln Λ̂Tj(t) − ln Λ̂T1(t))dt

(Tsup − Tinf)
∑N

j=2a2(j)
, (20)

where N = max{n1,… ,nn}, and Λ̂Tj(t) is the empirical cumulative hazard function of the jth
interoccurence time Tj.

The simulation settings are as follows. We set the baseline cumulative intensity function as
Λ0(t) = t2, which corresponds to a Weibull distribution with shape parameter 2 and scale param-
eter 1. In addition, let the fixed number of the failures N = 5 and 𝛼(j) = j − 1. To investigate
the performance under a variety of scenarios, let 𝛾 ∈ {0.1, 0.5, 1} and n ∈ {20, 50,100}. We first
consider the accuracy in estimating the parameter 𝛾 . Based on 2000 replications, the estimated
absolute biases and root mean square errors (rMSEs) under each setting are shown in Figure 1.
As seen, the proposed ML estimator performs satisfactorily in all the scenarios and it outperforms
the estimators by Dauxois et al. (2019). We then consider the nonparametric estimation part. The
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F I G U R E 2 The true baseline cumulative intensity function (true) and the estimated ones by the proposed
method (new) and the traditional method (old) by considering n = 20, 50, and 100 under failure censoring
[Colour figure can be viewed at wileyonlinelibrary.com]

mean values of 2000 estimated baseline cumulative intensity functions are shown in Figure 2,
where the true curves are also plotted. Generally, the estimated cumulative intensity functions
based on the proposed method match very well with the true curves in all the scenarios, while
the estimated curves by the traditional method perform not so well when 𝛾 = 0.1.

4.2 Scenario without covariates (time censoring)

In this subsection, we make a comparison between the proposed method and the traditional
method under the time censoring mechanism, which is a more practical setting in real applica-
tions. In order to implement the traditional method, Equations 18–(20) are again used. Because
the data are time censored, this treatment essentially means the time between the last repair and
the censoring time is discarded, and only the interoccurence times are utilized.

The censoring time C is assumed to follow the exponential distribution with mean 5 and the
other settings are the same as those in Section 4.1. Figures 3 and 4, respectively, show the per-
formance in estimating the parameter 𝛾 and the baseline cumulative intensity function. As seen,
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F I G U R E 4 The true baseline cumulative intensity function (true) and the estimated ones by the proposed
method (new) and the traditional method (old) by considering n = 20, 50, and 100 and Weibull shape 2 and scale
1 under time censoring [Colour figure can be viewed at wileyonlinelibrary.com]

the proposed method achieves high estimation accuracies in all the combinations of n and 𝛾 and
it outperforms the traditional method by a large margin. The poor performance of the traditional
method is not surprising as its implementation requires a truncation of the original data and
hence the information is not fully utilized.

To further validate our method, we then consider a different baseline cumulative intensity
function Λ0(t) =

√
t∕3, which corresponds to a Weibull distribution with shape parameter 0.5

and scale parameter 3, and the simulations results are shown in Figures 5 and 6. As expected, the
proposed method is more accurate in estimating 𝛾 . More importantly, the nonparametric estima-
tors based on the proposed method tally well with the true curves in all the scenarios, while the
estimated curves by the traditional method deviate significantly from the true values.

4.3 Scenario with covariates

In this subsection, we investigate the performance of the proposed methods when the covariates
are incorporated. We consider

𝜷⊤
0 X = 𝛽1X1 + 𝛽2X2 + 𝛽3X3,

http://wileyonlinelibrary.com
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F I G U R E 6 The true baseline cumulative intensity function (true) and the estimated ones by the proposed
method (new) and the traditional method (old) by considering n = 20, 50, and 100 and Weibull shape 0.5 and
scale 3 under time censoring [Colour figure can be viewed at wileyonlinelibrary.com]

where (𝛽1, 𝛽2, 𝛽3)⊤ = (0.5,−1, 0.1), and X1,X2, and X3, respectively, follow the standard normal
distribution, the standard exponential distribution and the standard uniform distribution. All the
other settings are the same as those in Section 4.1.

We first consider estimating the parameters 𝜽0 = (𝛾, 𝛽1, 𝛽2, 𝛽3)⊤. Figures 7 and 8, respectively,
show the estimated absolute biases and rMSEs based on 2000 replications by considering n =
20, 50 and 100. As seen, all the parameters can be satisfactorily estimated and the estimation
accuracy generally improves with the sample size n. On the other hand, the estimated baseline
cumulative intensity function as well as the true values are plotted in Figure 9. It is observed that
the nonparametric part can also be well estimated by the proposed method and when n ≥ 50, the
estimated baseline cumulative intensity functions are almost identical to the true ones.

