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Abstract: Airborne wind energy systems using flexible membrane wings have the advantages of a
low weight, small packing volume, high mobility and rapid deployability. This paper investigates the
aero-structural deformation of a leading edge inflatable kite for airborne wind energy harvesting. In
the first step, a triangular two-plate representation of the wing is introduced, leading to an analytical
description of the wing geometry depending on the symmetric actuation state. In the second step,
this geometric constraint-based model is refined to a multi-segment wing representation using a
particle system approach. Each wing segment consists of four point masses kept at a constant distance
along the tubular frame by linear spring-damper elements. An empirical correlation is used to model
the billowing of the wing’s trailing edge. The linear spring-damper elements also the model line
segments of the bridle line system, with each connecting two point masses. Three line segments
can also be connected by a pulley model. The aerodynamic force acting on each wing segment is
determined individually using the lift equation with a constant lift coefficient. The particle system
model can predict the symmetric deformation of the wing in response to a symmetric actuation of the
bridle lines used for depowering the kite (i.e., changing the pitch angle). The model also reproduces
the typical twist deformation of the wing in response to an asymmetric line actuation used for steering
the kite. The simulated wing geometries are compared with photogrammetric information taken by
the onboard video camera of the kite control unit, focusing on the wing during flight. The results
demonstrate that a particle system model can accurately predict the geometry of a soft wing at a low
computational cost, making it an ideal structural building block for the next generation of soft wing
kite models.

Keywords: airborne wind energy; kites; membrane structures; fluid–structure interaction; wing
morphing; particle system model

1. Introduction

Airborne wind energy (AWE) systems employ tethered flying devices to harvest wind
energy. The emerging technology uses up to 90% less material than conventional wind
turbines [1,2] and can access thus far untapped wind resources at higher altitudes [3,4].
The most commonly pursued concept uses the pulling force of a kite flown in crosswind
manoeuvres to drive a drum-generator module on the ground. Once the tether reaches its
maximum length, these manoeuvres are terminated, the kite is depowered, and the tether
is reeled back in, consuming some of the previously generated power. When reaching the
defined minimum tether length, the kite is powered again and manoeuvered in cross-wind
flight patterns while reeling out the tether. Because the reel-in phases are shorter, and the
pulling force of the depowered kite is lower, this cyclic operation generates net energy.

Two types of kites are used for airborne wind energy harvesting: fixed-wing and soft
wing kites. This paper is about the second type, specifically the configuration illustrated in
Figure 1 with a leading edge inflatable (LEI) wing, a bridle line system and a suspended,
remote-controlled cable robot, which is denoted as the kite control unit (KCU).
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Figure 1. Soft-wing ground-generating AWE system. (a) Complete AWE system. (b) Kite front
view, adapted from [5]. The original TU Delft V3 kite is depicted, which was further developed by
Kitepower B.V. [6]. The front bridle lines attached to the LE are coloured in black, while the rear
bridle lines attached to the trailing edge (TE) are coloured in red.

The wing consists of an inflated tubular frame, combining a leading edge (LE) tube
and several connected strut tubes, to which a fabric membrane, denoted as the canopy,
is attached. The inflated tubular frame spans the wing in the spanwise and chordwise
directions, transmitting the aerodynamic load generated during flight from the canopy to
the bridle line system. The frame also provides the structural stability for handling the
wing on the ground and during launching and landing.

Like a parafoil, a soft wing kite functions as a rotating and morphing aerodynamic
control surface, actuated by the KCU via the bridle line system. The depower tape is used for
symmetrically actuating the rear bridle lines, modifying the pitch of the wing relative to the
KCU and, through that, the angle relative to the inflow and consequently the aerodynamic
loading. Oehler and Schmehl [5] investigated the mechanism of depowering experimentally,
concluding that the wing also experiences a symmetric deformation because of its C shape
and bridling. Additionally, the entire kite pitches forward because of a chordwise shift of
the aerodynamic centre. In some kite designs, the deformation is mitigated by integrating
pulleys into the front bridle lines [7].

The steering tape is used for asymmetrically actuating the rear bridle lines, pulling in
one half of the trailing edge while releasing the other half. This causes the wing to yaw,
roll and twist, creating an aerodynamic side force and introducing a turning manoeuvre.
The steering mechanism was investigated experimentally by Oehler et al. [8], following
up on the earlier work of Breukels [9]. Using a more recent dataset of 87 automatically
flown pumping cycles with high path-tracking accuracy, Roullier [10] presented an updated
experimental analysis of the kite’s dynamic behaviour, with a particular focus on dynamic
contributions from the suspended KCU.

Because of the curved wing shape, the actuation-induced morphing and the strong
aero-structural coupling, modelling the aerodynamics of soft kites is generally more
challenging than that of conventional aircraft. Point-mass models are based on sim-
plifying assumptions for the orientation of the kite and employ constant aerodynamic
coefficients [11,12]. Rigid body models include the orientation of the kite as the degree of
freedom and account for the variation in the aerodynamic coefficients with the attitude in
relation to the relative flow [13,14]. The point-mass and rigid body models are commonly
used for estimating the performance [15] or developing the flight control algorithms [16] of
AWE systems. The aerodynamic coefficients are either determined by identification from
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flight test data [5,10,12] or computed with simple aerodynamic models [17]. Flight test
data have also been used to linearly correlate the turn rates of soft kites with the steering
input [14,18,19].

Fechner et al. [20] described the rigid-body motion of a kite using an arrangement of
five point masses—four to represent the wing and one for the suspended KCU—that are
interconnected by relatively stiff spring-damper elements, practically acting as distance
constraints. The aerodynamic force generated by the wing was calculated from three
independently actuated wing segments attached to this particle cluster: the horizontal
centre wing segment, producing the pulling force of the kite and modulated by changing
the pitch and thus the angle of attack due to symmetric actuation, and the two vertical
wing tip segments producing the side forces required for turning manoeuvres, modulated
by changing the local side slip angles due to asymmetric actuation. While this five-point
model does not reproduce the deformation of the kite, it does account for the effect of
depowering and steering actuation on the aerodynamics.

