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Voor mijn ouders





P R E FA C E

Before diving into the wonderful world of stabilized finite element
methods, I would like to point out the following. A large part of my
dissertation is reproduced from scientific articles I have written over
the last four years. Each chapter in the body of this work contains
a reference to the corresponding article. The different chapters, or-
ganized in three parts, deal with various aspects of the overarching
theme of the dissertation. Enforcing a consistent notation would upset
conventional notation at some places. To avoid this I have chosen to
only use a coherent notation within each chapter. It goes without say-
ing that all employed definitions are clarified within their own context.

Marco ten Eikelder
Delft, May 2020
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1
I N T R O D U C T I O N

It is widely recognized that computer modeling and simulation form the third pillar
of science, alongside with theory and experimentation. The value of numerical
methods lies in the fact that they are generally faster and cheaper to execute than
physical experiments. Equally important, simulation allows to obtain the whole
picture of the problem, whereas experimental techniques are typically restricted
to a certain piece. To perform a numerical computation one needs to identify all
basic physical phenomena a priori. This directly validates the understanding of the
problem. Still, experiments are required to draw our attention to these phenomena.

The quality of simulations of complex physical phenomena in fluid mechanics,
such as free surface flows, has significantly improved over the last decades. This
growth comes from the increase and improved quality of computational resources
and the advancement of the numerical algorithms. Yet, in order to tackle large and
complex problems in science and engineering, significant progress needs to be made
on both the computational resources and numerical methods side.

This thesis concerns the construction of new numerical methods for the simulation
of complex flow phenomena. When numerically solving problems in fluid mechanics
one wishes to find the quantities (velocity, pressure, density, etc.) that have a
meaningful physical interpretation. These physically relevant solutions are obtained
by imposing a certain stability condition, often known as the entropy condition.
This condition ensures that small numerical errors in the physical quantities do
not magnify. A numerical method that solves the corresponding mathematical
model does unfortunately not always inherit the stability property of the physical
system. In such algorithms a small numerical error or perturbation may lead to
a wildly different outcome. This unwanted behavior was the motivation for the
design of so-called stabilized methods. As the name suggests, these methods aim to
restore stability. Even though the quality of numerical solutions obtained by using
stabilized methods greatly improves upon standard methods, there is still room
for improvement. In the construction of stabilized methods for complex problems
typically several approximations occur that are not consistent with the underlying
physics. As a result the obtained numerical solutions may not be (provably) stable.
This thesis is centered around this issue; it focuses on the development of stable

7



8 introduction

numerical methods that originate from the physical system such that the obtained
numerical solutions closely resemble the physics.

Among the most challenging problems for numerical methods in fluid mechanics
are those that involve a free surface. A typical example in the maritime field is a
water-air flow such as the dam break problem, see e.g., Figure 1.1.

Figure 1.1: Snapshots of a dam break problem. The coloring is based on the pressure field.

In such a problem several aspects come into play: multiple scales (turbulence),
violent disturbances and the interface separating the fluids. A numerical method
tailored for such a problem ideally treats each of these aspects in a physically correct
manner. In this dissertation we look into these three topics.

We choose to employ the (stabilized) finite element and isogeometic analysis
method. These are mature approximation methods when it comes to solving math-
ematical models describing physical phenomena (e.g., fluid and solid mechanics)
on complex domains. The methods are particularly suitable when multiscale and
multi-physics play a role in the problem. Applying these solution strategies on com-
plex problems is a challenging task. We focus on approximating the mathematical
problem in such a way that multiscale effects are properly accounted for and that
the numerical approximation satisfies certain stability properties.

In the remainder of this chapter we provide an overview of finite element and
isogeometric methods with corresponding stabilization techniques in Sections 1.1-
1.4 and provide an overview of free surface modeling techniques in Section 1.5. We
present several issues and open problems of the methods. We close with the thesis
objective and outline in Section 1.6 and 1.7.

1.1 finite element methods

The key ideas behind finite element methods can be traced back to the beginning of
the twentieth century. Important contributions of that period include the works of B.
Galerkin, W. Ritz, A. Hrennikoff [96] and R. Courant [52]. The method originated in
the field of civil and aeronautical engineering where problems in structural analysis
appeared.

The finite element method is a methodology to approximate the solution of a
partial differential equation (PDE) and may roughly be summarized as follows. As
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the name suggests, the key step is to subdivide the corresponding physical domain
into a finite number of elements. This is called the discretization of the problem.
Then on each of the elements so-called basis functions are defined. The finite element
solution is an approximation of the solution of the PDE. It is a linear combination
of the basis functions (which satisfy certain imposed boundary conditions). This
linear combination is determined by solving a system of equations that results when
discretizing a weak formulation of the problem. In Figure 1.2 we show a solution
profile with its finite element approximation.

Figure 1.2: Top: A solution profile φ = φ(x) with its finite element approximation φh.
Bottom: The linear basis functions Ni = Ni(x) that the numerical solution is
built from.

The choice of finite element basis functions lies to some extend with the user. For
example, one may select basis functions that suit the geometry of the problem. This
idea led to the introduction of the isogeometric finite element method. Isogeometric
analysis (IGA), introduced by Hughes et al. [101], uses the NURBS (non-uniform
rational B-splines) basis functions from Computer-Aided Design (CAD) directly
into a finite element framework. In this way the NURBS surfaces in IGA match with
the exact CAD geometry. As a result, mesh refinement procedures do not require
communication with the CAD geometry. Isogeometric methods are efficient and
accurate solution strategies [66]. Isogeometric analysis directly became a valuable
tool in several fields of engineering, including fluid flow computations [5, 68,
69], fluid-structure interaction [18, 20, 23], shape optimization [42, 162, 198], wind
turbines [25, 92], heart-valve flow problems [21, 22, 97, 98, 125, 205], electromagnetics
[29, 36], shells [26, 128, 129] and structural mechanics [51, 149, 191]. The reader may
consult [50, 152] for more (implementational) details about IGA. We illustrate in
Figure 1.3 a solution profile and its isogeometric discretization.
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Figure 1.3: Top: A solution profile φ = φ(x) with its isogeometric approximation φh. Bottom:
The second-order NURBS basis functions Ni = Ni(x) that the numerical solution
is built from.

Throughout this thesis we employ continuous finite element methods indicating
that the solution is continuous on the entire domain. The natural counterpart are
the discontinuous (Galerkin) methods [7, 45, 164] in which the solution is only
piecewise continuous.

1.2 stabilized finite element methods

The procedure to obtain the finite element solution given in Section 1.1 is known
as the standard Galerkin finite element method. This is an often used approxi-
mation method for problems in structural mechanics. For a typical problem in
fluid dynamics the standard Galerkin finite element approximation is often not
satisfactory; obtained solutions are oscillatory indicating that the method is unsta-
ble. Oscillatory solutions typically appear for high Péclet or Reynolds numbers in
convection/advection-dominant problems1 or result from pressure instabilities in
mixed problems (e.g., Stokes flow). In the second case the discretization does not
satisfy the so-called Banach-Nec̆as-Babus̆ka (BNB) condition, also known as inf-sup
condition, which guarantees uniqueness of the solution. In case of mixed problems,
the more general BNB condition simplifies to the Babus̆ka-Brezzi condition [9, 32,
55].

The origin of instabilities in convection-dominant problems is best described in
the seminal paper by Brooks and Hughes [33]. These instabilities gave rise to the
development of methods that yield non-oscillatory solutions, the so-called stabilized
finite element methods. These methods are formed by augmenting the standard

1 In this thesis we do not distinguish between the term ‘convection’ and ‘advection’. We interchangeably
use these words to indicate the movement of a quantity, fluid or material.
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Galerkin method with consistent, mesh-dependent terms that improve the numerical
stability. In [33] the first residual-based stabilized finite element method, known
by the name SUPG (Streamline upwind Petrov-Galerkin), is presented. This is the
starting point for the development of several stabilized methods. In particular, finite
element methods for fluid dynamics experienced a boost with the series of ‘a new
finite element method for computational fluid dynamics’ by Hughes and coworkers
in 1986-1991 [104–108, 110–112, 170, 171]. In this series the SUPG method is extended
to multi-dimensional systems [108, 111]. The concept of stabilized methods is also
generalized to Stokes flow [104, 105] which allows to circumvent the Babus̆ka-Brezzi
condition. It also includes the construction of stabilized methods for compressible
flows [107, 171]. Additionally, a significant contribution was the development of
the Galerkin/least-squares method [106, 170]. As the name indicates, the stabilizing
term in this method is a least-squares form of the residual of the equation. The
method is conceptually easier than SUPG and can be understood as a wider class of
interpolation methods compared to standard Galerkin methods.

1.3 the variational multiscale method

The initiation of another crucial stabilized method started in 1989 with the paper of
Douglas and Wang [56]. The work is a non-symmetric modification of Hughes and
Franca [104] with optimal error estimates. This idea is directly applied to advective-
diffuse model problem in Franca et al. [74] and to the incompressible Navier-Stokes
equations in [73]. This method was introduced as the unusually stabilized method.

Although the stabilized methods introduced up to this point show significantly
better behavior than the standard Galerkin methods, they are rather ad hoc: a rigor-
ous derivation was virtually absent. Rigorous mathematical proofs show however
the validity of the methods. To arrive at a stabilized method the standard Galerkin
method is augmented with stabilizing terms which are purely a cure for the ap-
pearing oscillations. In fact, even though the Galerkin method is regarded as the
father of finite element methods and is optimal in the energy norm, one might
argue that Galerkin itself is not a natural way to discretize a PDE. Defining the
approximation space via arbitrarily sampling the solution space does not ensure a
good representation of the numerical solution. This explains the loss of stability for
advection-dominated problems.

The fact that this may feel somewhat dissatisfying has led to the search of a
rationale behind stabilized methods. In 1995 Hughes [100] recognized the presence
of the oscillations as the result of ‘missing scales’. This induced the variational
multiscale (VMS) method, for which the bigger picture was presented in 1998 [103]
and the rigorous mathematical analysis in 2007 [113]. This method coincides with
the unusually stabilized method which seemed to be an ad hoc procedure at its
introduction. The VMS approach is a procedure of designing numerical methods
that are capable of handling multiscale effects. The name multiscale is reflected back
into the crux of the method, which is the splitting of the solution space into large-
and small-scales (also termed as coarse- and fine-scales). The large-scale component
is that part of the solution living on the mesh. On the other hand, the small-scales
should be understood as the part that does not fit onto the mesh. These scales are
not discretized but an approximate model is employed. We illustrate this in Figure
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Figure 1.4: The multiscale split of a solution φ = φ(x) into large- and small-scales, denoted
φh and φ′ respectively.

1.4. The small-scale component is exactly that part of the solution that is discarded
when using a Galerkin approximation.

In the situation that the true solution lies in the large-scale solution space, we
wish to find that solution as our approximate solution. This implies that the splitting
procedure is governed by a projection operator. Once the projector has been selected
it remains to determine the small-scales. This is formally done via the (fine-scale)
Green’s function. Unfortunately, for many PDEs no closed form for the Green’s
function exists. This is where the approximation comes into play. The small-scales
are modeled in a residual-based fashion in terms of the large-scales. The resulting
expression is then substituted in the large-scale problem and thus the small-scale
effect is accounted for when determining the numerical solution.

The rigorous derivation of the VMS method [113] is presented for linear PDEs.
When the problem under consideration is non-linear (e.g., the Navier-Stokes equa-
tions) the methodology requires several approximation steps [17]. Despite, the
resulting method is a powerful way to simulate turbulent flows such as the one
depicted in Figure 1.5.

Furthermore, one can show that for symmetric coercive problems the multiscale
approach reduces to the standard Galerkin method [178]. This is the underlying
reasoning why Galerkin works well for many problems in structural mechanics.

1.4 discontinuity capturing

The above discussed stabilized methods yield accurate oscillation-free solutions in
absence of ‘strong shocks’. In presence of discontinuities (e.g., Riemann problems)
stabilized methods are not sufficient to capture the sharp layers. Additional to the
diffusion in the streamwind direction provided by SUPG, crosswind diffusion is also
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Figure 1.5: A snapshot of a VMS simulation of turbulent channel flow.

required when dealing with sharp layers. As a result, researchers have attempted
to rectify this discrepancy via the use of so-called discontinuity capturing (DC)
operators [121, 122]. The discontinuity capturing operator is a consistent mesh-
dependent term that is added to the stabilized method. It can be understood as an
artificial viscosity of which its specific form is to a large extend undetermined. Thus,
this solution strategy has a large ad hoc component. As a result, a large number
of solutions has been proposed, see e.g., [19, 54, 77, 110, 112, 138, 139, 185, 189,
190]. Some of these methods present some motivation of the proposed DC but
none is provided with a rigorous derivation. Despite that a foundation is lacking,
discontinuity capturing is a useful technique that allows the practitioner to study
more realistic problems. In Figure 1.6 we demonstrate that the overall solution
quality of the problem may significantly increase when a discontinuity capturing
device is employed.

(a) Initial condition. (b) Without DC mechanism. (c) With DC mechanism.

Figure 1.6: Convection skew to the mesh for an internal layer problem: (a) depicts the initial
configuration, (b) a snapshot of the solution obtained with standard stabilized
method without discontinuity capturing and (c) a snapshot of the solution when
a discontinuity capturing device is employed.



14 introduction

An important observation is that the pure stabilized methods such as SUPG,
GLS and VMS are linear when the underlying problem is linear. In contrast, the
discontinuity capturing term is always non-linear, even for linear problems. As a
consequence, the resulting system of equations is more time-consuming to solve.

1.5 free-surface flow modeling

Representing the motion of an interface is a significant component when dealing
with free surface flow problems. Apart from the previously mentioned dam-break
problem, free surfaces occur in bubbles, drops, liquefied natural gas (LNG) tanks,
combustion, crystal growth, spinodal decomposition, solidification and many more.
At each of these interfaces, certain boundary conditions apply which specify the
interface location. Typically, these conditions describe the relation of the quantities
of interest across the interface. Examples include an equilibrium of velocities or
pressures, or a certain jump in the stress prescribed by surface tension. An important
aspect of the interface is the density jump, which is large for water-air flow problems.
This indicates that small over- or undershoots in a simulations can result in a
negative density which renders the results useless. Thus, it is essential to either
allow only for very small oscillations or, better, guarantee the satisfaction of the
maximum principle to ab initio exclude oscillations.

Numerical methods built to simulate these phenomena basically come in two
flavors. The first category is composed of methods in which the mesh takes care of
the interface location. These interface tracking methods [123, 161, 193, 194] provide a
way to explicitly handle the interface evolution. Although these methods are gener-
ally accurate, topological changes such as merging or pinching require substantial
extra effort. As a result, interface tracking methods are not suitable for problems
in which a large amount of topological changes occurs. For these problems the
so-called interface capturing methods are often employed.

Interface capturing methods provide the means to naturally handle interface
motion. In these procedures the numerical model contains a variable that describes
the interface. The interface capturing methods may in their turn roughly be sub-
divided into phase field methods, volume-of-fluid methods and level-set methods.
The relation between these methods is described in [197]. Another class of methods
are the particle-based schemes. In this review we exclude these methods as these
fall behind in terms in popularity, as compared to the other classes of methods
mentioned above [64].

The phase-field models are diffuse-interface models which implies that the in-
terface is described by a thin transition layer. In this region the physical quantities
(such as density) smoothly transition from one side of the interface to the other.
Sharp-interface models may be recovered for a vanishing interface thickness [78].
Well-known phase-field models are the Navier-Stokes-Korteweg equations [134] and
the Cahn-Hilliard model [38, 39]. Applications of numerical methods for phase-field
models do typically not appear in the maritime field but are those problems in which
capillary effects play a significant role. The advantage of phase field models is their
rigorous thermodynamical structure. A drawback is that numerical methods for
phase-field models typically do not satisfy the maximum principle for the density.
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Problems in the maritime field often have a large density jump and as such the
maximum principle is essential there.

The origin of the volume-of-fluid methods may be traced back to the work of Hirt
and Nichols in 1981 [93]. The representation of the surface is generally performed via
so-called height functions [153], in which the height of the interface is compared to
some reference value. This approach faces several issues when curves intersect and
extensions to three-dimensional problems are problematic. Based on the Marker-
and-Cell Method (MAC) [87] a global field known as the volume fraction was
later introduced. This volume fraction is a field which indicates the ratio of the
(two) fluids in the domain. This leads to a method in which the conservation of
mass is guaranteed (given that the initial mathematical model is conservative) and
topological changes no longer cause problems. The drawbacks of this method are
the evaluation of curvature (essential for problems with capillary effects) and the
fact that the interface smears out in time. Furthermore, we note that volume-of-fluid
methods are often employed in combination with finite-volume methods, both for
incompressible [146, 167] and compressible flows [62, 63, 150, 166].

The level-set method [156] is an efficient way to handle the moving interface. In
the level-set methods the interface is represented by the zero level-set of a higher-
dimensional field. Similar to the phase-field and volume-of-fluid approaches, the
level set method is not limited by the complexity of the free surface flow. In contrast
to the volume-of-fluid method, curvature evaluations relevant for problems with
surface tension are natural. Furthermore, level-set methods satisfy the maximum
principle for the density and have proven to be a viable approach for water-air
flows in marine applications, see e.g., [3, 5, 6, 151]. The drawbacks of level-set
method are the fact that mass-conservation is not guaranteed and that certain
re-initialization procedures are required. Furthermore, the underlying algorithm
in level-set formulation are never provably thermodynamically stable. This can
cause instabilities; Akkerman et al. [3] show that viscous air-water flow level-set
simulations may create artificial energy in some cases.

1.6 research objective

The overall objective of this thesis is the development of finite element isogeometric
methods for flow problems that inherit the stability properties of the underlying physi-
cal system. The constructed numerical techniques should be generally applicable
and in particular be useful elements for free surface flow simulations. The challenges
discussed in the previous sections indicate that stability issues in free surface flow
simulations often stem either from (i) the multiscale formulation, (ii) sharp layers or
(iii) the interface separating the fluid. We address each of these challenges in this
dissertation and formulate the sub-objectives as:

(i) Develop an energy-stable finite element method for turbulent flow.

(ii) Derive a discontinuity capturing mechanism from the underlying physical
system.

(iii) Construct an energy-dissipative, maximum-principle satisfying numerical
method for the simulation of free surface flows.
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1.7 outline

This thesis is composed of three parts, each linked to one of the sub-objectives of
the thesis. In Part I we employ variational multiscale analysis to derive energy-
dissipative stabilized methods. First we present the methodology for convection-
diffusion equations and subsequently for the incompressible Navier-Stokes equa-
tions. Part II focuses on a theoretical framework for discontinuity capturing methods.
We develop what we call variation entropy theory, and subsequently use that in
combination with variational multiscale analysis to derive the framework. Lastly, in
Part III we construct an energy-dissipative level-set method to simulate two-fluid
flows.

Below we outline each part in more detail.

Part I. Energy-dissipative multiscale formulations

Chapter 2 initiates the design stabilized finite element methods that exhibit correct-
energy behavior. The convection-diffusion equation serves as a model problem. We
demonstrate that the classical stabilized formulations may create artificial energy.
Based on the variational multiscale method we propose a solution strategy to rectify
this situation.

In Chapter 3 we extend the developed methodology to the incompressible Navier-
Stokes equations. We illustrate that, also here, classical stabilized terms may be
the source of instabilities and amend this in the variational multiscale context. An
essential ingredient is here the isogeometric discretization method. This allows
to obtain pointwise divergence-free solutions which are key for an energy-stable
method.

Part II. A framework for discontinuity capturing methods

In order to derive a discontinuity capturing method we need to identify the origin
of the instabilities. This is the purpose of Chapter 4 which presents what we call
variation entropy theory. In this chapter we explain the source of the instabilities in
an entropy context. This forms the basis of the derivation of discontinuity capturing
methods.