5 REAL DATA APPLICATION

In this section, we demonstrate the proposed models and methods by a real example from
the automobile industry. The automobile manufacturer considered here is one of the largest
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F I G U R E 8 Root mean square error in estimating 𝜽 based on the proposed method by considering
n = 20, 50, and 100 [Colour figure can be viewed at wileyonlinelibrary.com]

automakers in the world and it has maintained a comprehensive warranty database which
recorded detailed warranty claim data of different types of automobiles. The warranty claim data
contain valuable information about product quality and reliability, and they can be used to, for
example, give early warnings of faulty designs, predict future claims and warranty costs, and
compare reliability with competing products. To achieve these, it is important to estimate the
reliability of the components wisely.

As an illustrative example, the component window regulator is considered in this study. From
the warranty claim database, we extract the repair records of the window regulator installed in
69 cars of the same model sold in a district, and the data are illustrated in Figure 10. Here, the
red circle and the blue cross represent the date of sale and the date of each repair, respectively.
To illustrate the methods, the end of study date is set as January 1, 2013, which is denoted by
the red vertical line in Figure 10. Among the 69 cars, 54 cars have at least one failure record of
the window regulator while the remaining 15 cars sold within the study period have no repair
records. Based on the use rates and the sales dates, it is readily seen that all the cars are still
within the two-dimensional warranty limit (i.e., 24 months or 60,000 miles warranty, whichever
comes first) on the data-freeze date, and the censoring is caused by administrative censoring. In
addition, it is observed from Figure 10 that the component failure time generally decreases with
each subsequent repair, which indicates the effects brought by the imperfect repair. Thus, we use
the EGFRR model to fit this dataset.
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F I G U R E 9 The estimated baseline cumulative intensity function based on the proposed method by
considering n = 20, 50, and 100 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 10 Repair records of the window regulator in 69 cars. The red circle denotes the sale date, the
blue cross denotes the repair date and the red vertical line denotes the censoring time [Colour figure can be
viewed at wileyonlinelibrary.com]

In the dataset, the mileage information is available and it reflects the actual use rate of the
car. Hence, it is likely that the component failure rate depends on the rate at which mileage
accumulates on a car. In this study, the value of usage rate, which is defined as mileage per
day, was calculated for each car with an observed mileage value prior to the end-of-study date.
Let 𝛼(j) = j − 1. Based on the estimation procedures in Section 2, we obtain that �̂� = 0.867 and
𝛽 = 0.997, and the respective 95% confidence intervals are (0.391, 1.347) and (0.344, 1.650), based
on the large-sample normal approximation. These results indicate that the imperfect repair and
the use rate have adverse effects on the component failure rate. In addition, Figure 11 shows the
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F I G U R E 11 Estimated baseline cumulative hazard function and baseline distribution function of the first
interoccurence time, as well as the 95% confidence intervals based on the proposed model and the Cox
proportional hazards model [Colour figure can be viewed at wileyonlinelibrary.com]

estimated baseline cumulative hazard function and the corresponding baseline distribution func-
tion of the first interoccurence time, that is, the time between the sale date and the first repair,
as well as the 95% confidence intervals based on the asymptotic results in Section 3. Note that
the baseline cumulative hazard function of the first interoccurence time is essentially equiva-
lent to the baseline cumulative intensity function Λ0(⋅). For comparison purpose, we have also
applied the classical Cox proportional hazards model to fit the first interoccurence times. This is
because there is no repair effect on the first failure times, and a satisfactory baseline cumulative
hazard/distribution function estimator of the first interoccurence time should match well with
that from the Cox model. In particular, the baseline cumulative hazard function based on the Cox
model can be obtained by using the famous Breslow estimator and then the baseline distribu-
tion function can be readily obtained (Lin, 2007). As seen from Figure 11, the estimated baseline
cumulative hazard function and distribution function of the first interoccurence time by the pro-
posed method tally reasonably well with the curves by the Cox model, indicating an adequate
fit of the EGFPP model. In addition, it is observed that the 95% pointwise confidence intervals
by the proposed method are narrower than those based on the Cox model. This is reasonable as
more failure data are utilized in the proposed method and hence more accurate estimation of the
component lifetime distribution is expected.

6 CONCLUSIONS AND REMARKS

In this paper, we have proposed the semiparametric inference framework for the time-censored
recurrent failure data with covariates under the EGFRR model. By careful projecting the score
functions to the tangent spaces, we have shown that both the parametric and nonparametric
estimators are asymptotically efficient. Extensive simulations and real examples have illustrated
that the proposed framework outperforms the existing methods and it is useful to extract valu-
able reliability information from the recurrent failure data in presence of time censoring and
covariates.

http://wileyonlinelibrary.com


WANG et al. 21

There are several research topics worth exploration. The first potential topic is about the expo-
nent function 𝛼(j). In this paper as well as many other existing studies, 𝛼(j) is pre-given with the
constraints that it is nondecreasing and 𝛼(1) = 0. In practice, a more plausible way to determine
𝛼(j) is to base on the recurrent failure data. One feasible solution is to first estimate 𝛼(j) based
on the empirical process and then verify the asymptotic properties of the estimator of 𝛼(j). In
addition, the 𝜒2 test may be used to test the goodness-of-fit of 𝛼(j). Nevertheless, more thorough
investigation is needed to look into the selection of 𝛼(j). Another possible research direction is to
consider the statistical inference of other popular imperfect repair models with time-censoring,
such as the models in Finkelstein (2008), Wu and Zuo (2010) and Alaswad and Xiang (2017). If a
similar martingale process can be constructed, the proposed method in this paper can be extended
to those models and the asymptotic properties may be similarly established.
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APPENDIX.