Breukels et al. [21] developed a fluid–structure interaction (FSI) model of an LEI wing
discretising the inflated tubular frame with an assembly of rigid bodies connected by
universal joints and torsion springs and representing the canopy as a lattice of linear spring-
damper elements. The aerodynamic load distribution was determined by partitioning the
wing into spanwise segments and representing each with a discretised chordline. In the next
step, the aerodynamic coefficients were evaluated at the wing section using look-up tables
as functions of the chamber of the chordline, the local tube thickness and the angle of attack.
The look-up tables were precomputed using 2D computational fluid dynamics (CFD). In
the last step, the aerodynamic coefficients were used to recreate the pressure distribution on
the wing segment. The developed FSI model can describe the symmetric and asymmetric
deformation modes of the kite but comes at the additional cost of a commercial solver (MD
Adams) and substantially increased computational effort.

Bosch et al. [22] combined Breukels’s aerodynamic load correlation with a finite-
element (FE) model of the LEI wing using beam and shell elements. The simulations
reproduced the bending and torsion deformation of the wing, but the overall accuracy was
limited by the relatively low fidelity of the aerodynamic model. Geschiere [23] expanded
on the approach of Bosch et al. and coupled the FSI model with a flight dynamic model to
simulate flight manoeuvres for the TU Delft V3 kite. Due to lacking test flight data, it was
not possible to properly validate the FSI model.

Leloup et al. [24] employed a 3D lifting line theory to determine the aerodynamic
loading on the wing, considering viscous flow phenomena only in 2D using XFOIL [25].
De Solminihac et al. [26] extended this aerodynamic model to include the nonlinearity of the
lift polar. The model was coupled to a structural model where beam elements represented
the LE tube, leading to a kite beam model. Duport [27] compared FSI simulations using
the ‘kite as a beam’ method to an FE method and concluded that the computational time
reduction from hours to minutes was worth the marginal accuracy loss. As the model still
requires calibration, it is unsuitable as a stand-alone design application.

Van Til et al. [28] proposed a soft kite model using rigid plates that are interconnected
by gimbal joints and allow for rotational degrees of freedom which mimic the basic de-
formations of a C-shaped kite. The approach can be regarded as a further development
of Fechner et al. [20], now inlcuding the bending and torsional stiffness of the three-plate
wing structure as well.

The objective of this work is to develop an aero-structural deformation model of an
LEI kite that can reproduce the basic deformation modes at a relatively low computational
cost, preferably even faster than in real time. For validation, video footage from flight
testing is analysed using a novel photogrammetry method to determine the change in the
projected wing span with the symmetric actuation status of the kite. The present paper
is based on the graduation project of the first author [29], which was followed up by the
graduation project of Cayon [30], who introduced an improved aerodynamic model.
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The remainder of this paper is organised as follows. In Section 2, the pursued method
is described. In Section 3, the computed kite geometries are presented and validated. In
Section 4, the conclusions are drawn, and recommendations for future work are discussed.

2. Method

The modelling approach is based on the assumption that the global geometry of
the aerodynamically loaded membrane wing is governed mainly by the geometry of the
bridle line system. The compressive and tensile stiffness of the tubular frame ensures
that the geometric distances between the bridle line attachment points remain constant.
The effect of bending and torsional stiffness on the global wing geometry is considered
to be negligible and only relevant locally between the line attachments to support the
canopy. The dominant role of the bridle line geometry is supported by the observation that
in some flight tests with partially deflated tubular frames, the kite kept flying without a
perceivable effect on the global wing geometry. Furthermore, single-skin kites function
entirely without an inflated tubular frame, as pure membrane structures are tensioned
solely by the aerodynamic suction pressure [31]. In the following subsections, the specific
kite used in this study is detailed, two different geometric constraint-based models of
this kite are proposed, and the photogrammetry technique for experimental validation is
described.

2.1. Kite Specification

The present study is based on the LEI V3 kite illustrated in Figures 1 and 2.

(a)

Pulley, CAD geometry

Pulley, experiment
Bridle point, matched

Knot, experiment

(b)

Figure 2. TU Delft V3 kite in flight without KCU and instrumentation, manually controlled from
the ground and photographed from the ground in July 2012. (a) Perspective view. (b) Rear view,
showing photo overlayed with the design (CAD) geometry depicted in Figure 1b. In the photo, the
positions of pulleys and knots are marked by different symbols. Scales of photo and design geometry
are matched to identical heights of the kite (maximum geometric distance between bridle point and
canopy).

Developed in 2012 by TU Delft researchers John van den Heuvel and Rolf van der Vlugt
together with kite designer Martial Camblong, the design of this 25 m2 kite was inspired by
the commercial 14 m2 kite Genetrix Hydra V4 to meet the requirements of airborne wind
energy harvesting with a suspended, remote-controlled cable robot. Compared with kites
commonly used for kiteboarding, the wing is relatively flat, and the bridle line system is
short to facilitate launching and landing from an upside-down hanging position [32]. To
achieve high wing loading and maintain good control authority, the wing is fully supported
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by front and rear bridle line systems. When flying crosswind manoeuvres at the nominal
wind speed, the V3 kite generates an average pulling force of 3 kN, sufficient to produce
shaft power of 20 kW at the ground station [12,33].

In March 2017, the TU Delft spin-off company Kitepower B.V. conducted instrumented
flight tests, measuring the relative flow velocity and its direction at the kite for the first time
and using this for aerodynamic characterisation [5]. The properties of the wing’s design
geometry and the kite’s component masses for these tests are listed in Table 1. During
flight, the wing deforms as a result of aerodynamic loading. A comparison of the deformed
geometry with the designed geometry is illustrated in Figure 2b. The overlay shows how
the canopy billowing between the struts reduces the distances between the strut tips. This
geometric contraction of the trailing edge (TE) pulls the LE tips towards the centre of
the wing. The vertical positions of the pulleys in the photo differ significantly from the
positions in the overlaid CAD geometry. The reasons for this could be that the photo was
not taken from the exact rear perspective and that bridle line lengths were often adjusted
on the fly during flight testing to tune the flight behaviour of the kite. As part of the flight
tests, the wing planform of the V3 kite was also video recorded with a camera mounted
on the KCU [34]. This footage reveals that the load-induced TE contraction increases the
sweep angle of the wing in flight [5].

Table 1. Specifications of the TU Delft LEI V3 kite operated by Kitepower B.V. in March 2017 [5].
(a) Design (CAD) geometry of the wing. (b) Masses of the kite components.

