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ABSTRACT
Reinforcement learning is limited by how the task is defined at the
start of learning and is generally inflexible to accommodating new
information during training. In contrast, humans are capable of
learning from hindsight and can easily incorporate new information
to gain insight into past experience. Humans also learn in a more
modular fashion that facilitates transfer of knowledge across many
different types of problems, resulting in flexible and sample efficient
learning. This ability is often missing in reinforcement learning, as
agents should generally be trained from scratch even when there
are minor disruptions or changes in the environment. We aim to
empower reinforcement learning agents with a modular approach
that allows learning from hindsight, giving them the ability to learn
from their past experience after new information is revealed. We ad-
dress partially-observable problems that can be modeled as hidden
parameter MDPs, where crucial state information is not observable
during action selection but is later revealed. Our work focuses on
the benefits of separating the tasks of policy optimization and hid-
den parameter estimation. By decoupling the two, we enable more
data-efficient learning that is flexible to changes in the environment
and can readily make use of existing predictors or offline data-sets.
We demonstrate in discrete and continuous experiments that learn-
ing from hindsight offers scalable and sample efficient performance
in HiP-MDPs and enables transfer of knowledge between tasks.
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1 INTRODUCTION
Reinforcement learning is often touted as the closest mathemati-
cal framework we have to human learning, though it provides a
relatively rigid mimicry of the human decision-making process.
One property humans exhibit in decision making is modularity, or
breaking tasks into hierarchies of separable problems [27]. This
leads to efficient learning and generalizing capabilities. Humans
can also expand and compress their local models seamlessly, adding
or removing information input as needed [8]. In most reinforce-
ment learning algorithms, the state space is specified and remains
fixed either for the entire life of the agent, or for a specified task
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Figure 1: An overview of hindsight in comparison to learn-
ing from a history. The history-based policy maps stacks of
observations to actions. The hindsight-based policy takes
a predicted hidden parameter value in conjunction with a
single observation as input and maps this to actions.

with known boundaries. This means excessive information can be
included in the state that may not be relevant at all times. A truly
intelligent agent should have separable components and capabili-
ties that can be distributed and shared and should not rely on only
a single representation of their world [3].

An example of adaptive information use that comes very natu-
rally to humans is the idea of hindsight: “If only I had known this
sooner, I could have done something differently". After new knowl-
edge is revealed, we reason that we would have done something
else at a particular time, given this knowledge. This implies that we
can expand the input to our decision-making model to include ad-
ditional information, a flexibility not inherent to the current design
of reinforcement learning agents.

In this paper, we introduce a method to embed hindsight reason-
ing into a reinforcement learning algorithm suitable for partially-
observable problems. We consider settings which can be modeled
as hidden parameter Markov decision processes (HiP-MDPs). Many
types of partially-observable problems can be adapted to the HiP-
MDP model, for example a robot navigating terrains of varying
friction levels [4], manipulating objects of differing mass [28], or
interactingwith opponents that follow one of several possible strate-
gies [31]. The HiP-MDP model has also proven to be applicable
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to real-world problems such as wildlife conservation [19] and is
highly applicable in transfer learning as a way to model related
tasks [11, 32]. We consider a specific case of HiP-MDP where the
hidden information is revealed at some point in the future (after
action selection). The intuition behind our method is that learning
from the certain future is easier than learning from the uncertain
past. As an example, consider an autonomous vehicle (AV) that is
merging onto a highway that can only find an optimal policy if it
knows how cooperative the other drivers in the desired lane are.
Whether or not a driver is cooperative is revealed only after the
AV attempts to merge. Recognizing this after it has been revealed
is not difficult; the harder task is to predict whether a vehicle is
cooperative from its observable behaviour.

In this work, we focus on problems where the hidden param-
eter is revealed in hindsight. Existing methods absorb the task of
predicting the hidden parameter into the policy optimization task,
stacking observations into histories or attempting to model latent
parameters. These methods do not have a mechanism to learn di-
rectly from instances where the hidden parameter is revealed. Our
approach (pictured in 1) uses hindsight to label past experience and
trains a supervised learning model on the labeled data to predict the
hidden parameter from observations. The output of the supervised
learning model is used online at the time of action selection. As
the agent gains more data and more confidence in its prediction, it
also learns to take information-gathering actions when doing so
will improve its value-maximizing policy. We utilize two separable
learning components, enabling the use of predictors learned on
offline data or for integrating models provided by an expert. This
paper introduces our approach and describes its several benefits: it
(1) conducts policy optimization over a compact state space rather
than over histories, (2) enables abstracting away information that
is not relevant to the prediction task, (3) allows for incorporation
of existing prediction models or models trained on offline data, (4)
makes explicit the agent’s prediction of the hidden state at every
time step, and (5) facilitates transfer of either the policy or predictor
between related tasks.