Proof of Lemma 1
We use a similar proof as that in Pena et al. (2001). According to the definition of N(⋅, t), for each
fixed t the compensator is given by A(s, t; 𝛾0, 𝜷0,Λ0) = ∫ s

0 Z(u, t)Ã(du; 𝛾0, 𝜷0,Λ0). Therefore,

A(s, t; 𝛾, 𝜷,Λ) = ∫
s

0
I{R(u) ≤ t}I{C ≥ t}e𝛾⋅𝛼(N∗(u−)+1)+𝜷⊤X𝜆(R(u))du

= ∫
s∧C

0

[N∗((s∧C)−)∑
j=1

I{Sj−1 < u ≤ Sj} + I{u > SN∗((s∧C)−)}

]
I{R(u) ≤ t}e𝛾⋅𝛼(N∗(u−)+1)+𝜷⊤X𝜆(R(u))du

=
N∗((s∧C)−)∑

j=1
∫

Ti

0
I{x ≤ t}e𝛾⋅𝛼(j)+𝜷

⊤X𝜆(x)dx + ∫
R(s∧C)

0
I{x ≤ t}e𝛾⋅𝛼(j)+𝜷

⊤XΛ(dx)

= ∫
t

0

[N∗((s∧C)−)∑
j=1

I{Tj ≥ x}e𝛾⋅𝛼(j) + I(R(s ∧ C) ≥ x)e𝛾⋅𝛼(N∗((s∧C)−)+1)

]
e𝜷

⊤XΛ(dx).

That is, A(s, t; 𝛾, 𝜷,Λ) = ∫ t
0 e𝜷⊤XY (s, x; 𝛾)Λ(dx).

https://doi.org/10.1111/sjos.12564
https://doi.org/10.1111/sjos.12564
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Proof of Proposition 1
It is obvious that the profile likelihood function 𝓁n is continuously differentiable since Y is a
continuous differentiable function with respect to 𝜽 = (𝛾, 𝜷⊤)⊤. According to theorem 4.5 in Rock-
afellar (1970), verification of the concavity of 𝓁n is equivalent to showing that the Hessian matrix
of 𝓁n is negative semidefinite. With the profile log-likelihood function defined in (7), the profile
likelihood score can be written as

Un(𝛾, 𝜷) =
1
n

n∑
i=1

∫
𝜏

0

(
𝛼(Ñi(u−) + 1)

Xi

)
Zi(u, 𝜏)Ñi(du)

− 1
n∫

𝜏

0

(∑n
i=1e𝜷⊤Xi Y (1)

i (𝜏, x; 𝛾)∑n
i=1e𝜷⊤Xi Yi(𝜏, x; 𝛾)Xi

)
1∑n

i=1e𝜷⊤Xi Yi(𝜏, x; 𝛾)
N(𝜏, dx). (A1)

Notice that the Hessian matrix of 𝓁n is given by

U (1)
n (𝛾, 𝜷) = 1

n∫
𝜏

0

S(1)
n (𝜏, x; 𝛾, 𝜷)⊗2 − S(0)

n (𝜏, x; 𝛾, 𝜷)S(2)
n (𝜏, x; 𝛾, 𝜷)

S(0)
n (𝜏, x; 𝛾, 𝜷)2

N(𝜏, dx).

In order to show that U (1)
n (𝛾, 𝜷) is negative semidefinite, we verify that the integrand

S(1)
n (𝜏, x; 𝛾, 𝜷)⊗2 − S(0)

n (𝜏, x; 𝛾, 𝜷)S(2)
n (𝜏, x; 𝛾, 𝜷),

is negative semidefinite for any 𝛾 , 𝜷, and x. For every y ∈ Rp+1, we have

y⊤S(1)⊗2
n y =

⎡⎢⎢⎣ 1
n

n∑
i=1

⎛⎜⎜⎝
Ñi(𝜏−)∑

j=1
y⊤

(
𝛼(j)
Xi

)
e𝛾⋅𝛼(j)+𝜷

⊤Xi I{Tij ≥ t}

+y⊤

(
𝛼
(

Ñi (𝜏−)
)

Xi

)
e𝛾⋅𝛼(Ñi(𝜏−))+𝜷⊤Xi I{Ri ((𝜏 ∧ Ci) −) ≥ t}

)]2

,

and

y⊤S(2)
n y = 1

n

n∑
i=1

⎡⎢⎢⎣
Ñi(𝜏−)∑

j=1

(
y⊤

(
𝛼(j)
Xi

))2

e𝛾⋅𝛼(j)+𝜷
⊤Xi I{Tij ≥ t}

+

(
y⊤

(
𝛼
(

Ñi (𝜏−)
)