(a) (b)

Property Symbol Value Component Mass

Wing height h 2.8 m Wing + bridles 11 kg
Wing width (projected wing span) w 8.3 m KCU 8.4 kg
Wing chord, maximum c 2.7 m IMU + GPS 2.4 kg
Wing surface area, flattened S 25 m2 Flow sensor 1 kg
Wing area, projected A 19.75 m2 Kite total 22.8 kg

2.2. Depowering and Steering Kinematics

The TU Delft V3 kite is controlled by changing the lengths of the steering and depower
tapes. Because the layout of the bridle line system and the line lengths differs from kite
to kite, the relative power and steering settings, up and us, respectively, were introduced
as dimensionless input parameters for the depower and steering kinematics [14,35]. The
setting up = 1 refers to a fully powered kite, while up = 0 refers to the depowered kite.
Similarly, the setting us = 0 refers to no steering input, while us = −1 and 1 refer to the
extreme steering inputs for right and left turns, respectively. It is assumed that the tape
lengths vary linearly with the values of up and us.

Oehler and Schmehl [5] proposed a kinematic relation between the deployed length ld
of the depower tape and the power setting up. In the present manuscript, this relation is
extended to account for different maximum depower configurations used in different flight
campaigns. The deployed length of the depower tape can be defined as

ld = ld,0 + ∆ld, (1)

where ld,0 is the deployed length in the fully powered state and ∆ld is the length change to
fully depower the kite. The relation between this length change and the power setting up is
described by

∆ld = δd∆ld,max(1− up), (2)

where ∆ld,max is the maximum possible length change (depending on the tape capacity
of the depower winch) and δd is a factor between 0 and 1 quantifying how much of this
maximum possible length change was actually used during the flight campaign. The
variable upper limit δd∆ld,max of the deployed depower tape was introduced in the present
work because kites are commonly designed for high performance when powered, while
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the optimal rear bridle line extension to achieve the desired depower state is determined
by flight testing as a trade-off with flight stability, safety and controllability.

The deployed lengths of the left and right steering tapes can be defined as follows

ls,l = ls,0 − ∆ls, (3)

ls,r = ls,0 + ∆ls, (4)

where ls,0 is the deployed length of both tapes in straight flight without any steering input
and ∆ls is the length change at the maximum steering input. The relation between this
length change and the steering setting us is described by

∆ls = δs∆ls,maxus, (5)

where ∆ls,max is the maximum possible length change and δs is a factor between 0 and 1
similar to δd, quantifying how much of the maximum possible length change was actually
used during the flight campaign. Equations (1)–(5) relate the actuated tape lengths ld, ls,l
and ls,r to the relative control settings up and us. The specific values used in this study for
the TU Delft V3 kite are listed in Table 2, which were in part communicated by Kitepower
B.V. to correspond to the lengths used during the experiments in March 2017.

Table 2. Tape lengths and relative control settings of the TU Delft V3 kite [15,29,36]. (a) Depower
tape. (b) Steering tapes.

(a)

Length Symbol Value (m)

Maximum possible length change ∆ld,max 4.8
Deployed tape length, powered kite ld

(
up = 1

)
= ld,0 1.098

Deployed tape length, depowered kite ld
(
up = 0, δd = 8%

)
1.482

Deployed tape length, depowered kite ld
(
up = 0, δd = 13%

)
1.722

(b)

Length Symbol Value (m)

Maximum possible length change ∆ls,max 1.4
Deployed tape length, neutral flight ls,l(us = 0) = ls,0 1.6

ls,r(us = 0) = ls,0 1.6
Deployed tape length, right turn ls,l(us = −1, δs = 100 %) 3.0

ls,r(us = −1, δs = 100 %) 0.2
Deployed tape length, left turn ls,l(us = 1, δs = 40 %) 1.01

ls,r(us = 1, δs = 40 %) 2.16

2.3. Triangular Two-Plate Wing Model

When analysing the video footage of the wing planform, Oehler and Schmehl [5]
observed that the tip-to-tip distance decreased when depowering the kite by releasing
the depower tape. The triangular two-plate model illustrated in Figure 3a was developed
to study this basic symmetric deformation mechanism. It is based on the simplifying
assumption that the two half wings can each be represented by rigid triangular plates
connected by a hinge along the wing’s centre chord cref. Accordingly, the deformation of
the wing can be described by a single parameter: the anhedral angle measured between the
two plates. The assumption of rigid half wings implies that local deformation phenomena,
such as billowing of the canopy or spanwise bending or torsion, can be neglected. Although
this assumption is rather crude, as can be concluded from Figures 2b and 3b, it does lead to
an analytical description of the symmetric wing deformation problem.
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Figure 3. Triangular two-plate model of the V3 kite. (a) Geometric definitions. In blue, the coordinate
system is given. The two triangles shaded in grey represent the wing, point P0 is the bridle point, and
the triangle shaded in red lies in the symmetry plane. Adapted from [29]. (b) Definition of the points
P2, P3 and P4, defining the triangular plate representing one half wing. Photo taken from the ground
in July 2012.

As seen in Figures 1a and 2a, the central front bridle lines split into two line segments to
better distribute the transmitted force to the LE and strut tubes. The distance d is measured
from the bridle point to the virtual attachment point, where the bridle line would intersect
the chord without the Y split. Accordingly, the length cref is measured from this virtual
attachment point to the TE, as illustrated in Figure 3b.

Representing the two half wings as rigid triangular plates implies that the edges with
lengths a, cref and e remain constant at the values specified in Table 3. The rigid plates are
connected by four idealised bridle lines of lengths b, d and l(up), with two for supporting
the centre chord cref at points P2 and P4 and two for supporting each wing tip at points P1
and P3. To formulate an analytical model, all bridle lines are assumed to be straight and
attached directly to point P0. The bridle lines connecting to the centre of the LE and the two
wing tips are assumed to be of constant length. Only the length of the central rear bridle
line l(up) is assumed to be variable and a function of the power setting up. Points P0 and
P2 are assumed to be fixed to provide a reference to calculate the shape changes from [29].

Table 3. Lengths derived from the designed (CAD) geometry of the TU Delft V3 kite in a fully
powered state.

