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Abstract: This study proposes a machine learning (ML) model to predict the displacement response
of high-rise structures under various vertical and lateral loading conditions. The study combined
finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create
a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML
model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM)
layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral
(X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors
(MSE) of 0.1796 and 0.0033, respectively, with R2 values of 0.8416 and 0.9939. The model’s predictions
differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral
displacements in the Y and X directions, respectively. The results demonstrate the model’s high
accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM)
in high-rise buildings. This research highlights the potential of ML to provide real-time displacement
predictions under various load conditions, offering practical applications for ensuring the structural
integrity and safety of high-rise buildings, particularly in high-risk seismic areas.

Keywords: SHM; RNN; LSTM; FEA; optimization; high-rise structure

1. Introduction

Structural health monitoring is a critical aspect of structural engineering that involves
the continuous or periodic monitoring and assessment of structures to detect damage and
ensure their safety, reliability, and longevity. This process integrates various sensing tech-
nologies, data analysis techniques, and computational models to identify potential issues
such as material fatigue, cracking, and deformation, ultimately helping to avoid catastrophic
failures in infrastructure [1,2]. SHM systems are widely applied in the monitoring of bridges,
buildings, and other civil structures. These systems utilize smart sensors, such as piezo-
electric, optical fiber, and magnetostrictive sensors, to capture real-time data on structural
performance. These data are then analyzed using advanced techniques like ML and artificial
intelligence to identify anomalies, enabling the early detection of structural issues [2,3].

Since the construction of high-rise buildings began, research on their various aspects
has become a key focus [4]. Gunel and Ilgin [5] reviewed the evolution of tall building
structures, noting a shift from gravity to lateral loads like wind and earthquakes. As cities
and architecture have advanced, buildings have become taller and more complex, posing
new challenges for maintenance, safety, and structural integrity. SHM plays a crucial
role in addressing these challenges, focusing on damage detection and overall building
health through population-based models and dynamic monitoring during construction.
Astorga et al. [6] highlight SHM techniques using transfer learning and Gaussian mixture
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models to classify damage and aid decision-making. Nicoletti et al. [7] stress dynamic moni-
toring during construction to track modal property changes and prevent errors. Xu et al. [8]
studied the dynamic characteristics of a 600-meter skyscraper with an ATMD during Super
Typhoon Saola, while Zhou et al. [3] analyzed the time-varying dynamics of a 420 m build-
ing during typhoons. Zhou et al. [9] used social sensing and computer vision to monitor
the Xiamen twin towers during Super Typhoon Soksuri. Li et al. [10] assessed Typhoon
Vicente’s impact on a 420 m building in Hong Kong, comparing wind tunnel predictions
with field data. Comprehensive reviews for vibration-based signal processing techniques
for structural health monitoring (SHM) have also been presented [11,12]. The reviews
categorized methods into time- and frequency-domain approaches for dynamic feature
extraction and structural damage detection, addressing the strengths and limitations of each
technique. Mousavi et al. [13] investigated a new method combining empirical wavelet
transform (EWT) and artificial neural networks (ANN) for damage detection in a steel truss
bridge. The approach efficiently detects and classifies damage using signal features like
energy, RMS, and entropy.

Wireless sensor networks (WSNs) are essential in advancing SHM for high-rise build-
ings, where ML algorithms process sensor data to detect anomalies and predict failures [14].
These networks enable real-time, continuous monitoring of critical parameters like strain,
temperature, and displacement, providing valuable insights into building health.

Finite element analysis (FEA) is a powerful computational method in structural moni-
toring, assessing how a structure behaves under various loading conditions. It predicts a
structure’s reaction to load and environmental factors [15]. FEA is often combined with
sensor data to validate and improve the accuracy of ML models in SHM. This hybrid ap-
proach enhances the predictive capabilities of monitoring systems by training ML models
with FEA simulation results [16]. Ruggieri et al. [17] used FEA to simulate a building’s
response to vibrations during dredging at Bari Port, ensuring structural safety.