Xi

))2

e𝛾⋅𝛼(Ñi(𝜏−))+𝜷⊤Xi I{Ri ((𝜏 ∧ Ci) −) ≥ t}
⎤⎥⎥⎦ ,

since y⊤z⊗2y = (y⊤z)2. Combine the two equations to see that

y⊤
[

S(1)
n (𝜏, x; 𝛾, 𝜷)⊗2 − S(0)

n (𝜏, x; 𝛾, 𝜷)S(2)
n (𝜏, x; 𝛾, 𝜷)

]
y ≤ 0,

for all 𝛾 , 𝜷 and x according to Cauchy–Schwarz inequality. That is, the Hessian matrix U (1)
n is

negative semidefinite and the profile likelihood function 𝓁n is thus concave.
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Proof of Lemma 2
We only show the proof for k = 0 here, since the proof for k = 1 and 2 is almost the same as
that for k = 0. Consider the class of functions  = {gt,𝜽(X ,Ñ, Ỹ ) = e𝜷⊤XY (𝜏, t; 𝛾) ∶ t ∈ [0, 𝜏],𝜽 ∈
𝚯} indexed by t and 𝜽. It is easy to see that

Eg2
0,𝜽 = E

⎡⎢⎢⎣
(Ñ(𝜏−)∑

j=1
eM𝛾 𝛼(j) + eM𝛾 𝛼(Ñ(𝜏−)+1)

)2

e2𝜷⊤X
⎤⎥⎥⎦ ,

which is finite because X has bounded support, and E
[
Y (0)(𝜏, 0;M𝛾 )2] < ∞.

Further, the map t → gt,𝜽(X ,Ñ, Ỹ ), when treated as a function of t, is right-continuous and
monotone decreasing. Thus, we can use dominated convergence theorem to see that Eg2

t,𝜽 is right
continuous and monotone decreasing. Therefore, for a given 𝜖 > 0, we first fix 𝜽 ∈ 𝚯 and consider
the partition 0 = t1 < · · · < tm = 𝜏 such that E

(
g(tk−),𝜽 − gtk−1,𝜽

)2
< 𝜖2. Then, [g(tk−),𝜽, gtk−1,𝜽] for k =

2, … ,m are brackets of L2(P)-size 𝜖, and the total number of brackets can be chosen of order
(1∕𝜖)2.

Next, we allow 𝜽 to change. Notice that

|||| 𝜕𝜕𝜽gt,𝜽
|||| ≤ |MX|eM𝜷MX Y (𝜏, 0,M𝛾 ) + eM𝜷MX

Ñ(𝜏−)∑
j=1

𝛼(j)eM𝛾 𝛼(j)+

eM𝜷MX𝛼(Ñ(𝜏−) + 1)eM𝛾 𝛼(Ñ(𝜏−)+1) ≡ ġ(X,Ñ, Ỹ ).

Let 𝜖 = 𝜖∕
√

Eġ2. For a fixed 𝜖, we first find an 𝜖-net 𝜽1, … ,𝜽q of 𝚯 with respect to the Euclidean
metric in Rp+1. For each j ≤ q, we follow the above procedure at the beginning of the proof to find
brackets of L2(P)-size 𝜖 for the functions {gt,𝜽j ∶ t ∈ [0, 𝜏]}. Enlarge each of the above brackets
to [g(tk−),𝜽j − 𝜖ġ, gtk−1,𝜽j + 𝜖ġ]. All of these brackets have L2(P)-size 3𝜖. Repeat the above procedure
for all j ≤ q. Here, q is not larger than the 𝜖-covering number of 𝚯, and is of order (1∕𝜖)p+1. For
each fixed j ≤ q, the 𝜖-bracketing number for {gt,𝜽j ∶ t ∈ [0, 𝜏]} is of order (1∕𝜖)2. Therefore, the
total number of 𝜖-brackets under the L2(P) norm is of order (1∕𝜖)p+3. This shows that the class of
functions  is P-Donsker.

Proof of Theorem 1
To establish the consistency of parametric estimator �̂�n, we let 𝚯(𝜖) = {𝜽 ∶ ||𝜽 − 𝜽0|| ≤ 𝜖,𝜽 ∈
Rp+1}, which is a compact set in Rp+1. Notice that to prove the weak consistency is equivalent to
verifying that for each 𝜖 > 0, P(�̂�n ∈ 𝚯(𝜖)) converges to 1. Without loss of generality, we consider
an arbitrary 𝜖 such that 𝚯(𝜖) ⊂ 𝚯.