Length Symbol a b cref d e l(up = 1)

Design Geometry (m) 5.78 8.50 2.20 11.00 5.61 11.22
Presimulated (m) 5.55 8.56 2.20 11.00 5.64 11.22

Using Equation (2), the length of the central rear bridle line can be related to the power
setting up

l(up) = l0 + ∆ld
cos γ

2
(6)

= l0 + δd∆ld,max(1− up)
cos γ

2
, (7)

where l0 represents the minimal length l(up = 1) when powered. The division of ∆ld by
two is an approximation introduced by Oehler and Schmehl [5] to account for the pulleys
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in the bridle lines attached to the TE. Because the pulleys are at an angle γ to the central
rear bridle line, the diagonal pulley extension is converted to a vertical central rear bridle
line extension by adding a cos γ term.

2.3.1. Tetrahedon Algorithm

As illustrated in Figure 3, the points P0, P2, P3 and P4 as well as P0, P1, P3 and P4 span
two mirrored irregular tetrahedra. The wing width w is defined as the geometric distance
between the LE tip attachment points P1 and P3 of the bridle lines. Because of the symmetry
plane spanned by points P0, P2 and P4, one can calculate the width using the tetrahedron
height ht (see Figure 3), defined as the perpendicular distance of each wing tip from the
symmetry plane

w = 2ht. (8)

The height ht can be calculated from the tetrahedron base area At,b and the tetrahedron
volume Vt as follows

ht = 3
Vt

At,b
. (9)

The volume is computed from the edge lengths as follows [37]

Vt =
1

12

√
4b2d2l2(up)− b2Q2

1 − d2Q2
2 − l2(up)Q2

3 + Q1Q2Q3, (10)

where the coefficients Q1, Q2 and Q3 are defined as

Q1 = d2 + l2(up)− c2
ref, (11)

Q2 = b2 + l2(up)− e2, (12)

Q3 = b2 + d2 − a2. (13)

Using Heron’s formula for calculating the area of a triangle Atri with sides A, B and C,
we have

Atri =
√

s(s− A)(s− B)(s− C), (14)

s =
1
2
(A + B + C), (15)

The tetrahedron’s base area can be calculated as follows

At,b =
1
4

√[
l(up) + d + cref

][
−l(up) + d + cref

][
l(up)− d + cref

][
l(up) + d− cref

]
. (16)

By using Equations (10) and (16) in Equations (8) and (9), the width of the kite can be
determined as a geometric constraint-based function of the central rear bridle line length
l(up)

w =

√
4
(
4b2d2l2(up)− b2Q1

2 − d2Q2
2 − l2(up)Q2

3 + Q1Q2Q3
)[

l(up) + d + cref
][
−l(up) + d + cref

][
l(up)− d + cref

][
l(up) + d− cref

] . (17)

2.3.2. Trilateration Algorithm

With a trilateration algorithm that solves the intersection problem of three spheres [38],
one can analytically calculate the coordinate changes instead of only the width change.
This problem generally has two intersection points but is best visualised in 2D, where only
one intersection point is shown, as illustrated in Figure 4a.

To calculate the deformation of the triangular two-plate model geometry, the locations
of points P1, P3 and P4 must be determined. Because P4 remains in the symmetry plane,
one can determine its new location by solving the intersection problem of two circles. The
circles have centres P0 and P2 and radii d and l(up). An axis rotation is introduced as (x′, z′)
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to make both circle centres fall on the same axis (see Figure 4b). Using the rotated axis, the
circle equations become

x′2 p + z′2 = l(up)
2, (18)

x′2 + (z′ − d)2 = c2
ref. (19)

By rewriting and substituting the circle equations, one finds the location of P4 in the
rotated axis system

z′ =
l(up)2 − c2

ref + d2

2d
, (20)

x′ =
√

l(up)2 − z′2. (21)

Using the principle of similar triangles, the location of P4 can be found in the original
axis (x, z) using

P4 =

[(
P0,x +

1
d
[z′P2,x + x′P2,z]

)
, 0 ,

(
P0,z +

1
d
[z′P2,z − x′P2,x]

)]
, (22)

where the P4,y entry is equal to zero due to the present symmetry plane (see Figure 3a).
With the location of point P4 and the points P0, P2 and P4 as sphere centres with the

lines a, b and e as sphere radii, the coordinates of point P1 and P3 are defined as

P1 = P0 + P3,x′ex + P3,y′ey + P3,z′ez, (23)

P3 = P0 + P3,x′ex + P3,y′ey − P3,z′ez. (24)

where ex, ey, ez, P3,x′ , P3,y′ and P3,z′ are defined as

ex =
P0 − P2

|P0 − P2|
, (25)

ey =
(P4 − P0)− e2

x(P4 − P0)

|P4 − P0|
, (26)

ez = ex × ey, (27)

P3,x′ =
|P0 − P3|2 − |P2 − P3|2 + |P0 − P2|2

2|P0 − P2|
, (28)

P3,y′ =
|P0 − P3|2 − |P4 − P3|2 + ex(P4 − P0)

2 + ey(P3 − P0)
2 − 2ex(P4 − P0)P3,x′

2ey(P3 − P0)
, (29)

P3,z′ =
√
|P0 − P3|2 − P2

3,x′ + P2
3,y′ . (30)

The tetrahedron and trilateration algorithms provide geometric constraint-based an-
alytical solutions for the wing width and height as functions of the power setting. The
trilateration algorithm requires three known points in space with three known distances to
the desired point. Therefore, straight lines of constant lengths are assumed. The tetrahedron
algorithm requires straight lines of known lengths. These assumptions limit the applicabil-
ity of the analytical model because some bridle line systems, such as the bridle line system
of the V3 kite, also include quadrilateral and pentagon line layouts (see Figure 1b) which,
unlike purely triangular layouts, are not geometrically defined by the line lengths only [29].
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Figure 4. Trilateration algorithm. (a) A 2D illustration of the intersection point P of three spheres,
with sphere centres c1, c2 and c3 and sphere radii r1, r2 and r3, respectively [29]. (b) Illustration to
support the calculations of the new location of P4. In black the powered shape (up = 1) is shown and
in red a depowered state. Note that the depicted shape in black does not correspond to the design
geometry but to the pre-simulated shape.