The empirical evaluation demonstrates in both discrete and con-
tinuous problems that by approaching the problem this way, we
can outperform an agent learning a policy on a history of observa-
tions by making efficient use of data. It also shows how learning
from hindsight enables transfer of both the policy and the predictor
between related tasks, exhibiting faster convergence to the same
reward as an agent trained from scratch.

2 RELATEDWORK
A common approach to solving partially-observable problems with
reinforcement learning is to learn a policy on a history of observa-
tions and actions, rather than on a single observation (which breaks
the Markov assumption required otherwise). We apply hindsight
to a particular case of partially-observable problem where the full
state is never observed but is revealed at some point. In contrast
to an agent that learns from history, our method provides explicit
feedback on the agent’s prediction and confidence of the true state.

Other methods that model learning with hidden parameters com-
monly involve reasoning over the latent parameter space particu-
larly to facilitate transfer learning between related tasks [10, 21, 28]

or reason about an opponent strategy modeled by those latent
variables [30]. We consider a similar model but focus on how to
incorporate hindsight knowledge.

Our setting is conceptually related to the idea of influence-based
abstraction [18]. The hidden parameter can be considered as the
‘influence source’ and our supervised learning model 𝜙 is related to
the idea of an influence predictor [7]. However, we do not assume
that we have access to the model that describes how the param-
eter influences our local state. Moreover, we derive a measure of
uncertainty in our parameter predictor, and use this to encourage
information-gathering actions in the policy.

There has been recent emergence of methods that are more
closely related to the work we present here. Hindsight has been
applied to the learning problem as an additional signal that corre-
sponds to how much a state-action pair contributes to a particular
outcome in the future [6, 15]. Other recent applications of hindsight
fall into two categories: those where hindsight is reflected in the
reward function (or goal), and those were hindsight reveals state
information. Hindsight Experience Replay lies in the first category,
and saves trajectories in memory in order to reuse the experience
after re-labeling these trajectories according to different goals they
may be better suited for [1]. This approach has been extended to
policy gradient methods [22] and was later generalized to tasks
which are not specifically goal-oriented by applying techniques
from inverse reinforcement learning [13]. These approaches have
in common that they label saved trajectories in order to reuse data
and learn multiple tasks more efficiently. In their case, the labels
are reflected in the rewards of a trajectory, which differ between
tasks while the transition dynamics are unaffected. In contrast, we
consider hindsight not in terms of the goal but in the form of state
information.

In the partially-observable setting, learning from hindsight has
been applied in the form of posterior value functions to achieve
better sample efficiency from revealed state information [17]. Our
approach also considers problems with partial observability, how-
ever, we define an auxiliary supervised learning problem and use
hindsight to label past experience resulting in a modular learning
approach that provides flexibility in the application of hindsight
and facilitates transfer.

3 BACKGROUND
This section introduces preliminary material that serves as a foun-
dation for our method.

3.1 Markov Decision Processes
We use reinforcement learning to learn to optimize a task modeled
as a Markov decision process (MDP) where the environment dy-
namics are unknown. An MDP is a tuple M = ⟨S,A,T ,R, 𝛾⟩
that describes a sequential decision making problem [20]. The
variables S and A denote finite state and action spaces, T and R
are transition and reward functions, and 𝛾 is a discounting factor
(0 ≤ 𝛾 ≤ 1) that determines how far into the future to take into ac-
count. At each time step 𝑡 , a reinforcement learning agent observes
the state of the environment 𝑠𝑡 ∈ S and chooses an action 𝑎𝑡 ∈ A.
Upon executing action 𝑎𝑡 , the environment transitions to a new
state 𝑠𝑡+1 ∼ T ( · | 𝑠𝑡 , 𝑎𝑡 ), according to the environment transition



function T : S × A × S → [0, 1] which maps state-action pairs
to a distribution over next states. The agent receives a reward 𝑟𝑡
according to the reward function R : S × A × S → R. The goal of
the reinforcement learning agent is to learn a policy 𝜋 that maps
states to actions. The value 𝑉 𝜋 (𝑠) of following a policy 𝜋 from a
state 𝑠 is the sum of the expected discounted reward of the state,
given by 𝑉 𝜋 (𝑠) = E𝜋

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 . An optimal policy 𝜋∗ is one that
maximizes this value for every state.