First we are going to find a continuous function 𝓁(𝜽) such that

sup
𝜽∈𝚯(𝜖)

|𝓁n(𝜽) − 𝓁(𝜽)| →P 0, (A3)

where we denote 𝓁n(𝛾, 𝜷) by 𝓁n(𝜽) for notational convenience. Define

�̃�(𝜽) = ∫
𝜏

0

(
𝛾 ⋅ 𝛼(Ñ(u−) + 1) + 𝜷⊤X

)
Z(u, 𝜏)Ñ(du) − ∫

𝜏

0
log

(
s(0)(𝜏, x; 𝛾, 𝜷)

)
N(𝜏, dx),
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and let𝓁(𝜽) be the expectation of �̃�(𝜽)under 𝛾0, 𝜷0 andΛ0. Then 1
n

∑n
i=1�̃�i(𝜽) →P 𝓁(𝜽) by the law of

large numbers for every fixed 𝜽. In addition, the difference between 𝓁n(𝜽) and 1
n

∑n
i=1�̃�i(𝜽) equals

1
n∫

𝜏

0
log

(
s(0)(𝜏, x; 𝛾, 𝜷)
S(0)

n (𝜏, x; 𝛾, 𝜷)

)
N(𝜏, dx).

According to condition (ii) and Lemma 2, it converges to 0 in probability since

sup
x∈[0,𝜏]

||||||log

(
s(0)(𝜏, x; 𝛾, 𝜷)
S(0)

n (𝜏, x; 𝛾, 𝜷)

)|||||| →P 0,

and 1
n

N(𝜏, 𝜏) is uniformly tight. Thus, the difference 𝓁n(𝜽) − 1
n

∑n
i=1�̃�i(𝜽) →P 0, which yields

𝓁n(𝜽) →P 𝓁(𝜽) for every 𝜽. Then following theorem II.1 in Andersen and Gill (1982), we use con-
cavity and pointwise convergence of 𝓁n to see that 𝓁(𝜽) is a concave function, and 𝓁n converges
to 𝓁 uniformly on every compact set K ⊂ 𝚯. That is,

sup
𝜽∈K

|𝓁n(𝜽) − 𝓁(𝜽)| →P 0.

Since 𝚯(𝜖) is compact in Rp+1, we let K = 𝚯(𝜖) to derive (A3). Furthermore, the continuity of 𝓁
can be easily derived from the continuity of 𝓁n and the uniformly convergence on every compact
set in 𝚯.

Next, we demonstrate that 𝓁(𝜽) is maximized uniquely at 𝜽0. Because 𝓁 is continuous and
concave on 𝚯, we consider the maximum set 𝚯0 = {𝜽 ∈ 𝚯 ∶ 𝓁(𝜽) = sup𝜽∈𝚯 𝓁(𝜽)}. In order to
show that 𝚯0 = {𝜽0}, we are going to verify that the derivative vector 𝓁(1)(𝜽0) = 0(p+1)×1 and the
Hessian matrix 𝓁(2)(𝜽0) is negative definite. Because �̃�

(1)(𝜽) is upper bounded by

∫
𝜏

0

(
𝛼(Ñ(u−) + 1)

X

)
Z(u, 𝜏)Ñ(du) + sup

x∈[0,𝜏],𝜽∈𝚯

‖‖‖‖‖ s(1)(𝜏, x; 𝛾, 𝜷)
s(0)(𝜏, x; 𝛾, 𝜷)

‖‖‖‖‖N(𝜏, 𝜏),

we use dominated convergence theorem to see that 𝓁(1)(𝜽) = E[�̃�(1)(𝜽)]. Similarly, we can also
present that 𝓁(2)(𝜽) = E[�̃�(2)(𝜽)]. Then taking derivative on both side of Equation 3 with respect
to 𝜽, we have

∫
𝜏

0

(
𝛼(Ñ(u−) + 1)

X

)
Z(u, 𝜏)Ã(du; 𝛾, 𝜷,Λ) = ∫

𝜏

0

(
e𝜷⊤XY (1)(𝜏, x; 𝛾)
e𝜷⊤XY (𝜏, x; 𝛾)X

)
Λ(dx). (A4)

Thus, the derivative of �̃� evaluated at 𝜽0 is given by

�̃�
(1)(𝜽0) = ∫

𝜏

0

(
𝛼(Ñ(u−) + 1)

X

)
Z(u, 𝜏)M̃(du; 𝛾0, 𝜷0,Λ0)

− ∫
𝜏

0

s(1)(𝜏, x; 𝛾0, 𝜷0)
s(0)(𝜏, x; 𝛾0, 𝜷0)

M(𝜏, dx; 𝛾0, 𝜷0,Λ0).