2.4. Multi-Segment Wing Model

To include spanwise bending and torsion of the wing, slacking bridle lines, asymmet-
ric control input and canopy billowing, the geometric modelling concept introduced in
Section 2.3 is expanded into a force-based concept. This concept is based on the observation
that the bridle line system transfers most of the load and dominates the shape of the kite.
A particle system model (PSM) approach was chosen for its capacity to deal with bridle
lines [23,39] and its low computational cost compared with other structural models (e.g.,
finite-element models) [40].

Because of the low mass of the membrane wing, the time scale of inertial effects is
substantially lower than the time scales of flight manoeuvres and associated deforma-
tion phenomena. Consequently, it can be assumed that the kite transitions through a
sequence of quasi-steady flight and deformation states while advancing along the flight
trajectory [10,41]. Dynamic effects can be neglected, and consequently, a quasi-steady PSM
is developed. Bosch et al. [22] used a quasi-steady PSM to represent the tether and bridle
lines and couple this model to an FSI model of the wing to simulate the kite deformation
while flying crosswind manoeuvres. Our approach differs, as non-physical compliance
elements are not needed for stability. The same modelling technique represents the bridle
line system and the wing by using point masses and connecting these with force-based
distance constraints. The integrated bridle line system and wing model can describe both
aero-structural and actuation-induced deformation phenomena.

As a force-based model, the PSM alleviates the assumption of straight and constant-
length bridle lines such that the bridle line system of the V3 kite can be simulated. To
simplify the problem, the chordwise Y splits of the bridle lines close to the LE are neglected,
and two bridle line attachment points are relocated from between the struts to the outermost
struts. The layout of the bridle line system and the lengths of the individual line segments
are detailed in Appendix A. As illustrated in Figure 5a, the bridle lines are represented as
massless spring-damper elements, and the bridle-line connection points are represented as
particles.
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Bridle lines

Pulley lines

Pulley

Tapes

Particles

(a)

Aerodynamic force vectors

Wing segment area
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Figure 5. Aero-structural model of the TU Delft V3 kite, adapted from [29]. (a) Structural model
using a particle system approach, where each line represents a spring-damper element, and each dot
represents a point mass. The two diagonal lines per wing segment are additional spring-damper
elements used as cross members to prevent shear deformation. (b) Aerodynamic model of the
segmented wing, with red arrows indicating the wing element’s aerodynamic force vectors.

The wing is discretised into spanwise segments, where each segment is defined
between the struts, except for the outermost segments. Assuming that the bridle lines
make up all the inter-wing segment rotational deformation resistance, the segments can be
modelled as free to rotate over the struts. The edge of each segment is represented by a
spring-damper element, and as the wing is mainly made of elongation-resisting fabric, all
these elements have an elongation-resisting spring. A compression-resisting spring-damper
element is added for the elements representing the tubular frame. In practice, this is equal
to assuming that the tubular frame is of a constant length for the observed loads and
used stiffness value. The TE spring-damper element has no compression-resisting spring
stiffness, representing canopy billowing. Furthermore, diagonal elements are added to
each segment to represent the membrane’s elongation-resisting properties which prevent
shear deformation.

2.4.1. Equations of Motion

To find the displacements of the particles, the PSM solves for the force equilibrium for
each particle i

∑ Fi = Faero,i + Fstruc,i + Fg,i = 0, (31)

where Faero,i is the aerodynamic force detailed in Section 2.4.2, Fstruc,i is the structural force
detailed in Section 2.4.3 and Fg,i is the gravitational force, which is described as follows

Fg,i = [0 0 −mig]
>, (32)

where g is the gravitational constant. Together, a differential equation is formed, which is
solved numerically as detailed in Section 2.4.4.
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2.4.2. Aerodynamic Force

With Mach numbers well below 0.3, the flow around the kite can be assumed to be
incompressible [29]. Furthermore, an inviscid flow is assumed, and 3D effects are neglected.
The aerodynamic forces Faero,k acting on the k = 1, . . . , Nk wing segments are assumed
to be perpendicular to the segments. Only the induced drag is modelled, as viscosity is
neglected. The resultant aerodynamic force generated by the wing can be assembled as the
sum of all aerodynamic forces

Faero =
Nk

∑
k=1

Faero,k. (33)

The aerodynamic force of each segment Faero,k is calculated using the lift equation

Faero,k =
1
2

ρva,kva,kSkCl,k, (34)

where ρ represents the air density, va,k is the apparent wind speed, Sk is the projected wing
segment surface area and Cl,k is the lift coefficient. Following thin airfoil theory [42], a
linear lift-polar is assumed, and the lift coefficient is found using

Cl,k = 2π sin αk. (35)

The angle of attack αk is defined as the angle between the apparent wind velocity va,k
and the centre chord line of each wing segment. Because the wing segments differ in size
and angle with respect to the incoming wind, the wing segment aerodynamic force vector
magnitudes and orientations differ, as illustrated in Figure 5b.

For coupling the aerodynamic model to the structural model, 75 percent of the wing
segment’s aerodynamic force Faero,k is applied to the front corner points, and 25 percent is
applied to the rear corner points. An uneven distribution is chosen to include the chordwise
loading differences present on an LEI airfoil under nominal operating conditions [43].

2.4.3. Structural Spring-Damper Elements

All mass is lumped at the particles, forming connections between the massless ele-
ments, and modelled as frictionless hinges. The structural force (i.e., linear damping force
Fd,i and linear spring force Fs,ij on each particle i), as a result of the connected elements j is
determined using

Fstruc,i = Fd,i +

Nj

∑
j=1

Fs,ij, (36)

= ci(ẍi + ẋi) +

Nj

∑
j=0

Kjεjej, (37)

where ci represents the damping coefficient, Nj is the number of connected elements, ej
is the unit vector pointing along the element and Kj represents the element stiffness. The
damping force scales with the particle’s velocity and acceleration and the spring force of
each element with the elongation.

