
Delft University of Technology

Detecting Maximal Cliques Using
Differential Equations

with applications in molecular docking

Author
Sofia Sarigiannidi

Supervisor
Yves van Gennip

Summary for General Audiences

This report explores two methods for finding a specific set of points in a graph.
A graph is a set of points, called nodes, that can be connected by lines called
edges. Each point has a weight, and we want to find a set where all the
points are directly connected to each other while their total weight is as high
as possible. The time it takes to find the exact solution to this problem grows
as the amount of points in the graph grows. This means that, for large graphs,
finding the specified set is (currently) practically impossible. Therefore, in this
report, we explore methods that approximate the solutions to this problem.

The methods we develop are extensions of the Lokta–Volterra method intro-
duced in [15]. This method, as well as its extensions, is based on a model that
describes how animal populations compete with each other in nature (called
the Lotka–Volterra system). Imagining each point in the graph as an animal
population, the points that ‘survive’ this competition are the ones chosen by
the methods. Unlike its extensions, the Lotka–Volterra method attempts to
detect the largest set of connected points in a graph, instead of the one with
the highest total weight. When the weight of all the points in a graph is zero,
the methods introduced in this report are equivalent to the Lotka–Volterra
method.

The two methods called the carrying capacity method and the competition
method, work slightly differently based on how the weights of the points affect
the competition between animal populations. In the carrying capacity method,
the weight of a point determines how many of that type of animal can be
sustained by their habitat. In the competition method, the weight determines
how strongly that type of animal competes with (or ‘kills off’) others. The
idea behind both these methods is that points with a higher weight will have
a survival advantage.

The two new methods, the Lotka–Volterra method and an algorithm that
repeatedly picks the point with the highest weight as long as all the points
are still directly connected (called the greedy algorithm), are applied to 89
different graphs. These graphs have a specific structure related to the problem
of molecular docking. This is the problem of predicting how two molecules
will interact with each other and is equivalent to the problem of finding the

1

set of directly connected points with the highest total weight for appropriately
chosen graphs. The choice of these molecular docking graphs is based on the
structure of the interacting molecules and is described in [8].

After this application, we conclude that in most cases, the greedy algorithm
returns the set of points with the highest weight and does so much faster than
the other methods. However, we also see that when the greedy algorithm
does not return the set with the highest weight, it typically returns the set
with the lowest weight. In contrast, the competition method returns almost
always either the highest or second highest weighted set. The carrying capacity
method performs relatively poorly, only outperforming (by a little) the Lotka–
Volterra method. Both the competition and carrying capacity methods have
the longest processing time.

2

Summary for Peers

This report explores two heuristic methods for approximating the solution to
the maximum-weighted clique problem. This problem involves identifying a
set of nodes in a simple, undirected graph with weighted nodes and no loops,
such that all nodes in the set are adjacent to each other (clique) and have the
maximum total weight (maximum-weighted).

The methods we develop are extensions of the Lotka–Volterra method intro-
duced in [15]. This method, as well as its extensions, is based on the dynamics
of the generalized Lotka–Volterra model. Specifically, they associate each com-
ponent of the solution of a mutually antagonistic Lotka–Volterra system with
nodes in a given graph. Viewing each component of a solution as an ani-
mal population, the populations that ‘survive’ the antagonistic interactions
correspond to the nodes selected by the methods. Unlike its extensions, the
Lotka–Volterra method is developed to approximate the solutions to the max-
imum clique problem. The extensions, introduce weights to the nodes and,
when the weight of all the nodes is zero, are equivalent to the Lotka–Volterra
method.

The methods, called the carrying capacity method and competition method,
differ in how they incorporate node weights into the dynamics of the animal
populations. The carrying capacity method uses the weight of each node as a
carrying capacity for the corresponding animal population. In the competition
method, the weight of a node functions as a competitive coefficient for the
corresponding animal population.

The two new methods, the Lotka–Volterra method and an algorithm that
iteratively picks the node with the highest weight as long as the output is still
a clique (the greedy algorithm) are applied to 89 different graphs. These graphs
have a specific structure related to the problem of molecular docking. This is
the optimization problem of predicting how two molecules will interact with
each other and is equivalent to the problem of finding the maximum-weighted
clique for appropriately chosen graphs. The choice of these molecular docking
graphs is based on the structure of the interacting molecules and is described
in [8].

3

After this application, we conclude that in most cases, the greedy algorithm
returns the cliques with the highest weight and does so much faster than the
other methods. However, we also see that when the greedy algorithm does not
return the clique with the highest weight, it typically returns the clique with
the lowest weight. In contrast, the competition method returns almost always
either the highest or second highest weighted clique. The carrying capacity
method performs relatively poorly, only outperforming (by a little) the Lotka–
Volterra method. Both the competition and carrying capacity methods have
the longest processing time.

4

Contents

Summary for General Audiences 1

Summary for Peers 3

1 Introduction 7

2 Detecting ‘Heavy’ Maximal Independent Sets 10
2.1 Maximum-Weighted Independent Sets 10
2.2 The Lotka–Volterra System . 11
2.3 The Carrying Capacity Method 12
2.4 The Competition Method . 13

3 Mathematical Analysis of the Methods 15
3.1 Mathematical Analysis of the Carrying Capacity Method 15
3.2 Mathematical Analysis of the Competition Method 20

4 Analysing the Methods 22
4.1 Analysis of the Carrying Capacity Method 22
4.2 Analysis of the Competition Method 25

5 Detecting ‘Heavy’ Maximal Cliques 28
5.1 Maximum-Weighted Cliques . 28
5.2 Cliques and Independent Sets 28

6 Application to Molecular Docking 30
6.1 Molecular Docking . 30
6.2 The Dataset . 31
6.3 Applying the Methods . 31
6.4 Results . 32

6.4.1 Weight-Based Performance Comparison 33
6.4.2 Weight-Based Performance Rankings 35
6.4.3 Time-Based Performance Comparison 36
6.4.4 Discussion and Conclusion 38

7 Discussion 39

5

A Supplementary Proofs 41

B Code for the Carrying Capacity and Competition Method 46
B.1 Helpful Functions . 46
B.2 The Methods . 48
B.3 Code for Figures in Chapter 4 51
B.4 The greedy Algorithm . 55
B.5 Application on Molecular Docking 55

C Tables 60

Bibliography 64

6

Chapter 1

Introduction

There are many important problems in Graph Theory for which we still have
no efficient algorithms. One category for such problems are those which belong
to the class NP (introduced in [1]). Problems in the class NP cannot (yet) be
solved efficiently but their solution can be efficiently verified. By performing
a task efficiently we mean here that it is done by an algorithm whose runtime
grows (at most) polynomially with the size of the input. Some examples of
NP problems include the travelling salesman problem [2] and those presented
in [3].

A known NP problem of importance is the maximum-weighted clique prob-
lem. Given an undirected graph with weighted nodes, the solution to this
problem is a set of nodes with maximum total weight (maximum-weighted),
such that all nodes in the set are adjacent to each other (clique). A solution to
the maximum-weighted clique problem for a given graph is also a solution to
the maximum-weighted independent set problem for the complement of that
graph. The solution to the maximum-weighted independent set problem is a
maximum-weighted set of nodes, such that all nodes in that set are not adjacent
to each other (independent).

Detecting maximum-weighted cliques and its complementary problem of de-
tecting maximum-weighted independent sets, have many applications such as
those mentioned in [4]. In coding theory, finding the largest code invariant un-
der a given permutation group is equivalent to finding the maximum-weighted
clique in a suitably constructed graph [5]. In operations research, a classi-
cal single-machine scheduling problem can be reduced to a version of the
maximum-weighted clique problem for a job conflict graph [6]. In biochemistry,
large-scale changes in the sequences of genomes can be modelled in terms of the
maximum-weighted independent set problem in a graph whose nodes represent
genome fragments and whose edges represent pairs of overlapping fragments,
the weight of the nodes characterising the strength of the local similarity [7].

7

Another notable application in biochemistry is that of molecular docking [8],
which we will delve deeper into.

Molecular docking is the problem of determining the optimal interaction be-
tween a ligand (small molecule) and a target receptor. By identifying which
points in the molecules are significant to the binding process, a (node-weighted)
‘binding interaction’ graph can be made which represents their possible interac-
tions. Determining the maximum-weighted clique of the ‘binding interaction’
graph is a solution to the problem.

There are many different algorithms to exactly solve the maximum-weighted
clique problem, these include the branch-and-bound algorithms presented in
[9], [10], [11]. Branch-and-bound is a well-known technique that iteratively di-
vides the search space into subsets (branches) in a tree structure. It uses upper
and lower bounds to prune (remove) non-promising branches, thereby reduc-
ing the number of subsets that need to be explored. The algorithm introduced
in [9] employs a branch-and-bound approach to explore potential cliques in
a graph while dynamically updating upper bounds to prune the search space
and backtracking to navigate through different branches, ultimately finding
the maximum-weight clique. In [10], the branching is guided by a weighted
colour heuristic. This heuristic works by first assigning colours to the nodes
such that no adjacent nodes share the same colour. Then, the sum of the max-
imum weights of each colour class becomes an upper bound used to remove
branches from the search space. Finally, the algorithm introduced in [11] is a
parallel branch-and-bound algorithm. This method examines potential cliques
by branching on candidate nodes and calculating upper bounds to remove non-
promising branches whose weights cannot exceed the current best weight. Each
of the parallel processors independently handles different branches, the results
are combined to find the clique with the highest total weight.

Since the maximum-weighted clique problem is in the class NP, all existing
algorithms that solve it exactly do so very slowly for large graphs. Thus,
many (fast) algorithms have been developed that approximate its solutions,
for example, those presented in [12],[13],[14]. The algorithm introduced in
[12], approximates the solution of the maximum-weighted clique in a graph by
detecting independent sets with high weight in the complement of that graph.
Starting with an independent set, the algorithm iteratively identifies nodes
outside of the current set that, when added to it, increase the total weight of the
set while still remaining independent. This process is repeated until no further
improvements can be made. The heuristic introduced in [13] approximates the
maximum-weight clique by utilising replicator dynamics. Initially, all nodes are
assigned a probability of being included in the solution. The method iteratively
updates these probabilities based on their fiting, determined by their weights
and adjacency relationships. The process converges to a set of nodes with
high probabilities, providing an approximation of the maximum-weight clique.
The hybrid evolutionary algorithm of [14], models cliques as chromosomes

8

and explores the solution space through crossover, mutation operations, and
selection. At each step, local heuristics (repair and replace) are utilized to
extend the winning chromosomes into weighted cliques.

In this report, we introduce two new algorithms for approximating the solu-
tions to the maximum-weighted independent set problem. We demonstrate
that these methods consistently return maximal independent sets and identify
potential biases they might have. Finally, by taking the complement of relevant
graphs, we apply these methods to molecular docking. In this application we
also compare the methods to the Lotka–Volterra method of [15] and a version
of the greedy algorithm.

The new algorithms are generalised versions of the Lotka–Volterra method
introduced [15]. This heuristic method was originally developed for the maxi-
mum (in number of nodes) independent problem. It is based on the ordinary
differential equations known as the Lotka–Volterra system and always returns
a maximal independent set. This method works by having each node in a
graph correspond to a component of the fixed point of the Lotka–Volterra
system. The nodes that correspond to a non-zero component are the output
of the method. The two generalised versions incorporate the weight of each
node in the graph as either a carrying capacity or a competition coefficient in
the Lotka–Volterra system. In the molecular docking application, the Lotka–
Volterra method is applied on the complement of each relevant graph.

Finally, the version of the greedy algorithm applied to molecular docking works
by iteratively picking the node with the highest weight which is connected to
all previously chosen nodes. This algorithm approximates the solution to the
maximum-weighted clique problem and always returns maximal cliques.

Structure Overview

• Chapter 2 introduces the maximum-weighted independent set problem
and two heuristic methods to approximate its solutions.

• Chapter 3 demonstrates that both heuristic methods return maximal
independent sets.

• Chapter 4 discusses observations made when applying the methods.

• Chapter 5 introduces the maximum weighted clique problem and explains
its connection to the maximum weighted independent set problem.

• Chapter 6 presents the results of applying the methods to molecular
docking.

• Chapter 7 includes a discussion and conclusion to this report.

9

Chapter 2

Detecting ‘Heavy’ Maximal
Independent Sets

In this chapter, we present two methods that approximate the solutions to the
maximum-weighted independent set problem. These methods build upon the
technique outlined in [15], extending its application to graphs whose nodes are
weighted.

First, in Section 2.1 we define the maximum-weighted independent set prob-
lem. In Section 2.2 we introduce the system upon which the aforementioned
methods are based. Finally, in Sections 2.3 and 2.4, we present each method
individually and explain how is approximates the solutions of the maximum-
weighted independent set problem.

2.1 Maximum-Weighted Independent Sets

In this section, we define the maximum-weighted independent set problem and
outline the context in which the methods described in Sections 2.3 and 2.4 can
be applied. We will be assuming the following for the rest of this chapter.

Consider a simple, connected undirected graph G = (E, V) with n nodes and
no loops. Here, E is the set of edges and V is the set of nodes of the graph
(thus, n = |V |). Further, assume that each node vi ∈ V has a corresponding
weight wi ≥ 1.

Now, define the vector w, where for all i ∈ [n] = {1, 2, ..., n} the entry wi

is the weight of node vi ∈ V . Let W be the diagonal matrix with entries
corresponding to the entries of the vector w (i.e. W = diag(w)). Furthermore,
let A be the adjacency matrix corresponding to graph G, where Aij = 1 if
{vi, vj} ∈ E, and Aij = 0 otherwise.

10

Given the above assumptions we define the following:

Definition 1. A set S is an independent set in the graph G = (E, V) if and
only if ∀u, v ∈ S ⊂ V : {u, v} /∈ E.

Definition 2. A set S is a maximal independent set in the graph G = (E, V) if
and only if S is independent in G and ∀v ∈ V \S : ∃u ∈ S such that {u, v} ∈ E.

Definition 3. A set S is a maximum-weighted independent set in the graph
G = (E, V) if and only if S is a maximal independent set in G and∑

vk∈S
wk = max

{ ∑
vk∈B

wk with B a maximal independent set
}
.