A partially-observable MDP (POMDP) generalizes the case de-
scribed above to problems where the full state cannot be observed
[9].

3.2 Hidden Parameter Markov Decision
Proceses

A hidden parameter MDP (HiP-MDP) is a type of the more general
POMDP with two strong assumptions: that the hidden parame-
ter has no dynamics and remains fixed for the entire duration
of each task [5]. A HiP-MDP is a class of tasks where each in-
stance forms a complete MDP. Formally, a HiP-MDP is a tuple:
⟨S,A,Θ,T ,R, 𝛾,PΘ⟩, where as in an MDP, S and A refer to the
state and action spaces, R to the reward function and 𝛾 corresponds
to the discount factor. For simplicity, we can assume the reward
function is shared across instances. At the beginning of an episode,
a hidden parameter 𝜃 ∈ Θ is sampled from PΘ (·), defining the
underlying MDP, however the value of 𝜃 is not revealed to the
RL agent. The transition function is conditional on the hidden pa-
rameter, and gives the probability of transitioning to state 𝑠 ′ after
taking action 𝑎 from state 𝑠 when the hidden parameter has value
𝜃 : T (𝑠 ′ |𝑠, 𝜃, 𝑎). The joint observed state and hidden parameter to-
gether form a Markovian state. In the HiP-MDP formulation, the
state space is akin to the observation space of a general POMDP.

3.2.1 The tiger problem. The tiger problem is a classical POMDP
example [9] that can be modeled as a HiP-MDP. We will use this
problem as our running example throughout the paper. In this
problem, an agent decides which of two doors to open; behind
one of the doors is a tiger and behind the other a treasure. The
agent can open the left door, open the right door or listen; if it
listens, it can hear the tiger either behind the left or right door, with
some probability of noise. There is a -1 reward for every action
taken, a +10 reward for opening the door to the treasure and a -100
reward for opening the door to the tiger. This problem has two
states describing the true location of the tiger (behind the left door
or behind the right door) and two noisy observations (sound from
the left and sound from the right). The agent must execute listening
actions to gain information about where the tiger is located. Only
when it is confident should it open the door it believes holds the
treasure. The amount of noise in the observation dictates howmuch
history is needed in order to infer the location of the tiger with
high probability. The tiger problem can be modeled as a HiP-MDP
by defining the true location of the tiger as the hidden parameter
and the noisy observations as the states.

4 ENCODING THE PAST WITH THE FUTURE
We consider problems where crucial information is hidden from
the agent while it interacts with the environment, but revealed
after the episode has terminated. Our approach is specified for

Figure 2: An overview of our method for hindsight-enabled
reinforcement learning. The agent learns to select actions
based on its joint observation, prediction of the hidden pa-
rameter value and uncertainty in the prediction. Past experi-
ence is labeled in hindsight and fed to a supervised learning
model that learns to predict the hidden parameter from his-
tories.

tasks that can be modeled as a hidden parameter Markov decision
process (HiP-MDP). In this section, we describe our method to
incorporate hindsight and decouple hidden state identification from
policy optimization. We start by formalizing our framework then
show how an RL agent can use this framework to speed-up the
learning process.

4.1 Learning from hindsight
Let us consider again the example of the tiger problem [9] modeled
as an HiP-MDP, where the hidden parameter is the location of
the tiger. After the agent opens a door and ends the episode, it
is immediately obvious where the tiger was located based on the
reward received. This is the hindsight knowledge that was not
available at the time the agent selected actions.

In our framework, the agent learns (from hindsight) to predict
the hidden parameter during action selection, and acts according
to its observation, hidden parameter prediction and uncertainty in
the prediction, which together form a Markovian state. A depiction
of the two parallel learning cycles, one where the policy is trained
online based on interaction with the environment and the output
from the supervised learner, and the other were the supervised
learner is trained on hindsight-labeled past experience, is shown in
Figure 2.