When describing the location of two connected particles (xi, xi+1), the non-dimensional
element elongation becomes

εj =
lj − Lj

Lj
, (38)

=
||xi+1 − xi|| − Lj

Lj
, (39)
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where lj is the current length and Lj is the rest length of the element j [39].
Ideal pulleys are assumed to be frictionless, which means that the pulley line’s tensile

force must be equal on both sides of the pulley. A schematic of a pulley is present in
Figure 6, where the pulley line runs from knot P1 over a pulley P2 and to another knot P3.
The tensile force in the described pulley line can be calculated from Equation (38) using an
adjusted elongation term

ε(2,1),(2,3) =
(l2,1 + l2,3)−

(
L2,1 + L2,3)

(L2,1 + L2,3
) , (40)

=

(
||x2 − x1||+ ||x3 − x2||

)
− (L2,1 + L2,3)

(L2,1 + L2,3)
. (41)

Fs,12

Fs,21

Fs,2i

Fs,23

Fs,32

P2

φ
φ

Pi

l2,1

P1

P3

l2,3

Figure 6. Force equilibrium at a pulley P2 connected via bridle line to knot Pi. The bridle line that
runs over the pulley connects knots P1 and P3, the corresponding tensile spring force is shown in red.
For an ideal, frictionless pulley, the line angles φ are identical [29].

2.4.4. Numerical Solver

The PSM equations of motion form a system of second-order, non-homogeneous
ordinary differential equations

Mẍ = ∑ F, (42)

=
Nk

∑
k=1

Faero,k +
Ni

∑
i=1

(
Fg,i + ci(ẍi + ẋi) +

Nj

∑
j=0

Kjεjej

)
, (43)

where M represents the mass matrix filled with masses mi and x is the position vector of all
the particles. The differential equations are solved iteratively using the process illustrated
in Figure 7. The problem is loosely coupled (i.e., the structural and aerodynamic models
iterate until convergence before they interact). The loosely coupled iterations are solved
using a Runge–Kutta method of the fifth order [44], implemented using the initial value
problem solver scipy package of Python. This implicit method is chosen over an explicit
method because the differential equations are stiff.
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Figure 7. Flowchart of the aero-structural PSM.

2.4.5. Static Equilibrium

To find a static equilibrium at which the simulation can converge, an equilibrium must
hold over the three translational and three rotational degrees of freedom. In an AWE system,
the bridle point attaches the kite to the tether. This is modelled as a boundary condition
by a ball joint constraint at the bridle point. The ball joint constraint induces an equal and
opposite force, which in a full system would be the tether force, therefore providing an
equilibrium over the translational degrees of freedom. The ball joint constraint, similar to
the bridle point in an AWE system, does not restrict any rotation.

In idealised conditions with zero steering input, the kite has the same symmetry plane
as the triangular two-plate model (see Figure 3a). As a result of the symmetry, the force in
the y direction, the yaw rotation over the z axis and the roll rotation over the x axis are all
balanced by definition. This reduces the problem to one rotational and two translational
degrees of freedom. The translational degrees of freedom find equilibrium due to the ball
joint constraint. In a steady case, the remaining rotational degree of freedom over the y axis
is balanced by gravity, the wing’s aerodynamic force and the spring force.

2.5. Photogrammetry

The kite geometry is subject to various changes induced by strong aero-structural
coupling and actuation-induced wing morphing, which means that one should validate
the form. The only available and useful data are from video footage, taken on the 24th and
30th of March 2017 by a camera attached to the KCU and pointing towards the wing [29].
Extracting information from photogrammetric data is possible in multiple ways, and
examples are illustrated in Figure 8. The left figure shows how the pulleys move positions
and how the TE wing tip folds outwards when powered. The right figure illustrates how
the angle between the centre chord and the front lines increases when depowering (i.e., this
is how the angle of attack is reduced).

For studying the deformations of the kite, the wing’s tip-to-tip width is chosen as an
indicator because of its relation to the anhedral angle that affects many parameters (e.g., the
aerodynamic load). Aside from the width, the trailing edge strut’s tip-to-tip length change
is also measured, indicating the canopy billowing. Ideally, one would extract the lengths
as a function of time and the control setting. However, this is infeasible, as only visual
and audio information is available for the filmed flights. There are other measurements
available from different flights on the 24th of March [36], but unfortunately, they are not of
the same flight. The video footage is therefore reduced to video stills which represent the
extreme states, as these are most identifiable and useful for validation. For straight flight,
multiple video stills were collected of the kite in its powered state during reel out as well as
multiple stills in its depowered state during reel in. For turning flight, it was concluded
that the footage was too distorted to be used quantitatively [29].

To extract measurements from the video stills, post-processing is required. The optical
distortion induced by the camera’s fish eye lens is removed by using an opposite lens filter
whose magnitude is tuned such that the curved horizon present in several images appears
straight again [29]. The camera covers a specific physical area (i.e., a rectangle on a wall for
a projector), whose size depends on its focal length, lens, aperture and the distance between
the camera lens and the object. This area can be divided by the pixel resolution to find a
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meter-to-pixel ratio, which is needed to convert the tip-to-tip pixel width to meters. The
camera’s focal length, lens and aperture were constant during the measurement campaign,
but the distance varied. The distance variations were caused by swinging of the KCU with
the attached camera, wing pitching and wing deformation. Due to these variations, the
exact projection distance at each video is unknown.

Figure 8. TU Delft V3 kite in flight [5]. Wing planforms of the (a) depowered kite and the (b) powered
kite were captured as video stills from recordings taken by the KCU onboard camera. Complete video
is available from [34]. Side views of the (c) partially depowered kite during a landing manoeuvre and
the (d) fully powered kite during a crosswind flight manoeuvre are shown with manual control from
the ground, captured as photos taken by an observer on the ground.

Therefore, instead of defining the meter-to-pixel ratio using the distance to the object,
the differences are expressed in percentages and converted to meters using the dimensions
of the design geometry. The design geometry is used as it was known upfront. To obtain the
meter-to-tip ratios used for the TE tip-to-tip distance conversions, the struts are assumed
to remain at a constant length. By defining the ratios locally, the distortion caused by the
wing’s non-perpendicularity is taken into account.

3. Results

The described photogrammetry analysis showed, on average, a 5% decrease in width
between the powered and depowered states, with a standard deviation of approximately
3%. As this is the first quantitative measurement effort into the form changes in the V3, the
results can only be compared to qualitative observations, which confirm the decrease in
width when powered [5]. The trailing edge strut tip-to-tip lengths, indicating billowing,
increased the width on average by 2.4 percent when changing from powered to the depow-
ered state [29]. When including billowing, the diagonal elements restricted the movement
and were therefore increased by five percent to represent the initial absent stretch resistance
of the canopy. It should be noted that the photogrammetry results were most accurate
in the proportional change and less accurate in the magnitude. The width results were
specifically scaled based on the design geometry, which was qualitatively observed to differ
from the powered state (see Figure 2b).