SHM has evolved to provide continuous condition monitoring and real-time analysis,
supporting predictive maintenance and enhancing the durability of high-rise buildings
by integrating ML. Recent SHM advancements use ML algorithms to process large sensor
datasets and detect patterns and anomalies. High-rise buildings are vulnerable to envi-
ronmental forces like wind and earthquakes. ML is now vital for automating damage
detection, as traditional methods like Fourier transforms and wavelet analysis were limited
by noise and environmental variability. Early ML applications in SHM, such as ANN [18],
SVM [19] and genetic algorithms [20], focused on feature classification but faced challenges
in real-world conditions. Lin et al. [21] demonstrated that ML algorithms provide more
accurate predictions of crosswind load effects on tall buildings. Shahbazi et al. [22] showed
that ANNs work well with small datasets, producing solid, generalizable results. Opti-
mization and ANN-based algorithms have been used for damage detection in complex
geometries [23,24]. For instance, Zhou et al. [25] developed an LSTM model to estimate
the displacement of a 420 m building during Super Typhoon Mangkhut, validated by field
measurements. Parisi et al. [26] developed an ML method using a convolutional neural
network (CNN) to detect damage in steel truss bridges, achieving 93% accuracy in classify-
ing raw strain measurement data. Cabboi et al. [27] applied a damage assessment strategy
to historic towers, integrating vibration monitoring with FE model updates to improve
damage localization accuracy. Ierimonti et al. [28] introduced a Bayesian model for tracking
structural degradation over time, which was validated in a school building. García-Macías,
and Ubertini advanced SHM automation with statistical methods and real-time monitoring
models [29]. Sapidis et al. [30] introduced a 1-D CNN for autonomously detecting cracks in
fiber-reinforced concrete, utilizing piezoelectric transducers to capture electromechanical
impedance data and achieving 95.24% accuracy. Similarly, Ali and Cha [31] developed
a deep learning-based approach for subsurface damage detection in steel bridges, utiliz-
ing infrared thermography and a modified deep inception neural network (DINN). Their
method achieved 96% accuracy and 97.79% specificity, validated through ultrasonic pulse
velocity tests. Sen et al. [32] proposed a multi-component deconvolution interferometry



Buildings 2024, 14, 3261 3 of 18

technique for predicting seismic structural responses, addressing sparse sensor issues.
Their surrogate model, tested on Groningen structures, demonstrated high accuracy de-
spite measurement uncertainties. Yang et al. [33] employed infrared thermal imaging and
an enhanced Faster R-CNN to detect cracks in steel, achieving 95.54% accuracy and 92.41%
mean average precision, surpassing conventional methods. In the realm of smart buildings,
Yu et al. [34] developed a deep convolutional neural network (DCNN) that processes raw
vibration data for automatic damage detection without requiring manual feature selection
and demonstrated high accuracy in tests on a five-story building under seismic loads.

Although there are many studies in SHM, research specifically focused on SHM for
high-rise structures is relatively limited, with most studies focusing on numerical methods
and sensor-based approaches. These structures’ critical importance necessitates exploring
more accurate and practical forecasting methods. Therefore, the main goal of this study is
to develop a predictive ML model to evaluate the conditions of high-rise buildings after
imposing various and previously unseen loads in both vertical (across various floors) and
lateral directions. This framework effectively examines building responses regarding verti-
cal and lateral displacements. Alongside this critical challenge, and despite the advances
ML has brought to SHM, several challenges remain in developing ML for SHM. The first
and foremost requirement for high-performance ML models is extensive, high-quality
datasets for training. ML models can be sensitive to the quality of input data, which can be
challenging to obtain, particularly in the case of rare events such as extreme weather or
seismic activity [15,35]. Another challenge is the interpretability of ML models, as many
state-of-the-art techniques, especially deep learning models, operate as "black boxes" with
limited transparency in how predictions are made [36,37]. This research addressed these
challenges by numerically analyzing various model configurations using FEA to generate a
wide range of high-quality data. Using LSTM layers inside the RNN model, we tried to
extend the interpretability of the model.

Following the introduction, the methodology for developing the FEA and ML models
is discussed. The results section presents the ML model’s performance in predicting the
expected targets, and these results are compared with actual values obtained from FEA.
Finally, the study concludes with an analysis of the model’s effectiveness, addressing its
strengths and limitations and providing insights into the implications of these findings for
future research and practical applications in high-rise structures SHM. Potential improve-
ments and future directions for enhancing the accuracy and interpretability of ML models
in this field are also suggested.