Chapter 5 provides the actual derivation of discontinuity capturing methods.
Besides the variation entropy theory it relies on the variational multiscale method.
This provides a means to naturally incorporate the discontinuity mechanism into
the finite element method. We present a new discontinuity capturing method
that naturally emerges from the framework. Additionally, we illustrate that some
existing discontinuity capturing devices may be viewed as approximations of this
new method and show that these are overly diffusive.
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Part III. An energy-dissipative method for free surface flow

Chapter 6 considers the construction of an energy-dissipative numerical method for
the incompressible Navier-Stokes equations with surface tension. Our methodology
employs the level-set method to capture the fluid interface. It appears that standard
discretization techniques for the well-known diffuse-interface level-set model are
potentially unstable. We use functional entropy variables to overcome this discrep-
ancy.

We close with Chapter 7 which discusses the presented results and outlines
possible future research directions.
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Part I

E N E R G Y- D I S S I PAT I V E M U LT I S C A L E F O R M U L AT I O N S

This part presents the construction of stabilized methods with an energy-
dissipative property that closely resembles that of the continuous model.
The methods are presented for the convection-diffusion model problem
and the incompressible Navier-Stokes equations.





2
C O R R E C T E N E R G Y E V O L U T I O N O F
S TA B I L I Z E D C O N V E C T I O N - D I F F U S I O N

This chapter is reproduced from [57]:

M.F.P. ten Eikelder and I. Akkerman, Correct energy evolution of stabilized formulations:
The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and
isogeometric analysis. I: The convective-diffusive context, Comput. Meth. Appl. Mech.
Engrg. 331 (2018) 259-280.

abstract

This work presents the construction of novel stabilized finite element methods in the
convective–diffusive context that exhibit correct-energy behavior. Classical stabilized for-
mulations can create unwanted artificial energy. Our contribution corrects this undesired
property by employing the concepts of dynamic as well as orthogonal small-scales within the
variational multiscale framework (VMS). The desire for correct energy indicates that the
large- and small-scales should be H1

0-orthogonal. Using this orthogonality the VMS method
can be converted into the streamline-upwind Petrov-Galerkin (SUPG) or the Galerkin/least-
squares (GLS) method. Incorporating both large- and small-scales in the energy definition
asks for dynamic behavior of the small-scales. Therefore, the large- and small-scales are
treated as separate equations.

Two consistent variational formulations which depict correct-energy behavior are proposed:
(i) the Galerkin/least-squares method with dynamic small-scales (GLSD) and (ii) the dynamic
orthogonal formulation (DO). The methods are presented in combination with an energy-
decaying generalized-α time-integrator. Numerical verification shows that dissipation due to
the small-scales in classical stabilized methods can become negative, on both a local and a
global scale. The results show that without loss of accuracy the correct-energy behavior can
be recovered by the proposed methods. The computations employ NURBS-based isogeometric
analysis for the spatial discretization.
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2.1 introduction

Stabilized methods and multiscale formulations form an auspicious, versatile and
fundamental class of methodologies for finite element computations. The classical
Galerkin variational formulation depicts correct-energy behavior although it has
limitations concerning accuracy and stability. The popular stabilized methods, i.e.
the Streamline upwind Petrov-Galerkin method (SUPG) [33], the Galerkin/least-
squares method (GLS) [110], and the variational multiscale method (VMS) [100, 103],
overcome these issues, however show incorrect-energy behavior. In this work we
focus on convection-diffusion which serves as a model problem for more complex
flow problems and turbulence.

This work is devoted to the construction of a new stabilized finite element
method displaying correct-energy behavior. Correct-energy behavior (or evolution) in
a numerical method represents here that the method (i) does not create artificial
energy and (ii) closely resembles the energy evolution of the continuous setting. A
precise definition is included in Section 2.4.

Our contribution fixes the incorrect energy deficiency by combining several
ingredients. These are the dynamic and orthogonal behavior of the small-scales
emerging from the stabilized methods, also referred to as dynamic orthogonal small-
scales, within the framework of isogeometric analysis.

2.1.1 Dynamic small-scales

In our quest for a correct-energy displaying formulation we learn that it is essential
to use the so-called dynamic small-scales (also referred to as transient small-scales).
This approach models the small-scales dynamically, i.e. with an ordinary differential
equation in time, and takes its temporal contribution to the large-scale equation into
account. This concept has originally been proposed by Codina in [46] and has been
further analyzed in [48].

2.1.2 Orthogonal small-scales in VMS

The multiscale stabilization method based on orthogonal small-scales serves as the
next key ingredient of our approach. We link our choice of orthogonal small-scales
to an optimality projector induced by the H1

0-seminorm. This produces a highly
attenuated and localized small-scale Green’s function, which is very desirable prop-
erty [113]. We combine this methodology with residual-based variational multiscale
modeling, a concept which emanates from VMS. The VMS approach finds many
applications in incompressible turbulence, see e.g., [4, 16, 17, 94, 131, 141], and free
surface flow [5, 141]. Possible new directions in stabilized and multiscale methods
are suggested in [24].

2.1.3 Isogeometric analysis framework

In addition, we employ the isogeometric analysis (IGA) methodology, proposed by
Hughes et al. in [101], which finds recent applications in various fields of science,
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see e.g., [5, 20, 23]. IGA is an effort to close the gap between on one hand Computer-
Aided Design (CAD) and on the other Computer-Aided Engineering (CAE). Finite
element analysis (FEA) and CAD use a different representation for the geometry
which makes a geometry update unpleasant and time-consuming. IGA corrects
this deficiency by employing the same NURBS (non-uniform rational B-splines)
geometry description as in CAD. This means that the NURBS surfaces in IGA match
with the exact CAD geometry, in contrast to FEA where the basis functions form
an approximation of the CAD geometry. IGA leads to higher-order and higher-
continuity discretizations on complex domains. Our choice for IGA is additionally
motivated by the second derivatives in the weak formulations. This requires C1-
continuity of the basis functions. Furthermore, one of the main advantages of using
the IGA methodology is that it guarantees the incompressibility constraint to hold
exactly [68, 69]. This is a highly favorable property when the velocity field is not
given, e.g., in case of the incompressible Navier-Stokes equations.

2.1.4 Context

The methodology is presented in the convective–diffusive model context which
serves as a first step of this novel approach. The procedure is developed with the
incompressible Navier-Stokes equations in mind which is the next step of this
approach and is in itself presented in the sequel work. In the context of stabilized
methods a two-step approach, development for linear convection-diffusion followed
by incompressible Navier-Stokes, is more common, see e.g., [73, 74, 110, 111, 171].

In the context of two-fluid flow phenomena, many numerical methodologies
can unfortunately artificially create energy at the two-fluid interface. Even a small
energy-inconsistency at the fluid surface can already lead to highly unstable behavior
as is demonstrated in [3]. To rectify this discrepancy, each of the components of the
algorithm requires correct-energy behavior. When numerically solving air–water
flow usually the components are (i) a standard incompressible Navier-Stokes solver
and (ii) an algorithm describing the evolution of the air–water interface. Apart from
its shared features with the incompressible Navier-Stokes equations, the convective–
diffusive context is also required for the (level set) algorithm describing the evolution
of the two-fluid interface.

2.1.5 Outline

The remainder of this chapter is dedicated to the actual construction of a stabilized
variational formulation which depicts correct-energy behavior and is summarized as
follows. Section 2.2 states the continuous form of the governing convection-diffusion
equations, both in the strong form and in the weak form. The energy evolution
linked to this formulation follows from the corresponding mixed-formulation which
is derived with a Lagrange multiplier approach. Before proposing changes to
existing stabilized methods, we introduce and discuss the energy evolution of the
existing stabilized methods. Therefore, Section 2.3 discusses the energy evolution in
the standard VMS stabilized method with static small-scales. Section 2.4 presents
our quest towards a stabilized formulation depicting correct-energy behavior. It
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adds the two concepts (i) the dynamic behavior of the small-scales and (ii) the
optimality projector yielding the vital orthogonality of the small-scales to the VMS
formulation. Invoking the optimality projector in different ways leads to the other
well-known stabilized formulations, namely SUPG and GLS. In Section 2.5 the
demanded orthogonality between the small- and large-scales is enforced by the
proper H1

0-optimality projector. This yields an alternative variational multiscale
stabilized formulation with correct-energy evolution. Furthermore, the methods
demand a time-integrator which is correctly linked to an energy. Therefore, we
re-address the generalized-α time-integration method. The energy demand leads to
a certain parameter family of the time-stepping parameters. Section 2.6 discusses
this temporal-integration method. Section 2.7 presents numerical verification while
employing NURBS basis functions for the computations. In Section 2.8, we draw
conclusions and outline avenues for future research.

2.2 the continuous convection-diffusion equation

2.2.1 Strong formulation

Let Ω denote the spatial domain with boundary Γ = Γg ∪ Γh, see Figure 2.1.

Ω

Γh

Γg

\

\

Figure 2.1: Spatial domain Ω with its boundaries Γ = Γg ∪ Γh.

The governing equations of the convection-diffusion problem in strong form read

∂tφ + a · ∇φ−∇ · κ∇φ = f in Ω× I , (2.2.1a)

φ = g in Γg × I , (2.2.1b)

−a−n φ + κ∂nφ = h in Γh × I , (2.2.1c)

φ(x, 0) = φ0(x) in Ω, (2.2.1d)

where t ∈ I = (0, T) is the time with final time T > 0, x ∈ Ω the spatial coordinate,
φ = φ(x, t) : Ω× I the dependent variable with time derivative ∂tφ, normal flux
∂nφ = n · ∇φ and f : Ω× I → R, g : Γg × I → R, h : Γh × I → R and φ0 : Ω→ R

are prescribed data. The convective velocity a = a(x) is a given solenoidal vector
field (∇ · a = 0) and κ ≥ 0 denotes the given diffusivity. The outward unit normal
to Γ is n and the normal velocity component denotes an = a · n with positive and
negative parts a±n = 1

2 (an ± |an|).
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2.2.2 Weak formulation

LetW0 andW g denote suitable function-spaces satisfying the homogeneous and
non-homogeneous Dirichlet conditions, respectively. Using these spaces the stan-
dard weak formulation of the problem reads as follows:

Find φ ∈ W g such that for all w ∈ W0,

(w, ∂tφ)Ω + (w, a · ∇φ)Ω −
(
w, a−n φ

)
Γh
+ (∇w, κ∇φ)Ω = (w, f )Ω

+ (w, h)Γh . (2.2.2)

Here (·, ·)D denotes the L2(D) inner product over D. Consistency of the strong
(2.2.1) and the weak formulation (2.2.2) easily follows from applying integration by
parts on the diffusive term.

Instead of enforcing the Dirichlet boundary conditions a priori, it is also possible
to relax this condition in the function space by employing a Lagrange multiplier
setting. The weak statement translates into a mixed formulation:

Find (φ, λΩ) ∈ W ×V such that for all (w, q) ∈ W ×V ,

(w, λΩ)Γg = (w, ∂tφ)Ω + (w, a · ∇φ)Ω −
(
w, a−n φ

)
Γh

+ (∇w, κ∇φ)Ω − (w, f )Ω − (w, h)Γh , (2.2.3a)

(q, φ)Γg = (q, g)Γg . (2.2.3b)

Here W represents the unrestricted function space and V is a suitable Lagrange
multiplier space. Consult [102, 117] for the appropriate construction of the spaces.
The following section employs this formulation to derive energy statements.

Applying an appropriate choice of weighting functions w and q in (2.2.3) and
subsequently performing a partial integration step recovers the strong form (2.2.1).
Additionally, the expression for the Lagrange multiplier follows as a complimentary
result

λΩ = κ∂nφ, (2.2.4)

and equals the diffusive flux. Note that the continuous setting allows us to provide
a closed form of the Lagrange multiplier. This does not hold in a discrete setting.
Furthermore, the subscript in the notation of the Lagrange multiplier is added for
consistency with Section 2.2.4.

2.2.3 Global energy evolution

The evolution of the energy linked to the strong form (2.2.1) follows from choosing
w = φ and q = λ in the mixed formulation (2.2.3). Subtracting the resulting
equations yields

(φ, ∂tφ)Ω + (∇φ, κ∇φ)Ω + (φ, a · ∇φ)Ω −
(
φ, a−n φ

)
Γh

= (g, λΩ)Γg + (φ, f )Ω

+ (φ, h)Γh . (2.2.5)
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By performing integration by parts on the interior convective term and employing
the divergence-free constraint, the convective term turns into a boundary term. The
energy, defined as EΩ = 1

2 (φ, φ)Ω, evolves as

d
dt

EΩ = −‖κ1/2∇φ‖2
Ω + (φ, f )Ω − (1, FΩ)Γ, (2.2.6)

where || · ||D defines the standard L2-norm over D. The conservative energy flux
provides a different contribution on each segment of the boundary:

FΩ =


ane− gλΩ on Γg,

|an|e− φh on Γh,

0 elsewhere,

(2.2.7)

with e := 1
2 φ2 the pointwise energy. The terms on the Dirichlet boundary are (i) the

amount of energy flowing in and out by convection and (ii) the energy gained and
lost by diffusion through the boundary, respectively. On the other boundary, the
terms represent (i) the energy loss by the strict convective outflow and (ii) the energy
change by the flux boundary condition. The energy can only increase as a result of
the prescribed body force or the boundary conditions, represented by the last two
terms on the right-hand side of (2.2.6). The diffusive term, when active, contributes
to a decay of the energy. The last term on the right-hand side of (2.2.6) represents
the convective and diffusive fluxes of energy across the interface. Substitution of
the boundary condition and the Lagrange multiplier (again possible because of the
continuous setting) and a partial integration step leads to the alternative expression
of the flux

FΩ = ane− κ∂ne. (2.2.8)

The two terms respectively describe the convective and viscous-driven flow of
energy.

2.2.4 Localized energy evolution

This section presents a localized version of (2.2.6) for arbitrary subdomains ω ⊂
Ω with boundary ∂ω. The complement domain denotes Ω − ω with boundary
∂(Ω−ω) and the shared boundary of the both subdomains is χω := ∂ω ∩ ∂(Ω−ω).
Figure 2.2 shows the domain with its boundaries.

The variational statement consists of the weak formulation (2.2.3) enforced on
the subdomain ω and is again augmented with a Lagrange multiplier that enforces
the Dirichlet boundary condition. The unrestricted solution spaceWω allows dis-
continuities across the subdomain interface and the space of suitable Lagrange
multipliers denotes Vω. The weak statement reads:
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Ω−ω

ω

Γh(ω)

Γg(ω)

Γg(Ω−ω)

Γh(Ω−ω)

χω

\

\
/

/

Figure 2.2: Spatial domain Ω with a subdomain ω ⊂ Ω. The shared boundary of ω and its
complement is χω. The boundaries Γg and Γh split according to ω.

Find (φ, λω) ∈ Wω × Vω such that for all (w, q) ∈ Wω × Vω,

(w, λω)χω + (w, λω)Γg(ω) = (w, ∂tφ)ω + (∇w, κ∇φ)ω + (w, a · ∇φ)ω

−
(
w, a−n φ

)
Γh(ω)

− (w, f )ω − (w, h)Γh(ω), (2.2.9a)

(qh, [φh])χω + (q, φ)Γg(ω) = (q, g)Γg(ω), (2.2.9b)

where Γg(D) := Γg ∩ ∂D and Γh(D) := Γh ∩ ∂D for domain D. The jump term [φh]

is given by
[φh] := φh

ω − φh
Ω−ω, (2.2.10)

where the terms are defined on ω and Ω−ω, respectively. The Lagrange multiplier
can be interpreted as an auxiliary flux across the interface χω, it represents the flow
outward ω. The weak form of the complement domain easily follows by replacing ω

by Ω−ω in (2.2.9). The superposition of the both formulations leads to the balance

λω + λΩ−ω = 0. (2.2.11)

Thus that what flows out of ω enters in Ω−ω. See [102] for the formal details of
such a derivation. Again, a partial integration step provides the expression for the
Lagrange multipliers:

λω = κ∂nω φ, (2.2.12a)

λΩ−ω = κ∂nΩ−ω
φ, (2.2.12b)

with ∂nD the directional derivative outward of a domain D. The local energy state-
ment follows when choosing w = φ and q = λω, this yields

(φ, λω)χω + (g, λω)Γg(ω) = (φ, ∂tφ)ω + ‖κ1/2∇φ‖2
ω + (φ, a · ∇φ)ω

−
(
w, a−n φ

)
Γh(ω)

− (φ, f )ω − (φ, h)Γh(ω). (2.2.13)

By applying integration by parts on the convective term we find that the energy on
subdomain ω evolves as

d
dt

Eω = −‖κ1/2∇φ‖2
ω + (φ, f )ω − (1, Fω)∂ω, (2.2.14)
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where the outward energy flux now splits into three parts

Fω =


anω e− gλω on Γg(ω),

|anω |e− φh on Γh(ω),

anω e− φλω on χω,

0 elsewhere.

(2.2.15)

In comparison with global energy behavior, the additional last term represents
an energy flux, with a convective and diffusive component, across the subdomain
interface χω. Again, the substitution of the boundary condition and the Lagrange
multiplier, and subsequently performing a partial integration step lead to

Fω = anω e− κ∂nω e on ∂ω. (2.2.16)

Remark 2.2.1. This section provides all the statements in a continuous form. A direct
consequence is that the standard discrete setting, the Galerkin method, displays correct-
energy behavior.

This chapter now presents the energy evolution of standard stabilized methods
and subsequently constructs a methodology that closely resembles the local energy
evolution of the continuous equation. In particular, the design of the method
precludes artificial local energy creation.

Remark 2.2.2. To increase the readability of this chapter we now restrict ourselves to bound-
ary conditions precluding the energy flux F on Γ. This occurs for example when employing
homogeneous Dirichlet and periodic boundary conditions. The proposed methodology can
easily be generalized to domains with non-homogeneous boundaries.

2.3 energy evolution of the variational multiscale approach

This section concerns the energy evolution in the stabilized residual-based varia-
tional multiscale (RBVMS) formulation. Therefore we start off with a brief recap of
the canonical VMS method.

2.3.1 The multiscale split

The residual-based variational multiscale approach emanates, as the name suggests,
from the theory of the variational multiscale methods. This approach explicitly treats
the solution component not be represented by the discretization in an approximate
sense. This is done as follows. The trial solution and weighting function spaces split
as

W =Wh ⊕W ′, (2.3.1)

whereWh is the space spanned by the finite-dimensional discretization andW ′ is
its infinite-dimensional complement inW . Based on the multiscale split in the space
the components of the solution and weight decouple as

φ = φh + φ′,

w = wh + w′, (2.3.2)
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with φh, wh ∈ Wh and φ′, w′ ∈ W ′ the large-scales and the small-scales solution and
weight, respectively. The small-scale spaceW ′ represents the component ofW not
reproduced by the grid and is therefore also called space of fine-scales, sub-scales
or subgrid-scales1. In order to obtain a well-defined decomposition for a given
v ∈ W , the elements vh ∈ Wh, v′ ∈ W ′ with v = vh + v′ require a unique definition.
Employing an optimality projector Ph :W →Wh for the decoupling as2:

vh = Phv,

v′ =
(
I −Ph

)
v, (2.3.3)

achieves uniqueness. Here I :W →W is the identity operator. Using this multi-
scale split we arrive at the following alternative – equivalent – weak statement:

Find φh ∈ Wh, φ′ ∈ W ′ such that for all wh ∈ Wh, w′ ∈ W ′,

(wh, ∂tφ
h + a · ∇φh)Ω + (∇wh, κ∇φh)Ω + (wh, ∂tφ

′ + a · ∇φ′)Ω

+ (∇wh, κ∇φ′)Ω = (wh, f )Ω, (2.3.4a)

(w′, ∂tφ
h + a · ∇φh)Ω + (∇w′, κ∇φh)Ω + (w′, ∂tφ

′ + a · ∇φ′)Ω

+ (∇w′, κ∇φ′)Ω = (w′, f )Ω. (2.3.4b)

Note that this formulation is still exact. However, the spaceW ′ is infinite-dimensional
and as such not amenable for a discrete implementation.