Formally, a hindsight-enabled HiP-MDP is an extension of a
HiP-MDP, defined asHF = ⟨S,A,Θ,T ,R, 𝛾,PΘ, F ⟩, where F is
an additional parameter that encompasses hindsight in the form of
expert knowledge. The hindsight function (F : (S ×A ×R)𝑚 →
Θ) maps𝑚 (state, action, reward) transitions from a single episode
to the true value of the hidden parameter:

F (𝜏) = 𝜃,

where 𝜏 ∈ (S ×A ×R)𝑚 refers to an𝑚-length sequence of transi-
tions in an episode.

While F is potentially defined over a large space, it is, in practice,
dependent on very few indicator variables. The hindsight function



for the tiger problem needs only the last (action, reward) transition
(i.e.𝑚 = 1) to return the true location of the tiger for the elapsed
episode. After an episode is completed and the parameter is revealed,
the correct label can be applied to all transitions in the episode. The
intuition is that hindsight is easy to define (it is easy to realized
something after it has occurred). Themore difficult part is predicting
the hidden parameter online from observations at the point of action
selection; we delegate this task to a supervised learning model.

The hindsight-labeled data is used to train a model to predict
hidden parameters from histories. The trained supervised learner
𝜙 takes a history and outputs the predicted value of the hidden
parameter 𝜃 and a measure 𝜁 of uncertainty in this prediction.

𝜙 (ℎ𝑘 ) = (𝜃, 𝜁 ),

where ℎ𝑘 is a 𝑘-length sequence of states and actions from the
same episode. We propose a method for the hindsight-enabled
HiP-MDP that learns as though it is in a simple MDP with an
augmented state space composed by the observed state, a prediction
of the hidden parameter, and uncertainty space. Before introducing
this formally, we elaborate on why conditioning the policy on the
uncertainty in the prediction is crucial. Without doing this we run
into an issue, as even with a perfect model the history may not
be informative enough to predict the hidden parameter. The agent
must consider the uncertainty in the prediction in order to learn to
take information-gathering actions.

4.2 Mitigating uncertainty
In the prediction task, our method requires a measure of uncer-
tainty 𝜁 to be output with each prediction. In a Bayes-Adaptive
POMDP, the uncertainty is represented by visitation counts [23]. In
our experiments, this measure is given according to the class prob-
abilities output by a supervised learner performing classification.
In more complex models or regression tasks, we suggest the use
of an ensemble of models to provide a practical heuristic for this
uncertainty [12, 26].

The prediction uncertainty can be reduced in two ways: improve
the prediction model or provide a more informative history. As the
agent interacts with the environment, it collects more data which
is used to train the model. In theory, with this continuous training
the model will improve until it can no longer be improved with
additional (or more diverse) data.

There is some amount of uncertainty that is irreducible given a
particular history. For example, without any observations, a pre-
dictor will be (at best) as uncertain in its prediction as dictated by
the initial hidden parameter distribution of the environment. After
exhaustive data collection and model training, the remaining un-
certainty forms a measure of how certain a prediction can be made
given the input. This uncertainty can only be reduced by taking
informative actions. By conditioning our policy on the uncertainty
in the model, we empower the agent to learn to take uncertainty-
reducing (or information-gathering) actions when doing so will
improve its policy. This is achieved by augmenting the state-space
with this uncertainty.

The hindsight agent learns on the predicted state:

𝑠 = ⟨𝑠, 𝜃, 𝜁 ⟩,

Algorithm 1: Learning in hindsight-enabled HiP-MDPs
Input: Hindsight function F
Input: Length of history 𝑘
Input: A value to represent empty history elements 𝜄
Input: Number of learning steps 𝑁
Input: Learning rates for Q and 𝜙 as 𝛼 and 𝛽

1 Initialize policy 𝜋

2 Initialize predictor 𝜙
3 Set 𝑡 = 0
4 while 𝑡 < 𝑁 do
5 ℎ = {𝜄0, ..., 𝜄𝑘 }
6 𝜏 = ∅
7 Observe 𝑠𝑡
8 (𝜃𝑡 , 𝜁 𝑡 ) = 𝜙 (ℎ)
9 𝑠𝑡 = ⟨𝑠𝑡 , 𝜃𝑡 , 𝜁 𝑡 ⟩