2. Methodology

This research aimed to develop an ML model capable of predicting high-rise building
displacement under various vertical and lateral loadings, enabling convenient SHM without
requiring extensive FEA simulations. The developed ML model allows users to input
different loading scenarios for each floor and façade of the structure, simulating unforeseen
situations that might impact the building’s integrity. To achieve this objective, we employed
a combination of parametric modeling, FEA, optimization techniques, and ML methods.
The following sections provide a detailed account of each step in the process.

2.1. Base Structure Modeling

Accurate simulation of various loading conditions requires a precise high-rise building
model. For this purpose, we utilized Grasshopper 3D [38], a visual programming language
integrated with Rhinoceros 3D, a computer-aided design (CAD) application. Grasshopper
3D provides a flexible and dynamic environment for parametric modeling, enabling easy
adjustments to design parameters and rapid iteration of structural configurations. The
building model used in this study is a 20-story high-rise structure with a base area of
1200 m2, designed with an internal shear core to withstand lateral loads such as wind and
earthquakes—a common feature in high-seismic zones such as Tabriz in Iran. Tabriz is clas-
sified as a high-risk seismic zone under the Iranian Seismic Code (Standard No. 2800) [39],
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with a seismic zone factor (Z) that accounts for the region’s expected ground acceleration.
The high-rise structure model is presented in Figure 1. The building structure cross sections
and material specifications are presented in Table 1.
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Figure 1. The high-rise structure modeled in Grasshopper and karamba3D: (a) top; (b) perspective;
(c) right; and (d) front view.

Table 1. The building structure cross sections and material specifications.

Dimensions (cm) Cross
Section Material Properties

H zs zm Max Width Material E
(kN/cm2)

G12
(kN/cm2)

G3
(kN/cm2)

Outer beams 97 48.5 48.5 30 I

Steel 21,000 8076 8076

Inner main beams 87 43.5 43.5 30 I
Inner sub-beams 62 31 31 30 I
Exterior columns 80 40 40 80 []

Inner columns 80 40 40 80 []
Exterior bracing 87 43.5 43.5 30 I

Shear core beams 52.2 26.1 26.1 30 I
Shear core columns 60 30 30 60 []
Shear core bracing 28.3 14.15 14.15 30 I

Floor shells 20 - - - - Reinforced
concrete 3000 1375 1375
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2.2. Load Calculations

The seismic analysis was conducted using the Equivalent Lateral Force (ELF) method,
a linear static analysis approach. This method simplifies dynamic seismic effects into equiv-
alent static forces distributed across the structure. The seismic base shear was distributed
using a triangular distribution, with forces concentrated at the upper stories due to greater
displacements. This distribution aligns with typical assumptions in ELF analysis. This
approach was suitable given the building’s regular geometry and its steel-braced shear core
design, which effectively resists lateral loads, including those from wind and earthquakes.

A standard vertical load of 7 kN/m2 was applied to each floor. Lateral loads due to
seismic activity were calculated following the guidelines of the International Building Code
(IBC) [40], as detailed earlier in this paper. Table 2 presents the initial assumption values
used in the lateral load calculations.

Table 2. Initial assumptions considered for lateral load calculations.

Building
Mass (W)

Seismic
Zone Factor (Z)

Importance
Factor (I)

Response
Modification

Factor (R)

Site
Coefficient (S)

Spectral
Acceleration
Coefficient

(C(T))

Structure
Façade Area (y)

136,524.25 kN 0.35 1.0 6 1.2 1.0 g 3840 m2

The seismic load (base shear) was distributed across the building’s height, with partic-
ular attention to the force distribution on the building’s façades. The seismic load (base
shear) was calculated using the following equations:

Step 1: the empirical formula was used to calculate the building period (T), which was
determined to be 1.97 s.