Finally, we will call the sum of weights corresponding to the nodes of a set its
weight. Also, we shall refer to sets with a relatively high weight as ‘heavy’. And
so, ‘heavy’ maximal independent sets approximate the weight of the maximum-
weighted independent set. Note that ‘heavy’ is not a precise term and is only
used here to differentiate and compare between sets on the basis of their weight.

2.2 The Lotka–Volterra System

The techniques outlined in the subsequent sections (Sections 2.3 and 2.4) for
identifying ‘heavy’ maximal independent sets are related to the dynamics of
the Lotka–Volterra system. Specifically, they are related to the trajectories of
the multi-dimensional Lotka–Volterra system described by:

dx

dt
= x ◦ (1−Mx) (2.1)

where ◦ denotes component-wise multiplication and 1 is the unit vector.

Note, for the methods described in Sections 2.3 and 2.4, matrix M and vector
x have non-negative entries. For M this is by definition (as seen in Sections
2.3 and 2.4) and for x this is a consequence of the chosen initial conditions as
proven in Lemma 2.

When x has non-negative entries, as is the case in this report, it can (and was
originally developed to) represent animal populations [17], with M being the
interaction matrix among these species. Since, in this case, all entries of M
are non-negative, the model (2.1) represents a mutually antagonistic system,
where interacting animal populations compete for their survival (e.g. through
competing for resources).

The Jacobian at x of the system (2.1) is given by:

J(x) = [I− diag(x)M − diag(Mx)] (2.2)

11

where I is the identity matrix.
Equation (2.2) follows from the fact that for arbitrary i, j ∈ [n]

J(x)ij =
d

dxj

dxi
dt

=
d

dxj

(
xi
(
1− (Mx)i

))
=

d

dxj

(
xi − xi(Mx)i

)
= 1{i=j} − xiMij − 1{i=j}(Mx)i

where 1{i=j} is equal to 1 when i = j and 0 otherwise.

The definition of the Jacobian is provided here for completeness of the system
definition, but it is only used in Chapter 3.

2.3 The Carrying Capacity Method

The first method for identifying ‘heavy’ maximal independent sets that is pre-
sented we call the carrying capacity method. That is because the weight of
each node functions as its carrying capacity in the Lotka–Volterra system.

The Carrying Capacity Method

Given a simple, connected, undirected graph G = (V,E) with n weighted
nodes and no loops, define M̃ = τA+W−1 with A and W as described
in Section 2.1 and τ > 1.
Let x(t) be the trajectory of the system (2.1) equipped with matrix M̃
and with initial condition at x(0) = x0 such that ∀i ∈ [n] : x0i ∈ (0, wi).
Then the set {vi ∈ V : x∗i = wi} where x∗ = limt→∞ x(t), is an approx-
imation to the maximum-weighted independent set G.

The existence of x∗ and the fact that {vi ∈ V : x∗i = wi} is a maximal
independent set are shown in Section 3.1.

As mentioned before, the carrying capacity method is based on the approach
given in [15], with one key difference in the definition of the interaction matrix.
In the original method the interaction matrix is defined as τA+ I while in the
the carrying capacity method, the interaction matrix is defined as τA+W−1.

The purpose of this difference is the introduction of a new bias in the method,
where instead of returning maximal independent sets with a relatively high
number of nodes, it now returns ‘heavy’ maximal independent sets. To un-
derstand this difference, let us consider the component-wise Lotka–Volterra
system (2.1) with interaction matrix M̃ = τA+W−1

dxi
dt

= xi

(
1−

(
(τA+W−1)x

)
i

)
= xi

(
1− xi

wi

)
− τxi(Ax)i. (2.3)

12

Here we see that if we consider each component of x in (2.3) as an animal
population, its corresponding weight functions as the carrying capacity of that
population’s habitat. The carrying capacity of a habitat is the maximum
population size that can be sustained in that habitat. Therefore, a habitat
with a high carrying capacity can sustain a larger population of a given animal
population. Consequently, we hypothesize that a node with a higher weight
is more likely to exhibit a trajectory that does not stabilize at zero. This is
because, in nature, animal populations in habitats with high carrying capacities
typically possess a survival advantage [16].

In contrast, for the original method of [15], each animal population would have
the same carrying capacity, equal to one. This would imply that no animal
population has a survival advantage based on its habitat. Instead, the driving
force of the original model is the number of interactions a population has.
The more antagonistic interactions a population has, the more likely it is that
extinction will follow.

If our hypothesis is true, the maximal independent set generated by the car-
rying capacity method is expected to yield a ‘heavy’ maximal independent
set. The extent of how ‘heavy’ this independent set is and the accuracy of the
method in identifying the maximum-weighted independent set are investigated
in Section 4.1.

2.4 The Competition Method

The second method for identifying ‘heavy’ maximal independent sets that is
presented we call the competition method. That is because the weight of each
node functions as a type of interactive competition coefficient in the Lotka–
Volterra system.

The Competition Method

Given a simple, connected, undirected graph G = (V,E) with n weighted
nodes and no loops, define M̄ = τAW + I with A and W as described
in Section 2.1, I the identity matrix and τ > 1.
Let x(t) be the trajectory of the system (2.1) equipped with matrix M̄
and with initial condition at x(0) = x0 such that ∀i ∈ [n] : x0i ∈ (0, 1).
Then the set {vi ∈ V : x∗i = wi} where x∗ = limt→∞ x(t), is the
approximation to the maximum-weighted independent set G.

The existence of x∗ and the fact that {vi ∈ V : x∗i = 1} is a maximal indepen-
dent set are shown in Section 3.2.

Similar to the carrying capacity method, the competition method differs from
the method introduced in [15] in the definition of the interaction matrix. In this
case, the difference is related to the influence of the adjacency matrix. Again, to

13

understand this difference, let us consider the component-wise Lotka–Volterra
system 2.1 with interaction matrix M̄ = τAW + I:

dxi
dt

= xi

(
1−

(
(τAW + I)x

)
i

)
= xi(1− xi)− τxi

∑
j:Aij ̸=0

wjxj . (2.4)

If we now consider each component of x in (2.4) as an animal population,
the competitive interaction coefficient between each population xi and each
population xj it interacts with for j ∼ i is scaled by the weight of that animal
population wj .

The reasoning behind this method is that a population with ‘heavy’ neigh-
bouring populations, that is neighbouring populations with a high interaction
coefficients, are more prone to extinction. This leaves their neighbours with less
competition and, thereby increasing their chances of survival. Thus, animal
populations with high interaction coefficients are more likely to outcompete
and reduce the populations they interact with, thereby increasing their own
chances of survival.

In the original method of [15], each animal population had the same interaction
coefficient (equal to τ). And so again, the driving force in the original model
is the number of interactions a population has.

If the above hypothesis is true, the maximal independent set generated by
the competition method is expected to yield a ‘heavy’ maximal independent
set. The extent of how ‘heavy’ this independent set is, and the accuracy of
the method in identifying the maximum-weighted independent set, will be
investigated in Section 4.2.

14

Chapter 3

Mathematical Analysis of the
Methods

In this chapter, we prove that the methods described in Chapter 2 consistently
return maximal independent sets. This is covered in Section 3.1 for the carrying
capacity method and in Section 3.2 for the competition method.

3.1 Mathematical Analysis of the Carrying Capacity
Method

The carrying capacity method, introduced in Section 2.3, consistently returns
a maximal independent set. This is a consequence of the following theorem.

Theorem 1. Let τ > 1 and M̃ = τA + W−1 with A and W as described in
Section 2.1. Let x(t) be the trajectory of the system (2.1) equipped with matrix
M̃ and with initial condition at t = 0 being x0 such that ∀i ∈ [n] : x0i ∈ (0, wi).
Then x∗ := limt→∞ x(t) exists, ∀i ∈ [n] : x∗i ∈ [0, wi] and the set {vi ∈ V :
x∗i = wi} is a maximal independent set.

Proof. The proof of Theorem 1 follows from Lemmas 1, 2, 3, 4 and 5.

For the rest of this section, assume that M̃ = τA + W −1 with A and W as
described in Section 2.1.

Lemma 1. The solution to the initial value problem{
dx
dt = x ◦ (1−Mx),

x(0) = x0

exists and is unique.

15

Proof. Define the function f : Rn 7→ Rn such that ∀i ∈ [n] :

fi(x) = xi

(
1−

(
Mx

)
i

)
= xi

(
1−

n∑
k=1

Mijxk

)
.

Let i, j ∈ [n] be arbitrary. Then we have

∂fi
∂xj

= 1{i=j} − 1{i=j}

(n∑
k=1

Mikxk

)
− xi

n∑
k=1

1{i=k}Mikxk

= 1{i=j} − 1{i=j}

(n∑
k=1

Mikxk

)
i
− xiMiixi.

Thus, it is clear (since it is the sum of continuous functions) that ∂fi
∂xj

is contin-
uous for all i, j ∈ [n]. This means that f is continuously differentiable. This
implies (by [19]) that the initial value problem{

dx
dt = f(x),

x(0) = x0

has one and only one solution.

Lemma 2. Let τ > 1 and x be a solution of the system (2.1) equipped with
matrix M̃ and with initial condition x0 such that ∀i ∈ [n] : x0i ∈ [0, wi]. Then,
for all t ≥ 0 it holds that ∀i ∈ [n] : xi(t) ∈ [0, wi].

Proof. Let i ∈ [n] be arbitrary and assume that the conditions of Lemma 2
hold. If xi = 0, then dxi

dt = 0. Thus, for all i ∈ [n], xi cannot become negative
for all t ≥ 0, provided that x0i > 0. If xi = wi, the following holds:

dxi
dt

∣∣∣∣∣
xi=wi

= xi[1− (M̃x)i]

∣∣∣∣∣
xi=wi

= xi[1−
(
(τA+W−1)x

)
i
]

∣∣∣∣∣
xi=wi

= xi − τxi
∑
j ̸=i

Aijxj − xiW
−1
ii xi

∣∣∣∣∣
xi=wi

= xi −
1

wi
x2i − τxi

∑
j ̸=i

Aijxj

∣∣∣∣∣
xi=wi

= wi −
wi

wi
wi − τwi

∑
j ̸=i

Aijxj = −τwi

∑
j ̸=i

Aijxj ≤ 0.

Thus, any coordinate of a trajectory cannot exceed its corresponding weight.
Combining the above, we have that for all i ∈ [n] : 0 ≤ xi ≤ wi provided that
x0i ∈ [0, wi]. This completes the proof.

Lemma 3. Let x be the solution of the system (2.1) equipped with matrix
M̃ and with initial condition x0 such that ∀i ∈ [n] : x0i ∈ [0, wi]. Then
x∗ := limt→∞ x(t) exists.

16

Proof. Define the (n+ 1)× (n+ 1) matrix U such that ∀i, j ∈ [n]:

• Uij = M̃ij − 1,

• U(n+1)j = Ui(n+1) = 1,

• U(n+1)(n+1) = 0.

Now let y be the solution of the replicator system (see Definition 8) on the
simplex Ŝ(n+1) = {y ∈ S(n+1) : y(n+1) > 0} where S(n+1) = {y ∈ Rn : yi >
0 and

∑
i=1 yi = 1} given by

dyi
dt

= −yi

((
Uy
)
i
− yTUy

)
. (3.1)

Since the matrix M̃ is symmetric, so is the matrix U . Then, by Theorem 7
(found in Appendix A), y(t) converges to a fixed point y∗.

By Theorem 5 (found in Appendix A), the differentiable, invertible map given
by xi = yi/yn+1, maps the replicator system (3.1) onto the following system
on {x ∈ Rn : x > 0}

dxi
dt

= −xi

(
Ui(n+1) − U(n+1)(n+1) +

n∑
j=1

(
Uij − U(n+1)j

)
xj

)
= −xi

(
− 1− 0 +

n∑
j=1

(
M̃ij + 1− 1

)
xj

)
= xi

(
1−

(
M̃x

)
i

)
.

This is the Lotka–Volterra system (2.1) equipped with matrix M̃ .

Now, let x be an arbitrary solution of the Lotka–Volterra system (2.1) equipped
with matrix M̃ . Then by the above, we have ∀i ∈ [n]:

lim
t→∞

xi(t) = lim
t→∞

yi
yn+1(t)

=
y∗i

y∗n+1

=: x∗i .

Note that since y ∈ Ŝn we have yn+1 > 0.

And so, any solution of the Lotka–Volterra system (2.1) equipped with matrix
M̃ converges to a fixed point.

Lemma 4. Let τ > 1 and x be the solution of system (2.1) equipped with matrix
M̃ and initial condition x(0) = x0. Then, there exists a set Ω with Lebesgue
measure equal to zero, such that for all initial condition x0 ∈ {(0, w1)×(0, w2)×
... × (0, wn)}\Ω, the limit x∗ = limt→∞ x(t) has entries x∗i such that xi∗ = 0
or x∗i = wi

17

Proof. Let τ > 1 and x be the solution of system (2.1) equipped with matrix
M̃ and initial condition x(0) = x0. Let S denote the set of all stationary
points of the system. Then, by Sard’s Theorem [20], the Lebesgue measure of
S is equal to zero.
Let x∗ = limt→∞ x(t) with x(0) /∈ S be a stationary state of the system (we
can do this by Lemma 3).
For the first part of the proof, suppose that ∀i ∈ [n] : x∗i ∈ (0, wi). We will
show that given this condition x∗ is not stable.
Because x∗ is a stationary point and ∀i ∈ [n] : x∗i ̸= 0, we have x∗ = M̃−11.
And so, using (2.2) the Jacobian of the system at x∗ is given by:

J(x∗) = [I− diag(x)M̃ − diag(M̃x)]

∣∣∣∣∣
x=x∗

= −diag(x∗)M̃.

But then, since x∗ > 0, the matrix diag(x∗)1/2 exists. And so, since

diag(x∗)M̃ = diag(x∗)1/2
(
diag(x∗)1/2M̃diag(x∗)1/2

)
diag(x∗)−1/2,

J(x∗) has the same eigenvalues as matrix

C(x∗) = −diag(x∗)1/2M̃diag(x∗)1/2.