10 repeat
11 𝑎𝑡 = 𝜋 (𝑠𝑡 )
12 Execute 𝑎𝑡 , receive 𝑠𝑡+1, 𝑟𝑡
13 𝜏 ← Append (𝜏, ⟨𝑜𝑡 , 𝑎𝑡 ⟩)
14 ℎ ← PushToQueue(ℎ, ⟨𝑠𝑡 , 𝑎𝑡 ⟩)
15 (𝜃𝑡+1, 𝜁 𝑡+1) ← 𝜙 (ℎ)
16 𝑠𝑡+1 ← ⟨𝑠𝑡+1, 𝜃𝑡+1, 𝜁 𝑡+1⟩
17 𝑄 (𝑠, 𝑎𝑡 ) ← (1−𝛼)𝑄 (𝑠, 𝑎𝑡 )+𝛼 (𝑟𝑡 +𝛾 max𝑎 𝑄 (𝑠𝑡+1, 𝑎))
18 𝑡 ← 𝑡 + 1
19 𝑠𝑡 ← 𝑠𝑡+1
20 𝑠𝑡 ← 𝑠𝑡+1
21 until IsTerminal() ;
22 𝜃 = F (𝜏)
23 𝑋 ← [[𝑥𝑖 , · · · , 𝑥𝑖+𝑘 ] : ∀𝑖 ∈ [0, | 𝜏 | − 𝑘 − 1]]
24 𝑦 ← [𝜃 : ∀𝑖 ∈ [0, | 𝜏 | − 𝑘 − 1]]
25 𝜙 ← Train(𝜙,𝑋,𝑦, 𝛽)
26 end

Result: State predictor 𝜙 and policy 𝜋

where 𝑠 is the observed state, 𝜃 is the predicted hidden parameter
and 𝜁 is the uncertainty in the prediction. This corresponds closely
to a belief state in the solution to a POMDP, however calculat-
ing such a belief generally requires knowledge of the observation
probabilities and dynamics in the environment. Our approach as-
sumes neither are available and instead provides a mechanism to
use hindsight in a reinforcement learning setting.

4.3 Algorithm
An overview of our method for learning in a hindsight-enabled
HiP-MDP is described in Algorithm 1.

At the beginning of training, the episode memory 𝜏 is empty
and the history queue is initialized to values that indicate empty
elements. An initial prediction of the hidden parameter is made and
forms the augmented state jointly with the prediction uncertainty
and current observed state (Line 9). During an episode, the agent
selects an action according to its policy given the augmented state
(Line 11). It executes the action and the environment returns an
observation and reward (Line 12). The transition is stored both in



the episode memory 𝜏 and pushed to the history queue (lines 13 and
14). The agent predicts the next state hidden parameter according
its updated history (Line 16) and updates its Q-values (Line 17).
This learning loop continues until the episode terminates (Line 21).
At this point, the hindsight function provides the true value of the
hidden parameter for the elapsed episode (Line 22). This label is
applied to 𝑘-length sequences of the episode memory 𝜏 (lines 23 and
24) and the resulting labeled data trains the supervised learner 𝜙
(Line 25). In practice, 𝜙 is not trained after every episode but after
a number of episodes defined by the designer. When doing so, to
improve stability it can be trained on an appropriately sampled
batch of data rather than the entire memory.

5 BENEFITS OF DECOUPLING HIDDEN
PARAMETER PREDICTION AND POLICY
OPTIMIZATION

By separating the task of predicting the hidden parameter from
learning the policy our method offers several benefits, two of which
are detailed in this section. Because the observation space provided
to the predictor is independent of the space over which the policy
is learned, it allows for different abstractions of the problem. In
addition, decoupling the tasks facilitates transfer of components
under certain conditions.

5.1 Abstraction
Our method provides an opportunity to give to the hindsight agent
only the information that is relevant for predicting the hidden
parameter. The space of the history provided to the supervised
learner is independent of the problem space the policy is learned
on. An expert can isolate the parts of the observation space that are
relevant to the hidden parameter predictor from the observation
space that is relevant to the policy. For example, when predicting
the cooperativeness of another vehicle, its dynamics and distance to
other vehicles around it may be relevant. However, when learning
a policy to merge into traffic, only the predicted cooperativeness
and the distance from the other vehicle to the agent are relevant.

5.2 Transfer Learning
Another crucial benefit to taking modular approach is that we main-
tain separable pieces that can be reused for new tasks, avoiding
the need to learn everything from scratch. Our method facilitates
transfer of either the predictor or the policy. Consider two hindsight-
enabled HiP-MDPsHF andHF that share the same state, action
and hidden parameter space but where the reward and transition
dynamics differ. Under the following sufficient conditions, the pre-
dictor 𝜙 or the policy learned when optimizingHF can be re-used
when optimizingHF .