+ ∫
𝜏

0

[(
e𝜷⊤XY (1)(𝜏, x; 𝛾)
e𝜷⊤XY (𝜏, x; 𝛾)X

)
−

s(1)(𝜏, x; 𝛾0, 𝜷0)
s(0)(𝜏, x; 𝛾0, 𝜷0)

e𝜷
⊤XY (𝜏, x; 𝛾)

]
Λ0(dx), (A5)
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Notice that according to the martingale structure in Lemma 1, the expectation of �̃�(1)(𝜽0)
equals 0(p+1)×1. That is, 𝓁(1)(𝜽0) = E[�̃�(1)(𝜽0)] = 0(p+1)×1. Furthermore, since

�̃�
(2)(𝜽0) = ∫

𝜏

0

s(2)(𝜏, x; 𝛾0, 𝜷0)s(0)(𝜏, x; 𝛾0, 𝜷0) − s(1)(𝜏, x; 𝛾0, 𝜷0)⊗2

s(0)(𝜏, x; 𝛾0, 𝜷0)2 N(𝜏, dx),

we have 𝓁(2)(𝜽0) = −Σ(𝛾0, 𝜷0), which is negative definite by assumption (iii). Therefore, we have
proved that 𝚯0 = {𝜽0}, which implies that 𝓁 is maximized uniquely at 𝜽0.

After that, we consider the value of the parametric estimator �̂�n. Notice that the con-
tinuous function 𝓁 has a maximizer 𝜽𝜖 on 𝜕𝚯(𝜖) = {𝜽 ∶ ||𝜽 − 𝜽0|| = 𝜖,𝜽 ∈ Rp+1}, the bound-
ary of 𝚯(𝜖), which is a compact set in Rp+1. Then we let 𝛿 = 𝓁(𝜽0) − 𝓁(𝜽𝜖) and An = {𝜔 ∶
sup𝜽∈𝚯(𝜖) |𝓁n(𝜽;𝜔) − 𝓁(𝜽)| < 𝛿∕2}. Obviously, 𝛿 > 0 since 𝓁 has a uniquely maximizer 𝜽0. Thus,
for every 𝜔 ∈ An and every 𝜽 ∈ 𝚯(𝜖)C, we have the fact that

𝓁n(�̃�, 𝜔) < 𝓁(�̃�) + 𝛿∕2 ≤ 𝓁(𝜽𝜖) + 𝛿∕2 = 𝓁(𝜽0) − 𝛿∕2 < 𝓁n(𝜽0, 𝜔) ≤ 𝓁n(�̂�n, 𝜔),

where �̃� = 𝜽0 + 𝜖(𝜽 − 𝜽0)∕||𝜽 − 𝜽0|| is the intersection point between 𝜕𝚯(𝜖) and the line segment
between 𝜽 and 𝜽0. Notice that 𝓁n(𝜽, 𝜔) < 𝓁n(�̃�, 𝜔) < 𝓁n(�̂�n, 𝜔) since 𝓁n is concave. Therefore, �̂�n ∉
𝚯(𝜖)C for every 𝜔 ∈ An, which implies that �̂�n ∈ 𝚯(𝜖). According to the uniform convergence of
𝓁n on 𝚯(𝜖), we find that P(An) → 1. As a result, P(�̂�n ∈ 𝚯(𝜖)) → 1 for arbitrary 𝜖, which implies
weak consistency for parametric estimator �̂�n.

On the other hand, to show the consistency of the nonparametric part, we telescope using
Λ̂n(⋅; 𝛾0, 𝜷0) to get

|Λ̂n(t; �̂�n, 𝜷n) − Λ0(t)| ≤ |Λ̂n(t; �̂�n, 𝜷n) − Λ̂n(t; 𝛾0, 𝜷0)| + |Λ̂n(t; 𝛾0, 𝜷0) − Λ0(t)|.
According to theorem 1 in Pena et al. (2001),

sup
1≤t≤𝜏

|Λ̂n(t; 𝛾0, 𝜷0) − Λ0(t)| →P 0.

Besides, use the definition of Λ̂n(⋅; 𝛾, 𝜷) to see that

sup
0≤t≤𝜏

|||Λ̂n(t; �̂�n, 𝜷n) − Λ̂n(t; 𝛾0, 𝜷0)
|||

≤ 1
n∫

𝜏

0

||||| I{S(0)
n (𝜏, x; �̂�n, 𝜷n) > 0}

S(0)
n (𝜏, x; �̂�n, 𝜷n)

−
I{S(0)

n (𝜏, x; 𝛾0, 𝜷0) > 0}
S(0)

n (𝜏, x; 𝛾0, 𝜷0)

|||||N(𝜏, dx).

Because (�̂�n, 𝜷
⊤

n )⊤ →P (𝛾0, 𝜷
⊤
0 )⊤ and S(0)

n (𝜏, x; 𝛾, 𝜷) is a uniformly bounded continuous function
with respect to 𝜽, the second line above converges to 0 in probability. Combine the results to see
that the nonparametric estimator Λ̂n(⋅) is weakly consistent.