Since C(x∗) is a symmetric and real matrix, all its eigenvalues are real. And
so the point x∗ is unstable if C(x∗) contains at least one strictly positive
eigenvalue in its spectrum. That is equivalent to C(x∗) not being negative
semi-definite.
Since C(x∗) is symmetric, to show that it is not negative semi-definite, it is
sufficient to show that one of its principal minors of even order has a negative
determinant (or of odd order has a positive determinant)[21].
Now consider a pair k, l ∈ [n] with Akl = 1. Then,

C(x∗)kk = − 1

wk
x∗k,

C(x∗)ll = − 1

wl
x∗l ,

C(x∗)kl = −τ(x∗k)
1/2(x∗l)

1/2,

C(x∗)lk = −τ(x∗l)
1/2(x∗k)

1/2.

The corresponding 2x2 principal minor is given by

C(x∗)kkC(x∗)ll−C(x∗)klC(x∗)lk =
1

wk

1

wl
x∗kx

∗
l −τ2x∗kx

∗
l = x∗kx

∗
l

(1

wk

1

wl
−τ2

)
.

Since τ > 1 and wi ≥ 1 for all i ∈ [n]: C(x∗)kkC(x∗)ll − C(x∗)klC(x∗)lk < 0.
Thus C(x∗) is not negative semi-definite. Hence, J(x∗) has at least one positive

18

eigenvalue. This means x∗ is unstable. By applying the Stable Manifold
Theorem [22], there exists a stable manifold T of dimension strictly less than
n. And so, if x0 /∈ T , x∗ doesn’t converge to a steady state.
Now suppose that ∀i ∈ [n] : x∗i ∈ [0, wi) and ∃j ∈ [n] : x∗j ∈ (0, wj). Let
I = {i ∈ [n] : x∗i = 0}. By reordering the nodes, the Jacobian can (for any
steady state x∗) be rewritten as:

J(x∗) =

([
J̄(x∗)

]
i/∈I,j /∈I

[
− x∗i M̃ij

]
i/∈I,j∈I[

0
]
i∈I,j /∈I

[
diag(1−

∑n
k=1 M̃ikx

∗
k)
]
i∈I,j∈I

)
(3.2)

with
(
J̄(x∗)

)
ij
= 1{i=j} − x∗i M̃ij − 1{i=j}

∑
k/∈I M̃ikx

∗
k.

But, J̄(x∗) fulfils the assumptions of the first part of the proof and thus J̄(x∗)
has a positive eigenvalue. Since J(x∗) is a block triangular matrix and J̄(x∗)
is on its diagonal, all the eigenvalues of J̄(x∗) are also eigenvalues of J(x∗).
Thus J(x∗) has a positive eigenvalue. Therefore, x∗ is unstable and there
exists a stable manifold T of dimension strictly less than n. Finally, suppose
0 ≤ x∗i ≤ wi for all i ∈ [n] with at least one component being strictly in (0, wi).
Let Q = {i ∈ [n] : x∗i = wi}. Since x∗ is a stationary point, for i ∈ Q:

dx∗i
dt

= x∗i [1− (M̃x∗)i] = 0 ⇒

(M̃x∗)i =
(
(τA+W)x∗)

i
= τ(Ax∗)i +

1

wi
x∗i = 1 ⇒

τ(Ax∗)i = 1− 1

wi
x∗i = 1− wi

wi
= 0 ⇒

(Ax∗)i = 0. (3.3)

So, Aij = 0 for all i ∈ Q and j /∈ I. Thus, for i ∈ Q and j ̸= i, j /∈ I:

[J̄(x∗)]ii = 1{i=i} − x∗i M̃ii − 1{i=i}
∑
k/∈I

M̃ikx
∗
k

= 1− x∗i (τAii +W−1
ii)−

∑
k/∈I

(τAik +W−1
ik)x∗k

= 1− wix
∗
i − wix

∗
i − τ

∑
k/∈I

Aikx
∗
k

= 1− 2w2
i < 0

and

[J̄(x∗)]ij = 1{i=j} − x∗i M̃ij − 1{i=j}
∑
k/∈I

M̃ikx
∗
k

= −x∗i (τAij +W−1
ij) = −τx∗iAij = 0.

Thus, the Jacobian can be rewritten such that J̄(x∗) is a block diagonal ma-
trix. Specifically J̄(x∗) can be rewritten as having |Q| blocks of size 1 and

19

one block of size n − |Q| − |I|. But then the eigenvalues of the block of size
n − |Q| − |I| are also eigenvalues of J(x∗). And then since the block matrix
of size n − |Q| − |I| fulfils the assumptions of the first part of the proof it
has a positive eigenvalue. Therefore, x∗ is unstable and there exists a stable
manifold T of dimension strictly less than n.
Since the finite union of sets with Lebesgue measure equal to zero has a
Lebesgue measure equal to zero, the proof follows with Ω = S ∪ T .

Lemma 5. For τ > 1, the set {vi ∈ V : x∗i = wi} where x∗ := limt→∞ x(t)
with x(t) any solution of the system (2.1) equipped with matrix M̃ , is a maximal
independent set when x∗ is stable.

Proof. From Lemma 4, we know that any stable steady state x∗, has entries
x∗i such that x∗i = 0 or x∗i = wi. Define the set Z = {vi ∈ V : x∗i = wi}.
Suppose x∗i = wi, then as shown by Equation (3.3), x∗i (1 − (M̃x∗)i) = 0 ⇒
(Ax∗)i = 0. This means that for all adjacent j ∼ i : x∗j = 0. This implies that
Z is indeed an independent set in G.
Suppose that Z is not maximal. Then, there exists some i ∈ [n] with x∗i = 0
such that x∗j = 0 for all j ∼ i. And so, the lower right block of the Jacobian
as seen in Equation (3.2) has an entry that lies in the diagonal of a block
triangular matrix, which implies that there exists an eigenvalue λ such that :

λ = 1−
n∑

k=1

τAikx
∗
k = 1 > 0.

This implies that x∗ is unstable. And so, by contradiction of the stability
assumption, Z is maximal.

3.2 Mathematical Analysis of the Competition Method

Similarly to the carrying capacity method, the competition method, as de-
scribed in Section 2.4, consistently returns a maximal independent set. This
stated in the following theorem.

Theorem 2. Let τ > 1 and M̄ = τAW + I with A and W as described
in Section 2.1 and I the n × n identity matrix. Let x be the solution of the
system (2.1) equipped with matrix M̄ and with initial condition at t = 0 being
x0 ∈ (0, 1)n. Then x∗ := limt→∞ x(t) exists, ∀i ∈ [n] : x∗i ∈ [0, 1] and the set
{vi ∈ V : x∗i = 1} is a maximal independent set.

Proof. Let τ > 1. Let x be the solution of the system (2.1) equipped with
matrix M̄ and with initial condition at t = 0 being x0 ∈ (0, 1)n. Define

20

∀t ≥ 0 : y(t) := Wx(t). Then,

dx

dt
= x ◦

(
1− M̄x

)
= x ◦

(
1−

(
τAW + I

)
x
)

= W−1y ◦
(
1−

(
τA+W−1

)
y
)
= W−1y ◦

(
1− M̃y

)
which implies that

W−1dy

dt
= W−1y ◦

(
1− M̃y

)
⇐⇒ dy

dt
= y ◦

(
1− M̃y

)
.

And also, y0 = Wx0 which implies that ∀i ∈ [n] : y0i ∈ (0, wi). Then, by
Theorem 1 we have that y∗ := limt→∞ y(t) exists and the set {vi ∈ V : y∗i =
wi} is a maximal independent set. This implies that x∗ := limt→∞ x(t) exists,
since

lim
t→∞

x(t) = lim
t→∞

W−1y(t) = W−1 lim
t→∞

y(t) = W−1y∗.

Additionally it implies that {vi ∈ V : x∗i = 1} is a maximal independent set
since

{vi ∈ V : y∗i = wi} = {vi ∈ V : wix
∗
i = wi} = {vi ∈ V : x∗i = 1}.

21

Chapter 4

Analysing the Methods

In this chapter, we will outline some observations resulting from applying the
methods described in the previous chapters. In Section 4.1, we will analyse
the carrying capacity method, and in Section 4.2, the competition method.

The following observations have been made after a limited number of tests.
Each observation will be illustrated with concise yet representative examples.
All results and figures presented in this chapter result from the implementation
of the code provided predominantly in Appendix B.3 which itself uses code
found in B.1 and B.2.

4.1 Analysis of the Carrying Capacity Method

First, we observe that the carrying capacity method has a bias towards nodes
with lower degrees (number of neighbours). This means the algorithm tends to
pick nodes with lower degrees, even if they are not part of a maximum-weighted
independent set.

This observation is illustrated in Figure 4.1. Specifically, in Figure 4.1a the
carrying capacity method correctly detects the maximum-weighted indepen-
dent set {v2, v3} with total weight equal to 5. But, when we add node v5 as
in Figure 4.1b, we see that the method returns the set {v1, v4, v5} with total
weight equal to 3. This indicates a ‘preference’ for nodes with a lower degree.

This bias is not surprising when one considers nodes as animal populations
competing for resources. The more interactions a population has with others
(i.e. the more neighbours a node has), the higher the risk of extinction. While
a higher carrying capacity for a population offers a survival advantage, it does
not always offset the impact of competition.

22

(a) w = [1, 1, 4, 1]T (b) w = [1, 1, 4, 1, 1]T

Figure 4.1: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the carrying capacity method for the
displayed graphs with initial conditions such that ∀i : x0i = 0.1. The size of

each node is determined by its weight.

The second observation we make about the carrying capacity method is related
to the effect of the initial condition. Particularly, we observe a bias towards
nodes with higher initial conditions. Consequently, the algorithm tends to
pick a node vi when x0i is high, even if it is not part of a maximum-weighted
independent set.

(a) x0 = [0.1, 0.1, 0.1, 0.1]T (b) x0 = [0.2, 0.1, 0.1, 0.1]T

Figure 4.2: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the carrying capacity method for the
displayed graphs with weight vector w = [1, 2, 2, 1]T .The size of each node is

determined by its weight.

This observation is depicted in Figure 4.2. Here, any bias related to the degree
of the nodes is eliminated by examining a regular graph (i.e. a graph whose
nodes have all the same degree). Subsequently, in Figure 4.2a, it is clear that
in the absence of bias stemming from initial conditions, the algorithm cor-
rectly identifies the maximum-weighted independent set. However, in Figure

23

4.2b, despite it not being part of the maximum-weighted independent set, the
algorithm selects node v1, which has a higher corresponding initial condition
(x01 = 0.2 > x0j for all j ̸= 0).

Finally, we observe that the carrying capacity method appears to have a bias
against nodes with a low weight, instead of having a bias for nodes with a
high weight. The algorithm tends not to pick node vi when wi is low. The
nodes chosen by the algorithm are from the set of those which are left over
after eliminating the lower-weighted ones, even if a low-weighted node is part
of the maximum-weighted independent set.

This observation is illustrated in Figure 4.3. Here, the algorithm returns the set
{v2, v4} with a total weight of 4, instead of the maximum-weighted independent
set {v1, v5} or {v1, v6} with a total weight of 5. Again, viewing each node as
an animal population, this can be explained by noting that the populations
corresponding to nodes v5 and v6 will quickly die out due to their low carrying
capacity, even though they are part of a maximum-weighted independent set.

Figure 4.3: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the carrying capacity method for the
displayed graphs with initial condition such that ∀i : x0i = 0.1 and weight

vector w = [4, 2, 2, 2, 1, 1]T . The size of each node is determined by its weight.

All the aforementioned biases of the carrying capacity method influence the
accuracy of the method in finding maximum-weighted independent sets.

24

4.2 Analysis of the Competition Method

After implementing the competition method, we observed that any bias present
in the carrying capacity method is either absent or weaker in the competition
method.

First, unlike the carrying capacity method, the competition method does not
show a strong bias towards nodes with low degrees. This is illustrated in Figure
4.4. Specifically, in Figure 4.4a, we see that the competition method identifies
the maximum-weighted set {v2, v3}, whereas, for the same graph, the carrying
capacity method does not, as seen in Figure 4.1b. Additionally, Figures 4.4b,
4.4c, and 4.4d demonstrate that the competition method continues to correctly
identify the maximum-weighted independent set without a clear bias towards
nodes with lower (or higher) degrees.

(a) w = [1, 1, 4, 1, 1]T (b) w = [1, 1, 4, 1, 1, 1]T

(c) w = [1, 1, 4, 1, 1, 1, 1]T (d) w = [1, 1, 4, 1, 1, 1, 1, 1]T

Figure 4.4: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the competition method for the

displayed graphs with initial conditions such that ∀i : x0i = 0.1. The size of
each node is determined by its weight.

25

This observation has only been tested on a small scale, so we cannot definitively
conclude that the competition algorithm generally lacks such a bias. However,
we can conclude that the competition method does not exhibit a lower degree
bias to the extent the carrying capacity method does.

Secondly, the competition method does have a bias towards nodes with a higher
initial condition, but this bias is weaker when compared to the carrying ca-
pacity method. This is illustrated in Figure 4.5. Here we see that, unlike
the carrying capacity method, the competition method correctly identifies the
maximum-weighted set in the case illustrated by Figures 4.5a and 4.2b. Fur-
thermore, the competition method accurately identifies the maximum-weighted
independent set until the initial condition x01 exceeds 0.5, at which point the
bias towards higher initial conditions becomes significant.

(a) x0 = [0.2, 0.1, 0.1, 0.1]T (b) x0 = [0.5, 0.1, 0.1, 0.1]T (c) x0 = [0.6, 0.1, 0.1, 0.1]T

Figure 4.5: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the competition method for the

displayed graphs with weight vector w = [1, 2, 2, 1]T . The size of each node is
determined by its weight.

Finally, the competition method does not appear to have a bias against nodes
with low weight. This is demonstrated in Figure 4.6, where the competition
method correctly identifies the maximum-weighted independent set. In con-
trast, as shown in Figure 4.3, the carrying capacity method fails to do so.