T = Ct × H
3
4 (1)

Step 2: The base shear (V) was calculated using the following equation and determined to
be 9556.69 kN:

V =
Z.I.W

R
× S × C(T) (2)

Step 3: The calculated base shear (V), representing the total lateral force that the building
must resist, should be distributed across each square meter of the building’s façade to
determine the load distribution per square meter of the façade.

q =
V

Face Area
≈ 2.49 kN/m2 (3)

Step 4: The load should be distributed over the height of the building calculated using the
following equation:

qheight =
q
H

= 0.0311 kN/m3 (4)

Final step: The final load distribution for the lateral (y) load was estimated to be 2.488 kN/m2.
The lateral (x) load was calculated similarly.

The maximum allowable displacement at the top of a building under earthquake
load is typically governed by building codes and standards, which set limits based on
the building’s height and intended use or occupancy. These limits are usually expressed
as a fraction of the building’s height. According to ASCE 7-16 [41] Building standards,
most structures’ maximum allowable drift (displacement) is typically limited to 2% of the
building height, particularly for ordinary buildings. For the subject building, this limit
equates to a maximum allowable displacement of 1.6 m. For buildings designed to be more
rigid, such as those with essential functions (e.g., hospitals and emergency centers), this
limit is often further reduced to 1% of the building height.
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2.3. Structural Modeling and Analysis

Once the parametric model was developed in Grasshopper and the loads were cal-
culated, we utilized Karamba3D [42], a parametric engineering tool integrated within the
Grasshopper environment, to convert the geometric model into a structural model suitable
for FEA. Karamba3D facilitates the integration of parameterized geometric models with
FEA, enabling quick and accurate structural assessments. The FEA revealed that the maxi-
mum displacement under vertical loads was 3.5 cm, while the maximum displacements
under lateral loads in the X and Y directions were 6.33 cm and 7.94 cm, respectively. Given
the building’s 88 m height, these values represent 0.79% and 0.99% of the building height,
meeting the ASCE 7-16 standards for maximum allowable drift. The total mass of the
building was calculated to be 13,926.64 tons.

2.4. Dataset Generation

We employed a multi-objective genetic algorithm (MOGA) with a parametric model of
high-rise buildings to create a robust ML model for predicting structural responses under
various conditions. This approach ensured a diverse set of solutions that reflect potential
real-world scenarios. Variables such as floor loads and lateral forces from wind and seismic
activity were included in the dataset. A total of 7347 distinct solutions were generated,
providing a comprehensive dataset for training the ML model. The variables and their
respective domains are detailed in Table 3.

Table 3. The variables and their respective domains.

Min Max

Lateral load (X direction)
(m2 of building façade) 0 6

Lateral load (Y direction)
(m2 of building façade) 0 6

Floors 1–20 vertical load (m2) 0 15

In addition to serving as a dataset generator for the ML model, the framework devel-
oped in this research functions as a digital twin of the high-rise building. This digital twin
can simulate various loading scenarios to evaluate the building’s performance under differ-
ent conditions. In real-world applications, sensors can monitor actual loads on the structure,
enabling continuous SHM and real-time evaluations. Figure 2 presents a flowchart of the
developed definitions in Grasshopper and Karamba3D for structural modeling, FEA simu-
lations, and data generation. Figure 3 presents a flowchart of the proposed framework to
predict structure displacements in the vertical, lateral X, and lateral Y directions.

2.5. ML Model Development
2.5.1. Data Preprocessing

The first step in developing the ML model involved preparing the dataset for training.
The dataset was loaded from a CSV file containing 7347 data points, each representing
a distinct combination of load scenarios and corresponding displacements. The input
features (X) included the load values applied to each floor (Floor 0 to Floor 20) and lateral
forces in both the X and Y directions. The target variables (y) were the vertical and lateral
displacements in the X and Y directions.