5.2.1 Predictor transfer. The problem of predicting the hidden pa-
rameter from state history is preserved between two tasksHF and
HF if, given the same 𝑘-length history of state observations, a per-
fect hidden parameter predictor 𝜙∗ would yield the same prediction
and uncertainty:

(𝜃, 𝜁 𝑡 ) = 𝜙∗ (ℎ𝑡 ) = 𝜙∗ (ℎ𝑡 ) = (𝜃, 𝜁 𝑡 )

Figure 3: Results from comparing hindsight agents to history-
based agents in the tiger domain for varying lengths of his-
tory provided. Total episode rewards are averaged over 100
trials with the 90% confidence interval depicted by the shaded
region.

In this case, assuming the predictor 𝜙 learned from taskHF has
converged to the optimal predictor 𝜙∗, we can immediately inject
it as 𝜙 when training on taskHF , requiring only the policy 𝜋 to be
learned.

5.2.2 Policy transfer. The policy can be transferred between tasks
if the same policy optimizes both tasks. Two tasks HF and HF
with value functionsV andV share an optimal policy 𝜋∗ (· | 𝑠 =
⟨𝑜, 𝜃, 𝜁 ⟩), if:

V(𝜋∗) ≥ V(𝜋 ′) ∀𝜋 ′

V(𝜋∗) ≥ V(𝜋 ′) ∀𝜋 ′

Under this condition, the policy 𝜋∗ learned from task HF can
be directly applied to taskHF requiring only the predictor to be
retrained during policy optimization of taskHF .

6 EVALUATION
We evaluate our hindsight-enabled method in two problems, a
discrete task and a continuous control task. We show how using
hindsight allows for efficient use of data while scaling with in-
creased history length. We also demonstrate transfer of both the
policy and the predictor enabled by our method.

6.1 Discrete State Space
In the tiger problem, we apply our hindsight model and compare an
agent learning with hindsight to both a Q-learning agent and a deep
Q-learning agent that observe a history of observations which form
the new state space. The history-based space grows exponentially
with the history length and a tabular agent can quickly outgrow
the memory capacity of a standard machine. The deep Q-learning
agent serves as a second baseline as it uses the same sized neural
network as each hindsight agent to handle the large history-based
observation space, avoiding the memory issues of the tabular agent.

The hindsight agents apply Q-learning [29] to the joint (obser-
vation, hidden parameter prediction, uncertainty) space according



to predictions made by a supervised learner. We use a multi-layer
perceptron as a classifier 𝜙 that predicts the true location of the
tiger, trained on past experiences. The class probability output by
the model is used as the measure of uncertainty in the prediction;
it is discretized into three bins ([0 - 0.50), [0.50 - 0.99), [0.99 - 1.0]).
While this can introduce some approximation errors, it also makes
the solution more compact, ensuring the method remains scalable
[24]. The augmented state space of the hindsight agent grows only
linearly with the number of bins used in this discretization, so its
size is independent of the length of history. The input space of the
predictor is the same history length as the input space of the tabular
agent and the deep Q-learning agents.

We compare hindsight agents and history-based agents with dif-
ferent history input lengths 𝑘 for varying noise probabilities in the
environment. All Q-learning parameters were tuned individually
to ensure good performance for each agent. The hyper-parameters
relevant to the hindsight agents are displayed in Table 1.

The Partially-Observable Upper Confidence Bound (PO-UCT)
[25] solution is included for reference, implemented using the
pomdp_py library [33]. The performance of PO-UCT is generally
not achievable by a reinforcement learning agent, as applying it
requires complete knowledge of the observation, transition and re-
ward functions. We plot the expected return of the policy returned
by PO-UCT after 15000 simulations.

In another experiment, we demonstrate transfer of the policy
considering two versions of the tiger domain where the noise prob-
abilities differ. The policy is first trained by applying our method
to the tiger task with noise probability 0.15. We then transfer the
Q-values to a hindsight agent faced with a new task where the prob-
ability has been changed to 0.20. Only the predictor is retrained in
the second task while the Q-values remain fixed; this also means
that exploration is not necessary. We compare the transfer agent
to another hindsight agent that learns a new policy from scratch
to show the effectiveness of the transferred policy. We ensure that
all non-transfer agents start with as low an exploration factor as
possible and found that setting an initial 𝜖 of 0.1 resulted in the
best performance; both higher and lower values affected the speed
of convergence negatively.