Proof of theorem 2
Define

Un(𝛾0, 𝜷0)(s) =
1
n

n∑
i=1

∫
s

0

[(
𝛼(Ñi(u−) + 1)

Xi

)
−

S(1)
n (𝜏,Ri(u); 𝛾0, 𝜷0)

S(0)
n (𝜏,Ri(u); 𝛾0, 𝜷0)

]
× Zi(u, 𝜏)M̃i(du; 𝛾0, 𝜷0,Λ0), (A6)
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which is an local martingale with respect to the filtration s. Notice that when s = 𝜏, Un(𝛾0, 𝜷0)(𝜏)
equals the profile likelihood score. To verify the weak convergence of

√
n
(
�̂�n − 𝜽0

)
, we use Taylor

expansion to see that

0 −
√

nUn(𝛾0, 𝜷0)(𝜏) =
√

nU (1)
n (𝛾0, 𝜷0)(𝜏)

(
�̂�n − 𝜽0

)
+ op

(√
n ‖‖‖�̂�n − 𝜽0

‖‖‖) .

Then we can derive the weak convergence of
√

n
(
�̂�n − 𝜽0

)
based on the weak convergence of√

nUn(𝛾0, 𝜷0) using the delta method.
For the nonparametric estimator, notice that√

n
(
Λ̂n(t) − Λ(t)

)
=
√

n
(
Λ̂n(𝜏, t; �̂�n, 𝜷n) − Λ̂n(𝜏, t; 𝛾0, 𝜷0)

)
+
√

n
(
Λ̂n(𝜏, t; 𝛾0, 𝜷0) − Λ̃n(𝜏, t; 𝛾0, 𝜷0)

)
+
√

n
(
Λ̃n(𝜏, t; 𝛾0, 𝜷0) − Λ(t)

)
,

(A7)

where Λ̃n(s, t; 𝛾, 𝜷) = ∫ t
0 I{S(0)

n (s, x; 𝛾, 𝜷) > 0}Λ(dx). The first term converges to a tight limit in dis-
tribution according to the delta method and the weak convergence of

√
n
(
�̂�n − 𝜽0

)
, while the

third term converges to 0 in probability by the proof of theorem 1 in Pena et al. (2001).
Therefore, we construct the joint random variable by

Zn;t1,t2,…,tm (s) =
(√

nUn
(
𝛾0, 𝜷0

)
(s)⊤,Zn,(1+p+1)(s),Zn,(1+p+2)(s),… ,Zn,(1+p+m)(s)

)⊤

,

where the first term is a (1 + p)-dimensional vector incorporating
√

n(�̂�n − 𝜽), and

Zn,(1+p+i)(s) = ∫
ti

0

M(s, dx; 𝛾0, 𝜷0,Λ0)√
nS(0)

n (𝜏, x; 𝛾0, 𝜷0)
=

n∑
i=1

∫
s

0

Mi(du, ti; 𝛾0, 𝜷0,Λ0)√
nS(0)

n (𝜏,Ri(u); 𝛾0, 𝜷0)
. (A8)

Furthermore, according to the definition in (A6) and (A8), the random variable Zn;t1,t2,…,tm (s)
can be written as

Zn;t1,t2,…,tm(s) =
1√
n

n∑
i=1

∫
s

0
H(n)

i (u)M̃i(du; 𝛾0, 𝜷0,Λ0),

where

H(n)
i (u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[(
𝛼(Ñi(u−) + 1)

Xi

)
− S(1)

n (𝜏,Ri(u);𝛾0,𝜷0)
S(0)

n (𝜏,Ri(u);𝛾0,𝜷0)

]
I{Ri(u)≤t1}

S(0)
n (𝜏,Ri(u);𝛾0,𝜷0)

⋮
I{Ri(u)≤tm}

S(0)
n (𝜏,Ri(u);𝛾0,𝜷0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



28 WANG et al.

For notational convenience, we denote this (1 + p + m)-dimensional vector by

H(n)
i (u) =

(
H(n)

i,1 (u),H(n)
i,2 (u), … ,H(n)

i,1+p+m(u)
)
.

Next, we use the Martingale CLT given in theorem 5.3.5, Fleming and Harrington (2005) to see
that the random process Zn;t1,t2,…,tm (s), s ∈ [0, 𝜏] converges weakly to a Gaussian process. Actually,
using a similar proof as we have done in the proof of Theorem 1, it is easy to see that for all
s ∈ [0, 𝜏], there exists a matrix

(
Γk,l(s)

)
(1+p+m)×(1+p+m) such that

⟨
Zn;t1,…,tm;k,Zn;t1,…,tm;l

⟩
(s) →P Γk,l(s), ∀k, l ∈ [1, 1 + p + m], (A9)

where the covariance matrix evaluated at 𝜏 satisfies
(
Γk,l(𝜏)

)
(1+p+m)×(1+p+m) = Γ, where

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫ 𝜏

0
s(2)(𝜏,x)s(0)(𝜏,x)−s(1)(𝜏,x)⊗2

s(0)(𝜏,x)2
Λ0(dx) 0 0 … 0

0 ∫ t1
0

Λ0(dx)
s(0)(𝜏,x)

∫ t1∧t2
0

Λ0(dx)
s(0)(𝜏,x)

… ∫ t1∧tm
0

Λ0(dx)
s(0)(𝜏,x)

0 ∫ t2∧t1
0

Λ0(dx)
s(0)(𝜏,x)