Given the varying scales of the input features and target variables, it was essential to
standardize the data to ensure effective learning by the RNN model. We used Standard-
Scaler from the scikit-learn library to normalize the input features (X) and target variables
(y), transforming them to have a mean of 0 and a standard deviation of 1. This scaling
process was crucial for stabilizing the training of the RNN model, especially considering
the different magnitudes of loads and displacements.
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2.5.2. Model Selection

The choice of an RNN with LSTM layers was based on the need to model sequential
dependencies in the data. LSTMs are well suited for time-series and sequence data, making
them an optimal choice for predicting displacements under varying loads across multiple
floors. Unlike traditional feedforward neural networks, LSTMs maintain a memory of
previous states, enabling the model to capture complex temporal relationships between
input forces and resulting displacements over time. This architecture was selected to ensure
the model could learn patterns that span multiple time steps, which is essential in SHM,
where loading conditions are dynamic. Using LSTM layers also reflects a balance between
interpretability and performance. More complex architectures, such as Transformer models
or DCNN, might provide marginal improvements in accuracy but at the cost of model
transparency. In contrast, LSTMs offer a more understandable framework for tracking how
predictions change with different load scenarios, which is critical for practical applications
in structural engineering. By training the model on a large and varied dataset of 7347 load
scenarios, we ensured that the ML model learns patterns that can be traced back to specific
conditions. This traceability enhances our understanding of why the ML model makes
certain predictions under particular conditions, thereby improving interpretability.

2.5.3. ML Model Architecture

The architecture of the developed model is as follows:

• Input layer: The input shape accommodates the scaled features for each floor and
lateral load.

• LSTM layers: Two LSTM layers were used, with the first layer having 128 units and
the second 256 units. The first LSTM layer is set to return sequences, allowing the
second LSTM layer to process the output. These LSTM layers capture the temporal
dependencies between different load conditions and their resulting displacements.

• Dropout layers: To prevent overfitting, dropout regularization was applied after each
LSTM layer and before the final dense layer. The dropout rates were set to 30% after
the LSTM layers and 50% before the output layer.

• Dense layer: To map the learned features to the output space, a fully connected dense
layer with 512 neurons and an ReLU activation function was included.

• Output layer: The output layer contains three neurons, each corresponding to one of
the target displacements: vertical displacement, lateral displacement in the Y direction,
and lateral displacement in the X direction.

The model was configured using the Adam optimizer with a learning rate of 0.001.

2.5.4. Performance Metrics and Evaluation

Four key evaluation metrics were used to assess the accuracy and reliability of the
developed ML model: Mean Squared Error (MSE), R-squared (R2), Mean Absolute Error
(MAE), and the maximum difference of predicted values from actual values (expressed as a
percentage). Each metric was chosen to comprehensively evaluate the model’s performance
across different aspects of prediction accuracy.

• Mean Absolute Error (MAE): This metric represents the average absolute differences
between predicted and actual values, offering a straightforward measure of prediction
error in the original units. It is particularly valuable for understanding overall model
accuracy in regression tasks, especially when all errors are treated equally without
overemphasizing large errors [43].

• Mean Squared Error (MSE): MSE measures the average of the squares of the errors
between predicted and actual values. It provides insight into the magnitude of the
prediction error, with lower MSE values indicating better performance. This metric is
widely used in regression tasks due to its sensitivity to outliers and large deviations in
predictions, making it valuable for detecting significant errors [43].
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• R-squared (R2): The R2 value, also known as the coefficient of determination, indicates
the proportion of the variance in the dependent variable that is predictable from the
independent variables. An R2 value closer to 1 implies a strong correlation and better
model fit, while values closer to 0 indicate weaker predictive power [44]. This metric
helps quantify how well the model generalizes to unseen data.

• Maximum Difference from Actual Value (%): This residual-based metric expresses
the largest deviation between predicted and actual values as a percentage of the
actual value. It is particularly useful for understanding the extremes in model per-
formance, which are often critical in structural engineering applications where even
small deviations can have significant consequences [45].

3. Results and Discussion
3.1. ML Model Implementation

The developed ML model was trained over 500 epochs with batch sizes of 16 samples,
and 20% of the training data were used as a validation set to monitor performance.

Figure 4 displays the Training Loss chart over 500 epochs. Initially, the loss is high
(~0.7), but it rapidly decreases and stabilizes around 0.3 after approximately 100–150 epochs.
The loss then fluctuates slightly, indicating that the model has learned the training data
well, making only minor adjustments in the later epochs. The developed model shows
significant progress early on, with minimal further improvements as training continues.
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The Validation Loss chart in Figure 4 shows fluctuations throughout the 500 epochs,
with no clear downward trend. However, despite these fluctuations, the variation in loss
remains within a relatively tight range, suggesting that the model’s performance on the
validation data, while inconsistent, does not deviate significantly. This indicates that the
model’s ability to generalize may be reasonably stable.