6.1.1 Hindsight out-performs the history-based agent. The results
of our first experiments are shown in Figure 3. The hindsight agents
converge to a better performing policy in each of the tasks. The
performance of the tabular and deep Q-learning agents are very
similar, and both initially achieve a faster increase in performance,
but ultimately they do not converge to the same policy found by
the hindsight agent within the 500 episodes shown. Empirically, we
believe the initial speed-up to be due to the higher learning rates
these agents can use, whereas the hindsight agent may demon-
strate oscillatory behaviour with similarly high learning rates. The
hindsight agents all avoid the lowest rewards at the very start of
learning, as our approach enables them to quickly plan against the
worst case scenario (where uncertainty is high).

6.1.2 The predictor uncertainty converges to the environment stochas-
ticity. We examined empirically whether the uncertainty output of
our supervised learning is converging to the irreducible uncertainty
in the environment as expected. In Figure 4, the prediction probabil-
ity for hidden state "tiger left" is plotted against training iterations

Table 1: Experimental hyper-parameters for hindsight agents
in tiger domain

Parameter Noise

0.15 0.20 0.25

Training frequency (steps) 30 50 50
Batch size 50 50 100

𝑘 (Hidden layer size) 4 (20,) 5 (50,) 6 (60,)
5 (25,) 6 (60,) 7 (84,)
6 (36,) 7 (70,) 8 (112,)

Learning rate 0.01 0.001 0.0005

Figure 4: Visualizing the uncertainty output of the supervised
learner 𝜙 averaged over 25 trials with shaded areas depicting
the 98% confidence interval.

of the predictor 𝜙 . In the top plot, we see that the predictor cannot
improve beyond 50% certainty when the agent has not received
any observations; this aligns with the initial distribution of the two
hidden parameter values (uniformly random). When the agent has
heard the tiger behind the left door 10 times in a row, the predictor
is almost certain (we expect this to converge to 1 − 0.1010). When
the agent has received one observation that the tiger was heard
behind the left door, the certainty converges to around 90%. This



Figure 5: Results for transfer of the policy learned from the
tiger domain with 0.15 probability of noise and applied to
a new task where noise probability is changed to 0.20. The
average of 50 trials is shown with shaded areas depicting the
98% confidence interval.

aligns with the noise in the environment, i.e. the probability of
incorrectly observing where the tiger is.

In the bottom plot of Figure 4, we investigate this last case fur-
ther. The prediction probability given a single observation of the
tiger behind the left door is shown against training iterations for
four different noise probabilities exhibited in the environment. The
uncertainty reflects the environment noise, albeit with a small de-
viation from the theoretical expectations.

6.1.3 The hindsight policy can speed-up learning in new tasks. The
results of the transfer learning experiment are presented in Figure 5.
There is a considerable benefit to using the pre-trained policy in the
new environment (even in this small problem), and it converges to
the same performance as the hindsight agent trained from scratch.

6.2 Continuous State Space
We also apply our method to a modified version of the cartpole
environment from OpenAI Gym [2]. In this modification, the agent
has to keep the pole balanced on the cart held at a specific target
location (left, middle or right of the track). The target position
is randomly selected at the beginning of each episode and is not
observable by the agent. The reward function depends on the noisy
distance to the target 𝑑 (𝑠𝑡 , 𝜃𝑡 ) ∼ N (𝑑 (𝑠𝑡 , 𝜃𝑡 ), (𝜎𝑑 (𝑠𝑡 , 𝜃𝑡 ))2) where
𝑑 (𝑠𝑡 , 𝜃𝑡 ) is the true value:

𝑟 (𝑠𝑡 , 𝜃𝑡 ) = 1.0 − 𝑑 (𝑠𝑡 , 𝜃𝑡 )
𝑑max

(1)

This partially-observable problem requires some form of memory
and is not solvable by a naïve RL agent. In our experiments, we keep
a history of previous rewards and states, which provides crucial
information about the true target position and forms the state-space
for the history-based RL agents as well as the input to the hindsight
predictor.