The rest of this section presents a comparison between the photogrammetry and
simulation results for the two wing models using δd values of both 8 percent and 13 percent
and for the multi-segment wing model with and without billowing as well.

3.1. Triangular Two-Plate Wing Model

Two novel models were developed for the two-plate wing model, and both are pure
geometric constraint-based analytical models. Because the design was made without
knowing the form deformations due to the aero-structural coupling, and the two-plate
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model is a simplified representation of the wing geometry, a pre-simulation was performed
using the PSM method, which was applied to the two-plate triangular model. In the design
state, which represents the powered state, where up = 1, the design geometry and pre-
simulation showed different values. The pre-simulated wing geometry was flatter, which
made the width value higher. The lengths of the design geometry and those derived from
the pre-simulation of the kite are listed in Table 3. Furthermore, to find l(up), the angle γ is
needed (see Equation (6)), which is assumed to remain equal to 27° and is derived from the
design geometry.

The tetrahedron and trilateration algorithms were used to simulate the design geome-
try with a δd value of 8 percent and the pre-simulated geometry using δd values of 8 percent
and 13 percent. The results are plotted together with the photogrammetry measurements
in Figure 9a.

(a) (b)

Figure 9. Triangular two-plate results. (a) Wing width determined by photogrammetry and the trian-
gular two-plate model results, calculated as a function of the power setting (up) using a tetrahedron
algorithm. The trilateration algorithm results serve as verification and are indicated by the white
dashed lines. (b) Form deformation of the triangular two-plate model, showing the design geometry
in grey and the depowered state (up = 0) in red, calculated with the trilateration algorithm. From top
to bottom, isometric, front and top views of the triangular two-plate model are displayed.

The width predictions of the tetrahedron and trilateration algorithms overlap perfectly,
thereby verifying the two models (see Figure 9a). The analytical width predictions showed a
nonlinear increase from depowered to the powered state. The increase in width, also shown
by the photogrammetry measurements, was as expected because when increasing the wing
loading, the wing should flatten. Compared with the photogrammetry measurements,
the powered state width predictions that started from the design geometry were, as they
should be, at the mean of the photogrammetry. This was not the case for the simulations
starting from the simulated shape. At up = 0, the results using δd = 13% seemed to
overpredict the width, whereas those using 8 percent seemed to underpredict the width.
All simulation results at both the powered and depowered states were within the range of
photogrammetric measurements and thus seemed to agree well.

3.2. Multi-Segment Wing Model

To run the force-based PSM, several values had to be set. A trial-and-error procedure
was used to determine the absolute error, relative error, maximum step size and simulation
time interval (see Table 4).
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Because a static kite under idealised conditions was modelled, the apparent wind
speed va used to determine the aerodynamic force (see Equation (34)) was equal to the set
wind speed vw (see Table 4).

As the interest was only in the steady state solution, the parameters that affected
only the transient phase could be set at non-physical values as long as they did not affect
the steady state solution. The parameters affecting only the transient phase were those
involving velocity or acceleration (i.e., the damping ci and inertial forces). For a single-
mass spring-damper system, one can determine the critical damping coefficient, but for
a particle system model with more than two particles, there is not one critical damping
coefficient. Therefore, the damping constant ci was assumed to be equal for all elements
and determined by trial and error. It was initially equal to the value present in Table 4 and
increased over the simulation time interval to a value of one to dampen out all remaining
vibrations.

Furthermore, the mass matrix was filled with the same mass value mi. In part because
the inertial forces do not affect the steady state solution, the value m (see Table 4) was
determined by equally distributing the total kite mass of 22.8 kg (see Table 1b) over the
Ni particles (37 here). The gravitational force did affect the steady state solution and thus
required the proper mass distribution. The effect was assumed to be negligible and left for
future work, where other efforts into mass distribution should be considered [20,45].

Over each time step, the spring force was assumed to remain constant, which caused
stability problems when using the physical stiffness values. To solve the problem within
a reasonable time frame, a limitation was set on the minimal time step size. To converge,
each element was assumed to have the same lower-than-physical stiffness value Kj (see
Table 4). The global stiffness value K was selected by trial and error, and thus the maximum
bridle line elongation in a steady state was below 3 percent.

Table 4. Parameters and computational settings [29].

(a) (b)

Parameters Symbol Value Computational Setting Value

Wind speed vw 20 m/s Absolute error 1× 10−4

Spring stiffness K 2× 105 N/m Relative error 1× 10−2

Damping c 0.1 Maximum step size 5× 10−3

Gravitational constant g 9.81 m/s2

Air density ρ 1.225 kg/m
Mass m 0.62 kg

The force-based PSM was applied to the multi-segment representation of the V3
kite wing using δd values of both 8 percent and 13 percent with and without TE canopy
billowing (see Figure 10). The PSM matched the photogrammetry results well with δd
values of both 8 percent and 13 percent. Compared with the constraint-based analytical
tetrahedon results, the PSM with a δd value of 8 percent predicted a less steep decrease in
width.

Including billowing (i.e., increasing the rest lengths of the TE and diagonal elements)
decreased the width predicted in the powered state but increased in the depowered state.
In other words, the effect of including billowing was that the width changed less as a result
of increasing the rear bridle lines’ lengths through a depower tape extension.

When comparing the form changes shown in Figure 11, one can observe that the
powered shape showed the expected pitching compared with the design geometry (i.e.,
it fell backwards in the direction of the wind, where it found equilibrium between the
aerodynamic force, spring force and gravity). Furthermore, the LE tips seemed to fold
outwards, and the TE tip seemed to fold inwards. This is precisely the same as what was
qualitatively observed in Figure 8. The overlap between the simulations and qualitative
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photogrammetric comparison illustrates the importance of considering the differences
between the powered shape and the design geometry.