26

Figure 4.6: Figure showing the maximal independent set (nodes in pink with
black border) resulting from applying the competition method for the

displayed graphs with initial condition such that ∀i : x0i = 0.1 and weight
vector w = [4, 2, 2, 2, 1, 1]T . The size of each node is determined by its weight.

In conclusion, the competition method appears to perform better than the
carrying capacity method. However, the competition method does have a
bias for nodes with higher initial conditions which influences its ability to find
maximum-weighted independent sets. Other biases might also be present but
more research needs to be done on this topic.

27

Chapter 5

Detecting ‘Heavy’ Maximal
Cliques

This chapter delves into how we can utilize the carrying capacity method
and the competition method to approximate the solutions of the maximum-
weighted clique problem. In Section 5.1 we define the maximum-weighted
clique problem. In Section 5.2 we discuss how the maximum-weighted clique
problem is related to the maximum-weighted independent set problem and
explain why the carrying capacity method and the competition method are
indeed suitable for detecting cliques.

5.1 Maximum-Weighted Cliques

Given the assumptions made in Section 2.1 we define the following:

Definition 4. A set S is a clique in the graph G = (E, V) if and only if
∀u, v ∈ S ⊂ V : {u, v} ∈ E.

Definition 5. A set S is a maximal clique in the graph G = (E, V) if and
only if S is clique in G and ∀v ∈ V \S : ∃u ∈ S such that {u, v} /∈ E.

Definition 6. A set S is a maximum-weighted clique in the graph G = (E, V)
if and only if S is a maximal clique in G and∑

vk∈S
wk = max

{ ∑
vk∈B

wk with B a clique
}
.

5.2 Cliques and Independent Sets

To understand the connection between the maximum-weighted clique problem
and the maximum-weighted independent set problem, we need the following
definition:

28

Definition 7. The complement of the graph G = (V,E) is the graph Ḡ =
(V̄ , Ē) such that:

• V̄ = V and

• For any pair of distinct vertices v, u ∈ V : {v, u} ∈ Ē ⇐⇒ {v, u} /∈ E.

With this definition, we can state the following theorem that connects cliques
to independent sets.

Theorem 3. S is an independent set in a simple, undirected graph G = (V,E)
with no loops if and only if S is a clique in the complement of G.

Proof. Let S be an independent set in a simple, undirected graph with no
loops G = (V,E). And let Ḡ = (V̄ , Ē) be the complement of G. Then, since
S is an independent set: ∀u, v ∈ S ⊂ V : {u, v} /∈ E. But this implies that
∀u, v ∈ S ⊂ V̄ {u, v} ∈ Ē. And so S is a clique in Ḡ = (V̄ , Ē) .
The other way follows from the fact that the complement of the complement
of G is again G (¯̄G = G).

Corollary 1. S is a maximum-weighted independent set in a simple, undirected
graph G = (V,E) with no loops if and only if S is a maximum-weighted clique
in the complement of G.

Thus, by Corollary 1, finding (an approximation to) the solution of the maximum-
weighted clique problem is analogous to finding (an approximation to) the
solution of the maximum independent set problem. This means that we can
utilize the carrying capacity and the competition methods for detecting ‘heavy’
maximal cliques, provided that we implement them on the complement of the
graph we are investigating.

29

Chapter 6

Application to Molecular
Docking

In this chapter, we apply (and compare the performance of) the carrying ca-
pacity and competition methods to molecular docking. First, in Section 6.1
we introduce the problem of molecular docking. Section 6.3 outlines how the
carrying capacity and competition method as well as a version of the greedy
algorithm and the Lotka–Volterra algorithm of [15] are applied to molecular
docking. Finally, in Section 6.4 the results of this application are discussed.

6.1 Molecular Docking

The final aim of this report is to apply the developed methods to molecular
docking. Molecular docking is the problem of ‘predicting the optimal interac-
tion of two molecules, typically a small-molecule ligand and a target receptor’
[8]. This has important applications in the field of biology most notably in
assisting drug design [23].

As demonstrated in [8], molecular docking can be reduced to the maximum-
weighted clique problem. This implies that determining the optimal interaction
between two given molecules is equivalent to solving the maximum weighted
clique problem for an appropriately chosen graph. Constructing these molec-
ular docking graphs is a multi-step process. First, we need to identify which
points (called pharmacophore points) in each molecule are involved in the
binding interaction. Then each node in the graph is a possible interaction be-
tween the pharmacophore points of the different molecules. Two nodes have an
edge between them if and only if the interactions they represent are physically
compatible (meaning they can simultaneously occur). Finally, the weight of
each node is determined by how strong is the interaction between the pharma-
cophore points.

30

Since the carrying capacity and competition method can approximate the so-
lutions to the maximum-weighted clique problem, they can also approximate
the solutions of molecular docking. In the following sections, these methods
are applied to a set of molecular docking graphs.

6.2 The Dataset

In this section, we give some details about the database used for the application
described in the following sections.

Our dataset consists of 89 out of the 447 files of the ’docking weighted graphs’
of [24]. Due to the low computational power available at the beginning of this
research, the chosen graphs are some of the smallest ones (in terms of their file
size) from the entire ‘docking weights graphs’.

All the molecular docking graphs are simple, undirected, node-weighted and
without loops. The number of nodes of the 89 chosen graphs ranges from 17
to 2230 nodes, with an average number of nodes in a graph being 872. The
number of edges ranges from 0 to 250139, with an average number of edges
being 27727. The weights of the nodes range from 3937 to 208660 with the
average weight being 49291.

6.3 Applying the Methods

In this section, we describe how we will apply (and compare) different algo-
rithms for identifying (‘heavy’) maximal cliques to molecular docking graphs.

First, we note that molecular docking graphs are simple, undirected, node-
weighted and without loops. Thus, in order to apply the carrying capacity and
competition methods on a molecular docking graph, it is sufficient to divide
the complement of the graph into connected components, apply the methods
on each component and add the solutions to a single set. This is a result of
the following theorem.

Theorem 4. Let G = (V,E) be a simple, undirected graph with no loops.
Suppose that G had N ≥ 1 distinct connected components Gi = (Vi, Ei) for
i ∈ N . Also, suppose that ∀i ∈ N : Si is an independent set in Gi. Then
S := ∪N

i=1Si is an independent set in G.

Proof. Let G = (V,E) be a simple, undirected graph with no loops and suppose
that G can be divided into N ≥ 1 distinct connected components Gi = (Vi, Ei)
for i ∈ N . Also, suppose that ∀i ∈ N : Si is an independent set in Gi. Now
define S := ∪N

i=1Si and let u, v ∈ S be arbitrary. Then there are two cases we
need to consider.

31

The first case is that both u and v belong to the same independent set Si for
some i ∈ N . In that case, it immediately follows that {u, v} /∈ E.

In the other case, u and v belong to two different independent sets Su and Sv

for some u, v ∈ N with u ̸= v. But then u and v belong to the distinct set
of vertices Vu and Vv of two unconnected components of G. And thus, again
{u, v} /∈ E.

Since in both cases for arbitrary u, v ∈ S it holds that {u, v} /∈ E, S is an
independent set in G = (V,E).

Besides the carrying capacity and competition methods we also apply the
Lotka–Volterra method from [15]. This method is equivalent to both the car-
rying capacity and competition method with W = I. Thus, to apply this
method to molecular docking graphs we shall apply the competition method
with weight vector w = 1.

The final method we implement to molecular docking graphs is a version of
the greedy algorithm. This version starts with the heaviest node in the given
graph and iteratively picks the highest-weighted node that is connected to all
previously picked nodes. The code for this algorithm can be found in Appendix
B.4.

For the implementation of the methods based on the Lotka–Volterra system
(carrying capacity, competition and Lotka–Volterra methods) we pick x0 to
be within (0, 1)n and proportional to the corresponding weight vector w. The
reason for this is to give the Lotka–Volterra method a bias for ‘heavier’ nodes
while still being able to compare the different methods for the same initial
conditions. Research into which initial conditions are the most suitable for
each different method is outside the scope of this report.

6.4 Results

In this section, we present the results of applying the carrying capacity, com-
petition, Lotka–Volterra and greedy methods as described in Section 6.3.

The methods are applied on the set ‘docking weighted graphs’ of [24]. The
code for this application and the raw results can be found in Appendix B.5
and C respectively.

Note that in this section and the accompanying figures, ‘Method Weight’ refers
to the total weight of the output set produced by the specified method, while
‘Method Time’ indicates the duration required to complete the computation.

32

6.4.1 Weight-Based Performance Comparison

In this subsection, we discuss how the different methods compare based on their
ability to detect ‘heavy’ cliques. We will call this ability their ‘weight-based’
performance.

Figure 6.1: Comparison of the weights of the cliques detected by each
method [Lotka-Volterra (green rhombus), carrying capacity (orange square),
competition (blue triangle), and greedy (red circle)] across various graphs.

The y-axis represents the weight of the clique detected by each method. For
each graph, the highest weight detected by any method is identified, and

these highest weights are sorted in ascending order to determine the
placement of the graphs on the x-axis.

First, the carrying capacity, competition, Lotka–Volterra and greedy method
are applied to the 89 graphs described in Section 6.2. The weight of the
clique they detect is calculated and the highest detected weight for each graph
is determined. Then Figure 6.1 is obtained by sorting all highest detected
weights in ascending order and having each vertical line include the weight
detected by each method for a single graph.

In Figure 6.1, we observe that the greedy algorithm most frequently iden-
tifies the clique with the highest relative weight. Following this, the com-
petition method ranks as the second-best performer. The carrying capacity
and Lotka–Volterra methods both perform relatively poorly, with the Lotka–
Volterra method being slightly worse. Additionally, we notice that for graphs
with lower detected weights, the performance differences between the methods
are smaller than for graphs with higher detected weights. This trend is not sur-
prising, considering that graphs with lower weights typically have fewer nodes,
leading to fewer cliques and, consequently, fewer options for the methods to
choose from. While this is not always the case, it could explain the observed
trend.

Since the Lotka–Volterra method generally has the lowest weight-based per-
formance, we will use its results as a baseline to compare the other methods.
Figures 6.2 and 6.3 are obtained by dividing the weight of the output of each

33

(depicted) method with the weight of the output of the Lotka–Volterra method
for the same graph. These results are represented on the y-axis. Each vertical
line represents a graph. These graphs are sorted so that the output relating
to the competition and greedy method is monotonically decreasing for figures
6.2 and 6.3 respectively.

As expected, Figure 6.2 shows that the competition method typically returns
cliques with higher (or equal) weights compared to those returned by the car-
rying capacity method for the same graphs. Similarly, Figure 6.3 demonstrates
that the greedy algorithm generally achieves higher weight-based performance.
However, comparing Figures 6.2 and 6.3 we see that the greedy algorithm
more frequently returns cliques with weights lower than those produced by the
Lotka–Volterra method, in contrast to the competition method. We will revisit
this observation in Subsection 6.4.2.

Figure 6.2: Figure depicting the weight of the cliques detected by the
competition (blue line) and carrying capacity (orange square) methods, each
divided by the weight of the clique detected by the Lotka–Volterra method

for the same graph (y-axis). The graphs are sorted by the weight of the
clique detected by the competition method (x-axis).

34

Figure 6.3: Figure depicting the weight of the cliques detected by the
competition (blue triangle), carrying capacity (orange square) and greedy

(red line) methods, each divided by the weight of the clique detected by the
Lotka–Volterra method for the same graph (y-axis). The graphs are sorted

by the weight of the clique detected by the greedy method (x-axis).

6.4.2 Weight-Based Performance Rankings

In this subsection, we again look into the weight-based performance of the
different methods. This section will specifically focus on ranking and discussing
their performance in different contexts.

First, Figure 6.4 depicts how often each method returns a clique with the
first, second, third or fourth highest weight. It is clear that, as we have seen
before, the greedy algorithm returns the ‘heaviest’ clique the most often with
the competition method second most often. The carrying capacity and Lotka–
Volterra method both rank most often 3rd in their weight-based performance.

Now we take a closer look into the best and worst performances depicted in
Figure 6.5. Specifically, in Figure 6.5a, we observe that following the Lotka–
Volterra method, the greedy algorithm most frequently exhibits the poorest
weight-based performance, while the competition method exhibits this least
often. This suggests that although the greedy algorithm often has the best
weight-based performance (as seen in Figure 6.5b), it is relatively unreliable,
as its performance tends to be worse than that of other methods when it does
poorly. In contrast, the competition method consistently ranks either best or
second best in its weight-based performance (as seen in Figure 6.4), making it
the most reliable method for detecting ‘heavy’ maximal cliques.

35

Figure 6.4: Figure depicting for how many graphs (y-axis) each method
(Lotka–Volterra, carrying capacity, competition and greedy) ranks 1st (red),

2nd (blue), 3rd(orange) and 4th(green) in weight-based performance.

(a) Worst weight-based performance
ranking.

(b) Best weight-based performance
ranking.

Figure 6.5: Figure depicting for how many graphs (y-axis) each method each
method (Lotka–Volterra, carrying capacity, competition and greedy) has the

worst/best comparative weight-based performance.

6.4.3 Time-Based Performance Comparison

In this subsection, we will discuss the time-based performance (or processing
time) of each method.

In Figure 6.6 we see how the processing time of each method relates to the
number of nodes in the graph. The greedy algorithm has the lowest processing

36

time, which is very close (but not equal to) zero for all the graphs we applied it
on. The method with the second lowest processing time is the Lotka–Volterra
method. Both methods developed in this research (carrying capacity and com-
petition) have the highest processing time with little difference in the trend in
which processing time grows with the number of nodes.

All the methods have polynomial time complexity. This means that the time it
takes for a method to return a clique is, at most, a polynomial function of the
number of nodes in the graph. This is a direct result of the implementation of
the methods and is illustrated by the fitted lines (dotted) in Figure 6.6. These
lines are fourth-order polynomials which have an R2 value of 0.8125 and 0.9063
for the competition and carrying capacity method respectively. Here R2 is the
coefficient of determination, which means that it having a value close to 1 is
indicative of a proper fitting. Since all the methods have a polynomial time
complexity, they are significantly faster than any current exact algorithm for
detecting the maximum weighted clique for large graphs, as this problem is in
the class NP.