The model’s performance was assessed using a test set that was not exposed to the
model during training. The results showed a training MSE of 0.1796 and a testing MSE
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of 0.0033, with R2 scores of 0.8416 for the training set and 0.9939 for the test set. These
results demonstrate that the model performed well on the training and unseen test data,
particularly excelling in generalizing to new load conditions.

Apart from the two cases, the residual values during the training phase for predicting
vertical displacement show very high accuracy. During the training phase, the values are
predominantly concentrated near 0. In the testing phase, there is also a suitable density
within the range of −2 to 2, and the results indicate the model’s good performance in
predicting vertical displacement. The residual plots for training and testing for vertical
displacement are shown in Figure 5.
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The residual analysis results for training to predict lateral displacement in the X direc-
tion indicate a suitable density within the range of −1 to 1, while other values are at most
within the range of −4 to 3. This suggests that the model performs well during training for
predictions in the X direction. In examining the residuals for the testing phase, a reasonably
good density is also observed within the range of −2 to 2, which ensures the model’s
adequate performance in predicting structural displacement values in the X direction. The
residual plots for training and testing in predicting displacement in the X direction are
shown in Figure 6.

The residual values for training the model to predict displacement in the Y direction
indicate a suitable density within the range of −2 to 2, especially in the range of −1 to 1.
Other values are within a maximum range of −4 to 3. The testing plot for predicting
displacement in the Y direction shows a uniform density between −2 and 2, which exhibits
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slightly more dispersion compared to the predictions made for the X direction; however,
it still demonstrates acceptable performance. The residual plots related to training and
testing for predicting displacement in the Y direction are shown in Figure 7.
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In summary, the analysis of the plots indicates that in all three directions, the amount
of dispersion is greater at the beginning and end of the charts. This suggests that the
developed model has faced challenges in predicting very low or very high displacement
values; however, this challenge has not significantly affected the accuracy of the predictions.

3.2. ML Model Evaluation

To evaluate the performance of the developed ML model, 100 test cases were conducted
on simulated buildings, predicting displacements in three directions: vertical, lateral
(Y), and lateral (X) under various loading scenarios. These predictions were based on
a simulated building model, allowing for controlled testing across various structural
conditions. The model’s accuracy was assessed using the following metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), coefficient of determination (R2), and
maximum difference from actual value. The obtained values for each of the metrics are
presented in Table 4.

Table 4. Developed ML model accuracy assessment metrics.

MAE RMSE R2 Max Difference

Vertical displacement 0.063 0.081 0.978 0.93%
Lateral (Y) displacement 0.786 0.998 0.999 4.55%
Lateral (X) displacement 0.763 0.900 0.999 7.35%

The model accurately predicted vertical and lateral displacements, achieving an
R2 value of 0.978 for vertical displacement and 0.999 for both lateral (X and Y) displace-
ments. The low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values
across all directions confirm the model’s strong predictive performance, with slightly less
precision in predicting vertical displacements than lateral ones. The developed model
could predict vertical displacement with only a 0.93% difference from the actual values.
The model also predicted lateral (Y) displacements with a 4.55% difference and lateral
(X) displacements with a 7.35% difference from the actual values. Figure 8 presents com-
parative charts of the actual versus predicted values for vertical, lateral (y), and lateral
(x) displacements.
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Figure 8. The actual and predicted (a) vertical; (b) lateral (X); and (c) lateral (Y) displacement values.

To further evaluate the performance of the developed predictive model, the amount of
lateral displacement in the x and y directions was calculated for all floors and compared
with the predicted values in six random test cases, which are shown in Figure 9 for the
X direction and Figure 10 for the Y direction. The results show that the developed model
has been able to obtain the displacement of the floors with a very small difference compared
to the actual values obtained from the finite element analysis.
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Figure 9. Actual vs. predicted displacement values over the entire structure height in each floor in
X direction for six test cases: (a) actual vs. predicted values; (b) actual values; and (c) predicted values.
Each colored line in the figures represents a test case.
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Figure 10. Actual vs. predicted displacement values over the entire structure height in each floor
in Y direction for six test cases: (a) actual vs. predicted values; (b) actual values; and (c) predicted
values. Each colored line in the figures represents a test case.