2.3.2 The VMS numerical formulation

Let us now subdivided the domain Ω into elements Ωe. The domain of element
interiors Ω̃ does not include the element boundaries and reads

Ω̃ =
⋃
e

Ωe. (2.3.5)

The weak formulation (2.3.4) converts into a numerical formulation when the small-
scale equation (2.3.4b) is replaced by an approximation for the small-scale solution
φ′. The small-scale equation can be written in the form

(w′, ∂tφ
′ + a · ∇φ′ − κ∆φ′)Ω = −(w′, Rφh)Ω, (2.3.6)

where the large-scale residual reads

Rφh = ∂tφ
h + a · ∇φh − κ∆φh − f . (2.3.7)

This implies that the small-scales are driven by the residuals of the large-scales. The
corresponding Euler-Lagrange form of the small-scale equation reads

∂tφ
′ + a · ∇φ′ − κ∆φ′ =−Rφh. (2.3.8)

1 The terms sub-scales or subgrid-scales could be linked to a turbulence modeling character of the
approach. The current method does not fit in that framework. To emphasize this difference we use the
terminology small-scales.

2 There are infinitely many choices for the projector Ph. Linear projectors suffice for the current problem.
More details can be found in Hughes [100].
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Note that the Euler-Lagrange equations are in strong form, i.e. the weight w′ in
(2.3.6) is ignored. This pertains to both the small-scale solution as well as the residual
forcing.

Employing a Green’s function provides an explicit expression for the small-scales.
In this expression the integral operator is approximated by an algebraic stabilization
parameter τstatic. This step is necessary to arrive at an implementable method. Details
of this approximation can be found in [100]. To obtain a stabilized formulation, the
small-scales are modeled as:

φ̂′ =− τstatRφh, (2.3.9a)

∂tφ̂
′ =0, (2.3.9b)

where τstat is a positive stabilization parameter. In the following we ignore the
hat-sign. This algebraic operator depends on both the physics and the discretization.
More details can be found in Hughes and Sangalli [113].

The definition of the stabilization parameter is inspired by the theory of stabilized
methods for convection-diffusion equations (see e.g., [111, 171]), and reads:

τstat =
(
τ−2

conv + τ−2
diff + τ−2

time

)−1/2
, (2.3.10)

where

τ−2
conv = a ·Ga, (2.3.11a)

τ−2
diff = CIκ

2G : G, (2.3.11b)

τ−2
time =

(
αm

α f γ∆t

)2

. (2.3.11c)

Here G is the second-rank metric tensor given by

G =
∂ξ

∂x

T ∂ξ

∂x
, (2.3.12)

where ∂ξ/∂x is the inverse Jacobian of the map between the elements in the reference
and physical domain. The stabilization parameter treats deformed and curved
domains naturally due to its direct dependence on G. The metric tensor G scales
as h−2 where h is the mesh size. The positive constant CI is defined by an inverse
estimate. It is independent of the mesh size and can be computed from an element-
wise eigenvalue problem [86].

The definition of τtime is based on the generalized-α time-integrator given in
Section 2.6. Here α f , αm, γ are algorithmic time-stepping coefficients and ∆t is the
time step. It reduces to the commonly used value of 4/∆t2 when employing ρ∞ = 1,
see e.g., [4, 16, 17] (consult these references for the definition of ρ∞). This choice
results in the Crank-Nicolson time-integrator, see Section 2.6.2.

Employing integration by parts on the stabilized terms, the small-scales appear
without derivatives. The resulting form is the VMS stabilized statement

Find φh ∈ Wh such that for all wh ∈ Wh,

(wh, ∂tφ
h)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω

− (a · ∇wh + κ∆wh, φ′)Ω̃ = (wh, f )Ω, (2.3.13a)

τ−1
statφ

′ =−Rφh. (2.3.13b)
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It is important to emphasize that we treat the small-scale expression (2.3.13b)
as a separate equation. At this stage a straightforward substitution is certainly
possible, however when the small-scales are modeled dynamically, this is not
the case anymore. In line with the analysis in later sections we therefore omit
substitution here.

2.3.3 Local energy evolution of the VMS formulation

To arrive at local energy evolution, we augment the weak formulation in Lagrange
multiplier setting form to allow discontinuous functions across subdomains, similar
to (2.2.9). The weak statement reads:

Find
(
φh, λh

ω

)
∈ Wh

ω × V h
ω such that for all

(
wh, qh) ∈ Wh

ω × V h
ω,

(wh, λh
ω)χω = (wh, ∂tφ

h)ω + (wh, a · ∇φh)ω + (∇wh, κ∇φh)ω − (wh, f )ω

− (a · ∇wh + κ∆wh, φ′)ω̃, (2.3.14a)

(qh, [φh])χω = 0, (2.3.14b)

τ−1
statφ

′ =−Rφh. (2.3.14c)

Here ω̃ represents the domain of element interiors of ω. The discretization does
not allow explicit evaluation of the Lagrange multiplier. We select wh = φh in the
large-scale equation (2.3.14a) and add the small-scale equation multiplied by φ′ and
integrate. The resulting statement is:

(φh, ∂tφ
h)ω + (φ′, ∂tφ

h)ω̃ + ‖τ−1/2
stat φ′‖2

ω̃ + ‖κ1/2∇φh‖2
ω − (φh, f )ω

−(φ′, f )ω̃ − 2(κ∆φh, φ′)ω̃ + 1
2 (φ

h, anφh)χω − (φh, λh
ω)χω = 0. (2.3.15)

Here we have employed the incompressibility constraint to convert the interior
convective term to a boundary term.

Remark 2.3.1. When the velocity field is obtained by a numerical method the incompress-
ibility constraint is often not exactly fulfilled though. However, by appropriately employing
isogeometric analysis this can be achieved exactly [69]. Our implementation already employs
the proper IGA spaces to allow a smooth transition to the incompressible Navier-Stokes
equations.

The local large-scale energy is the energy of resolved solution: E h
ω = 1

2

(
φh, φh)

ω
and

evolves by (2.3.15) as:

d
dt

E h
ω =− ‖κ1/2∇φh‖2

ω + (φh, f )ω − (1, F h
ω)χω

− ‖τ−1/2
stat φ′‖2

ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃ − (φ′, ∂tφ
h)ω̃, (2.3.16)

with the energy flux
F h

ω = aneh − λh
ωφh. (2.3.17)
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where the pointwise large-scale energy is eh := 1
2 φhφh. The local total energy is defined

using the superposition of the small-scales and large-scales as:
Eω = 1

2

(
φh + φ′, φh + φ′

)
ω̃

. Its evolution directly follows:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
stat φ′‖2

ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃ + (∂tφ
′, φh + φ′)ω̃. (2.3.18)

We observe from this relation that the standard static VMS formulation does not
possess a desirable energy behavior. The first line closely resembles the continuous
energy evolution relation. No explicit expression for λh

ω exists. The second line
appears as a result of the stabilization terms. Its first term contributes to a decay of
the energy, which is favorable from a stability argument. It can be interpreted as
the diffusive energy decay of the missing small-scales. The last two terms are prob-
lematic. These unsymmetric terms can be bounded by both the physical diffusion
‖κ1/2∇φh‖2

ω and the numerical diffusion ‖τ−1/2
stat φ′‖2

ω̃. The procedure is analogous
to the standard coercivity analysis: apply Cauchy-Schwarz and Young’s inequality
subsequently. This leads to restrictions on the stabilization parameter τstat depend-
ing on the diffusivity and the time step. More importantly, the overall diffusion
of the method can be less than the physical diffusion. Hence, the small-scales can
artificially create energy, which we numerically show in Section 2.7, and are there-
fore both numerically and physically undesirable. The next section corrects this
deficiency.

Remark 2.3.2. The global energy evolution easily follows when substituting ω = Ω and
ω̃ = Ω̃ into (2.3.18):

d
dt

EΩ =− ‖κ1/2∇φh‖2
Ω + (φh, f )Ω

− ‖τ−1/2
stat φ′‖2

Ω̃ + (φ′, f )Ω̃ + 2(κ∆φh, φ′)Ω̃ + (∂tφ
′, φh + φ′)Ω̃. (2.3.19)

Note the cancellation of the local energy flux.

2.4 toward a stabilized formulation with correct-energy behavior

This section presents a path with alternative stabilized formulations towards rec-
tification of the discrepancy indicated in the previous section. First we adopt the
concept of dynamic small-scales to eliminate the unwanted terms containing the
temporal derivatives. Next, the undesirable diffusive term vanishes when employing
orthogonal small-scales with the optimality projector. This leads to other well-known
stabilization formulations, namely SUPG and GLS.
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2.4.1 Design condition

To clarify, let us explicitly mention the design condition of the stabilized formulation
which emerges from (2.3.18). We seek for a stabilized formulation corresponding to
(2.2.1) which displays local energy behavior as:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φ′, f )ω̃ − (1, F h

ω)χω

− ‖τ−1/2φ′‖2
ω + (φh, f )ω. (2.4.1)

In this chapter we call this correct-energy behavior. The positive scalar τ represents
the stabilization parameter of the small-scale equation and equals τ = τstatic when
using static small-scales as in (2.3.9).

2.4.2 The variational multiscale method with dynamic small-scales

An alternative for replacing the small-scale equation with an algebraic relation is
to retain the time-integration and only model the spatial part of the operator. This
leads to so-called dynamic small-scales, as introduced in [48]. The model equation

∂tφ̂
′ + τ−1

dynφ̂′ = −Rφh, (2.4.2)

is now an ordinary differential equation in time. Again, we ignore the ˆ sign in the
following. The time derivative in (2.4.2) eliminates the first unwanted temporal part
in the energy evolution (2.3.18). Naturally, the stabilization parameter now omits a
temporal part3, since it is explicitly handled, therefore:

τdyn =
(
τ−2

conv + τ−2
diff

)−1/2
. (2.4.3)

Clearly, the static small-scale equation (2.3.9b) does not apply anymore. Therefore,
the term ∂tφ

′ is active in the large-scale equation. The VMS stabilized formulation
with dynamic small-scales now reads:

Find φh ∈ Wh such that for all wh ∈ Wh,

(wh, ∂tφ
h + ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω

− (a · ∇wh + κ∆wh, φ′)Ω̃ = (wh, f )Ω, (2.4.4a)

∂tφ
′+τ−1

dynφ′ = −Rφh. (2.4.4b)

To arrive at an energy relation we adopt the same procedure as before. The total
local energy linked to this variational form evolves as:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
dyn φ′‖2

ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃, (2.4.5)

with F h
ω defined in (2.3.17). We observe that adopting dynamic small-scales indeed

eliminates the undesired temporal terms.

3 This explains our notation τstatic in Section 2.3 where static represents static small-scales.
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2.4.3 Orthogonality between the large-scales and the small-scales

The other unwanted term vanishes when the large-scales and small-scales are
appropriately orthogonal with respect to each other, namely

(κ∆φh, φ′)Ω = 0. (2.4.6)

This defines the optimality projector (2.3.3) which links the stabilized formulation
with the desired energy behavior. Therefore we employ the natural choice for the
optimality projector:

Ph : φ ∈ W → φh ∈ Wh: Find φh ∈ Wh such that for all wh ∈ Wh,

(κ∆wh, φh)Ω = (κ∆wh, φ)Ω. (2.4.7)

This yields the required orthogonality.

2.4.4 Consistent SUPG with dynamic small-scales

Employing the orthogonality (2.4.6) directly in the large-scale equation, leads to the
dynamic small-scale version of the well-known SUPG formulation:

Find φh ∈ Wh such that for all wh ∈ Wh,

(wh, ∂tφ
h + ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω

− (a · ∇wh, φ′)Ω̃ = (wh, f )Ω (2.4.8a)

∂tφ
′ + τ−1

dynφ′ =−Rφh. (2.4.8b)

Unfortunately, this removes only the contribution from the large-scale equation
(2.4.4a); the contribution of the undesirable term from the small-scale equation
(2.4.4b) remains:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
dyn φ′‖2

ω̃ + (φ′, f )ω̃ + (κ∆φh, φ′)ω̃. (2.4.9)

The undetermined sign of the last term indicates that the formulation can still create
artificial energy locally.

2.4.5 Inconsistent SUPG with dynamic small-scales

Instead of using the orthogonality (2.4.6) only in the large-scale equation, one can
adopt it as well on the small-scales. The resulting SUPG-like formulation with
dynamic small-scales reads:

Find φh ∈ Wh such that for all wh ∈ Wh,

(wh, ∂tφ
h + ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω

− (a · ∇wh, φ′)Ω̃ = (wh, f )Ω (2.4.10a)

∂tφ
′ + τ−1

dynφ′ =− ∂tφ
h − a · ∇φh + f . (2.4.10b)
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The energy evolution linked to this formulation,

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω + (φ′, f )ω̃ − ‖τ−1/2
dyn φ′‖2

ω̃, (2.4.11)

has the desired form. However, this formulation is inconsistent because the small-
scales are not forced by a full residual: the diffusive term is removed from the
residual. The inconsistent character of the formulation limits the adequacy of this
formulation.

2.4.6 GLS with dynamic small-scales (GLSD)

Another alternative is to use the orthogonality only on the large-scale equation,
now with double the magnitude. The diffusive stabilized term does not vanish
but flips sign instead. In other words the VMS formulation does not convert to a
SUPG formulation but to a GLS one. Hence, the VMS approach with the diffusive
optimality projection (2.4.6) leads to the so-called GLSD-statement (the D stands for
dynamic) which reads

Find φh ∈ Wh such that for all wh ∈ Wh,

(wh, ∂tφ
h + ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω

− (a · ∇wh − κ∆wh, φ′)Ω = (wh, f )Ω (2.4.12a)

∂tφ
′ + τ−1

dynφ′ =−Rφh. (2.4.12b)

This formulation possesses the desired energy evolution:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
dyn φ′‖2

ω̃ + (φ′, f )ω̃. (2.4.13)

Comparing with the inconsistent SUPG formulation (2.4.10), both variational forms
possess the correct-energy behavior. However, this formulation distinguishes itself
by its consistent character, i.e. the forcing term in the small-scale equation is driven
by the full residual.

Remark 2.4.1. An important observation is that the GLS formulation is justified in a VMS
context by invoking the orthogonality demanded for correct-energy behavior.

2.5 back to a variational multiscale formulation : a stabilized

form with correct-energy evolution

Section 2.4 justifies with orthogonality arguments a GLS-based formulation de-
picting correct-energy behavior. That methodology assumes orthogonality between
the large-scales and small-scales but does not actually enforce it. This section de-
vises an alternative VMS stabilization approach that explicitly enforces the required
orthogonality.



36 correct energy evolution of stabilized convection-diffusion

2.5.1 The small-scale solution space

The weak statements of Section 2.4 do not explicitly mention the solution space of the
small-scales. The small-scales are effectively pointwise values, i.e. φ′ : Ω× I → R.
Section 2.3 reveals that the small-scales live in a properly defined space, that is
φ′ ∈ W ′. The orthogonality projector (2.4.6) leads to the following definition of the
small-scale space:

W ′ =W ′H1
0

:=
{

φ ∈ W ;
(

κ∆ηh, φ
)

Ω
= 0 for all ηh ∈ Wh

}
. (2.5.1)

Note that the projector is induced by the H1
0-seminorm. This function space enjoys

good properties, as indicated in [113]. The discretization dependence of the stabi-
lization parameter τ originates from the corresponding restricted Green’s function.
Consult that paper for details.

Employing the restricted solution spaceW ′ the dynamic VMS formulation (2.4.4)
subtly modifies to

Find φh ∈ Wh, φ′ ∈ W ′ such that for all wh ∈ Wh,

(wh, ∂tφ
h)Ω + (∇wh, κ∇φh)Ω + (wh, a · ∇φh)Ω

+(wh, ∂tφ
′)Ω̃ − (a · ∇wh + κ∆wh, φ′)Ω̃ − (wh, f )Ω = 0, (2.5.2a)

∂tφ
′ + τ−1

dynφ′ +Rφh = 0. (2.5.2b)

The small-scale solution possesses the correct orthogonality by construction which
implies the correct-energy behavior (2.4.13).

However, the restriction of the small-scale solution in the weak form (2.5.2)
is troublesome to directly convert the weak statement into a working numerical
method. This is mainly due to the infinite dimensionality of the small-scale space
W ′.

2.5.2 Enforced orthogonality with a Lagrange multiplier (DO formulation)

In order to avoid dealing with the restricted subspace (2.5.1), we adopt a Lagrange
multiplier setting to reformulate the problem into a mixed formulation. This opens
up the search space for φ′, while an explicit constraint is added to satisfy the
required orthogonality. A Lagrange multiplier enforces this constraint. This formu-
lation reads as follows:

Find
(
φh, σh) ∈ Wh ×Wh, φ′ : Ω× I → R such that for all (wh, ηh) ∈ Wh ×Wh,

(wh, ∂tφ
h)Ω + (∇wh, κ∇φh)Ω + (wh, a · ∇φh)Ω

+(wh, ∂tφ
′)Ω̃ − (a · ∇wh + κ∆wh, φ′)Ω̃ − (wh, f )Ω = 0, (2.5.3a)

∂tφ
′ + τ−1

dynφ′ − κ∆σh +Rφh = 0, (2.5.3b)(
κ∆ηh, φ′

)
Ω̃
= 0. (2.5.3c)

We refer to it as DO where the D and O stand for dynamic and orthogonal, respectively.
Here denotes σh the Lagrange multiplier and ηh its associated weighting function.
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Note that this formulation asks for C1-continuous basis functions because of the
use of second derivatives. This additionally motivates our choice of employing IGA.

2.5.3 Local energy evolution of the formulation with enforced orthogonality

We obtain the energy evolution of the proposed method in a similar fashion as
before. Hence, select wh = φh in the large-scale equation, ηh = σh + φh in the
third equation and multiply the small-scale equation by φ′. Summation of the three
equations and reordering leads to:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω + (φh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
dyn φ′‖2

ω̃ + (φ′, f )ω̃. (2.5.4)

Note that the terms originating from (2.5.3c) exactly cancel the undesired orthogo-
nality terms and the small-scale Lagrange multiplier term.

Remark 2.5.1. The separate energy evolution of the large-scales and small-scales deduces
in a similar fashion as above. The energies E h

ω = 1
2 (φ

h, φh)ω and E ′ω = 1
2 (φ

′, φ′)ω̃ evolve
respectively as

d
dt

E h
ω = − ‖κ1/2∇φh‖2

ω + (φh, f )ω + (a · ∇φh, φ′)ω̃ − (φh, ∂tφ
′)ω̃

− (1, F h
ω)χω , (2.5.5a)

d
dt

E ′ω = − ‖τ−1/2
dyn φ′‖2

ω̃ + (φ′, f )ω̃ − (a · ∇φh, φ′)ω̃ − (φ′, ∂tφ
h)ω̃. (2.5.5b)

The first term of (2.5.5b) may be viewed as diffusion of the small-scales. The convective
contributions exchange energy between the large-scales and small-scales. It is important to
emphasize that these energies do not add up to the total local energy Eω: the cross terms are
missing. Their contributions appear in both (2.5.5a)-(2.5.5b).

2.6 temporal-integration

This section is devoted to the time-integration for which we adopt the generalized-α
time integrator. We start off with a brief recap of the method in a general setting,
after which we discuss the use of this method for the small-scales particularly. The
reminder presents the collection of time-integrators within this framework which
yields a concrete energy evolution statement of consecutive time levels.