Figure 6.6: Figure depicting the processing time (in seconds) of each method
[Lotka–Volterra (green rhombus), carrying capacity (orange square),

competition (blue triangle), and greedy (red circle)] for a given graph (x-axis)
as a function of the number of nodes in that graph (y-axis). The dotted lines

correspond to the polynomials
2x4(10−10)− 3x3(10−7) + 0.0005x2 − 0.1827x+ 19.794 (blue) and
3x4(10−11) + 3x3(10−7)− 0.0003x2 + 0.2079x− 29.212 (orange)

37

6.4.4 Discussion and Conclusion

Finally, we end this section with the conclusions made after applying the carry-
ing capacity, competition, Lotka–Volterra, and greedy methods to the ‘docking
weighted graphs’ dataset.

In the weight-based performance comparison, the greedy algorithm emerged
as the most effective method for identifying the heaviest cliques across the
majority of graphs, followed by the competition method. The carrying capac-
ity and Lotka–Volterra methods, however, consistently showed poorer perfor-
mance, with the Lotka–Volterra method ranking lowest. Interestingly, while
the greedy algorithm often achieved the highest weight-based performance, it
also demonstrated greater variability, occasionally performing worse than the
Lotka–Volterra method. In contrast, the competition method exhibited more
consistent performance, ranking either first or second almost always.

The time-based performance comparison revealed that the greedy algorithm
not only performed well in the detection of ‘heavy’ cliques but also excelled in
processing time, consistently requiring by far the least time across all graphs.
The Lotka–Volterra method followed, with slightly higher processing times.
The methods developed in this research, carrying capacity and competition,
demonstrated higher processing times, though these times increased polynomi-
ally with the number of nodes, which is an improvement to exact algorithms
for solving the maximum weighted clique problem.

In conclusion, the greedy algorithm performs best in regards to speed and
ability to detect ‘heavy’ cliques but it also exhibits the highest variability in
its results. The competition method, while slower, offers more reliable perfor-
mance across different scenarios.

38

Chapter 7

Discussion

In this report, we present two heuristic methods for approximating the solu-
tions to the maximum weighted clique problem. Both methods are based on
the dynamics of the Lotka–Volterra system and are named the carrying capac-
ity and competition methods because of their biological interpretation of the
weight of nodes in a graph.

The two heuristics are an extension of previous work in [15] for the problem
of maximum independent sets. And, we show that for appropriately chosen
initial conditions, they consistently return maximal cliques.

The developed methods are applied to the problem of molecular docking, which
is equivalent to detecting maximum weighted cliques on relevant graphs. And
so, the carrying capacity and competition methods, as well as the method
they are based on (the Lotka–Volterra method) and the greedy algorithm, are
applied on 89 such graphs. This application reveals the following observations.

The greedy algorithm consistently outperforms others in identifying the ‘heav-
iest’ cliques, followed by the competition method. The carrying capacity and
Lotka–Volterra methods generally show poorer performance, with the lat-
ter ranking lowest. Notably, while the greedy algorithm exhibits the best
weight-based performance, it also shows greater variability, occasionally under-
performing compared to the Lotka–Volterra method. The competition method,
in contrast, demonstrates more consistent performance, often ranking first or
second.

The Greedy algorithm also excels in terms of processing time, requiring the
least time across all graphs. The Lotka–Volterra method follows, with slightly
higher processing times. The carrying capacity and competition methods,
despite higher processing times, exhibit polynomial time complexity, indicating
significant speed advantages over exact algorithms.

39

In conclusion, this report delves into two heuristic algorithms for the maximum
weighted clique problem, demonstrating their potential through both theoret-
ical analysis and practical application. While the greedy algorithm remains
more effective in many cases, the competition method’s consistency offers a
valuable alternative.

Future research should focus on refining these methods and understanding
where their application is most appropriate. This can be done by investigating
if there are specific types of graphs for which the competition and carrying
capacity perform better and are more suitable. This research can also include
if there are types of graphs for which the greedy algorithm performs worse and
if there is overlap in the aforementioned graph types. Additionally, research
can be done as to what extent (if any) the range of weights affects the perfor-
mance of the algorithms. Since the methods are based on a biological model
(the logistic growth mutually antagonistic Lotka–Volterra model), biological
observations can be potentially used to improve them and understand why the
competition method performs, in general, better than the carrying capacity
method. Finally, and maybe most interestingly, research can be done to un-
derstand the effect the choice of initial conditions has on the performance of
the methods. This can include determining how (if possible) to optimise the
choice of initial conditions.

40

Appendix A

Supplementary Proofs

In this appendix, we present additional theorems and lemmas, along with their
proofs, utilized in the report. All the following content is based on theorems
and exercises found in [18].

Definition 8. For an n × n matrix U, the replicator system on the simplex
Sn = {y :

∑n
i=1 yi = 1 and ∀i ∈ n : yi ≥ 0} is given ∀i ∈ [n] by

dyi
dt

= yi

((
Uy
)
i
− yTUy

)
. (A.1)

Lemma 5 (Exercise 4.12 [18]). Let f , g : Rn → Rn be continuous func-
tions with g strictly positive. Then the solutions of dx

dt = f(x, t) and dy
dt =

g(y, t)f(y, t) can be transformed into each other by a strictly monotonic change
in the time scale ϕ(t).

Proof. Let g be a strictly positive function. Let x be the solution of

dx(t)

dt
= f

(
x(t), t

)
with f an arbitrary continuous function. Define the map y(t) = x(ϕ(t)) where
ϕ(t) =

∫
g
(
y(s), s

)
ds with the initial condition ϕ(t0) = t0.

Then, we have

dy(t)

dt
= x′(ϕ(t))ϕ(t)′
= f

(
x(ϕ(t)), t

) d
dt

(∫
g
(
y(s), s

)
ds
)

= f
(
y(t), t

)
g
(
y(t), t

)
.

Since g is strictly positive, ϕ is monotonic. Therefore, ϕ(t)−1 exists and is
monotonic as well. And so, the other way directly follows.

41

Lemma 6 (Exercise 7.12 [18]). The addition of a constant c to the jth column
of a matrix U does not change (A.1) on Sn.

Proof. Consider the replicator system (A.1) equipped with matrix U .

Let Ū be the matrix obtained by adding a constant c to the j-th column of U :

Ūik =

{
Uik + c if k = j,

Uik otherwise.

Then for all i ∈ [n] we have:

(Ūx)i =
n∑

k=1

Ūikxk =
n∑

k=1

(Ūik + c 1k=j)xk = (Ux)i + cxj (A.2)

and

xT Ūx =

n∑
i=1

n∑
k=1

xiŪikxk =

n∑
i=1

n∑
k=1

xi(Uik + c 1k=j)xk

= xTUx+

n∑
i=1

xicxj = xTUx+ cxj . (A.3)

Note that the last equality we used that, since x ∈ Sn,
∑n

i=1 xi = 1.

Substituting (A.2) and (A.3) into the replicator system we get:

dxi
dt

= xi
(
(Ūx)i − xT Ūx

)
= xi

(
(Ux)i + cjxj − (xTUx+ cjxj)

)
= xi

(
(Ux)i − xTUx

)
.

Theorem 5 (Theorem 7.5.1 [18]). For n ≥ 2 , there exists a differentiable, in-
vertible map from {y ∈ Sn : yn > 0} with Sn = {y ∈ Rn : yi ≥ 0 and

∑n
i=1 yi =

1} onto Rn−1
≥0 = {x ∈ Rn−1 : xi ≥ 0} mapping the trajectories of the n-

dimensional replicator system
dyi
dt

= yi

((
Uy
)
i
− yTUy

)
onto the trajectories of the (n− 1)-dimensional Lotka–Volterra system

dxi
dt

= xi

(
ri +

n−1∑
j=1

Mijxj

)
with ri = Uin − Unn and Mij = Uij − Unj.

42

Proof. Define the map from {y ∈ Sn : yn > 0} onto {x ∈ Rn
≥0 : xn = 1} by

xi =
yi
yn

for i ∈ [n].

By Lemma 6 we can add the constant −Unj to the jth column of U and not
change the n-dimensional replicator system. And so, without loss of generality,
we assume that the last row of U consists of only zeros.

Then we have

dxi
dt

=
d

dt

(yi
yn

)
=

1

yn

dyi
dt

+ yi
d

dt

(1

yn

)
=

1

yn

(
yi
((
Uy
)
i
− yTUy

))
− yi

y2n

(
yn
((
Uy
)
n
− yTUy

))
=

yi
yn

((
Uy
)
i
−
(
Uy
)
n

)
= xi

((
Uy
)
i
−
(
Uy
)
n

)
.

But since the last row of U consists of only zero, we have
(
Uy
)
n
= 0. This

implies
dxi
dt

= xi
(
Uy
)
i
= xi

n∑
j=1

Uijyj = xi

(n∑
j=1

Uijxj

)
yn.

Since yn > 0, from Lemma 5 we have

dxi
dt

= xi

(n∑
j=1

Uijxj

)
.

Finally, since xn = 1

dxi
dt

= xi

(
ri +

n−1∑
j=1

Uijxj

)
,

where ri = Uin.
Going from the (n−1)-dimensional Lotka–Volterra system to the n-dimensional
replicator system we utilize the inverse of the map given previously. To deter-
mine the inverse map, first note that since y ∈ Ŝn,

yi =
yi∑n
j=1 yi

.

Then using the previously defined map, we have

yi =
xi/yn∑n
j=1 xi/yn

=
xi∑n
j=1 xi

.

The rest of the proof follows in an analogous way.

43

Lemma 7 (Exercise 7.5.2 [18]). Suppose all ri are equal in the n-dimensional
Lotka–Volterra system

dxi
dt

= xi
(
ri +

n∑
j=1

Uijxj
)

on R≥0. (A.4)

Then yi = xi/
∑n

j=1 xj satisfies the replicator system (A.1) on Sn.

Proof. Let x(t) be the trajectory of the n-dimensional Lotka–Volterra system
(A.4). Define the map yi = xi/

∑n
j=1 xj for all i ∈ [n].

Then ∀i ∈ [n] : yi > 0 and
∑n

i=1 yi =
(∑n

i=1 xi/
∑n

j=1 xj
)
= 1. So, yi =

xi/
∑n

j=1 xj maps R≥0 onto Sn.

Now we will show that y(t) with entries yi as given by the given map, satisfies
the replicator system

dyi
dt

=
d

dt

(xi∑n
j=1 xj

)
=
(n∑

j=1

xj

)−1dxi
dt

− xi

(n∑
j=1

xj

)−2
n∑

j=1

dxj
dt

=
xi

(x1 + ...+ xn)

(
ri +

n∑
j=1

Uijxj

)
− xi

(x1 + ...+ xn)
2

n∑
j=1

xj
(
ri +

n∑
k=1

Uikxk
)
.

But, since all ri are equal we can say that ∀i ∈ [n] : ri = r. Then we have

dyi
dt

=
xi

(x1 + ...+ xn)

[
r +

n∑
j=1

Uijxj −
1

(x1 + ...+ xn)

(
r

n∑
j=1

xj +
n∑

j=1

n∑
k=1

xjUjkxk

)]
= yi

[
r
(
1− x1 + ...+ xn

x1 + ...+ xn

)
+

n∑
j=1

Uijxj −
1

(x1 + ...+ xn)

n∑
j=1

n∑
k=1

xjUjkxk

]
= yi

[n∑
j=1

Uijxj −
1

(x1 + ...+ xn)

n∑
j=1

n∑
k=1

xjUjkxk

]
= yi

((
x1 + ...+ xn

) n∑
j=1

Uijyj − (x1 + ...+ xn)

n∑
j=1

n∑
k=1

yjUjkyk

)
= yi

((
Uy
)
i
− yTUy

)
(x1 + ...+ xn).

And then by Lemma 5 it follows that

dyi
dt

= yi

((
Uy
)
i
− yTUy

)
.

Theorem 7 (Theorem 19.2.1 [18]). Each solution of the replicator system
(A.1) on Sn equipped with a symmetric matrix converges to a fixed point.

44

The full proof can be found on pages 252-253 of [18]. The following are addi-
tional calculations that can assist with that proof.

First, Define P (x) = Πn
i=1x

pi
i . Then we have

P−1
(d
dt
P
)
= P−1

n∑
i=1

pi x
pi−1
i

dxi
dt

(
xp11 . . . x

pi−1

i−1 x
pi+1

i+1 . . . xpnn
)

= P−1
n∑

i=1

pi x
pi
i

((
Mx

)
i
− xTMx

)(
xp11 . . . x

pi−1

i−1 x
pi+1

i+1 . . . xpnn
)

= P−1
n∑

i=1

pi

((
Mx

)
i
− xTMx

)
Πn

j=1x
pj
j

= P−1
n∑

i=1

pi

((
Mx

)
i
− xTMx

)
P

=

n∑
i=1

pi

((
Mx

)
i
− xTMx

)
= pTMx− xTMx

Additionally, define L(x) = −
∑n

i pi log
(
xi
pi

)
. Then we have,

d

dt
L(x) = −

n∑
i

pi
1

xi

dxi
dt

= −
n∑

i=1

pi

((
Mx

)
i
− xTMx

)
= xTMx− pTMx = xTMx− pTMp+ pTMp− xTMp

= xTMx− pTMp−
n∑

i=1

xi[(Mp)i − pTMp]

Note that for the above we use that xTMp = pTMx which follows from the
fact that M is symmetric.

45

Appendix B

Code for the Carrying Capacity
and Competition Method

This appendix includes all the Python code used for this report.

Section B.1 includes all the imported libraries and functions that are needed to
define each method. In Section B.2 we present the functions for implementing
the carrying capacity and competition methods. Section B.3 includes the code
specifically used for the Figures seen in Chapter 4. The code for implementing
the greedy algorithm for maximum weighted cliques is found in Section B.4.
Finally, Section B.5 includes the code used for the application on molecular
docking (in Chapter 6).