3.3. Application of the Model in SHM

The ML model developed in this study is critical to enhancing the monitoring of
high-rise building structural health. The buildings’ reactions to different forces could be
forecasted without complex simulations each time. This will make continuous tracking
of building conditions faster and more efficient, especially in earthquake or strong wind
areas. Through this modeling, the actual behavior of the building can be determined with
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great accuracy by engineers. This way, it is easier to spot problems early. This model helps
maintain the safety of buildings over long periods because it is able to cope with new
and unexpected situations. The approach allows engineers to maintain buildings better,
reducing the risk of missing structural problems. Integrating this model into monitoring
systems would be a reliable and practical way to protect high-rise buildings.

4. Conclusions

In this study, we developed an ML model with an RNN architecture using LSTM
layers to estimate the vertical and lateral displacements of high-rise buildings under various
loading conditions. To enhance the training of the proposed model, a robust dataset was
created by integrating finite element analysis (FEA) with parametric modeling and a multi-
objective genetic algorithm (MOGA), ensuring the model’s applicability in real-world
scenarios. The model was tested on a simulated high-rise building, allowing for detailed
analysis across different loading conditions.

The results demonstrated strong model performance. The training Mean Squared
Error (MSE) was 0.1796, while the testing MSE was 0.0033. The R2 scores were 0.8416 for
the training set and 0.9939 for the test set, underscoring the model’s ability to generalize to
unseen data. For vertical displacement prediction, the model achieved a Mean Absolute
Error (MAE) of 0.063, a Root Mean Squared Error (RMSE) of 0.081, and an R2 value of 0.978.
In 100 test cases, the model predicted vertical displacement values with only a 0.93%
difference from actual values obtained via FEA, demonstrating high accuracy. In predicting
lateral (Y) displacements, the model showed a 4.55% difference from actual values. For
lateral (X) displacements, the MAE was 0.786, RMSE was 0.998, and R2 was 0.999, though
the model exhibited slightly higher variability, with a 7.35% difference from actual values in
100 test cases. Despite this slight variability, the model’s overall low error rates highlight its
effectiveness, although further fine-tuning could reduce this variability in future iterations.

The developed model provided reliable predictions of both vertical and lateral dis-
placements, demonstrating a solid capability for generalization to new load conditions.
The high R2 values for all displacement types indicate the model successfully captured the
essential relationships between input loads and the corresponding displacement outcomes.
However, although the model performed well with low error rates, further refinement is
necessary to improve its accuracy in predicting lateral displacements.

This research confirmed the effectiveness of ML for SHM applications, particularly in
addressing two critical challenges: data availability and model interpretability. The integra-
tion of parametric modeling, FEA analysis, and MOGA ensured the dataset’s quality, and
the use of LSTM neural networks, known for their ability to handle time series data, allowed
for greater interpretability compared to more complex models like DCNN. As sensor tech-
nology, FEA methods, and ML algorithms evolve, more sophisticated SHM systems will
emerge, ensuring the safety and resilience of high-rise buildings in urban environments.

Several limitations exist in the current model. The structural characteristics of the
simulated building were kept constant due to limited computational power, meaning
the model cannot currently predict vertical and lateral displacements for other buildings.
However, with further development and increased processing power, more variables
can be incorporated into the data generation stage, significantly improving the model’s
generalization to other building types. Expanding the dataset to include a wider variety
of building types, geometries, and designs and more diverse loading conditions, such
as dynamic forces or seismic events, would enable testing in more challenging scenarios
and further enhance the model’s applicability. Additionally, incorporating real-time data
from high-rise buildings would likely increase prediction accuracy. Future work should
also focus on more advanced optimization techniques, hybrid ML models, and different
neural network architecture combinations to improve accuracy. This research lays a strong
foundation for future studies that explore complex loading conditions and continuously
refine predictive models for SHM.
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