2.6.1 The generalized-α time integrator

We employ the generalized-α method for the temporal-integration [44]. The algo-
rithm reads:
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Given the data φn, φ̇n, find φn+α f , φ̇n+αm , φn+1, φ̇n+1 such that

φ̇n+αm = G(φn+α f ), (2.6.1a)

φn+1 = φn + ∆t ((1− γ)φ̇n + γφ̇n+1) , (2.6.1b)

φ̇n+αm = (1− αm)φ̇n + αmφ̇n+1, (2.6.1c)

φn+α f = (1− α f )φn + α f φn+1. (2.6.1d)

Here ∂tφ = G(φ) is the governing ordinary differential equation, φ̇ is the discretized
time derivative and the time step size is ∆t = tn+1 − tn. The scalars α f , αm, γ are
algorithmic coefficients that need to be properly selected. The methods reduce to
some of the classical time integrators for specific choices of the time-step parameters,
e.g., for α f = αm = γ = 1 to backward Euler and for α f = αm = γ = 1

2 to Crank-
Nicolson. It is unconditionally stable if αm ≥ α f ≥ 1

2 (i.e. when it is more implicit
than explicit). The second-order accuracy requirement reads [44, 200]:

γ =
1
2
+ αm − α f . (2.6.2)

2.6.2 Time-integration of the small-scales

The small-scale equations are ordinary differential equations. Employing (2.4.2) for
(2.6.1a) an explicit solution of system (2.6.1) directly follows

φ̇′n+1 = C

(
− 1

γ∆t
φ̇′n

(
1− αm + (1− γ)α f

∆t
τdyn

)
− 1

τdynγ∆t
φ′n −

Rh
n+α

γ∆t

)
, (2.6.3)

with constant C = α−1
f

(
τ−1

time + τ−1
dyn

)−1
.

When using dynamic small-scales, the stabilizing properties of the weak formula-
tion depend on the relation between the small- and the large-scales. This relation
also enters in the Jacobian of the weak formulation. To this purpose we now explore
this link. Let us define the so-called effective stabilization parameter as follows

τeff =−
∂φ′n+α f

∂Rh
n+α

, (2.6.4)

inspired by (2.3.9a). In the case of static small-scales, depicted in (2.3.9), the trivial
expression yields

τeff = τstat =
(

τ−2
time + τ−2

dyn

)−1/2
. (2.6.5)
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When employing dynamic subscales as in (2.6.3), we get

τeff = −
∂φ′n+α f

∂Rh
n+α

= −
∂φ′n+α f

∂φ′n+1
·

∂φ′n+1

∂φ̇′n+1
·

∂φ̇′n+1

∂Rh
n+α

= α f · γ∆t · C
γ∆t

=
(

αmα−1
f γ−1∆t−1 + τ−1

dyn

)−1

=
(

τ−1
time + τ−1

dyn

)−1
, (2.6.6)

from which our definition of τtime is inspired:

τtime :=
α f γ∆t

αm
. (2.6.7)

The effective stabilization parameter τeff is very similar to τstat and shows the
same asymptotic behavior. This modification of stabilization parameter effectively
constitutes a change in the so-called r-switch [188] from r = 2 to r = 1. The r-switch
is a smooth approximation of the minimum operator. A high value of the integer r
indicates a sharp switch. In fact, when the stabilization parameters are defined with
the r-switch of r = 1:

τ̃stat =
(

τ−1
conv + τ−1

diff + τ−1
time

)−1
, (2.6.8a)

τ̃dyn =
(

τ−1
conv + τ−1

diff

)−1
, (2.6.8b)

the effective stabilization parameters would be identical.

2.6.3 Proper energy evolution

The energy evolution equations (2.4.13) or (2.5.4) reveal a (global) guaranteed energy
decay in the absence of external forcing and boundaries, namely,

d
dt

EΩ = −‖κ1/2∇φh‖2
Ω − ‖τ−1/2

dyn φ′‖2
Ω̃. (2.6.9)

The time-integrator should obey this decaying property. Moreover, ideally it leads
to a guaranteed decay of energy for consecutive time levels, that is,

En+1 ≤ En. (2.6.10)

To arrive at an appropriate energy statement when employing the generalized-α
method the procedure reads as follows. Multiply the small-scale equation with
φ′n+α f

, integrate the result and add it to the weak form in which wh = φh
n+α f

is
selected. The continuous form of this approach has been demonstrated earlier in this
chapter, see e.g., Section 2.3.3. This leads to the correct symmetric inner products
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for the spatial terms, and proper norms therefore. Additionally, the temporal terms,
leading to the energy derivatives yield,

∆E = ∆tĖn+α = ∆t(φn+α f , φ̇n+αm)Ω, (2.6.11)

where Ėn+α is the temporal derivative of the energy at time level n + α and φ =

φh + φ′. The abuse of notation demands the integration to be interpreted on Ω̃
for terms containing the small-scales. In the following we derive time-stepping
parameters within the generalized-α time integrator framework which link this
temporal term to a proper energy behavior.

Substitution of (2.6.1b)-(2.6.1d) into (2.6.11) yields:

∆tĖn+α = ∆t(φn+α f , φ̇n+αm)Ω

= ∆t((1− α f )φn + α f φn+1, (1− αm)φ̇n + αmφ̇n+1)Ω

= ((1− α f )φn + α f φn+1,
(

1− αm

γ

)
∆tφ̇n +

αm

γ
(φn+1 − φn))Ω

= −
(1− α f )αm

γ
(φn, φn)Ω +

α f αm

γ
(φn+1, φn+1)Ω + (1− 2α f )

αm

γ
(φn, φn+1)Ω

+

(
(1− α f )φn + α f φn+1,

(
1− αm

γ

)
∆tφ̇n

)
Ω

, (2.6.12)

The last term is precarious. The sign of the temporal derivative φ̇n is not determined.
It appears without (n + 1)-counterpart which leads to an uncontrollable last term.
We remedy this issue by requiring the last term to vanish. This occurs when αm = γ.
Following this road, the temporal term becomes

∆tĖn+α = α f (φn+1, φn+1)Ω − (1− α f )(φn, φn)Ω + (1− 2α f )(φn, φn+1)Ω

= En+1 − En +
(
α f − 1

2

)
[(φn+1, φn+1)Ω − 2 (φn+1, φn)Ω + (φn, φn)Ω]

= En+1 − En + (α f − 1
2 )‖φn+1 − φn‖2

Ω

= En+1 − En + ∆t2(α f − 1
2 )‖φ̇n+αm‖2

Ω. (2.6.13)

where the last equality is a direct consequence of (2.6.1) with αm = γ. Henceforth,
by combining this equation with (2.5.4) the discretized energy (of the DO form)
satisfies

En+1 − En

∆t
+ ∆t(α f − 1

2 )‖φ̇n+αm‖2
Ω =− ‖κ1/2∇φh

n+α f
‖2

Ω + (φh
n+α f

, f )Ω

− ‖τ−1/2
dyn φ′n+α f

‖2
Ω̃ + (φ′n+α f

, f )Ω̃. (2.6.14)

The trivially equivalent form

En+1 = En − ∆t2(α f − 1
2 )‖φ̇n+αm‖2

Ω − ∆t‖κ1/2∇φh
n+α f
‖2

Ω − ∆t‖τ−1/2
dyn φ′n+α f

‖2
Ω̃

+ ∆t(φh
n+α f

, f )Ω + ∆t(φ′n+α f
, f )Ω̃ (2.6.15)

reveals that a decay of the discretized energy is guaranteed when, in absence of
forcing, additionally α f ≥ 1

2 . The first term on the right-hand side, which again
should be interpreted on Ω̃ for the small-scales, is numerical diffusion which
vanishes for α f =

1
2 . Hence, the parameter family α f ≥ 1

2 , αm = γ, which includes
the Crank-Nicolson time-integrator, can be linked to a proper energy decay. Notice
that for α f = 1

2 the stability constraint is fulfilled and the second-order accuracy
condition (2.6.2) is not harmed.
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2.7 numerical verification

This section provides the numerical verification of the proposed variational formu-
lations of the Sections 2.3-2.5 on a model problem. We focus on the energy behavior
on both a global and a local level. First, the energy behavior is assessed verifying
the overall performance of the newly proposed methods. Next, we zoom in on the
effect of the small-scales on the energy dissipation. We assess its global evolution
and local distribution and examine the contributions of the unwanted terms.

2.7.1 Model problem description

The problem under consideration is convection skew to the mesh on a 1x1-domain
with periodic boundaries. The velocity is a = (1, 1), therefore the profile loops once
through the mesh and arrives at its start position at t = 1.0. The diffusivity is set to
κ = 5× 10−4. No external forcing is applied. The initial condition is a sharp block
of the form:

φ0(x) = H(|x− 1
2 |)H(|y− 1

2 |), (2.7.1a)

H(z) =

1 z < l

0 l < z,
(2.7.1b)

where l is a specified length. For the discretization we employ NURBS4. Linear
NURBS are not considered as they would eliminate the diffusive stabilization term
(κ∆φh, φ′)Ω and hence the stabilized forms (SUPG, VMS and GLS) coincide. All our
implementations use quadratic NURBS to bypass this effect. The sharpest profile
that can be exactly represented on the mesh has the form:

φ0(x) = Ĥ(|x− 1
2 |)Ĥ(|y− 1

2 |), (2.7.2a)

Ĥ(z) =



1 z < l0

1− (z−l0)2

2h2
c

l0 < z < l1
(l2−z)2

2h2
c

l1 < z < l2

0 l2 < z,

(2.7.2b)

where l0, l1 and l2 are specified lengths of the different segments that have to
coincide with mesh lines. We will use 16x16, 32x32 and 64x64-element meshes. As
we want to verify the behavior of the method itself and not consider the error
in representing the initial condition we use the exact same initial condition on all
meshes. This is in this case the initial condition of the 16x16-element mesh. Therefore
we choose l0 = nhc, l1 = (n + 1)hc and l2 = (n + 2)hc with n = 2 and hc =

1
16 .

The implementations use the energy-conserving time-integrator of Section 2.6
with α f =

1
2 motivated by both the second-order temporal accuracy and the stability.

All computations use a CFL number of 0.5.

4 Note that the quadratic NURBS reduce to B-splines on our uniform Cartesian mesh.
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(a) t = 0.0 (b) t = 0.25

(c) t = 0.625 (d) t = 1.0

Figure 2.3: Time evolution of the block profile convected through the mesh.

Figure 2.3 shows the profile traveling through the mesh from t = 0 until t = 1.0.
The profile exits the mesh approximately halfway during the simulation (at t = 0.5)
and enters at the opposite corner due to the periodic boundary conditions.

In the following we present energy evolution results for three different methods:
(i) the SUPG method with static small-scales (SUPGS), (ii) the GLS method with
dynamic small-scales (GLSD) and (iii) the dynamic orthogonal formulation (DO).
These were chosen because the last two exhibit the correct-energy behavior, while
SUPG with static small-scales is the classical approach and serves as a reference. It
turns out that all methods with static small-scales show very similar behavior.

2.7.2 Overall energy behavior

Figure 2.4 displays the energy behavior for various methods on different meshes.
It shows convergence of the energy evolution for each one of the methods. For
the SUPGS we have two alternative energy definitions, i.e. one based on only the
large-scales and one based on both large- and small-scales (denoted as total energy).
The energy behavior on the 16x16-mesh is not converged yet whereas the energy on
the 32x32-mesh already closely follows that of the finer meshes. In the following we
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study in more detail the energy evolution on a 32x32-mesh. At this stage there is no
visible difference between these solutions.
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(c) GLSD, total energy

 0.053

 0.054

 0.055

 0.056

 0.057

 0.058

 0.059

 0.06

 0  0.2  0.4  0.6  0.8  1

E
n
e
rg

y

Time

16x16o2
32x32o2
64x64o2

ref

(d) DO, total energy

Figure 2.4: Energy evolution for various meshes: (a) the large-scale energy for SUPGS and
the total energy for (b) SUPGS, (c) GLSD and (d) DO. An overkill reference
solution is added (the continuous black line).

2.7.3 Energy dissipation by the small-scales

Here we study the effect of the small-scales on the energy dissipation. The choice
α f = αm = γ = 1

2 removes the effect of the time-integrator on the energy dissipation.
The energy evolution for SUPGS takes the form:

d
dt

E h
ω = − ‖κ1/2∇φh‖2

ω − (1, F h
ω)χω − ‖τ−1/2

stat φ′‖2
ω̃

+ (κ∆φh, φ′)ω̃ − (φ′, ∂tφ
h)ω̃, (2.7.3a)

d
dt

Eω = − ‖κ1/2∇φh‖2
ω − (1, F h

ω)χω

− ‖τ−1/2
stat φ′‖2

ω̃ + (κ∆φh, φ′)ω̃ + (∂tφ
′, φh + φ′)ω̃ (2.7.3b)

for the large-scale energy and the total energy respectively. The GLSD method and
the DO formulation show correct-energy evolution:

d
dt

Eω =− ‖κ1/2∇φh‖2
ω − (1, F h

ω)χω − ‖τ−1/2
dyn φ′‖2

ω̃. (2.7.4)

The right-hand side terms are evaluated at time level n+ 1/2. The last three terms of
each of (2.7.3) and the last term of (2.7.4) represent the small-scale contribution to the
energy dissipation. Figures 2.5 displays the evolution of the small-scale contribution
to energy dissipation on a global scale.
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(b) Total energy evolution contribution

Figure 2.5: Evolution of the small-scale contribution to energy dissipation on a global scale:
(a) large-scale (Eh) and total energy (E) for SUPG with static small-scales, (b)
total energy for the three methods.

As anticipated GLSD and DO show positive energy dissipation. On the other
hand it is clear that, when considering the total energy, SUPGS has problematic
dissipation behavior. It shows severe wiggles resulting in undershoots with negative
dissipation. However, when considering large-scale energy there seems to be no
problem.

Figure 2.6 shows a typical local distribution of the small-scale dissipation. These
largely confirm the findings from Figure 2.5. GLSD and DO show strictly positive
energy dissipation throughout the domain. For SUPGS now both energy definitions
show problems, as the dissipation becomes negative in certain parts of the domain.
Hence, despite global energy decay, local energy creation cannot be precluded.

In the following we further analyze the energy dissipation by considering the
contribution of (i) the temporal terms (the last terms on the right-hand side of
(2.7.3)) and (ii) the orthogonality term (κ∆φh, φ′).

2.7.4 Temporal-term

Figures 2.7 and 2.8 show the magnitude of the temporal terms for SUPGS on both
global and local level, respectively. The temporal term of the total energy has larger
values than that of the global one. Both energy definitions show negative dissipation,
globally as well as locally. Hence contributions of these terms are undesirable.
Comparing with Figure 2.6 we observe that the temporal has a major contribution
to the small-scale dissipation in this case.
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(a) SUPGS, large-scale energy (b) SUPGS, total energy

(c) GLSD, total energy (d) DO, total energy

Figure 2.6: Small-scale contribution to energy dissipation on a local scale (at t = 1.0): (a) the
large-scale energy for SUPGS and the total energy for (b) SUPGS, (c) GLSD and
(d) DO.
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Figure 2.7: Temporal contribution to small-scale energy dissipation on a global scale for the
SUPGS method. The contributions to both the large-scale (Eh) and total energy
(E) are displayed.

2.7.5 Orthogonality-term

Before continuing we would like to stress that the orthogonality term
(
κ∆φh, φ′

)
plays different roles in the formulations. In case of SUPGS it is directly an error in
the energy behavior, while for GLSD this is an error in the assumed scale separation
projector that leads to the correct behavior. Obviously, for DO the orthogonality
term should vanish.
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(a) Large-scale energy (b) Total energy

Figure 2.8: Temporal contribution to small-scale energy dissipation on a local scale for the
SUPGS method (at t = 1.0). The contributions to both the large-scale and total
energy are displayed.

The global and local behavior of the orthogonality term is displayed in the Figures
2.9 and 2.10 respectively. These confirm that the orthogonality term vanishes for the
DO formulation. For the other methods this is not the case. The global orthogonality
has an undetermined sign. Moreover, locally the contribution can be negative while
the overall contribution is positive.
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Figure 2.9: Time evolution of the global orthogonality-term (κ∆φh, φ′)Ω̃ for SUPGS, GLSD
and DO.
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(a) SUPGS (b) GLSD

(c) DO

Figure 2.10: Local behavior of the orthogonality-term (κ∆φh, φ′)ω̃ (at t = 1.0) for SUPGS,
GLSD and DO.
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2.8 conclusions

In this work we have proposed an approach to rectify the incorrect-energy behavior
of the standard stabilized methods. To this purpose we have employed the concepts
of orthogonal small-scales and the dynamic behavior of the small-scales.

This work takes a road through the various standard weak formulations. The
standard Galerkin shows correct-energy evolution but suffers from stability issues.
Standard stabilized methods display the opposite. Starting from the variational
multiscale approach, we have formulated a design condition to step-by-step remedy
the incorrect-energy behavior. The first part towards rectification employs dynamic
behavior of the small-scales and henceforth leads to a variational multiscale ap-
proach with dynamic small-scales. Next, an orthogonality demand of the large- and
small-scales, which can be understood as a H1

0-projection operator, appears. This
leads to several options for the variational formulation. It links the form to, both
employing dynamic small-scales, the streamline-upwind Petrov-Galerkin method or
the Galerkin/least-squares method of which the latter one, in contrast to the former
one, displays the energy behavior aimed at. Explicitly enforcing the orthogonality of
the large- and small-scales returns us to the variational multiscale framework with
the correct-energy behavior.

The proposed variational formulations which depict correct-energy behavior are:

• the Galerkin/least-squares formulation with dynamic small-scales (GLSD)

• the approach with dynamic orthogonal small-scales (DO)

Numerical results show that the energy convergence of the novel methods displays
very similar performance in comparison with the existing stabilized finite element
methods. However, the standard methods display both positive and negative small-
scale contributions to energy dissipation. The GLSD and the DO method do not
suffer from these deficiencies. Furthermore, the numerical results show activity
of the unwanted terms in the standard stabilized forms and confirm the enforced
orthogonality of the large- and small-scales. The numerical computations have been
performed with isogeometric analysis, which is required for a solenoidal velocity
field and seems a natural choice when employing orthogonal small-scales.

This work serves as an important first step for generalizations in other contexts.
Future work will entail a similar methodology for the incompressible Navier-Stokes
equations.
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abstract

This chapter presents the construction of a correct-energy stabilized finite element method
for the incompressible Navier-Stokes equations. The framework of the methodology and
the correct-energy concept have been developed in the convective–diffusive context in the
preceding chapter [M.F.P. ten Eikelder, I. Akkerman, Correct energy evolution of stabilized
formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-
scales and isogeometric analysis. I: The convective–diffusive context, Comput. Methods
Appl. Mech. Engrg. 331 (2018) 259–280]. The current work extends ideas of the preceding
chapter to build a stabilized method within the variational multiscale (VMS) setting which
displays correct-energy behavior for the incompressible Navier-Stokes equations. Similar
to the convection–diffusion case, a key ingredient is the proper dynamic and orthogonal
behavior of the small-scales. This is demanded for correct energy behavior and links the VMS
framework to the streamline-upwind Petrov-Galerkin (SUPG) and the Galerkin/least-squares
method (GLS).

The presented method is a Galerkin/least-squares formulation with dynamic divergence-
free small-scales (GLSDD). It is locally mass-conservative for both the large- and small-scales
separately. In addition, it locally conserves linear and angular momentum. The computations
require and employ NURBS-based isogeometric analysis for the spatial discretization. The
resulting formulation numerically shows improved energy behavior for turbulent flows
comparing with the original VMS method.