B.1 Helpful Functions

This section includes most functions that are used in the implementation of
the methods (excluding the methods themselves). All other sections refer back
to functions (and use libraries) in this section.

import networkx as nx
import numpy as np
from scipy import integrate
import warnings
import matplotlib.pyplot as plt

Function used to visualise graphs with weighted nodes

def visualize_graph(graph: nx.Graph, weights=None, colored_nodes=None):
if colored_nodes is None:

node_colors = ’lightskyblue’

46

else:
default_color = ’lightskyblue’
node_colors = [default_color] * len(graph.nodes())
for node in colored_nodes:

node_colors[list(graph.nodes()).index(node)] = ’lightpink’

node_sizes = [700] * weights
labels = {i: i + 1 for i in graph.nodes()}

pos = nx.spring_layout(graph)
for node in graph.nodes():

node_color = node_colors[list(graph.nodes()).index(node)]
node_size = node_sizes[list(graph.nodes()).index(node)]

if node in colored_nodes:
nx.draw_networkx_nodes(graph, pos, nodelist=\

[node], node_color=’black’, node_size=node_size)

nx.draw_networkx_nodes(graph, pos, nodelist=[node],\
node_color=node_color, node_size=node_size*(1/1.1))

nx.draw_networkx_edges(graph, pos, width=2)
nx.draw_networkx_labels(graph, pos, labels,\

font_size=12, font_weight=’bold’)
plt.axis(’off’)
plt.show()

Function used to check if a given set is a maximal independent set

def is_maximal_independent_set(graph, independent_set):
complement_set = [node for node in graph.nodes() if node \

not in independent_set]

independence_property = all(not graph.has_edge(u, v) for u in
independent_set for v in independent_set)

maximality_checks = [not all(not graph.has_edge(u, v) for v in \
independent_set) for u in complement_set]

maximality_property = all(maximality_checks)

return independence_property and maximality_property

47

Function used to check if a given set is a clique

def is_clique(graph, node_set):
node_set = set(node_set)
for node in node_set:

neighbors = set(graph.neighbors(node))
if not node_set - {node} <= neighbors:

return False
return True

Function which divides a graph into connected components

def divide_into_subgraphs(graph):
connected_components = list(nx.connected_components(graph))
subgraphs = [graph.subgraph(component).copy() for \

component in connected_components]
return subgraphs

Function to calculate the total weight of a set

def SetWeight(weights,Set):
return sum(weights[node-1] for node in Set)

B.2 The Methods

The following code includes a function for the implementation of each of the
heuristic methods.

Function implementing the Carrying Capacity Method

def Carrying_Capacity(G: nx.Graph, w: np.ndarray, x0: np.ndarray, tau: float):

with warnings.catch_warnings():
warnings.simplefilter("ignore")

#Define Matrices
W = np.diag(1/w)
A = nx.to_numpy_array(G)
M=tau*A+W

Define the generalized differential equations and the Jacobian
f = lambda t, x: x - np.dot(np.dot(np.diag(x), M), x)

48

J = lambda t, x: np.identity(len(A)) - \
(np.dot(np.diag(x), M) + np.diag(np.dot(M, x)))

Set up the ODE solver
ode_solver = integrate.ode(f, J)
ode_solver.set_integrator(’dopri5’)

Stop integration when all nodes converge to 0 or their weight
def solout(t, x):

c=0
for i in range(0,len(x)):

if (x[i] < 1e-5) | (x[i] > w[i] - 1e-5):
c+=1

return -1 if c==len(x) else 0

ode_solver.set_solout(solout)

Integrate until output 0 or weight for each element
while True:

t_end = 1e9
ode_solver.set_initial_value(x0, 0)
y = ode_solver.integrate(t_end)

if solout(t_end, y) == -1:
break

x0 = y

y = np.transpose(y)

Determine variables that do not converge to zero
nodes_arr = list(G.nodes())
max_independent_set = \

[nodes_arr[i] for i in range(len(G)) if y[i] > w[i] - 1e-5]

if is_maximal_independent_set(G, max_independent_set):
return max_independent_set

else:
print(’The algorithm did not return MIS.’)

49

Funtion implementing the Competition Method

def Competition(G: nx.Graph, w: np.ndarray, x0: np.ndarray, tau: float):

with warnings.catch_warnings():
warnings.simplefilter("ignore")

#Define Matrices
W =np.diag(w)
G = nx.to_numpy_array(G)
A = np.dot(U, W)
M = tau * A + np.identity(len(A))

Define the generalized differential equations and the Jacobian
f = lambda t, x: x - np.dot(np.dot(np.diag(x), M), x)
J = lambda t, x: np.identity(len(A)) - \

(np.dot(np.diag(x), M) + np.diag(np.dot(M, x)))

Set up the ODE solver
ode_solver = integrate.ode(f, J)
ode_solver.set_integrator(’dopri5’)

Stop integration when all nodes converge to 0 or 1
def solout(t, x):

return -1 if np.all((x < 1e-5) | (x > 1 - 1e-5)) else 0

ode_solver.set_solout(solout)

Integrate until binary output
while True:

t_end = 1e9
ode_solver.set_initial_value(x0, 0)
y = ode_solver.integrate(t_end)

if solout(t_end, y) == -1:
break

x0 = y

y = np.transpose(y)

Determine variables that converge to one
nodes_arr = list(G.nodes())
max_independent_set = \

[nodes_arr[i] for i in range(len(G)) if y[i] > 1 - 1e-5]

50

if is_maximal_independent_set(G, max_independent_set):
return max_independent_set

else:
print(’The algorithm did not return MIS.’)

B.3 Code for Figures in Chapter 4

All the Figures of Chapter 4 result from the following code.

For Figure 4.1a

nodes=[0,1,2,3]
edges=[(0,1),(1,3),(3,2),(2,0)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1])
x0=np.array([0.1,0.1,0.1,0.1])
tau=1.1

Set=Carrying_Capacity(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.1b

nodes=[0,1,2,3,4]
edges=[(0,1),(1,3),(3,2),(2,0),(4,2)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1])
tau=1.1

Set=Carrying_Capacity(G, w, x0, tau)
visualize_graph(G,w,Set)

51

For Figure 4.2

nodes=[0,1,2,3]
edges=[(0,1),(1,3),(3,2),(2,0)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,2,2,1])
x0_a=np.array([0.1,0.1,0.1,0.1])
x0_b=np.array([0.2,0.1,0.1,0.1])
tau=1.1

Set=Carrying_Capacity(G, w, x0_a, tau)
visualize_graph(G,w,Set)

Set=Carrying_Capacity(G, w, x0_b, tau)
visualize_graph(G,w,Set)

For Figure 4.3 and 4.6

nodes=[0,1,2,3,4,5]
edges=[(0,1),(2,0),(0,3),(3,4),(3,5),(1,2),(4,5),(2,4),(1,5)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

com_U=nx.complement(G)

w=np.array([4,2,2,2,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1,0.1])
tau=1.1

Set=Carrying_Capacity(G, w, x0, tau)
visualize_graph(G,w,Set)

Set=Competition(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.4a

52

nodes=[0,1,2,3,4]
edges=[(0,1),(1,3),(3,2),(2,0),(4,2)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1])
tau=1.1

Set=Competition(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.4b

nodes=[0,1,2,3,4,5]
edges=[(0,1),(1,3),(3,2),(2,0),(4,2),(5,2)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1,0.1])
tau=1.1

Set=Competition(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.4c

nodes=[0,1,2,3,4,5,6]
edges=[(0,1),(1,3),(3,2),(2,0),(4,2),(5,2),(6,2)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1,1,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1,0.1,0.1])
tau=1.1

53

Set=Competition(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.4d

nodes=[0,1,2,3,4,5,6,7]
edges=[(0,1),(1,3),(3,2),(2,0),(4,2),(5,2),(6,2),(7,2)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,1,4,1,1,1,1,1])
x0=np.array([0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1])
tau=1.1

Set=Competition(G, w, x0, tau)
visualize_graph(G,w,Set)

For Figure 4.5

nodes=[0,1,2,3]
edges=[(0,1),(1,3),(3,2),(2,0)]

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

w=np.array([1,2,2,1])
x0_a=np.array([0.2,0.1,0.1,0.1])
x0_b=np.array([0.5,0.1,0.1,0.1])
x0_c=np.array([0.6,0.1,0.1,0.1])
tau=1.1

Set=Competition(G, w, x0_a, tau)
visualize_graph(G,w,Set)

Set=Competition(G, w, x0_b, tau)
visualize_graph(G,w,Set)

Set=Competition(G, w, x0_c, tau)
visualize_graph(G,w,Set)

54

B.4 The greedy Algorithm

This section includes code from implementing the greedy Algorithm which
picks nodes in a graph based on their weight.

Function Implementing the greedy Algorithm for Maximum Weighted Cliques

def greedy(G, weights):

Sort nodes by their weights in descending order
nodes_sorted_by_weight = \

sorted(G.nodes, key=lambda node: weights[node-1], reverse=True)

Add nodes to a clique by the greedy method
clique = []

for node in nodes_sorted_by_weight:
Check if adding the node to the current clique keeps it a clique
if is_clique(G, clique + [node]):

clique.append(node)

return clique

B.5 Application on Molecular Docking

This section includes the code for applying the different methods to molecular
docking. The output of this code is a data frame which includes the results of
the different methods for graphs from ’Docking weighted graphs’ [24].

import pandas as pd
import time
import os

Defining a DataFrame to store the results

columns=[’File_Name’,’Amount_Nodes’,’Graph’,’Complement_Graph’,/
’LV_Weight’,’LV_Time’,’CarryingCapacity_Weight’,’CarryingCapacity_Time’,/
’Competition_Weight’,’Competition_Time’,’greedy_Weight’,’greedy_Time’]
Results = pd.DataFrame(data=None, columns=columns)

Read the file

folder_path = ’./docking_weighted_graphs’

55

csv_files = sorted([f for f in os.listdir(folder_path) if \
f.endswith(’.int2’)], key=lambda f: \
os.path.getsize(os.path.join(folder_path, f)))

for file in csv_files:
file_path = os.path.join(folder_path, file)

df = pd.read_csv(file_path, delimiter=" ")
print(f"Reading {file}")

column_names = df.columns
Amount_Nodes=column_names[2]
print(’The number of nodes is ’+str(column_names[2]))

#Define the Graph

nodes=[]
edges=[]
weights=np.array([])

for i in range(0, len(df)):
if df[’p’][i]==’n’:

nodes.append(df[’edge’][i])
weights=np.append(weights,int(df[column_names[2]][i]))

else:
edges.append((df[’edge’][i],int(df[column_names[2]][i])))

G=nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

com_G=nx.complement(G)

Check that Graph is connected

if nx.is_connected(G)==False:
Graph= ’Not Connected’

else:
Graph=’Connected’

if nx.is_connected(com_G)==False:

56

Complement_Graph=’Not Connected’
else:

Complement_Graph=’Connected’

Define helpful variables

new_weights=weights/1000
weight_proportional_initial_condition=0.01*new_weights
tau=1.1

Initialize variables for the Results

LV_Weight=0
CarryingCapacity_Weight=0
Competition_Weight=0
greedy_Weight=0

LV_Time=0
CarryingCapacity_Time=0
Competition_Time=0
greedy_Time=0

Set_LV=[]
Set_CarryingCapacity=[]
Set_Competition=[]
Set_greedy=[]

The Lotka-Volterra Algorithm

t0=time.time()
for U in divide_into_subgraphs(com_G):

w = np.array([new_weights[node-1] for node in U.nodes()])
x0 = [weight_proportional_initial_condition[node-1] \

for node in U.nodes()]
Set_LV.extend(Competition(U,np.ones(len(x0)),x0,tau))

t1=time.time()

LV_Weight=SetWeight(weights,Set_LV)
LV_Time=(t1-t0)

57

The Carrying Capacity Method

for U in divide_into_subgraphs(com_G):
w = np.array([new_weights[node-1] for node in U.nodes()])
x0 = [weight_proportional_initial_condition[node-1] \

for node in U.nodes()]
Set_CarryingCapacity.extend(Carrying_Capacity(U,w,x0,tau))

t2=time.time()

CarryingCapacity_Weight=SetWeight(weights,Set_CarryingCapacity)
CarryingCapacity_Time=(t2-t1)

The Competition Method

for U in divide_into_subgraphs(com_G):
w = np.array([new_weights[node-1] for node in U.nodes()])
x0 = [weight_proportional_initial_condition[node-1] \

for node in U.nodes()]
Set_Competition.extend(Competition(U,w,x0,tau))

t3=time.time()=

Competition_Weight=SetWeight(weights,Set_Competition)
Competition_Time=(t3-t2)

The greedy Algorithm

Set_greedy.extend(greedy(G,new_weights))
t4=time.time()

greedy_Weight=SetWeight(weights,Set_greedy)
greedy_Time=(t4-t3)

Build and Return Data Frame

data=[file,Amount_Nodes,Graph,Complement_Graph,LV_Weight,LV_Time,\
CarryingCapacity_Weight,CarryingCapacity_Time,Competition_Weight,\

58

Competition_Time,greedy_Weight,greedy_Time]

fn=’Results.xlsx’
Results.to_excel(fn)

59

Appendix C

Tables

In this appendix, we include all the tables with the results of the implementa-
tion described in Chapter 6.

Here we use the following abbreviations:

• LV: Lotka–Volterra method

• CC: carrying capacity method

• Com: competition method

The files mentioned in the following tables (under ’File Name’) are taken from
the ‘Docking weighted graphs’ of [24].

Note that the runtime of each method seen in the following tables is given in
seconds. Additionally, if the runtime of a method is less than 0.0008 seconds,
the code returns a runtime of zero.