Figure 10. Photogrammetry results plotted together with the PSM results and a two-plate model
tetrahedron result as a function of the power setting (up). The dashed lines depict the simulation
which includes billowing, with blue for a δd value of 8% and red for 13%.

Figure 11. Shape deformation resulting from symmetric actuation of the rear bridle line system
in a fully powered state (up = 1), with δd = 13% and including billowing. The grey-graded shape
corresponds to the design geometry, and the red shape represents the powered state. From top to
bottom and left to right, an isometric view, a front view, a side view and a top view are displayed.
The thicker edge line panel indicates the front of the panel but does not correspond to the LE tube.
The side view results are symmetrical but do not appear so due to the viewing position misalignment
with the wing.

When comparing the powered and depowered shapes (see Figure 12), the depowered
kite pitched further backwards. Measured from the horizontal bridle point plane, the
angle of the powered front bridle lines was 86°, and when depowered, it was 75°. This
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is attributed to the depowered state generating less lift and more drag. With less lift, the
gravity and drag proportional contributions increased, which caused increased pitching. In
the simulations, less lift was generated in the depowered state due to the inward fold of
the TE tips and increased the anhedral angle.

Figure 12. Shape deformation resulting from symmetric actuation of the rear bridle line system in
a fully depowered state (up = 0), with δd = 13% and including billowing. The grey graded shape
corresponds to the powered shape with up = 1, and the red shape represents the depowered state.
From top to bottom and left to right, an isometric view, a front view, a side view and a top view are
displayed.

By introducing a non-physical boundary condition, one can converge asymmetrical
deformation (e.g., due to nonzero steering input). The new boundary condition is a point
that has spring-damper elements attached to the front particles of the middle panel, thereby
restricting them from moving away. The new point is placed in between the two particles,
and the elements have a stiffness of 2× 103 N/m. In this way, the yaw and roll rotational
degrees of freedom are constrained, enabling the solution of an asymmetric input. Using a
steering input of us = 0.12, a left turn is illustrated in Figure 13. Even though the boundary
condition was non-physical, the results did qualitatively match the photogrammetric data
because the expected twist and inward bending of the tips were shown [5].
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Figure 13. Shape deformation resulting from symmetric actuation of the rear bridle line system with
us = 0.12, up = 1 and δd = 13%. The grey graded shape corresponds to the powered shape with up = 1,
and the red shape corresponds to the asymmetrical deformed state. From top to bottom and left to
right, an isometric view, a front view, a side view and a top view are displayed.

4. Conclusions and Discussion

This paper presented two novel structural models for airborne soft wing kites that
harvest wind energy. Modelling the deformations is necessary, as it uses a morphing wing
control surface and is subject to strong aero-structural coupling.

Photogrammetry analysis was conducted of video footage from a camera strapped to
the airborne kite control pod hanging beneath the kite. On average, the span differed by
5 percent when comparing the powered and depowered states. The trailing edge strut’s tip-
to-tip canopy length measurements, indicating billowing and used as empirical relations,
showed an average increase of 2.4 percent when comparing the powered and depowered
states. The uncertainty was deemed too high for quantitative analysis of turning flight.

The modelling approach assumes that the bridle line system’s geometry primarily
influences the global geometry of the aerodynamically loaded membrane wing. The
geometric distances between the wing-attached bridle line points were assumed to remain
constant due to the compressive and tensile stiffness of the inflated tubular frame. The TU
Delft V3 kite of 25 m2 was used, which was fully supported by front and rear bridle line
systems. The kite was controlled through adjustments of the steering and depower tapes,
for which dimensionless parameters were introduced to represent the power and steering
settings. The flight data, taken during different flights than the footage, showed both an
8 percent and 13 percent deployed depower tape of the maximum deployable length.

A triangular two-plate model was developed to predict the actuation-induced sym-
metric deformation analytically. Each wing half was modelled as a rigid triangular plate.
Therefore, deformation phenomena such as billowing or span-wise bending were neglected.
Four idealised bridle lines attached the plate’s corner points to the bridle line point. A
relation between the length of the rear bridle line and the power setting was developed.
A novel tetrahedron algorithm using geometric tetrahedron relations and a trilateration
algorithm that solves the intersection problem of three spheres were developed. Both
showed identical results and predicted a nonlinear decrease in width when depowering,
aligning with the photogrammetry analysis.
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The triangular two-plate model is a pure geometric constraint-based analytical model
requiring geometrically determined shapes. For more complex shapes (e.g., the pentagons
present in the bridle line system), a force-based method is needed. A multi-segment wing
model is defined using a particle system model, where each segment consists of four
point masses kept at a constant distance along the tubular frame by linear spring-damper
elements. The same massless elements also represent the line segments of the bridle line
system, with each connecting two point masses. The particle system model incorporates
aerodynamic forces on each wing segment and represents both the steering and depower
tape, hence allowing for the prediction of symmetric and asymmetric deformations result-
ing from bridle line actuation. With the current set-up, an additional boundary condition
was required to converge the asymmetrical case.

Future work should validate the predicted shape changes with more parameters than
the width. A finer wing discretisation could be used (e.g., including the bridle line forking
near the leading edge). Several aerodynamic model assumptions are unnecessary when
using the work of Cayon [30]. Developing billowing relations instead of using empirical
data would make the model calibration independent. Lastly, a solution that enables the
model to deal with asymmetries without non-physical constraints must be found.
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Appendix A. Multi-Segment Wing Model Bridle Plan

Figure A1 details the bridle plan employed for the multi-segment wing model of the
TU Delft V3 kite operated by Kitepower B.V. in March 2017. The planform shows the flat,
unrolled wing. The steering tape is in the neutral position, and the depower tape is in the
powered position. The indicated lengths of the bridle lines are given in millimetres. A

https://github.com/awegroup/TUD-V3-kite-depower-2plate
https://github.com/awegroup/TUD-V3-kite-depower-2plate
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typical diameter for the bridle lines is 2.5 mm. As described in Section 2.4, the chordwise Y
splits of the bridle lines close to the LE were not taken into account in the simulation model.
Accordingly, the bridle lines attach at the projected points LE1–LE4.
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Figure A1. Bridle plan used during the simulations. The left side indicates bridle lines attached at
the TE, and the right side indicates those attached at the LE. The dots a1, b1, c1, d1, a2, etc. represent
possible bridle line attachment points.
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