49
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3.1 introduction

The creation of artificial energy in numerical methods is undesirable from both a
physical and a numerical stability point of view. Therefore methods precluding
this deficiency are often sought after. This work continues the construction of the
correct-energy displaying stabilized finite element methods. The first episode [57]
exposes the developed methodology in the convective–diffusive context. The current
study deals with the incompressible Navier–Stokes equations and is the second
piece of work within the framework. The setup of this chapter is closely related to
that of [57]. In particular, the correct-energy demand is the same, thus it represents
that the method (i) does not create artificial energy and (ii) closely resembles the
energy evolution of the continuous setting. The precise definition is stated in Section
3.4. What sets the Navier–Stokes problem apart from convection–diffusion case is
the inclusion of the incompressibility constraint. In this work we use a divergence-
conforming basis which allows exact pointwise satisfaction of this constraint. This
is considered a beneficial property. Therefore it is added as a design criterion. In a
two-phase context this property is essential for correct energy behavior [6].

3.1.1 Contributions of this work

This work derives a novel VMS formulation which exhibits the correct energy
behavior and to this purpose combines several ingredients. The final formulation
is summarized in Appendix 3.A. The new method is a residual-based approach
that employs (i) dynamic behavior of the small-scales, (ii) solenoidal NURBS basis
functions and (iii) a Lagrange-multiplier construction to ensure the incompressibility
of the small-scale velocities. The formulation is of skew-symmetric type, rather
than conservative, which is motivated by both the correct-energy demand and
its improved behavior in the single scale setting (i.e. the Galerkin method) [117].
Moreover, the formulation reduces to a Galerkin formulation in case of a vanishing
Reynolds number due to a Stokes-projector. The use of dynamic small-scales, firstly
proposed in [46], is also driven from an energy point of view. In addition, it leads to
global momentum conservation and the numerical results of [48] show improved
behavior of the dynamic small-scales with respect to their static counterpart.

3.1.2 Context

This work falls within the variational multiscale framework [100, 103]. The ba-
sic idea of this method is to split solution into the large/resolved-scales and
small/unresolved-scales. The small-scales are modeled in terms of (the residual of)
the large scales and substituted into the equation for the large-scales. This approach
was first applied in a residual-based LES context to incompressible turbulence
computations in [17]. The VMS methodology has enjoyed a lot of progress since
then. For an overview of the development consult the review paper [47].

Our work is not the first to analyze the energy behavior of the VMS method.
A spectral analysis of the VMS method can be found in [199]. That paper proves
dissipation of the model terms under restrictive conditions. Additional to the
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optimality projector, they require L2-orthogonality of the large- and small-scales.
This condition naturally leads to the use of spectral methods.

Principe et al. [159] provide a precise definition of the numerical dissipation within
the variational multiscale context for incompressible flows. Equally important, they
numerically show that the concept of dynamic small-scales, which we apply in this
work, is able to model turbulence.

Colomés et al. [49] assess the performance of several VMS methods for turbulent
flow problems and provide an energy analysis of these methods. They conclude that
algebraic subgrid scales (ASGS) and orthogonal subscales (OSS) yield similar results,
whereas the latter one is more convenient in terms of numerical performance.

We build onto [49, 159, 199] without requiring L2-orthogonality. Therefore we are
not restricted to the use of spectral methods, while retaining a strict energy relation.

Other recent related work includes the IGA divergence-conforming VMS method
of Opstal et al. in [154]. They also employ an H1

0-orthogonality between the velocity
large- and small-scales on a local level. Our work deviates from [154] in that we
motivate the required orthogonalities with the correct energy demand. Furthermore,
our work distinguishes itself by enforcing the divergence-free velocity small-scales
with a Lagrange-multiplier construction. We believe that the Stokes orthogonality
between the large- and small-scales is a natural path to take, since it reduces the
scheme to the Galerkin method in the vanishing Reynolds number limit.

The discretizations throughout this work are based on the isogeometric analysis
(IGA) concept, proposed by Hughes et al. in [101]. This idea integrates the histor-
ically distinct fields of computer aided design (CAD) and finite element analysis.
Isogeometric analysis rapidly became a valuable tool in computational fluid dynam-
ics, in particular in turbulence computations. It provides several advantages over
standard finite element analysis, including an exact description of CAD geometries,
increased robustness and superior approximation properties [4, 101, 142]. This work
requires in particular inf–sup stable discretizations for which we use [68, 69]. More-
over these spaces allow the pointwise satisfaction of the incompressibility constraint.
The smooth NURBS basis functions are convenient for the computation of second
derivatives.

3.1.3 Outline

The organization of this chapter in Section 3.2 and 3.3 is very comparable with that
of the convective–diffusive context [57], and at some points mirrors it. The purpose
thereof is (i) to indicate the great similarities of the methodologies and (ii) to clarify
the approach. The remainder of this work presents the actual construction of a
stabilized variational formulation for the incompressible Navier–Stokes equations
which displays correct-energy behavior. We summarize it as follows. Section 3.2
states the continuous form of the governing incompressible flow equations, both in
the strong formulation and the standard weak formulation. It additionally provides
the energy evolution of the continuous equation, in both global and local form.
Section 3.3 discusses the energy evolution of the variational multiscale approach
with dynamic small-scales. The path toward correct energy behavior actually starts
in Section 3.4. This section presents the required orthogonality of the large-scales
and small-scales. This converts the residual-based variational multiscale method
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into the Galerkin/least-squares method with the correct energy behavior. Section 3.5
presents conservation properties of the method. Section 3.6 provides a computational
test case, namely a three-dimensional Taylor–Green vortical flow. In particular it
examines the energy behavior and compares the novel method with the standard
VMS method with static small-scales [17]. The calculations employ the generalized-α
method with favorable energy behavior which is also discussed in [57]. In Section
3.7, we wrap up and present avenues for future research.

3.2 the continuous incompressible navier–stokes equations

3.2.1 Strong formulation

Let Ω ∈ Rd, d = 2, 3, denote the spatial domain and ∂Ω = Γ = Γg ∪ Γh its boundary,
see Figure 3.1.

Ω

Γh

Γg

\

\

Figure 3.1: Spatial domain Ω with its boundaries Γ = Γg ∪ Γh. This is the same figure as in
[57].

The problem consists of solving the incompressible Navier–Stokes equations gov-
erning the fluid flow, which read in strong form

∂tu +∇ · (u⊗ u) +∇p−∇ · (2ν∇su) = f in Ω× I , (3.2.1a)

∇ · u = 0 in Ω× I , (3.2.1b)

u = g in Γg × I , (3.2.1c)

−u−n u− pn + ν∂nu = h in Γh × I , (3.2.1d)

u(x, 0) = u0(x) in Ω, (3.2.1e)

for the velocity u : Ω×I → Rd and the pressure divided by the density p : Ω×I →
R. A constant density is assumed. Eqs. (3.2.1a)-(3.2.1e) describe the balance of linear
momentum, the conservation of mass, the inhomogeneous Dirichlet boundary
condition, the traction boundary condition and the initial conditions, respectively.
The spatial coordinate denotes x ∈ Ω and the time denotes t ∈ I = (0, T) with
end time T > 0. The given dynamic viscosity is ν : Ω → R+, the body force is
f : Ω× I → Rd, the initial velocity is u0 : Ω → Rd and the boundary data are
g : Γg × I → Rd and h : Γh × I → Rd. We assume a zero-average pressure for
all t ∈ I in case of an empty Neumann boundary. The normal velocity denotes
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un = u · n with positive and negative parts u±n = 1
2 (un± |un|). The various derivative

operators are the temporal one ∂t, the symmetric gradient ∇s· = 1
2

(
∇ ·+∇T·

)
and

the normal gradient ∂n = n · ∇, with n the outward unit normal.

3.2.2 Weak formulation

LetW0 denote the trial weighting function space satisfying the homogeneous Dirich-
let conditions on u andW g the trial solution space with non-homogeneous Dirichlet
conditions on u. The standard variational formulation writes:

Find {u, p} ∈ W g such that for all {w, q} ∈ W0,

BΩ,Γh ({u, p} , {w, q}) =LΩ,Γh ({w, q}) , (3.2.2a)

where

BD,Γh ({u, p} , {w, q}) = BD ({u, p} , {w, q}) +
(
w, u+

n u
)

Γh(D)
, (3.2.2b)

LD,Γh ({w, q}) = LD ({w, q}) + (w, h)Γh(D) , (3.2.2c)

BD ({u, p} , {w, q}) = (w, ∂tu)D − (∇w, u⊗ u)D + (∇w, 2ν∇su)D

+ (q,∇ · u)D − (∇ ·w, p)D, (3.2.2d)

LD ({w, q}) = (w, f )D. (3.2.2e)

Here BD is the bilinear form and (·, ·)D is the L2 (D) inner product over D. The
Dirichlet and traction boundary of domain D denote Γg(D) := Γg ∩ ∂D and
Γh(D) := Γh ∩ ∂D respectively. The strong (3.2.1) and the weak formulation (3.2.2)
are equivalent for smooth solutions.

Remark 3.2.1. The variational form (3.2.2) is of conservative type: the incompressibility
constraint (3.2.1b) is not directly employed in the convective terms. A discretization of
the conservative form may lead to spurious oscillations caused by the error in the incom-
pressibility constraint acting as a distribution of sinks and sources. Employing (3.2.1b) can
be used to generate a convective form which is sometimes preferred and often adopted in
Galerkin computations [117]. Here we write the variational formulation of skew-symmetric
type which will be used in Section 3.4:

Find {u, p} ∈ W g such that for all {w, q} ∈ W0,

CΩ,Γh ({u, p} , {w, q}) = LΩ,Γh ({w, q}) , (3.2.3a)

where

CD,Γh ({u, p} , {w, q}) = CD ({u, p} , {w, q}) + 1
2 (w, |un|u)Γh(D) , (3.2.3b)

CD ({u, p} , {w, q}) = (w, ∂tu)D + 1
2 (w, u · ∇u)D − 1

2 (u · ∇w, u)D

+ (∇w, 2ν∇su)D + (q,∇ · u)D − (∇ ·w, p)D. (3.2.3c)

Again, this form is equivalent to the strong form (3.2.1). Form (3.2.3) does not possess
all conservation properties when discretized in a standard way. However, this can be
restored using a multiscale split, see [117] for details. In the following we continue with the
conservative form (3.2.2).
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Remark 3.2.2. Concerning the viscosity term, we apply the incompressibility constraint to
remove the non-symmetric part. The divergence-conforming spaces permit this action also in
a discrete sense.

To obtain the energy evolution linked to (3.2.1) we want to substitute w = u. This
is not possible in (3.2.2) due to the different boundary conditions of the solution and
test function spaces. The enforcement of the Dirichlet boundary conditions in the
spaces bypasses when employing a Lagrange multiplier construction. This converts
the variational formulation into a mixed formulation:

Find ({u, p} , λΩ) ∈ W ×V such that for all ({w, q} , ϑ) ∈ W ×V ,

(λΩ, w)Γg
= BΩ,Γh ({u, p} , {w, q})− LΩ,Γh({w, q}) + (ϑ, u− g)Γg

. (3.2.4)

HereW is the unrestricted space used for the solution and test functions and V is
a suitable Lagrange multiplier space. Section 3.2.3 employs formulation (3.2.4) to
derive the corresponding global energy statement. The equivalence of this form with
the strong form (3.2.1) follows from Green’s formula and an appropriate choice of
the weighting functions. The expression of the Lagrange multiplier is a by-product
of this execution and yields

λΩ = − 1
2 unu− pn + ν∂nu. (3.2.5)

The multiplier can be interpreted as an auxiliary flux with a convective, a pressure
and a viscous contribution. Consult [102] for details about auxiliary fluxes in weak
formulations.

Remark 3.2.3. Note that we get the same expression when employing the skew-symmetric
form (3.2.3).

3.2.3 Global energy evolution

The evolution of the global energy follows when substituting
({w, q} , ϑ) = ({u, p} , λΩ) in (3.2.4). Employing Green’s formula and the strong
incompressibility constraint (3.2.1b) we see that the convective term only contributes
to the energy evolution via a boundary term. The global energy, which is defined as
EΩ := 1

2 (u, u)Ω, evolves as

d
dt

EΩ = −‖ν1/2∇u‖2
Ω + (u, f )Ω − (1, FΩ)Γ, (3.2.6)

where
d
dt

is the time derivative and ‖ · ‖2
D defines the standard L2-norm over D. The

flux reads:

FΩ =

{
−g · λΩ on Γg,

|un|e− u · h on Γh,
(3.2.7)

with e := 1
2 u · u the pointwise energy. The terms of (3.2.6) represent from left to

right: (i) the energy loss due to viscous molecular dissipation, (ii) the power exerted
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by the body force and (iii) the energy change due to the boundary conditions.
Substitution of the Lagrange multiplier and the boundary conditions leads to the
expected expression of the flux

FΩ = un(e + p)− ν∂ne on Γ. (3.2.8)

These terms represent the convective and viscous flux as well as the rate of work due
to the pressure. We emphasize that the continuous convective–diffusive equation
displays very similar energy behavior (obviously the pressure term is absent there)
[57]. This provides an additional indication of the similarity in the discrete setting.

Remark 3.2.4. The transition from expression (3.2.7) to (3.2.8) is only possible in the
continuous setting. In the discrete setting no closed-form expression for the Lagrange
multiplier exists. This also applies to the localized version in Section 3.2.4.

3.2.4 Local energy evolution

The procedure to find the local energy evolution is very similar to that of the global
energy. Let ω ⊂ Ω be an arbitrary subdomain with boundary ∂ω, let Ω−ω denote
its complement and let their shared boundary denote χω = ∂ω ∩ ∂(Ω−ω). Figure
3.2 shows the subdomains and their boundaries.

Ω−ω

ω

Γh(ω)

Γg(ω)

Γg(Ω−ω)

Γh(Ω−ω)

χω

\

\
/

/

Figure 3.2: Spatial domain Ω with a subdomain ω ⊂ Ω. The shared boundary of ω and its
complement is χω. The boundaries Γg and Γh split according to ω. This is the
same figure as in [57].

The continuity across the interface is enforced with a Lagrange multiplier in the
appropriate space Vω. The discontinuous test function space writesWω. The weak
statement enforced on ω is again a mixed formulation and reads:

Find ({u, p} , λω) ∈ W ×V such that for all ({w, q} , ϑ) ∈ W ×V ,

(w, λω)χω
+ (w, λω)Γg(ω) = Bω,Γh ({u, p} , {w, q})− Lω,Γh({w, q}),

(ϑ, [[u]])χω
+ (ϑ, u− g)Γg(ω) = 0. (3.2.9a)

We have here employed the jump term [[u]] given by

[[u]] := u|ω − u|Ω−ω, (3.2.10)
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where the terms are defined on ω and Ω−ω, respectively. Furthermore, nω is the
outward normal of domain ω, unω is the outward velocity in direction nω and ∂nω

the direction derivative outward of ω. The equivalence of this form with the strong
form (3.2.1) leads to the expression of the Lagrange multiplier:

λω = −unω u− pnω + ν∂nω u, (3.2.11)

which is clearly the localized version of (3.2.5). A direct consequence is the symmetry
of the Lagrange multipliers (these are also called auxiliary fluxes in this setting, see
[102]):

λω + λΩ−ω = 0, (3.2.12)

i.e. that what flows out ω through χω enters its complement. The energy evolution
linked to each of the domains is a natural split of the global energy evolution:

d
dt

Eω =− ‖ν1/2∇u‖2
ω + (u, f )ω − (1, Fω)∂ω , (3.2.13)

with energy fluxes

Fω =


−g · λω on Γg (ω) ,

|unω |e− u · h on Γh (ω) ,

−u · λω on χω.

(3.2.14)

The last term of (3.2.14) redistributes energy over the domain. It represents an
energy flux across the subdomain interface χω with a convective, a pressure and a
viscous component. Similarly as before, substitution of the terms in the energy flux
leads to

Fω = unω (e + p)− ν∂nω e on ∂ω. (3.2.15)

This is obviously the localized version of (3.2.8).

Remark 3.2.5. All statements of this section are in the continuous setting. Hence, the
standard discretization, i.e. the Galerkin method, displays the same correct energy behavior.

Remark 3.2.6. The various boundary terms may distract the reader and do not contribute
to the goal of this work. Therefore we only consider boundary conditions precluding the
energy flux F on Γ. The homogeneous Dirichlet and periodic boundary conditions satisfy
this purpose. Applying non-homogeneous boundaries is straightforward.

We continue this work by discretizing the system according to the dynamic
variational multiscale method with the target to closely resemble energy evolution
(3.2.6) and (3.2.13).

3.3 energy evolution of the variational multiscale method with

dynamic small-scales

The convective–diffusive context [57] learns us that the dynamical structure of the
small-scales is a requirement for the stabilized formulation to display the correct
energy behavior. This allows to skip the static small-scales and to directly apply the
dynamic modeling approach. We follow this road.
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3.3.1 The multiscale split

The variational multiscale split is nowadays a standard execution [100, 103] which
we include here for the sake of completeness and notation. Employing the variational
multiscale methodology the trial and weighting function spaces split into large- and
small-scales as:

W =Wh ⊕W ′, (3.3.1)

withWh andW ′ containing the large-scales and small-scales, respectively. The large-
scale space is spanned by the finite-dimensional numerical discretization while the
fine-scales are its infinite-dimensional complement. The fine-scale spaceW ′ is also
referred to as subgrid-scales since these scales are not reproduced by the grid. This
decomposition implies the split of the solution and weighting functions as follows:

u = uh + u′, (3.3.2a)

w = wh + w′, (3.3.2b)

where uh, wh ∈ Wh and u′, w′ ∈ W ′ with u := {u, p} , w := {w, q}. Uniqueness
follows when a projector Ph :W →Wh is used for the splitting operation:

uh = Phu, (3.3.3a)

u′ =
(
I −Ph

)
u, (3.3.3b)

where I :W →W is the identity operator. Employing both w = wh and w = w′,
and the solution split (3.3.2a) in (3.2.2) leads to the weak formulation:

Find uh ∈ Wh, u′ ∈ W ′ for all wh ∈ Wh, w′ ∈ W ′,

BΩ

(
uh + u′, wh

)
= LΩ(wh)Ω, for all wh ∈ Wh, (3.3.4a)

BΩ

(
uh + u′, w′

)
= LΩ(w′)Ω, for all w′ ∈ W ′. (3.3.4b)

Note that this is an infinite-dimensional system with unknowns uh and u′. Appro-
priately parameterizing the small-scales u′ in terms of uh converts (3.3.4a) into a
solvable finite element problem. This conversion can be done with inspiration from
(3.3.4b). For the technical details of the parameterization consult [113].

3.3.2 Dynamic small-scales

Assume now that the domain Ω is partitioned into a set of elements Ωe. The domain
of element interiors does not include the interior boundaries and denotes

Ω̃ =
⋃
e

Ωe. (3.3.5)

We employ the dynamic small-scales, see [46], demanded by the convective–
diffusive context for correct energy behavior [57]. The fine-scale model

∂t
{

û′, 0
}
+ τ−1 {û′, p̂′

}
+R

({
uh, ph

}
, û′
)
= 0, (3.3.6)
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is an ordinary differential equation. The hat-sign is used to indicate a small-scale
model instead of the actual small-scales. The intrinsic time scale τ is a matrix of
stabilization parameters, here τ ∈ R4×4, with contributions for the two equations:

τ =

(
τM I3×3 03

0T
3 τC

)
. (3.3.7)

The local large-scale residual contains a momentum part rM and continuity part rC
linked to the incompressibility constraint, respectively, given by

R
({

uh, ph
}

, û′
)
=
{

rM(
{

uh, ph
}

, û′), rC(uh)
}T

, (3.3.8a)

rM = ∂tuh +
((

uh + û′
)
· ∇
)

uh +∇ph − ν∆uh − f , (3.3.8b)

rC = ∇ · uh. (3.3.8c)

In the following we ignore the hat-sign. We employ a dynamic version of the
stabilization parameters τM, τC defined in [17]. The details are provided in Appendix
3.B. The subscripts M and C refer to momentum and continuity, respectively. Mirroring
[57], the momentum residual (3.3.8b) uses the full velocity uh + u′. This creates a
nonlinearity in the system. Therefore we apply a standard iterative procedure to
determine the small-scales.