The deep Q-network (DQN) [16] for the history-based agent has
a (2𝑘+4)×256×512×3 topology where 𝑘 is the length of the history

Figure 6: Results comparing the history-based and hindsight
agents with different history lengths 𝑘 in the directed cart-
pole environment with target distance noise 𝜎=0.2. The aver-
age of 8 trials is shown with shaded areas depicting the 96%
confidence interval.

and 3 is the output layer for estimating the Q values of three possible
actions. For the hindsight agent, the DQN has a 6 × 256 × 512 × 3
topology. In addition to the DQN, the hindsight agent deploys a
multi-layer perceptron as the hidden parameter classifier (𝜙) with
a (2𝑘) × 16 × 8 × 8 × 1 topology for target position estimation.
Due to the different input size (and therefore different network
topology), we trained the agents with different learning rates to
prevent early over-fitting in order find the best trade-off between
fast convergence and stability. This was particularly necessary for
the more sensitive history-based agent. We used learning rates of
5e−5 and 1e−4 for training the history-based and hindsight agents
respectively.

We evaluated transfer of the predictor in two experiments. In
the first experiment, we pre-train the predictor on the same en-
vironment and provide it to the hindsight agent to learn a policy
without updating the predictor. In the second transfer experiment,
we consider two different environments that share the same pre-
diction task but different optimal policies. The predictor learned
on the previous task is provided to the hindsight agent and used
while training a new policy in a more complex environment where
the pole length and mass are no longer fixed and instead randomly
selected from [0.1, 1.0] interval at the beginning of each episode.

6.2.1 The hindsight agent achieves higher reward faster. Figure 6
shows the total reward for the hindsight and history-based agents
considering different history lengths (𝑘=3, 6 or 12). The hindsight
agent achieves a much higher total reward with fewer interactions.
Increasing the history length results in slightly faster initial learn-
ing for both the hindsight and history-based agents, but slower
convergence afterward. It appears that the effect of increasing 𝑘 on
the final converged reward is more pronounced in the history-based
agent performance than the hindsight agent, though the difference
is minor.



Figure 7: Results for transfer of a pre-trained predictor in the
directed cartpole problem. The average of 5 trials is shown
with shaded areas depicting the 96% confidence interval. Note
that 500 is the maximum achievable reward in one episode.

6.2.2 The hindsight-trained predictor can speed-up learning in new
tasks. Figure 7 depicts the total reward of the hindsight agent dur-
ing training with and without the pre-trained predictor. The agent
with the transferred predictor converges to a better policy faster
than the agent training both its predictor and policy from scratch.
The advantage of utilizing a frozen predictor instead of training
both the policy and predictor together is clear here, as the initial
non-stationarity of the predictor no longer provides noisy transi-
tions that need unlearning. Instead, the policy receives more stable
estimations from a model that has already converged.

The results of the second transfer experiment are pictured in
Figure 8. The policy with the transferred predictor still converges
to the same solution even though its predictor was trained in a
different environment, demonstrating potential to reuse a predictor
trained in other environments without retraining. We observed that
for some trials the performance of the hindsight agent worsened
after it had seemingly converged. This may be due to catastrophic
forgetting in the DQN or the predictor network [14] or due to
instability caused by the mismatch in data distribution between the
data that trained the predictor and the data generated by the policy
learned on the new task. We leave to future work the investigation
of how performance of the predictor can be affected by the policy
by which data is collected and how stability can be improved in
more complex domains.

7 CONCLUSION
This paper introduces a modular method for incorporating hind-
sight state information into a reinforcement learning algorithm.
We believe that many partially-observable problems reveal crucial
state information with certainty in the future, even if this informa-
tion cannot be observed at action selection (and execution) time.
We offer a framework for such problems that can be modeled as
HiP-MDPs and a method that we show in experiments has the
potential to converge quickly and scale efficiently with the required
memory of the agent. We further demonstrate that taking such a

Figure 8: Results for transfer of a predictor trained in a differ-
ent task in the directed cartpole problem for a new taskwhere
pole mass and length are randomly sampled each episode.
The average of 5 trials is shown with shaded areas depicting
the 96% confidence interval.

decoupled approach can facilitate transfer of both the policy and
the predictor between tasks where the environment dynamics differ.
We believe that our method can enable designers to apply existing
predictors or those learned on offline data-sets to further improve
the efficiency of reinforcement learning agents. In future work,
we would like to see learning from hindsight generalized to any
POMDP. In addition, while we focused here on partially-observable
problems, it has been shown that hindsight-enabled learning can
offer improvements even in fully-observable problems [17], which
we hope to explore further.
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