60

F
il
e

N
am

e
#

N
od

es
LV

W
ei

gh
t

LV
T

im
e

C
C

W
ei

gh
t

C
C

T
im

e
C

om
W

ei
gh

t
C

om
T

im
e

gr
ee

d
y

W
ei

gh
t

gr
ee

d
y

T
im

e
C

H
E

M
B

L5
22

27
1_

1s
3b

A
_

cl
q1

.w
ei

gh
te

d_
gr

ap
h.

in
t2

17
78

99
7

0.
00

7
78

99
7

0.
02

2
78

99
7

0.
02

78
99

7
0

C
H

E
M

B
L8

22
93

_
2n

nq
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
10

6
40

90
0

0.
52

2
40

90
0

0.
57

2
40

90
0

0.
43

4
40

90
0

0
C

H
E

M
B

L1
69

92
6_

3b
w

m
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
13

9
78

30
9

1.
31

6
78

30
9

1.
23

5
78

30
9

1.
04

7
78

30
9

0
C

H
E

M
B

L1
15

51
0_

2v
3f

A
_

cl
q1

.w
ei

gh
te

d_
gr

ap
h.

in
t2

17
0

75
56

2
1.

91
75

56
2

1.
94

6
75

56
2

1.
44

75
56

2
0

C
H

E
M

B
L2

12
41

2_
3n

f7
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
23

3
79

57
4

0.
97

70
55

6
2.

14
5

79
57

4
1.

93
75

38
7

0
C

H
E

M
B

L1
59

75
8_

3b
gs

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

23
7

82
04

0
0.

8
82

04
0

2.
79

70
33

8
2.

16
7

10
65

60
0

C
H

E
M

B
L8

65
9_

2n
nq

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

24
3

41
69

2
0.

96
7

41
69

2
1.

78
57

90
5

2.
09

4
71

32
4

0
C

H
E

M
B

L1
75

36
2_

3b
gs

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

29
3

11
09

47
1.

9
11

09
47

7.
42

12
07

19
5.

35
96

25
6

0
C

H
E

M
B

L4
31

34
_

3b
gs

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

29
5

13
89

89
1.

53
13

89
89

7.
11

13
89

89
6.

21
18

19
28

0.
00

7
C

H
E

M
B

L2
74

66
9_

2v
3f

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

31
6

84
16

3
2.

17
84

16
3

5.
54

4
87

15
4

4.
19

3
10

08
34

0.
8

C
H

E
M

B
L2

74
51

3_
1s

3b
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
32

4
11

92
54

2.
29

9
92

14
7

5.
69

9
17

83
97

16
.9

44
17

90
52

0
C

H
E

M
B

L1
01

31
_

2v
3f

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

32
9

74
62

7
6.

75
74

62
7

17
.0

1
95

70
2

13
.6

9
99

26
9

0
C

H
E

M
B

L2
29

95
7_

2o
yu

P
_

cl
q1

.w
ei

gh
te

d_
gr

ap
h.

in
t2

33
9

10
79

42
7.

9
10

79
42

6.
96

10
79

42
4.

78
10

79
42

0
C

H
E

M
B

L3
66

35
6_

3n
f7

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

34
7

79
31

0
1.

86
79

31
0

5.
21

79
31

0
4.

93
73

16
7

0
C

H
E

M
B

L3
28

65
_

3n
f7

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

35
6

65
04

1
2.

51
65

04
1

4.
78

73
14

2
4.

08
5

89
80

9
0

C
H

E
M

B
L1

68
38

9_
3b

w
m

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

37
4

69
84

4
3.

44
69

84
4

8.
19

71
59

5
7.

38
72

43
3

0.
00

1
C

H
E

M
B

L1
96

39
1_

3n
f7

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

40
8

85
10

6
9.

87
85

10
6

27
.6

85
10

6
19

.5
3

14
37

32
0

C
H

E
M

B
L2

84
84

6_
1l

i4
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
41

3
15

35
89

3.
96

15
35

89
20

.6
3

15
35

89
16

.4
16

60
24

0
C

H
E

M
B

L1
93

75
9_

3n
f7

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

41
9

83
87

3
5.

61
89

56
5

12
.8

21
86

68
8

8.
47

11
94

51
0.

00
8

C
H

E
M

B
L2

28
56

1_
2o

yu
P

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
42

3
10

33
44

20
.8

1
10

33
44

13
.5

3
10

33
44

10
.6

10
33

44
0

C
H

E
M

B
L1

39
3_

2a
a2

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

45
3

16
52

64
6.

2
16

52
64

28
.4

9
17

02
30

27
.9

5
22

72
38

0
C

H
E

M
B

L6
07

63
2_

1l
i4

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

47
6

16
88

20
6.

04
3

16
88

20
33

.1
4

18
61

30
22

.0
05

19
98

02
0

C
H

E
M

B
L1

87
56

6_
3l

3m
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
47

7
14

02
23

43
.9

8
14

02
23

23
.6

1
14

02
23

17
.3

2
14

02
23

0.
00

75
C

H
E

M
B

L1
21

39
68

_
1s

3b
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
48

0
14

57
02

5.
55

14
57

02
43

.3
7

15
84

87
29

.2
13

13
81

0.
00

8
C

H
E

M
B

L3
72

17
1_

2b
8t

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

50
4

24
24

7
5.

92
30

31
4

8.
62

79
15

6
14

.7
2

67
47

3
0

C
H

E
M

B
L6

10
38

4_
1l

i4
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
51

9
18

51
40

8.
3

18
51

40
47

.5
3

18
51

40
42

.6
7

18
09

30
0.

00
7

C
H

E
M

B
L4

25
91

3_
2b

8t
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
52

0
19

21
1

11
.6

2
19

21
1

15
.4

34
63

08
1

20
.3

1
50

89
8

0
C

H
E

M
B

L1
39

3_
2a

m
9A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
53

4
15

36
86

6.
26

15
36

86
39

.1
9

16
63

50
31

.3
6

23
76

99
0

C
H

E
M

B
L6

49
7_

2b
8t

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

56
8

66
75

7
9.

34
72

39
1

21
.8

4
14

07
57

31
.1

1
14

07
57

0
C

H
E

M
B

L2
59

33
0_

2v
3f

A
_

cl
q5

.w
ei

gh
te

d_
gr

ap
h.

in
t2

56
9

82
03

3
14

.3
7

85
67

5
39

.1
1

98
45

8
27

.4
5

90
53

7
0.

00
8

T
ab

le
C

.1
:

T
ab

le
in

cl
ud

in
g

th
e

to
ta

lw
ei

gh
t

of
th

e
ou

tp
ut

an
d

th
e

co
m

pu
ti

ng
ti

m
e

of
ea

ch
m

et
ho

d
(L

ot
ka

–V
ol

te
rr

a,
ca

rr
yi

ng
ca

pa
ci

ty
,c

om
pe

ti
ti

on
an

d
gr

ee
dy

)
ap

pl
ie

d
to

th
e

gr
ap

h
gi

ve
n

by
th

e
na

m
ed

fil
e.

61

F
il
e

N
am

e
#

N
od

es
LV

W
ei

gh
t

LV
T

im
e

C
C

W
ei

gh
t

C
C

T
im

e
C

om
W

ei
gh

t
C

om
T

im
e

gr
ee

d
y

W
ei

gh
t

gr
ee

d
y

T
im

e
C

H
E

M
B

L3
57

64
6_

3n
f7

A
_

cl
q6

.w
ei

gh
te

d_
gr

ap
h.

in
t2

60
9

14
88

43
15

.9
5

15
30

94
89

.5
6

15
30

94
70

.0
8

14
72

52
0.

00
8

C
H

E
M

B
L3

11
09

1_
3l

3m
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
61

5
12

92
55

10
9.

34
12

92
55

55
.2

8
12

92
55

34
.3

3
12

92
55

0
C

H
E

M
B

L2
78

33
6_

3l
n1

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

62
6

78
13

7
10

.9
4

78
13

7
30

.0
3

12
91

78
33

.7
3

12
20

34
0

C
H

E
M

B
L3

07
64

7_
3n

y8
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
64

5
62

56
1

14
.4

3
62

56
1

34
.1

7
10

69
25

39
.7

1
98

27
6

0
C

H
E

M
B

L1
09

19
82

_
3b

w
m

A
_

cl
q4

.w
ei

gh
te

d_
gr

ap
h.

in
t2

65
9

82
91

7
26

.4
7

92
81

8
48

.8
47

97
35

4
59

.1
67

11
97

02
0.

00
8

C
H

E
M

B
L3

07
64

7_
2v

t4
B

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
68

2
60

65
1

14
.5

8
60

65
1

34
.1

4
71

51
8

34
.0

5
11

96
01

0
C

H
E

M
B

L4
17

99
_

1d
3g

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

68
8

14
54

26
22

.4
2

19
40

08
10

8.
33

19
40

08
11

2.
74

20
25

65
0

C
H

E
M

B
L9

60
_

1d
3g

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

69
4

13
43

47
18

.8
7

13
42

47
10

8.
91

15
05

20
11

0.
45

15
94

58
0

C
H

E
M

B
L4

59
90

2_
2n

nq
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
70

6
11

79
97

16
.6

1
13

06
98

83
.9

1
13

06
98

14
0.

89
17

50
45

0
C

H
E

M
B

L1
51

12
5_

1s
3b

A
_

cl
q7

.w
ei

gh
te

d_
gr

ap
h.

in
t2

70
9

21
08

65
33

.8
3

21
08

65
15

5.
43

21
08

65
12

7.
75

14
43

02
0.

00
8

C
H

E
M

B
L2

88
38

1_
1d

3g
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
71

3
13

84
04

20
.3

18
47

96
10

3.
23

19
08

28
98

.3
1

20
21

41
0

C
H

E
M

B
L3

61
70

8_
3e

qh
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
71

8
10

16
79

19
7.

14
10

16
79

65
.4

6
10

16
79

47
.6

8
10

16
79

0
C

H
E

M
B

L5
19

27
_

1d
3g

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

76
7

14
80

46
24

.8
3

17
24

12
12

0.
99

19
13

79
13

1.
16

4
17

10
53

0.
00

8
C

H
E

M
B

L1
64

97
6_

1b
9v

A
_

cl
q4

.w
ei

gh
te

d_
gr

ap
h.

in
t2

76
9

18
24

96
33

.5
1

18
28

59
14

7.
46

19
55

75
18

7.
27

21
08

65
0.

00
9

C
H

E
M

B
L9

97
18

_
3n

y8
A

_
cl

q6
.w

ei
gh

te
d_

gr
ap

h.
in

t2
77

6
14

92
73

41
.6

4
14

92
73

14
5.

34
16

44
10

10
3.

59
19

06
79

0.
00

8
C

H
E

M
B

L1
39

3_
3b

qd
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
78

1
16

32
75

18
.7

4
16

32
75

98
.8

4
16

32
75

77
.8

6
22

65
74

0
C

H
E

M
B

L4
89

28
_

1d
3g

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

78
5

20
77

49
27

.8
20

77
49

14
5.

97
20

77
49

16
3.

92
16

49
71

0.
00

09
1

C
H

E
M

B
L3

20
78

8_
1b

9v
A

_
cl

q4
.w

ei
gh

te
d_

gr
ap

h.
in

t2
79

2
19

82
15

35
.9

19
79

64
19

6.
38

19
82

15
17

2.
74

19
43

17
0.

00
7

C
H

E
M

B
L1

39
46

1_
1c

8k
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
79

5
61

01
0

24
.4

6
58

84
7

51
.8

9
80

35
7

53
.5

7
94

15
0

0
C

H
E

M
B

L9
97

18
_

2v
t4

B
_

cl
q6

.w
ei

gh
te

d_
gr

ap
h.

in
t2

79
8

14
89

12
37

.4
8

11
52

39
87

.2
5

15
97

43
18

9.
02

15
31

98
0.

00
8

C
H

E
M

B
L4

85
31

_
1d

3g
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
79

9
23

77
97

28
.0

2
23

77
97

19
4.

95
23

77
97

17
3.

88
23

77
97

0
C

H
E

M
B

L2
21

64
7_

3h
l5

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

82
9

10
20

02
22

.8
7

10
20

02
86

.9
2

11
17

25
76

.2
6

12
93

20
0

C
H

E
M

B
L6

43
96

_
2o

yu
P

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
91

9
97

05
7

29
.8

8
10

08
98

98
.5

4
14

31
31

14
3.

98
17

82
26

0
C

H
E

M
B

L3
70

22
8_

1d
3g

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

92
7

12
22

39
33

.3
68

18
26

77
21

5.
55

19
12

59
24

3.
52

21
18

09
0.

00
8

C
H

E
M

B
L8

15
36

_
2h

v5
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
96

5
11

56
34

46
1.

06
11

56
34

15
8.

27
11

56
34

11
6.

84
11

56
34

0
C

H
E

M
B

L1
25

94
_

3l
n1

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

99
2

56
99

6
41

.9
9

56
99

6
78

.5
60

37
9

76
.0

7
13

51
72

0
C

H
E

M
B

L3
09

41
5_

1n
js

A
_

cl
q5

.w
ei

gh
te

d_
gr

ap
h.

in
t2

10
12

17
73

69
70

.8
7

15
76

54
21

3.
39

20
81

33
21

6.
17

12
30

38
0.

00
8

C
H

E
M

B
L1

38
06

5_
2h

v5
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
10

18
10

32
34

68
.9

7
10

32
34

17
0.

19
12

86
41

15
4.

17
16

66
31

0
C

H
E

M
B

L1
07

79
90

_
2n

nq
A

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
10

33
11

26
33

68
.6

4
11

26
33

22
6.

31
11

26
33

15
8.

29
16

66
47

0.
00

8
C

H
E

M
B

L2
58

19
1_

2a
a2

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

10
40

16
96

87
45

.2
6

16
96

87
24

0.
34

17
19

19
17

5.
41

20
18

70
0

T
ab

le
C

.2
:

T
ab

le
in

cl
ud

in
g

th
e

to
ta

lw
ei

gh
t

of
th

e
ou

tp
ut

an
d

th
e

co
m

pu
ti

ng
ti

m
e

of
ea

ch
m

et
ho

d
(L

ot
ka

–V
ol

te
rr

a,
ca

rr
yi

ng
ca

pa
ci

ty
,c

om
pe

ti
ti

on
an

d
gr

ee
dy

)
ap

pl
ie

d
to

th
e

gr
ap

h
gi

ve
n

by
th

e
na

m
ed

fil
e.