The resulting residual-based dynamic VMS weak formulation is

Find uh ∈ Wh for all wh ∈ Wh

BVMSD
Ω

(
uh, wh

)
= LΩ(wh), (3.3.9a)

where

BVMSD
Ω

(
uh, wh

)
= BΩ

(
uh, wh

)
+
(

wh, ∂tu′
)

Ω̃
−
(

ν∆wh, u′
)

Ω̃

−
(
∇qh, u′

)
Ω̃
−
(
∇ ·wh, p′

)
Ω̃

−
(
∇wh, uh ⊗ u′

)
Ω̃
−
(
∇wh, u′ ⊗ uh

)
Ω̃

−
(
∇wh, u′ ⊗ u′

)
Ω̃

, (3.3.9b)

∂t
{

u′, 0
}
+ τ−1 {u′, p′

}
+R

({
uh, ph

}
, u′
)
= 0, (3.3.9c)

and where the additional D stands for dynamic. When examining the last line
of (3.3.9b), we recognize the following contributions. The first term is the SUPG
contribution. The first two terms model the cross stress, while the last term models the
Reynolds stress. Note that no spatial derivatives act on the small-scales. Furthermore,
in contrast to static small-scales, the dynamic small-scale model (3.3.9c) is a separate
equation and cannot directly be substituted into the large-scale equation (3.3.9b).

3.3.3 Local energy evolution of the VMSD form

To arrive at the local energy evolution of (3.3.9), we extend the weak formulation to
a Lagrange multiplier setting to allow discontinuous functions across subdomains,
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similar as (3.2.9). The weak statement, here stated for domain ω ⊂ Ω, reads

Find
(

uh, λh
ω

)
∈ W ×V such that for all

(
wh, ϑh

)
∈ W ×V ,(

wh, λh
ω

)
χω

= BVMSD
ω

(
uh, wh

)
− Lω(wh), (3.3.10a)(

ϑh, [[uh]]
)

χω

= 0, (3.3.10b)

∂t
{

u′, 0
}
+ τ−1 {u′, p′

}
+R

({
uh, ph

}
, u′
)
= 0. (3.3.10c)

To obtain the evolution of the local total energy Eω = 1
2

(
uh + u′, uh + u′

)
ω̃

linked
to the variational formulation (3.3.9), we employ wh = uh, qh = ph and ϑh = λh

ω in
(3.3.10). Adding u′ times the momentum component of (3.3.10c) integrated over ω̃

eventually leads to

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃ + 2(ν∆uh, u′)ω̃ + (∇ · uh, p′)ω̃

+
(
∇uh, (uh + u′)⊗ (uh + u′)

)
ω̃
−
(

u′, (uh + u′) · ∇uh
)

ω̃
, (3.3.11)

where
F h

ω = −λh
ω · uh. (3.3.12)

The first line closely resembles the continuous energy evolution relation. Each one
of the other terms appears as a result of the VMS stabilization. The first term
of the second line represents the numerical dissipation due to the missing small-
scales. This contributes to a decay of the energy, which is favorable from a stability
argument. The second term is the power exerted by the body force on the small-
scales, this term closely resembles its large-scale counterpart. The remaining terms
have no continuous counterpart. With the current small-scale model, the small-scale
pressure term dissipates energy1. The signs of the other terms are undetermined and
therefore these can create energy artificially. The term 2(ν∆uh, u′)ω̃ can be bounded
by both the physical dissipation ‖ν1/2∇uh‖2

ω and numerical dissipation ‖τ−1/2
M u′‖2

ω̃

using a standard argument. However, this results in an overall dissipation that can be
smaller than the physical one. This is deemed undesirable. Note that it is comparable
with that of the dynamic VMS stabilized form in the convective–diffusive context.
The contrast occurs in the last line which is linked to the incompressibility constraint
(3.2.1b) and the small-scale pressure. Inspired by the convective–diffusive context,
the next section rectifies the method to closely resemble the energy behavior of the
continuous setting.

1 The small-scale pressure expression can be substituted into this term to arrive at (∇ · uh, p′)ω̃ =
−||τ−1/2

C p′||2ω̃ . Note that it vanishes when employing a divergence-conforming discrete velocity space.
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Remark 3.3.1. Employing ω = Ω, and hence ω̃ = Ω̃, provides the global energy evolution
of (3.3.9):

d
dt

EΩ =− ‖ν1/2∇uh‖2
Ω + (uh, f )Ω

− ‖τ−1/2
M u′‖2

Ω̃ + (u′, f )Ω̃ + 2(ν∆uh, u′)Ω̃ + (∇ · uh, p′)Ω̃

+
(
∇uh, (uh + u′)⊗ (uh + u′)

)
Ω̃
−
(

u′, (uh + u′) · ∇uh
)

Ω̃
. (3.3.13)

3.4 toward a stabilized formulation with correct energy behavior

This section presents the procedure to remedy the incorrect energy behavior (3.3.11)
of the dynamic VMS formulation (3.3.9). The first ingredient is the switch from the
conservative form to a skew-symmetric form with the help of the divergence-free
velocity field constraint. Next, we employ the natural choice of a Stokes-projector and
demand divergence-free small-scales. In view of the convective–diffusive context,
we use H1

0 small-scales to treat the small-scale viscous term.

3.4.1 Design condition

We present a design condition which clarifies the desirable energy behavior of the
formulation. The variational weak formulation corresponding to (3.2.1) is demanded
to satisfy the local energy behavior:

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃, (3.4.1)

with exact divergence-free velocity fields. Note that this requirement is very similar
to that of the convective–diffusive context [57] where the convective velocity is
assumed solenoidal.

Remark 3.4.1. In the following we use the ingredients mentioned above to convert the
VMS formulation (3.3.10) into a method that satisfies the design condition. It is important
to realize that the small-scales employed in the formulation are determined by a model
equation. This implies that these properties are not necessarily valid for the model small-
scales. In contrast, the exact small-scales do satisfy these properties. The model small-scales
approximate its exact counterpart which justifies the judicious use of these properties to
construct a method that satisfies the design condition.

3.4.2 Skew-symmetric form

We employ a multiscale form of the skew-symmetric formulation (see (3.2.3)) to
eliminate the convective contributions in (3.3.11). Considering the convective terms
in isolation, we cast them into the following form:
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− (∇wh, (uh + u′)⊗ (uh + u′))Ω̃

= −
((

uh + u′
)
· ∇wh, uh

)
Ω̃
−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

= 1
2

(
wh,

(
uh + u′

)
· ∇uh

)
Ω̃
− 1

2

((
uh + u′

)
· ∇wh, uh

)
Ω̃

+ 1
2

(
uh, wh∇ ·

(
uh + u′

))
Ω̃
−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

= 1
2

(
wh,

(
uh + u′

)
· ∇uh

)
Ω̃
− 1

2

((
uh + u′

)
· ∇wh, uh

)
Ω̃

−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

, (3.4.2)

where we have employed the multiscale incompressibility constraint ∇ · u =

∇ · (uh + u′) = 0 in the last equality. The last expression is incorporated into the
formulation. The resulting residual-based skew-symmetric VMS weak formulation is

Find uh ∈ Wh such that for all wh ∈ Wh,

CVMSD
Ω

(
uh, wh

)
= LΩ(wh), (3.4.3a)

where

CVMSD
Ω

(
uh, wh

)
= CΩ

(
uh, wh

)
+
(

wh, ∂tu′
)

Ω̃
−
(

ν∆wh, u′
)

Ω̃

−
(
∇qh, u′

)
Ω̃
−
(
∇ ·wh, p′

)
Ω̃

+ 1
2

(
wh, u′ · ∇uh

)
Ω̃
− 1

2

(
u′ · ∇wh, uh

)
Ω̃

−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

, (3.4.3b)

∂t
{

u′, 0
}
+τ−1 {u′, p′

}
+R

({
uh, ph

}
, u′
)
= 0. (3.4.3c)

This eliminates the convective contributions from the local energy evolution equa-
tion:

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃ + 2(ν∆uh, u′)ω̃ + (∇ · uh, p′)ω̃. (3.4.4)

3.4.3 Stokes projector

In the convective–diffusive context a H1
0-orthogonality of the small-scale viscous

term is required for correct energy behavior. This is the distinguished limit of
Pe→ 0 of the steady convection–diffusion equations, where Pe is the Péclet number.
Its Navier–Stokes counterpart is to apply a Stokes-projector which is based on the
distinguished limit Re→ 0 of the steady incompressible Navier–Stokes equations.
Here Re is the Reynolds number. Thus, applying a Stokes projection on the large-
scale equation seems a natural choice. Moreover, it reduces the variational form in
the limit Re→ 0 to the standard Galerkin method. This is a valid and established
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method in that regime, provided compatible discretizations for the velocity and
pressure spaces are used.

For the scale separation (3.3.3) we select the Stokes projector given by

Ph
Stokes : u ∈ W → uh ∈ Wh: Find uh ∈ Wh such that for all wh ∈ Wh,(

ν∆wh, uh
)

Ω
+
(
∇ ·wh, ph

)
Ω
=
(

ν∆wh, u
)

Ω
+
(
∇ ·wh, p

)
Ω

, (3.4.5a)(
∇qh, uh

)
Ω
=
(
∇qh, u

)
Ω

, (3.4.5b)

in the bilinear form (3.4.3b). Note that this projector only makes sense if the elements
ofWh are inf–sup stable and the velocities are at least C1-continuous. The numerical
results presented in Section 3.6 fulfill this requirement: quadratic NURBS basis
functions are employed. However, note that the final form, given in Appendix 3.A,
does not have the smoothness restriction.

As a consequence we assume the modeled small-scales to satisfy the orthogonality
induced by the Stokes operator:(

ν∆wh, u′
)

Ω̃
+
(
∇ ·wh, p′

)
Ω̃
= 0, (3.4.6a)(

∇qh, u′
)

Ω̃
= 0, (3.4.6b)

for all wh ∈ Wh . This converts (3.4.3) into the simplified formulation:

Find uh ∈ Wh such that for all wh ∈ Wh

SΩ

(
uh, wh

)
=LΩ(wh), (3.4.7a)

where

SΩ

(
uh, wh

)
= CΩ

(
uh, wh

)
+
(

wh, ∂tu′
)

Ω̃

+ 1
2

(
wh, u′ · ∇uh

)
Ω̃
− 1

2

(
u′ · ∇wh, uh

)
Ω̃

−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

, (3.4.7b)

∂tu′ + τ−1
M u′ + rM = 0, (3.4.7c)

where the S abbreviates Stokes. Note that the small-scale pressure terms have
vanished from the formulation. The energy linked to this formulation is

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃ + (ν∆uh, u′)ω̃ − (∇ph, u′)ω̃. (3.4.8)

To fulfill the design condition (3.4.1), the last two terms of (3.4.8) need to be
eliminated, i.e.

(ν∆uh, u′)Ω̃ − (∇ph, u′)Ω̃ = 0. (3.4.9)
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There are various options available to accomplish this. Before sketching some of
these options we first like to note the following. Augmenting the undesirable terms
of (3.4.8) with (∇ · uh, p′) results in the requirement

(ν∆uh, u′)ω̃ − (∇ph, u′)ω̃ + (∇ · uh, p′)ω̃ = 0. (3.4.10)

This is a well-defined orthogonality induced by the Stokes operator, given in (3.4.6).
The augmented term would appear if ∇p′ in the small-scale momentum equation is
not neglected2. Note that this term is not (easily) computable and therefore usually
omitted in the formulation.

The required orthogonality (3.4.9) can be either assumed or enforced [57]. We discuss
four options here.

• First we could assume the orthogonality in the small-scale equation (3.4.7c).
This orthogonality has previously been assumed to modify the large-scale
equation (3.4.7a). Assuming it in the small-scale equation results in a stable
method with the desired energy property. However the small-scale model is
not residual-based anymore. This results in an inconsistent method. We do
not further consider this option.

• Alternatively, we could assume the orthogonality in the large-scale equation
(3.4.7a) again. This converts the formulation into a GLS method. This method
includes a PSPG term, −(∇qh, u′)Ω̃, and therefore pointwise divergence-free
solutions cannot be guaranteed. The formulation harms the design condition
of Section 3.4.1 and is therefore omitted.

• Another option is to enforce the required orthogonality using Lagrange-
multipliers. This is not straightforward and is deemed unnecessarily expensive.

• The path we propose is to cure the unwanted terms separately by combining
the second and third options. The approach is to (i) enforce divergence-
free small-scales to eliminate the second term of (3.4.9) and (ii) assume an
H1

0-orthogonality to erase the first term of (3.4.9). Sections 3.4.4 and 3.4.5
respectively describe these steps.

3.4.4 Divergence-free small-scales

The last term of (3.4.8) disappears when enforcing divergence-free small-scales. We
handle this with a projection operator on the small-scales:

Ph
div : u ∈ W → uh ∈ Wh: Find uh ∈ Wh such that for all wh ∈ Wh,(

∇qh, uh
)

Ω
=
(
∇qh, u

)
Ω

, (3.4.11)

with corresponding orthogonality:(
∇qh, u′

)
Ω̃
= 0, for all wh ∈ Wh. (3.4.12)

2 Including the small-scale pressure in the residual augments the right-hand side of (3.4.8) with the
term (∇p′, u′). Next, by using the strong form continuity equation weighted with the small-scale

pressure, i.e.
(

p′,∇ · (uh + u′)
)
= 0, this term converts into (∇ · uh, p′).
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This orthogonality defines the fine-scale spaceW ′ which represents the orthogonal
component ofWh in terms of the projection (3.4.12) as

W ′ =W ′div :=
{
{u, p} ∈ W ;

(
∇θh, u

)
Ω = 0, for all θh ∈ Ph

}
, (3.4.13)

where the space Ph is the pressure part of Wh = U h × Ph. Directly employing
this divergence-free space indeed eliminates the last term of (3.4.8). However the
small-scale solution space is infinite dimensional, and therefore not applicable in the
numerical method. As before, we avoid dealing with this space by using a Lagrange-
multiplier construction yielding a mixed formulation. Opening the solution space
leads to the formulation:

Find
(
uh, ζh) ∈ Wh ×Ph such that for all

(
wh, θh) ∈ Wh ×Ph,

Sdiv
Ω

((
uh, ζh

)
,
(

wh, θh
))

= LΩ(wh)Ω, (3.4.14a)

where

Sdiv
Ω

((
uh, ζh

)
,
(

wh, θh
))

= SΩ

(
uh, wh

)
+
(
∇θh, u′

)
Ω̃

, (3.4.14b)

∂tu′ + τ−1
M u′ +∇ζh + rM = 0. (3.4.14c)

Obviously, this form follows the energy evolution

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃ + (ν∆uh, u′)ω̃. (3.4.15)

Remark 3.4.2. Note that enforcing divergence-free small-scales has introduced an additional
equation in the system. The new method has 5 global variables instead of 4 leading to a
commensurate increase in computational time. The added block diagonal term is a diffusion
matrix which does not further complicate the saddle point structure of the problem.

3.4.5 H1
0-orthogonal small-scales

In the energy evolution (3.4.15) unwanted artificial energy can only be created by
the term

(
ν∆uh, u′

)
ω̃

. Employing the orthogonality induced by the H1
0-seminorm,

(ν∆wh, u′)Ω̃ = 0 for all wh ∈ Wh, (3.4.16)

obviously cancels this term. To avoid dealing with a larger system of equations,
we do not enforce the orthogonality but we assume it in the large-scale equation
(3.4.14a). This leads to a consistent GLS method. The resulting GLSDD-formulation
reads:

Find
(
uh, ζh) ∈ Wh ×Ph such that for all

(
wh, θh) ∈ Wh ×Ph,

SGLSDD
Ω

((
uh, ζh

)
,
(

wh, θh
))

= LΩ(wh), (3.4.17a)
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where

SGLSDD
Ω

((
uh, ζh

)
,
(

wh, θh
))

= Sdiv
Ω

((
uh, ζh

)
,
(

wh, θh
))

+
(

ν∆wh, u′
)

Ω̃
,

∂tu′ + τ−1
M u′ +∇ζh + rM = 0. (3.4.17b)

In the abbreviation GLSDD we follow the same structure as before where the last
two D’s stand for dynamic, divergence-free small-scale velocities3. This method displays
the correct-energy behavior:

d
dt

Eω = −‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

−‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃.
(3.4.18)

The full expansion of this novel formulation is included in Appendix 3.A for clarity.

3.4.6 Local energy backscatter

The separate energy evolution of the large- and small-scales deduces in a similar
fashion as above. The large-scale energy E h

ω = 1
2 (u

h, uh)ω and the small-scale energy
E ′ω = 1

2 (u
′, u′)ω̃ do not add up to the total energy Eω because of the missing cross

terms. This energy is stored in an intermediate (buffer) regime which we denote
with E h′

ω = (uh, u′)ω̃. The energy evolution takes the form:

d
dt

E h
ω = − ‖ν1/2∇uh‖2

ω +
(

uh, f
)

ω
− (1, Fω)χω

+
((

uh + u′
)
· ∇uh, u′

)
ω̃
− (uh, ∂tu′)ω̃, (3.4.19a)

d
dt

E h′
ω =

(
uh, ∂tu′

)
ω̃
+
(

u′, ∂tuh
)

ω̃
, (3.4.19b)

d
dt

E ′ω = − ‖τ−1/2
M u′‖2

ω̃ +
(
u′, f

)
ω̃

−
((

uh + u′
)
· ∇uh, u′

)
ω̃
− (u′, ∂tuh)ω̃. (3.4.19c)

The result mirrors to the convective–diffusive context with as convective velocity
now the total velocity uh + u′. There is a direct exchange of convective energy
between the large-scale and small-scales. Obviously, the superposition of (3.4.19)
yields (3.4.18).

3.4.7 Time-discrete energy behavior

The generalized-α method serves as time-integrator. Mirroring the convective–
diffusive context [57], and using the same notation, we eventually obtain for αm = γ:

En+1 = En − ∆t2(α f − 1
2 )‖u̇n+αm‖2

Ω − ∆t‖ν1/2∇uh
n+α f
‖2

Ω − ∆t‖τ−1/2
dyn u′n+α f

‖2
Ω̃

+ ∆t(uh
n+α f

, f )Ω + ∆t(u′n+α f
, f )Ω̃. (3.4.20)

Hence, we have a decay of the discretized energy when, in absence of forcing,
α f ≥ 1

2 . In the numerical implementation we use α f = αm = γ = 1
2 for the stability

and second-order accuracy properties [44].

3 The name GLS refers to the convection–diffusion part of the problem.
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3.5 conservation properties

Conservation of physical quantities in the numerical formulation is an often sought-
after property. In this section we derive the various conservation properties (conti-
nuity, linear momentum, angular momentum) of the proposed formulation (3.4.17).
We prove these by selecting the appropriate weighting functions. The conservation
properties hold on both a global and a local scale. Therefore we omit the domain
subscript in the following.