∫ t2
0

Λ0(dx)
s(0)(𝜏,x)

… ∫ t2∧tm
0

Λ0(dx)
s(0)(𝜏,x)

⋮ ⋮ ⋮ ⋱ ⋮

0 ∫ tm∧t1
0

Λ0(dx)
s(0)(𝜏,x)

∫ tm∧t2
0

Λ0(dx)
s(0)(𝜏,x)

… ∫ tm
0

Λ0(dx)
s(0)(𝜏,x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and s(k)(𝜏, x) is the abbreviation for s(k)(𝜏, x; 𝛾0, 𝜷0). Besides, the Linderberg condition

⟨
Zn;t1,…,tm;k,𝜖 ,Zn;t1,…,tm;l,𝜖

⟩
(s) = 1

n

n∑
i=1

∫
s

0

(
H(n)

i,k (u)
)2

I{H(n)
i,k (u) ≥

√
n𝜖}Ãi(du; 𝛾0, 𝜷0,Λ0), (A10)

can be shown by a similar proof as in theorem 31.1, Pena et al. (2000). Therefore, we use theorem
5.3.5 in Fleming and Harrington (2005) to see that the random process Zn;t1,t2,… ,tm(⋅) converges to a
multivariate Gaussian process with mean 01+p+m and independent increment, and the covariance
matrix between time s1 and s2 is Γ(s1 ∧ s2).

As a result, the weak convergency of the parametric estimators can be derived from the con-
vergence of Zn;t1,t2,… ,tm(𝜏). For the parametric part, notice that the first (1 + p) elements of Zn is√

nUn
(
𝛾0, 𝜷0

)
(𝜏)⊤. Then we use the delta method to see that

√
n
(
�̂�n − 𝜽0

)
is asymptotic normal

with mean zero and covariance matrix

Σ𝜽 =
(

1
n∫

𝜏

0

s(0)(𝜏, x; 𝛾0, 𝜷0)s(2)(𝜏, x; 𝛾0, 𝜷0) − s(1)(𝜏, x; 𝛾0, 𝜷0)⊗2

s(0)(𝜏, x; 𝛾0, 𝜷0)
Λ0(dx)

)−1

.

Actually, the consistency of the estimator denoted by Σ̂𝜽 can be shown using the same method in
the proof of Theorem 1. For the of nonparametric estimator Λ̂n, we use the decomposition in (A7)
to see that√

n
(
Λ̂n(ti) − Λ̃(ti)

)
= Dn(ti, 𝛾0, 𝜷0)⊤

(
U (1)

n (𝛾0, 𝜷0)(𝜏)
)−1

Un(𝛾0,Λ0)(𝜏)

+ ∫
ti

0

n−1M(𝜏, dx; 𝛾0, 𝜷0,Λ0)
S(0)

n (𝜏, x; 𝛾0, 𝜷0)
+ op

(√
n ‖‖‖�̂�n − 𝜽0

‖‖‖) + op(1),
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where

Dn(ti, 𝛾0, 𝜷0) = ∫
ti

0

S(1)
n (𝜏, x; 𝛾0, 𝜷0)

S(0)
n (𝜏, x; 𝛾0, 𝜷0)2

N(𝜏, dx),

is the derivative of Λ̂n with respect to 𝜽. According to the delta method, the random vector

√
n
((

Λ̂n(t1) − Λ̃(t1)
)
,
(
Λ̂n(t2) − Λ̃(t2)

)
,… ,

(
Λ̂n(tm) − Λ̃(tm)

))⊤

,

converges weakly to an multivariate normal distribution with mean 0m and covariance matrix
ΣΛ =

(
Σi,j

)
m×m, where

Σi,j = Dn(ti, 𝛾0, 𝜷0)⊤Σ𝜽Dn(tj, 𝛾0, 𝜷0) + ∫
ti∧tj

0

Λ(dx)
s(0)(𝜏, x; 𝛾0, 𝜷0)

.

In addition, according to the proof of theorem 3 in Spiekerman and Lin (1998) and theorem 31.1
in Pena et al. (2000), the random process

√
n
(
Λ̂n(⋅) − Λ(⋅)

)
is tight. As a result, following theorem

B.1.3 in Fleming and Harrington (2005), the random process
√

n
(
Λ̂n(t) − Λ̃(t)

)
converges weakly

to a mean-zero Gaussian process with covariance matrix

ΣΛ(t1, t2) = ∫
t1∧t2

0

Λ0(dx)
s(0)(𝜏, x; 𝛾0, 𝜷0)

+ D(t1; 𝛾0, 𝜷0,Λ0)⊤Σ𝜽D(t2; 𝛾0, 𝜷0,Λ0),

since Dn(t, 𝛾0, 𝜷0) converges to D(t1; 𝛾0, 𝜷0,Λ0) in probability for every t ∈ [0, 𝜏]. Similarly, we can
establish the consistency of Σ̂Λ(t1, t2) using the same way as we have done in Theorem 1.