62

F
il
e

N
am

e
#

N
od

es
LV

W
ei

gh
t

LV
T

im
e

C
C

W
ei

gh
t

C
C

T
im

e
C

om
W

ei
gh

t
C

om
T

im
e

gr
ee

d
y

W
ei

gh
t

gr
ee

d
y

T
im

e
C

H
E

M
B

L1
54

62
3_

1d
3g

A
_

cl
q4

.w
ei

gh
te

d_
gr

ap
h.

in
t2

10
71

18
60

47
28

2.
39

13
20

94
21

7.
41

1
16

91
80

26
3.

42
22

16
53

0.
00

9
C

H
E

M
B

L3
58

21
6_

1r
9o

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

10
81

71
33

9
51

.8
4

71
33

9
14

1.
27

94
19

9
14

1.
66

10
24

65
0

C
H

E
M

B
L4

14
82

4_
2o

yu
P

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
10

93
11

34
89

75
.6

4
11

34
89

31
2.

01
11

34
89

29
3.

94
16

52
51

0.
00

8
C

H
E

M
B

L3
07

60
2_

3l
n1

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

11
06

80
95

4
94

.8
8

16
51

51
42

9.
88

16
51

51
31

0.
11

9
15

86
05

0.
00

7
C

H
E

M
B

L1
86

38
0_

3l
3m

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

11
38

20
52

46
60

.9
9

20
52

46
41

6.
13

20
52

46
34

0.
11

19
19

80
0

C
H

E
M

B
L8

38
1_

2h
v5

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

11
56

10
56

19
55

.9
8

10
80

84
20

0.
53

12
21

23
17

2.
26

13
30

94
0.

00
8

C
H

E
M

B
L6

43
96

_
2o

yu
P

_
cl

q3
.w

ei
gh

te
d_

gr
ap

h.
in

t2
11

84
12

78
01

72
.8

3
12

78
01

26
6.

02
15

33
86

27
2.

96
19

49
17

0.
00

8
C

H
E

M
B

L1
02

17
9_

3k
ba

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

12
26

14
97

80
13

4.
45

14
97

80
56

0.
62

16
07

13
49

9.
42

21
38

15
0

C
H

E
M

B
L2

14
78

4_
1r

9o
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
12

36
86

79
9

88
.3

5
86

79
9

26
7.

21
86

79
9

21
0.

39
10

75
72

0.
00

8
C

H
E

M
B

L9
93

69
_

1z
w

5A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

13
21

11
56

75
78

,9
32

11
56

75
28

5.
14

85
21

8
19

4.
65

13
40

64
0

C
H

E
M

B
L1

21
48

38
_

2a
a2

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

13
22

21
52

21
10

7.
44

21
52

21
57

3.
02

24
45

13
64

0.
76

24
90

57
0.

00
7

C
H

E
M

B
L2

77
28

1_
1v

so
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
13

23
14

64
60

18
95

.1
3

14
64

60
50

0.
44

14
64

60
32

7.
39

14
64

60
0

C
H

E
M

B
L1

22
35

98
_

3p
bl

A
_

cl
q5

.w
ei

gh
te

d_
gr

ap
h.

in
t2

13
32

13
17

69
13

4.
41

93
25

8
29

0.
83

97
58

2
22

0.
61

13
10

08
0.

01
7

C
H

E
M

B
L1

04
59

2_
2o

yu
P

_
cl

q4
.w

ei
gh

te
d_

gr
ap

h.
in

t2
13

42
13

89
24

31
1.

23
16

74
68

79
0.

73
17

16
71

10
99

14
85

97
0.

00
9

C
H

E
M

B
L7

78
51

_
2f

sz
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
13

67
16

81
64

17
91

.6
7

16
81

64
61

1.
24

16
81

64
42

5.
37

16
81

64
0

C
H

E
M

B
L2

41
02

7_
3p

bl
A

_
cl

q5
.w

ei
gh

te
d_

gr
ap

h.
in

t2
14

04
20

25
91

18
0.

47
07

40
3

20
25

91
81

8.
56

70
94

1
21

35
36

11
57

.1
79

63
1

19
11

73
0.

03
39

98
72

8
C

H
E

M
B

L4
41

66
3_

2o
yu

P
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

14
46

14
56

84
15

6.
39

14
56

84
63

5.
17

15
16

38
48

5.
52

17
71

62
0.

00
8

C
H

E
M

B
L2

41
45

5_
3p

bl
A

_
cl

q5
.w

ei
gh

te
d_

gr
ap

h.
in

t2
14

78
14

41
97

35
9.

41
83

04
9

15
10

51
15

34
.3

49
86

17
59

70
21

91
.4

53
06

2
12

02
59

0.
01

09
99

91
8

C
H

E
M

B
L3

94
01

9_
3p

bl
A

_
cl

q5
.w

ei
gh

te
d_

gr
ap

h.
in

t2
14

93
18

92
21

28
8.

05
58

50
5

19
07

67
90

4.
24

72
47

22
51

69
10

02
.7

95
25

16
69

27
0.

02
25

77
28

6
C

H
E

M
B

L4
36

84
8_

3b
qd

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

15
49

15
74

87
13

9.
19

15
74

87
67

8.
42

15
74

87
62

3.
91

21
43

21
0.

00
64

C
H

E
M

B
L2

03
09

4_
1j

4h
A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
15

60
19

73
60

27
6.

52
19

73
60

13
62

.6
7

19
73

60
11

60
.4

2
20

93
83

0
C

H
E

M
B

L1
13

76
2_

1c
8k

A
_

cl
q5

.w
ei

gh
te

d_
gr

ap
h.

in
t2

15
73

76
78

0
23

0.
24

77
63

9
38

9.
01

10
86

57
44

7.
82

14
93

28
0.

02
54

C
H

E
M

B
L1

00
15

4_
1z

w
5A

_
cl

q2
.w

ei
gh

te
d_

gr
ap

h.
in

t2
15

82
12

57
41

19
3.

69
12

57
41

12
26

.1
9

13
45

56
15

32
.1

2
12

07
02

0.
00

8
C

H
E

M
B

L2
80

80
5_

3k
ba

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

15
89

11
90

75
16

3.
52

11
90

75
65

5.
59

11
90

75
50

9.
11

17
35

90
0.

00
8

C
H

E
M

B
L1

15
39

5_
1c

8k
A

_
cl

q5
.w

ei
gh

te
d_

gr
ap

h.
in

t2
15

97
99

02
7

28
4.

37
99

02
7

78
5.

73
95

89
2

69
0.

4
14

56
03

0.
02

C
H

E
M

B
L1

08
44

1_
2a

zr
A

_
cl

q1
.w

ei
gh

te
d_

gr
ap

h.
in

t2
16

20
75

79
9

24
49

.9
3

75
79

9
60

8.
57

75
79

9
39

9.
81

75
79

9
0.

00
8

C
H

E
M

B
L1

20
92

36
_

2a
m

9A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

16
56

15
83

89
21

2.
67

15
83

89
99

0.
99

18
11

88
11

14
.7

4
13

25
91

0.
00

7
C

H
E

M
B

L4
74

26
8_

1e
66

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

18
95

20
11

01
44

6.
86

20
11

01
22

18
.8

1
22

75
58

23
12

.9
6

23
67

60
0.

00
9

C
H

E
M

B
L1

08
27

43
_

1s
j0

A
_

cl
q2

.w
ei

gh
te

d_
gr

ap
h.

in
t2

19
07

11
72

95
38

2.
5

11
81

24
17

98
11

72
95

13
43

19
68

32
0.

00
8

C
H

E
M

B
L1

08
30

65
_

1e
66

A
_

cl
q3

.w
ei

gh
te

d_
gr

ap
h.

in
t2

22
30

17
53

42
74

8.
03

17
53

42
31

03
17

53
42

34
20

.6
3

21
62

17
0.

02
42

3

T
ab

le
C

.3
:

T
ab

le
in

cl
ud

in
g

th
e

to
ta

lw
ei

gh
t

of
th

e
ou

tp
ut

an
d

th
e

co
m

pu
ti

ng
ti

m
e

of
ea

ch
m

et
ho

d
(L

ot
ka

–V
ol

te
rr

a,
ca

rr
yi

ng
ca

pa
ci

ty
,c

om
pe

ti
ti

on
an

d
gr

ee
dy

)
ap

pl
ie

d
to

th
e

gr
ap

h
gi

ve
n

by
th

e
na

m
ed

fil
e.

63

Bibliography

[1] Cook, S. (1971). "The complexity of theorem proving procedures". Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing.
pp. 151–158. doi:10.1145/800157.805047. ISBN 9781450374644. S2CID
7573663.

[2] Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013). Trav-
eling salesman problem. In Springer eBooks (pp. 1573–1578).
https://doi.org/10.1007/978-1-4419-1153-7_1068

[3] Garey, M. R., Johnson, D. S., & Bell Laboratories. (1979).
Computers And Intractability: A Guide to the The-
ory of NP-Completeness. W. H. Freeman and Company.
https://bohr.wlu.ca/hfan/cp412/references/ChapterOne.pdf

[4] Butenko, S. and Pardalos P. M.(2003). Maximum independent set and
related problems, with applications [Ph.D. Dissertation]. University of
Florida.

[5] Pardalos, P., & Xue, J. (1994). The Maximum Clique Problem. Journal
of Global Optimization, pages 301-328.

[6] Szabó, S. (2021). A Clique Search Problem and its Appli-
cation to Machine Scheduling. SN Operations Research Forum.
https://doi.org/10.1007/s43069-021-00111-x

[7] Butenko, S., & Wilhelm, W. (2006). Clique-detection models in computa-
tional biochemistry and genomics. European Journal of Operational Re-
search, pages 1–17. https://doi.org/10.1016/j.ejor.2005.05.026

[8] Banchi, L., Fingerhuth, M., Babej, T., Ing, C., & Arrazola, J. M. (2020).
Molecular docking with Gaussian Boson Sampling. Science Advances,
6(23). https://doi.org/10.1126/sciadv.aax1950

[9] Östergård, P. R. (1999). A new algorithm for the Maximum-Weight
clique problem. Electronic Notes in Discrete Mathematics, 3, 153–156.
https://doi.org/10.1016/s1571-0653(05)80045-9

64

[10] Babel, L. (1994). A fast algorithm for the maximum weight clique problem.
Computing, 52(1), 31–38. https://doi.org/10.1007/bf02243394

[11] Pardalos, P. M., Rappe, J., & Resende, M. G. C. (1997). An exact parallel
algorithm for the maximum clique problem.

[12] Mannino, C. (1999). An augmentation algorithm for the maximum
weighted stable set problem. Computational Optimization and Applica-
tions, 14(3), 367–381. https://doi.org/10.1023/a:1026456624746

[13] Stix, V., Pelillo, M., & Bomze, I. (2000). Approximating the maximum
weight clique using replicator dynamics. IEEE Transactions on Neural
Networks, 11(6), 1228–1241. https://doi.org/10.1109/72.883403

[14] Singh, A., & Gupta, A. K. (2006). A hybrid evolutionary approach to max-
imum weight clique problem. https://www.semanticscholar.org/paper/A-
Hybrid-Evolutionary-Approach-to-Maximum-Weight-Singh-
Gupta/fd2821ef0b4ed3471997751a49eec26751baa21c

[15] Mooij, N. (2022). Generating maximal independent sets us-
ing Lotka-Volterra dynamics [Master Thesis, Utrecht Univercity].
https://studenttheses.uu.nl/handle/20.500.12932/41651

[16] Griffen, B. D., & Drake, J. M. (2008). Effects of habitat quality and
size on extinction in experimental populations. Proceedings - Royal Soci-
ety. Biological Sciences/Proceedings - Royal Society. Biological Sciences,
275(1648), 2251–2256. https://doi.org/10.1098/rspb.2008.0518

[17] Murray, J. D. (1995). Mathematical Biology (Biomathematics, Vol 19)
(Second, Corrected). Springer

[18] Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population
dynamics. https://doi.org/10.1017/cbo9781139173179

[19] Braun, M. (1993). Differential Equations and Their Applications: An In-
troduction to Applied Mathematics. Springer.

[20] Brendon, G. E. (1993). Topology and Geometry. In Graduate Texts in
Mathematics (139). Springer.

[21] Prussing, J.E. (1986). The principal minor test for semidefinite matrices.
Journal of Guidance Control and Dynamics, 9, 121-122.

[22] Perko, L. (2001). Differential equations and dynamical systems. In Texts
in applied mathematics (Vol. 7). Springer. https://doi.org/10.1007/978-
1-4613-0003-8

[23] M. Chaudhary, K. Tyagi, A review on molecu-
lar docking and its applications. (2024). ResearchGate.

65

https://www.researchgate.net/publication/379938962_A_REVIEW_ON
_MOLECULAR_DOCKING_AND_ITS_APPLICATION

[24] Rozman, K., Ghysels, A., Zavalnij, B., Kunej, T., Bren, U., Janežič,
D., & Konc, J. (2024). Enhanced Molecular Docking: Novel algo-
rithm for identifying highest weight K-Cliques in weighted General and
Protein-Ligand graphs. Journal of Molecular Structure, 1304, 137639.
https://doi.org/10.1016/j.molstruc.2024.137639

66

	Summary for General Audiences
	Summary for Peers
	Introduction
	Detecting `Heavy' Maximal Independent Sets
	Maximum-Weighted Independent Sets
	The Lotka–Volterra System
	The Carrying Capacity Method
	The Competition Method

	Mathematical Analysis of the Methods
	Mathematical Analysis of the Carrying Capacity Method
	Mathematical Analysis of the Competition Method

	Analysing the Methods
	Analysis of the Carrying Capacity Method
	Analysis of the Competition Method

	Detecting `Heavy' Maximal Cliques
	Maximum-Weighted Cliques
	Cliques and Independent Sets

	Application to Molecular Docking
	Molecular Docking
	The Dataset
	Applying the Methods
	Results
	Weight-Based Performance Comparison
	Weight-Based Performance Rankings
	Time-Based Performance Comparison
	Discussion and Conclusion

	Discussion
	Supplementary Proofs
	Code for the Carrying Capacity and Competition Method
	Helpful Functions
	The Methods
	Code for Figures in Chapter 4
	The greedy Algorithm
	Application on Molecular Docking

	Tables
	Bibliography