3.5.1 Continuity

Employing the weighting function wh = 0, θh = 0 in (3.4.17) yields

(qh,∇ · uh) = 0. (3.5.1)

The choice qh = ∇ · uh proves the pointwise satisfaction of incompressibility con-
straint4

||∇ · uh||2 = 0 ⇒ ∇ · uh = 0 for all x ∈ Ω. (3.5.2)

Furthermore, the choice of weighting functions wh = 0, qh = 0 leads to divergence-
free small-scale velocities in the following sense:

(∇θh, u′) = 0. (3.5.3)

3.5.2 Linear momentum

We substitute the weighting functions
(
wh, qh, θh) =

(
ei, 0,− 1

2 ei · uh) in (3.4.17),
where ei is the ith Cartesian basis vector. Using ∇ei = 0 and the pointwise
divergence-free velocity (3.5.2), all diffusive and pressure terms drop out and
we are left with: (

ei, ∂tuh + ∂tu′
)
+ 1

2

(
ei,
((

uh + u′
)
· ∇
)

uh
)

+
(
∇
(
− 1

2 ei · uh
)

, u′
)
= (ei, f ). (3.5.4)

Consider the convective term in isolation and write

1
2

(
ei,
((

uh + u′
)
· ∇
)

uh
)
= 1

2

(
ei,∇ ·

((
uh + u′

)
⊗ uh

))
− 1

2

(
ei,
(
∇ ·

(
uh + u′

))
uh
)

= − 1
2

(
∇ei,

(
uh + u′

)
⊗ uh

)
− 1

2

(
ei,
(
∇ ·

(
uh + u′

))
uh
)

= − 1
2

(
ei · uh,∇ · u′

)
=
(
∇
(

1
2 ei · uh

)
, u′
)

. (3.5.5)

4 Note that in general this weighting function choice is not allowed. We employ the IGA spaces with
stable velocity and pressure pairs that do allow this choice.
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Combining (3.5.4) and (3.5.5) leads to the balance

(ei, ∂tuh + ∂tu′) = (ei, f ). (3.5.6)

Linear momentum is thus conserved in terms of the total solution.

3.5.3 Angular momentum

Conservation of global angular momentum is a desirable property, certainly in
rotating flows. It has been analyzed by Bazilevs et al. [16] and Evans et al. [69].
When using the appropriate weighting function spaces the formulation conserves
angular momentum. The numerical results of Section 3.6 are however not com-
puted with these weighting function spaces. The demonstration of conservation
of angular momentum follows the same ideas as [16]. We set the weighting func-
tions

(
wh, qh, θh) = (x× ej, 0,− 1

2

(
x× ej

)
· uh). By construction the gradient of the

weighting function leads to a skew-symmetric tensor [16]. As a result the gradient
tensor is orthogonal to any symmetric tensor. Consequently the divergence, which
is the trace of the gradient, is zero.

Employing these weighting functions in the weak form we arrive at

(x× ej, ∂tuh + ∂tu′) + 1
2 (x× ej, ((uh + u′) · ∇)uh)Ω

− 1
2 (
(
(uh + u′) · ∇

) (
x× ej

)
, uh)−

((
(uh + u′) · ∇

) (
x× ej

)
, u′
)

− 1
2

(
∇
((

x× ej
)
· uh
)

, u′
)
= (
(
x× ej

)
, f ). (3.5.7)

Consider again the convective terms in isolation. Switching back to a conservative
form, see (3.4.2), yields an incompressibility term:

1
2 (x× ej, ((uh + u′) · ∇)uh)− 1

2 (
(
(uh + u′) · ∇

) (
x× ej

)
, uh)

−
((

(uh + u′) · ∇
) (

x× ej
)

, u′
)

=− (∇
(

x× ej
)

, (uh + u′)⊗ (uh + u′))− 1
2

(
uh,
(
x× ej

)
∇ ·

(
uh + u′

))
=− (∇

(
x× ej

)
, (uh + u′)⊗ (uh + u′)) + 1

2

(
∇
((

x× ej
)
· uh
)

, u′
)

. (3.5.8)

The antisymmetric tensor and the symmetric tensor in the first and second argument,
respectively, cause the first term to vanish. The incompressibility term cancels with
the choice of θh and the conservation of angular momentum is what remains:

(x× ej, ∂tuh + ∂tu′) = (x× ej, f ). (3.5.9)

3.6 numerical test case

In this section we test the GLSDD method (3.4.17) on a three-dimensional Taylor–
Green vortex flow at Reynolds number Re = 1600. This test case is challenging
and it is often employed to examine the performance of numerical algorithms for
turbulence computations. It serves our purpose because (i) the energy behavior of
a fully turbulent flow can be studied, (ii) reference data is available and (iii) the
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domain is periodic. Other boundary conditions than periodic ones are beyond the
scope of this work.

The flow is initially of laminar type. As the time evolves, the vortices begin to
evolve and roll-up. The vortical structures undergo changes and subsequently their
structures breakdown and form distorted vorticity patches. The flow transitions
to one with a turbulence character; the vortex stretching causes the creation of
small-scales. The Taylor–Green vortex initial conditions are specified as follows:

u(x, 0) = sin(x) cos(y) cos(z), (3.6.1a)

v(x, 0) = − cos(x) sin(y) cos(z), (3.6.1b)

w(x, 0) = 0, (3.6.1c)

p(x, 0) = 1
16 (cos(2x) + cos(2y)) (cos(2z) + 2) . (3.6.1d)

The physical domain is the cube Ω = [0, 2π]3 with periodic boundary conditions.
For this test case the viscosity is given by ν = 1

Re . Here we consider the transition
phase for times t ≤ 10 s. Figure 3.3 shows the iso-surfaces of the z-vorticity of the
initial condition (laminar flow) and the final configuration (fully turbulent flow).

(a) Laminar flow at t = 0 s. (b) Fully turbulent flow at t = 10 s.

Figure 3.3: Taylor–Green vortex flow at Re = 1600. Iso-surfaces of z-vorticity.

Due to the symmetric behavior of the flow, we are allowed to simulate only an
eighth part of the domain. Hence, we take as computational domain Ωh = [0, π]3

and apply no-penetration boundary conditions. All the implementations employ
NURBS basis functions that are mostly C1-quadratic, however every velocity space
is enriched to be cubic C2 in the associated direction [34, 35, 68, 69]. Note that
conservation of angular momentum cannot be guaranteed, since the choice of the
weighting function θh in Section 3.5.3 is not valid. We apply a standard L2-projection
to set the initial condition on the mesh. For the time-integration we employ the
generalized-α method with the parameter choices of [57] which yield correct energy
evolution. This method is stable and shows second-order temporal accuracy. The
resulting system of equations is solved with the standard flexible GMRES method
with additive Schwartz preconditioning provided by Petsc [11, 12].
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We perform simulations with three different methods: (i) the classical Galerkin
method, (ii) the VMS method with static small-scales (VMSS), comparable with [17]
and (iii) the novel Galerkin/least-squares formulation with dynamic and divergence-
free small-scales (GLSDD), i.e. form (3.4.17). The DNS results of Brachet et al. [30]
obtained with a spectral method on a fine 5123-mesh serve as reference data (ref).

First, we perform a brief mesh refinement study for the novel method. Figure 3.4
shows mesh refined results for the novel GLSDD method (3.4.17). For this purpose
meshes with 163, 243, 323, 483 elements have been employed. Clearly, the energy
behavior on the coarsest two meshes is quite off. The finer meshes are able to closely
capture the turbulence character of the flow. In the following we therefore use
meshes of 323 or 483 elements.
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Figure 3.4: Taylor–Green vortex flow at Re = 1600 mesh convergence. The GLS method with
dynamic divergence-free small-scales.

We compare the results of the novel GLSDD method with the VMSS and the
Galerkin approach. The simulations are carried out on a mesh of 323 elements, i.e.
the mesh size is h = π

32 , and on a slightly finer mesh of 483 elements. The time-step
is taken as ∆t = 4h

5π , i.e. the initial CFL-number is roughly 0.25. In the Figures 3.5-3.6
we visualize the time history of the kinetic energy and kinetic energy dissipation
rate for each of the three methods and the reference data.
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Figure 3.5: Taylor–Green vortex flow at Re = 1600 on 323-mesh for various methods: the
Galerkin method, the VMS method with static small-scales and the GLS method
with dynamic divergence-free small-scales.

The Figure 3.5 shows that each of the methods is able to roughly capture the
energy behavior on the coarse mesh. The dissipation peek appears too early in time
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Figure 3.6: Taylor–Green vortex flow at Re = 1600 on 483-mesh for various methods: the
Galerkin method, the VMS method with static small-scales and the GLS method
with dynamic divergence-free small-scales.

for each of the simulations. The Galerkin method displays the least accurate results,
it overpredicts the dissipation rate. The VMSS method performs a bit better at all
times. The novel GLSDD approach demonstrates an even closer agreement with
the reference results. The results on the finer mesh, in Figure 3.6, reveal almost no
difference with the reference data.

In the following we further analyze the contributions of the dissipation rate (on
the course mesh). The dissipation rate of the Galerkin method only consists of
the large-scale/physical dissipation ‖ν1/2∇uh‖2

Ω. In contrast, the dissipation of the
GLSDD method is composed of a large-scale and a small-scale contribution:

d
dt

E GLSDD
Ω =− ‖ν1/2∇uh‖2

Ω − ‖τ−1/2
M u′‖2

Ω̃. (3.6.2)

In Figure 3.7 we display the temporal evolution of both parts and the small-scale
dissipation fraction
(‖τ−1/2

M u′‖2
Ω̃)/(‖ν

1/2∇uh‖2
Ω + ‖τ−1/2

M u′‖2
Ω̃). In the laminar regime (t < 3) the small-

scale contribution is negligible. When the flow has a more turbulent character the
contribution of the small-scales is substantial: the maximum of the dissipation
fraction exceeds 0.35.
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Figure 3.7: Taylor–Green vortex flow at Re = 1600 on 323-mesh with the GLSDD method:
(a) large-scale and small-scale parts of the dissipation rate and (b) their fraction.

Lastly, we focus on the energy dissipation of the VMSS formulation. The derivation
follows the same steps used throughout this work. One might argue that the energy
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could also be solely based on the large-scales. This is what we do here. Its evolution
reads:

d
dt

E h,VMSS
Ω =− ‖ν1/2∇uh‖2

Ω − ‖τ−1/2
M u′‖2

Ω̃ + (ν∆uh, u′)Ω̃

−
(

u′, ∂tuh
)

Ω̃
+ (∇ · uh, p′)Ω̃

+
(
∇uh, (uh + u′)⊗ (uh + u′)

)
Ω̃
−
(

u′, (uh + u′) · ∇uh
)

Ω̃
. (3.6.3)

Figure 3.8 shows the contribution of the separate terms. The two desired dis-
sipation terms are clearly dominant. The small-scale dissipation is smaller than
the large-scale dissipation, however it has a significant contribution. Although the
contributions are small, the unwanted terms can create artificial energy.
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Figure 3.8: Taylor–Green vortex flow at Re = 1600 on 323-mesh with the VMSS method:
energy dissipation of separate terms.

3.7 conclusions

We continued the study initiated in [57] concerning the construction of methods
displaying correct-energy behavior. In this work we have applied the developed
methodology to the incompressible Navier–Stokes equations. It clearly shows that
the link between the methods VMS, SUPG and GLS, established in [57], is also valid
for the incompressible Navier–Stokes equations.

The novel GLSDD methodology employs divergence-conforming NURBS basis
functions and uses a Lagrange multiplier setting to ensure divergence-free small-
scales. Furthermore, it enjoys the favorable behavior of the dynamic small-scales and
reduces to the Galerkin method in the Stokes regime. These properties all emerge
from the correct-energy design condition. A pleasant byproduct of the method is
the conservation of linear momentum. The conservation of angular momentum
can be achieved when employing the appropriate weighting function spaces. The
numerical results support the theoretical framework in that the energy behavior
improves upon the VMS method with static small-scales. The variational multiscale
method with static small-scales has unwanted small-scale contributions which create
artificial energy.

The novel formulation requires a bit more effort to implement compared to the
variational multiscale method with static small-scales. One has to include an addi-
tional variable to ensure the divergence-free behavior of the small-scales. In addition
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the formulation needs to be equipped with the dynamic small-scale model. However,
the resulting system of equations does not demand a sophisticated preconditioner;
we have employed the standard ASM (Additive Schwarz Method) technique. In
our opinion, the accuracy gain outweighs the little extra implementation effort and
calculation cost.

A possible directions for future work concerns the development of an energy-
dissipative method for the computation of free surface flow problems. This is an
important step, since artificial energy creation can yield highly unstable behavior,
as demonstrated in [3].
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3.a gls formulation with dynamic divergence-free small-scales

We repeat the Galerkin/least-squares formulation with dynamic divergence-free
small-scales (GLSDD), i.e. form (3.4.17), to provide an overview of the separate
terms. The formulation is of skew-symmetric type, applies GLS stabilization and
uses divergence-free dynamic small-scales. The method requires a stable velocity–
pressure pair and reads:

Find
(
uh, ph, ζh) ∈ Wh ×Ph such that for all

(
wh, qh, θh) ∈ Wh ×Ph,(

wh, ∂tuh
)

Ω
+
(

wh, ∂tu′
)

Ω̃

+ 1
2 (w

h, (uh + u′) · ∇uh)Ω − 1
2 ((u

h + u′) · ∇wh, uh)Ω

−
((

uh + u′
)
· ∇wh, u′

)
Ω̃

+(∇wh, 2ν∇suh)Ω +
(

ν∆wh, u′
)

Ω̃

+(qh,∇ · uh)Ω − (∇ ·wh, ph)Ω

+
(
∇θh, u′

)
Ω̃
= (w, f )Ω,

(3.A.1a)

∂tu′ + τ−1
M u′ +∇ζh + rM = 0, (3.A.1b)

where momentum residual is

rM = ∂tuh +
((

uh + u′
)
· ∇
)

uh +∇ph − ν∆uh − f . (3.A.2)

The separate terms of (3.A.1a) are from left to right: the temporal terms, the convec-
tive contributions, the viscous contributions, the incompressibility constraint, the
pressure term, the divergence-free small-scale velocity constraint and the forcing
term. This form follows the correct-energy evolution (on a local scale):

d
dt

Eω =− ‖ν1/2∇uh‖2
ω + (uh, f )ω − (1, F h

ω)χω

− ‖τ−1/2
M u′‖2

ω̃ + (u′, f )ω̃, (3.A.3)

and possesses the conservation properties of Section 3.5.

3.b definition dynamic stabilization parameter

The dynamic stabilization parameter τM is the discrete approximation of the inverse
of the convective and viscous parts of momentum Navier–Stokes operator. It mirrors
the dynamic stabilization parameter of convection–diffusion equation (see [57]). The
continuity stabilization parameter τC is on its turn the discrete approximation of the
inverse of the divergence operator, here we use the objective definition introduced
in [16]. The parameters take the form:

τM =
(
τ−2

conv + τ−2
visc

)−1/2
, (3.B.1a)

τC = (τM
√

g : g)−1 , (3.B.1b)
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where the convective and viscous contributions of τM are

τ−2
conv =4u · gu, (3.B.2a)

τ−2
visc =CIν

2g : g. (3.B.2b)

Here the following definition is employed:

g =
∂ξ

∂x

T ∂ξ

∂x
, (3.B.3a)

g : g =
3

∑
i,j=1

GijGij, (3.B.3b)

where ∂ξ/∂x is the inverse Jacobian of the map between the elements in the reference
and physical domain. The positive constant CI is determined by an inverse estimate.



Part II

A F R A M E W O R K F O R D I S C O N T I N U I T Y C A P T U R I N G
M E T H O D S

This parts presents a variational multiscale analysis framework for dis-
continuity capturing methods. The methodology relies on proposed
variation entropy theory. First we describe variation entropy theory
and then use this to derive discontinuity capturing methods within the
multiscale framework.





4
VA R I AT I O N E N T R O P Y: A C O N T I N U O U S
L O C A L G E N E R A L I Z AT I O N O F T H E T V D
P R O P E RT Y U S I N G E N T R O P Y P R I N C I P L E S .

“Sometimes what you want is right in front of you. All you have to do is open your eyes and
see it.” − Meg Cabot (writer)

This chapter is reproduced from [59]:

M.F.P. ten Eikelder and I. Akkerman, Variation entropy: a continuous local generalization
of the TVD property using entropy principles., Comput. Meth. Appl. Mech. Engrg. 355

(2019) 261-283.

abstract

This work presents the notion of a variation entropy. This concept is an entropy framework
for the gradient of the solution of a conservation law instead of on the solution itself. It
appears that all semi-norms are admissible variation entropies. This provides insight into the
total variation diminishing property and justifies it from entropy principles. The framework
allows to derive new local variation diminishing properties in the continuous form. This can
facilitate the design of new numerical methods for problems that contain discontinuities.
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4.1 introduction

Violent disturbances emerging from sudden changes in velocity, pressure and tem-
perature, known as shock waves appear everywhere in nature, science and industrial
applications. Examples are water–air flows, supersonic flights, the water hammer
phenomena, shock–bubble interaction, material impact and sudden changes in
crowd dynamics. The behavior of these phenomena is usually governed by nonlin-
ear conservation laws. The development of numerical techniques for the solution
procedure of conservation laws is challenging because higher-order methods pro-
duce oscillations near shocks. There exists a large class of numerical methods which
aim to tackle these oscillations via reducing to first-order spatial accuracy at the
shock wave. These techniques augment the numerical method in one way or another
with artificial diffusion or viscosity in the shock wave region.

Most numerical methods developed for problems involving shock waves use finite-
difference or finite-volume approaches. These methods are often well-established
and show good performance in numerical computations. The employed mechanisms
can often be linked to one of the following. The concept of flux limiters (MUSCL),
see e.g., [132, 182, 192, 195, 196], reduces the scheme at the shock to first-order by
adding diffusion. The monotonicity property introduced by Harten in 1983 [88]
precludes the creation of local extrema and ensures that local minima (maxima)
are non-decreasing (non-increasing). Perhaps the most relevant in some numeri-
cal simulations is the maximum principle, see [88] or the more recent work [148,
204]. This principle states that the solution values remain between the minimum
and maximum of the initial condition. This is in particular important in simula-
tions of physical quantities that should remain non-negative, e.g., densities and
also, in the case of two-fluid problems, volume-fractions. A negative density or a
volume-fraction exceeding the zero-one range can directly lead to a blow-up of the
simulations. Therefore numerical methods that preclude this by design are often
sought after, see e.g., for compressible two-fluid flow simulations [53, 63, 172].

Possibly the most famous property is the total variation diminishing (TVD)
property [88, 90, 175]. The total variation diminishing schemes preclude the growth
of the total variation of the solution. These methods ensure that the numerical
solution φ of a PDE satisfies

TV(φn+1) ≤ TV(φn),

where n denotes the time-level. Here the total variation TV is defined in one and
two dimensions respectively as:

TV(φ) =∑
j
|φj+1 − φj|,

TV(φ) =∑
j,k

(
∆y|φj+1,k − φj,k|+ ∆x|φj,k+1 − φj,k|

)
,

with the subscript the spatial index and with | · | the absolute value. This definition is
based on the discrete approximation of the L1-norm of the gradient. It is important to
emphasize that it represents a global property that assumes an underlying Cartesian
grid that is possibly non-uniform and does not have a straightforward equivalent
for unstructured grids. Furthermore, the TVD property does not readily extend to
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multiple dimensions. This has been the motivation for the development of local
extremum diminishing (LED) schemes [118, 119]. In the two-dimensional case, the
definition of the total variation depends on the orientation of the grid, i.e. it would
change if one would rotate the grid. This is undesirable since (i) this total variation
does not have a continuous counterpart and (ii) one generally does not want the
numerical method to depend on the coordinate system (objectivity). Note that all of
the above mentioned features and properties are satisfied by the exact solution and
are in the discrete setting closely linked. In particular cases (e.g., one-dimensional,
scalar) one implies another [88].

In the framework of finite element methods several stabilized methods have
been proposed to deal with spurious wiggles in the solution profiles of convection-
dominated problems. The well-known methods are the Streamline upwind-Petrov
Galerkin (SUPG) method [33], the Galerkin/least-squares method [106] and the
variational multiscale method [100, 103, 115]. The latter method offers a rich prospect
for design new stabilized methods and has gained a lot of attention recently [15, 49,
57, 58, 202]. In the direction of TVD schemes and maximum principles, several VMS
methods have been proposed. For example a total variation bounding constraint [67]
and the maximum principle [70] has been enforced in the VMS context. When shocks
waves form, plain stabilized methods are not sufficient and additional dissipation
mechanisms are necessary. These mechanisms are called discontinuity capturing
(DC) operators [110, 139], and are sometimes residual-based [5, 19, 185] or entropy-
residual based [85]. We refer for an overview of DC to the review papers [114, 121,
122].

To single out the physically relevant solutions the concept of entropy solutions has
been proposed by Kruvzkov in his seminal 1970 paper [135]. The entropy solution
is a limiting case of a generalized solution which perturbs the conservation law
with a diffusion term and can be used to prove existence, uniqueness and stability
theorems. In the case of systems of conservation laws, Friedrichs, Kurt and Lax show
in 1971 that if an additional conserved quantity is a convex function of the solution
then the system of equations can be symmetrized and provides a corresponding
entropy inequality [76]. Harten continues the research on symmetrizability of sys-
tems of conservation laws which possess entropy functions [89]. Additionally, he
provides symmetric formulations in conservative variables for the Euler equations
of gas dynamics. Tadmor shows a year later, in 1984, that the concepts of symmetriz-
ability, having an entropy function and having a so-called skew-selfadjoint form are
equivalent [184]. Furthermore, Tadmor identifies in [183] that any symmetric system
of conservation laws is equipped with a one-parameter family of entropy functions.
The work of Harten and Tadmor has been generalized by Hughes et al. [107] to the
compressible Navier-Stokes equations with heat conduction effects. The correspond-
ing finite element schemes satisfy by design the second law of thermodynamics, see
also [40].

Although total variation diminishing schemes have proven their power and
relevance, their use seems to be restricted to finite-difference/finite-volume dis-
cretizations and a generic finite element variant seems to be missing. Moreover, the
different concepts of total variation diminishing schemes and entropy solutions/en-
tropy variables both target to improve the solution quality at shock waves. Despite
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that they serve the same goal, a clear connection (on the continuous level) is missing.
These observations led to ponder the following two questions:

• How can we construct a local continuous generalization of the TVD stability condi-
tion?

• Is there a connection between entropy solutions and the TVD property?

The current chapter aims to answer these questions. To that purpose, we introduce
a new stability concept which we call variation entropy. Similar to the well-known
entropy concept, variation entropy solutions are those solutions for which an additional
quantity is conserved or dissipated. The fundamental difference is that a variation
entropy is a function of the gradient of the solution rather than the solution itself.
Variation entropy solutions are presented in the continuous setting and are as
such not restricted to a particular discretization. Therefore, in contrast to the TVD
property, numerical methods employing variation entropy concept may be based on
a variational setting (e.g., finite element methods). An important observation is that
the TVD property may be derived from a specific variation entropy solution.

We summarize the main definitions and results formally (i.e. up to regularization).
Consider a conservation law for the unknown φ and flux f = f (φ):

∂tφ +∇ · f = 0.

The variation entropy and the variation entropy solution are defined as follows.

Definition 4.1.1. The pair (η, q) with η = η(∇φ) is termed a variation entropy–variation
entropy flux pair if

• η is convex

• η satisfies the homogeneity property: ∇φ · ∂η

∂∇φ
= η

• q is given by q = η
∂ f
∂φ

.

Definition 4.1.2. We call the function φ a variation entropy solution if it is an integral
solution of the conservation law and formally satisfies for each variation entropy–variation
entropy flux pair:

∂tη +∇ · q ≤ 0.

An important class of variation entropies is formed by the semi-norms.

Theorem 4.1.3. If a function is a semi-norm then it is a variation entropy.

The famous TVD property is special case of the following corollary.

Corollary 4.1.4. In case of periodic or no-inflow boundaries the variation entropy decays
in time via: ∫

Ω
η(∇φ(x, t)) dΩ ≤

∫
Ω

η(∇φ0(x)) dΩ, for all t > 0.
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The remainder of the chapter can be summarized as follows. Section 4.2 provides
a brief summary of the entropy solutions in the classical sense. In Section 4.3
the concept of the variation entropy solutions is presented. This section identifies
the class of possible variation entropies. Section 4.4 discusses the selection of of
variation entropies. In particular, the well-known TVD property is here presented in
an entropy context. Finally, Section 4.5 draws the conclusions and outline avenues
for future research.

4.2 entropy solutions in the classical sense

Let Ω ⊂ Rd be an open connected domain. Let us consider the scalar conservation
problem: find φ : Ω× I → R such that

∂tφ +∇ · f = 0, (x, t) ∈ Ω× I , (4.2.1)

subject to the initial condition φ(x, 0) = φ0(x) ∈ L∞(Ω). Here f = f (φ) ∈ C(Ω, R) is
the (nonlinear) flux, the spatial coordinate denotes x ∈ Ω, the time is t ∈ I = (0, T)
with T > 0. Solutions of (4.2.1) can contain discontinuities (shocks, rarefaction waves)
which motivates the search for weak solutions. A weak solution φ ∈ L∞(Ω, R+) of
(4.2.1) satisfies ∫

R+

∫
Ω

φ∂tψ + f (φ)∇ψ dΩ dt +
∫

Ω
φ0ψ0 dΩ = 0 (4.2.2)

for all test functions ψ ∈ C1
c (Ω, R+) with ψ0(x) = ψ(x, 0). Weak solutions are

generally not unique.
Let us first consider the case of smooth solutions. Let η = η(φ) ∈ C1(R) be a

convex function. Multiplying (4.2.1) with ∂η/∂φ shows that η satisfies a conservation
law

∂tη +∇ · q = 0, (4.2.3)

when the flux q satisfies the compatibility condition:

∂q
∂φ

=
∂η

∂φ

∂ f
∂φ

. (4.2.4)

Definition 4.2.1. (Entropy/entropy-flux pair) The pair (η, q) is called an entropy/entropy-
flux pair when η is a convex function and q fulfills the compatibility condition (4.2.4). The
function η is referred to as the entropy function and q as the entropy flux.

When discontinuities appear the chain rule cannot be applied anymore and (4.2.3)
is replaced by an inequality:

∂tη +∇ · q ≤ 0. (4.2.5)

The entropy condition (4.2.5) tells us that the entropy η dissipates at shock waves.
This inequality should be understood as∫ ∞

0

∫
Ω

η(φ)∂tw + q(φ) · ∇w dΩ dt ≥ 0, (4.2.6)

for all w ∈ C∞
c (Ω× (0, ∞)), w ≥ 0.
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Definition 4.2.2. (Entropy solution) The function φ is called an entropy solution or entropic
if it is an integral solution and additionally satisfies (4.2.6) for each entropy/entropy-flux
pair.

Consider solutions φε : Ω× I → R of the approximate viscous problem:

∂tφ
ε +∇ · f ε = ε∆φε, (x, t) ∈ Ω× I , (4.2.7)

with f ε = f (φε). The vanishing viscosity solution φ is now defined as: φε → φ a.e.
for ε→ 0.

Theorem 4.2.3. Vanishing viscosity solutions are entropy solutions.

Proof. This is a direct consequence of the convexity of η and the compatibility
condition (4.2.4). For details see Evans [72].

Theorem 4.2.4. Entropy solutions of scalar conservation laws are unique.

Proof. See Evans [72].

In case Ω is a periodic domain or has no-inflow boundaries (the inflow is charac-
terized by ∂ f /∂φ · n ≤ 0 where n is the outward normal), integration of (4.2.5) over
Ω leads to a decay of the overall entropy:

d
dt

∫
Ω

η(φ(x, t)) dΩ ≤ 0, (4.2.8)

which implies: ∫
Ω

η(φ(x, t)) dΩ ≤
∫

Ω
η(φ0(x)) dΩ, for all t ≥ 0. (4.2.9)

Note that taking η(φ) = φ2/2 leads to the usual L2−stability from linear theory for
hyperbolic equations. We refer to [140] for more details.

Remark 4.2.5. We can also consider flux functions of the form f = f (φ,∇φ). For the sake
of simplicity we restrict ourselves to the case where the matrix ∂ f /∂∇φ is of the form −kI
with the scalar k ≥ 0 and the identity matrix I. The entropy condition (4.2.5) now takes the
form

∂tη +∇ · q− k∆η ≤ 0. (4.2.10)

4.3 variation entropy solutions

In this section we introduce the notion of variation entropy solutions.

4.3.1 The concept

We present the variation entropy concept for scalar conservation laws. The extension
to systems of conservation laws may be the topic of another work. We consider the
nonlinear conservation law

∂tφ +∇ · f = 0, (x, t) ∈ Ω× I , (4.3.1)
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with flux f = f (φ). Let us first consider smooth solutions. The main idea is to
look at the associated entropy relation of the spatial gradient (or variation) of the
conservation law instead of that of the plain conservation law, i.e. consider the
entropy relation of the system of equations:

∇(∂tφ) +∇(∇ · f ) = 0. (4.3.2)

The motivation of the approach stems from the observation that sharp layers in
solution profiles are characterized by large gradients. By considering a convex
function of the solution gradient these sharp layers can be identified. In Figure 4.1
we sketch the concept.

(Nonlinear) conservation law

Evolution of η = η(φ)

Multiply by ∂φη

Take gradient

Gradient of conservation law

Evolution of η = η(∇φ)

Take the inner product
with ∂η

∂∇φ

Figure 4.1: The concept of the variation entropy for a smooth solution. In the classical
approach one considers the entropy of the conservation law. The idea of the
variation entropy approach is to first take the gradient of the conservation law
and subsequently introducing the entropy concept.

Lemma 4.3.1. (Evolution equation) Let φ : Ω × I → R be a smooth solution of the
conservation law (4.3.1) and let η : Rd → R be a twice differentiable convex function of the
gradient of φ, i.e. η = η(∇φ). The temporal evolution of η reads:

∂tη +∇ · q =A , (4.3.3)

where the flux q and the non-conservative term A are respectively given by:

q =

(
∂η

∂∇φ
· ∇φ

)
∂ f
∂φ

, (4.3.4a)

A =
(
H∇φη∇φ

)
·
(

Hxφ
∂ f
∂φ

)
. (4.3.4b)

The contraction is defined as A : B = Tr(ABT), (Hxφ)mn = ∂2φ/∂xm ∂xn is the (sym-
metric) Hessian of φ and (H∇φη)mn = ∂2η/∂∇mφ∂∇nφ is the (symmetric) Hessian of
η.

Under certain conditions presented in following subsections, the function η plays
the role of an entropy. To distinguish from the classical entropy setting, we will use
the term variation entropy which will be defined later.
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Proof. (Lemma 4.3.1) Changing the order of differentiation and subsequently taking
the inner product of (4.3.2) with the variation entropy variables ∂η/∂∇φ (vector-valued)
we find:

∂tη +
∂η

∂∇φ
· ∇(∇ · f ) = 0. (4.3.5)

Consider the second term of (4.3.5) in isolation. We interchange the gradient and
divergence operators and use the product rule to arrive at:

∂η

∂∇φ
· (∇(∇ · f )) =

∂η

∂∇φ
· (∇ · (∇ f )T)

= ∇ ·
(
∇ f

∂η

∂∇φ

)
−
(
∇
(

∂η

∂∇φ

))T

: ∇ f . (4.3.6)

Here we use the notation ∇ · T = ∂xj Tij for the divergence of a tensor. The first term
of (4.3.6) yields the flux term on the left-hand side of (4.3.3). Using the chain rule
we get straightforwardly

∇ f
∂η

∂∇φ
=

(
∂η

∂∇φ
· ∇φ

)
∂ f
∂φ

. (4.3.7)

Next, by using the identity(
∇
(

∂η

∂∇φ

))T

= HxφH∇φη, (4.3.8)

the second term of (4.3.6) can be written as(
∇
(

∂η

∂∇φ

))T

: ∇ f =
(
H∇φη∇φ

)
·
(

Hxφ
∂ f
∂φ

)
. (4.3.9)

Combining (4.3.5), (4.3.6), (4.3.7) and (4.3.9) leads to the claim.

The flux term on the left-hand side of (4.3.3), composed of a convective component,
redistributes η over the domain. In absence of the non-conservative term A the
temporal evolution would mirror the classical entropy case: it would satisfy a
conservation law. We proceed with identifying the class of functions η that closely
resembles the classical entropy case.

4.3.2 Characterization of variation entropies

To closely match the classical entropy concept, the variation entropy should equip
solutions with a dissipative condition. As such the influence of the advection term
A on the right-hand side of (4.3.3) is unwanted. Thus it cannot be part of the
variation entropy concept. As a second property, we copy the convexity demand of
η from the classical case. Furthermore, since the concept serves to identify sharp
layers, we demand that η vanishes in absence of spatial gradients. We propose the
following design condition.

Design condition:

We seek a function η such that:



4.3 variation entropy solutions 85

• A = 0 (dissipative condition),

• η is convex,

• η(0) = 0.

The following lemma identifies the class of functions η that satisfy the design
condition.

Lemma 4.3.2. (Variation entropy design condition) A convex function η satisfies the design
condition for a general conservation law if and only if it fulfills the homogeneity property:

∇φ · ∂η

∂∇φ
= η. (4.3.10)

Proof. The advection term A vanishes for a general conservation law if and only
if the vectors H∇φη∇φ and Hxφ∂ f /∂φ are orthogonal. Since the sign of each of
the components of the advective speed ∂ f /∂φ is undetermined, the entries of
Hxφ∂ f /∂φ can be positive or negative. Thus the only problem-independent vector
orthogonal to Hxφ∂ f /∂φ is the zero vector. Hence seeking a function η for which
A vanishes for general conservation law is equivalent to searching a function η for
which

H∇φη∇φ = 0. (4.3.11)

Observe that this system of equations can be cast into the form:

∂

∂∇φ

(
∇φ · ∂η

∂∇φ

)
=

∂η

∂∇φ
. (4.3.12)

Integration of the i-th equation with respect to ∇iφ provides

∇φ · ∂η

∂∇φ
= η + c, (4.3.13)

where c is a constant. The condition η(0) = 0 leads to c = 0, and thus the homo-
geneity property (4.3.10) follows.

We call a function that satisfies the design condition a variation entropy, as stated
in the following definition.

Definition 4.3.3. (Variation entropy) A function η = η(∇φ) is termed a variation entropy
if

• η is convex

• η satisfies the homogeneity property (4.3.10).

An alternative form of the homogeneity property is stated in the following lemma.

Lemma 4.3.4. (Homogeneous function) A variation entropy is a positive homogeneous
function of degree 1:

η(αv) = αη(v), for all v ∈ Rd, α ≥ 0. (4.3.14)
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Proof. This is a direct consequence of Euler’s homogeneous function theorem.

By employing Lemma 4.3.4, convexity is equivalent to sub-additivity.

Lemma 4.3.5. (Sub-additivity) A positive homogeneous function of degree 1 is convex if
and only if it is sub-additive:

η(v1 + v2) ≤ η(v1) + η(v2), for all v1, v2 ∈ Rd. (4.3.15)

Combining Lemma 4.3.4 and 4.3.5 leads to the following theorem.

Theorem 4.3.6. (Variation entropy) A function η = η(∇φ) is a variation entropy if and
only if

• η is positive homogeneous function of degree 1

• η is sub-additive.

Theorem 4.3.7. (Semi-norm) If a function is a semi-norm then it is a variation entropy.

Proof. The axioms of a seminorm are absolute homogeneity, i.e.

η(αv) = |α|η(v), for all v ∈ Rd, α ∈ R, (4.3.16)

and sub-additivity. The absolute homogeneity demand (4.3.16) is a specific case of
the positive homogeneity (4.3.14).

Theorem 4.3.8. (Linear function) If a function is linear then it is a variation entropy.

Note that Theorems 4.3.7 and 4.3.8 provide sufficient but not necessary conditions.
We remark that a linear combinations of variation entropies form again a variation
entropy.

Corollary 4.3.9. (Linear combination) Let ηk be variation entropies for k = 1, .., n for some
integer n. The linear combination η := ∑k αkηk with αk ∈ R+ is a variation entropy.

Lemma 4.3.10. (Alternative form of the variation entropy) A convex function η = η(∇φ)

is a variation entropy if and only if it is of the form

η = η(∇φ) = η̂(r, θ) = F(θ)r, (4.3.17)

where F = F(θ) is a scalar-valued function and the spherical coordinates are the radius r
and the angles θ corresponding to the coordinates ∇φ. The convexity demand translates in
the two-dimensional case to

F(θ) + F′′(θ) ≥ 0. (4.3.18)

The restrictions on the function F in the 3-dimensional case are more involved.
We refer the interested reader to Appendix 4.A for the details.

Remark 4.3.11. Note that η̂ = rF(θ) is not differentiable in the origin. However the origin
is an important part of the domain since this is where φ attains a local extremum. A possible
way to bypass non-differentiability is to regularize η and thus to work with an approximate
variation entropy.
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Proof. (Lemma 4.3.10) We start from the homogeneity property

v · ∂η

∂v
= η, for all v ∈ Rd. (4.3.19)

We now switch to spherical coordinates, i.e. the coordinates consist of a radial
coordinate r and d− 1 angular coordinates θ ∈ [0, 2π), ϕm ∈ [0, π], m = 1, . . . , d− 2.
The transformation is given by:

v1 = r cos θ
d−2

∏
l=1

sin ϕl ,

v2 = r sin θ
d−2

∏
l=1

sin ϕl ,

vm = r cos ϕm−2

d−2

∏
l=m−1

sin ϕl for m = 3, ..., d− 1,

vd = r cos ϕd−2. (4.3.20)

For d = 3 the third line drops out, and for d = 2 both the third and last lines vanish.
Both cases reduce to the well-known transformations. Consult [27] for a derivation
of a similar form. The direct consequence r∂v/∂r = v provides

r
∂η̂

∂r
= r

∂η

∂v
· ∂v

∂r
= v · ∂η

∂v
. (4.3.21)

This allows us to cast (4.3.13) into the differential equation

r
∂η̂

∂r
= η̂. (4.3.22)

The corresponding solution follows straightforwardly

η̂ = η̂(r, ϕ1, ..., ϕd−2, θ) = η̂(r, θ) = F(θ)r, (4.3.23)

with F a scalar-valued function.

We characterize the convexity of η by the positivity of the eigenvalues of the
Hessian. In the two-dimensional case we have F = F(θ). The Hessian in polar
coordinates takes the form:

H∇φη =
F(θ) + F′′(θ)

r

(
sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)
. (4.3.24)

Note that this is in line with the first demand. The eigenvalues λ1, λ2 of H∇φη are

λ1 = 0, (4.3.25a)

λ2 =
F(θ) + F′′(θ)

r
, (4.3.25b)

and convexity of η follows when F(θ) + F′′(θ) ≥ 0.
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4.3.3 Variation entropy-variation entropy flux pairs

Employing the homogeneity property (4.3.10) the evolution equation of a variation
entropy takes the following form.

Lemma 4.3.12. (Evolution equation variation entropy) Let φ : Ω× I → R be a smooth
solution of the conservation law (4.3.1) and let η : Rd → R be a twice differentiable convex
function of the gradient of φ, i.e. η = η(∇φ). The temporal evolution of a variation entropy
η reads:

∂tη +∇ · q = 0, (4.3.26)

where the flux q is given by:

q = η
∂ f
∂φ

. (4.3.27)

Definition 4.3.13. (Variation entropy–variation entropy flux pair) The pair (η, q) is called
a variation entropy–variation entropy flux pair provided

• η is a variation entropy

• q satisfies the compatibility condition q = η
∂ f
∂φ

.

Remark 4.3.14. Taking the derivative of the compatibility condition with respect to ∇φ

yields for η = η(∇φ):

∂q
∂∇φ

=
∂η

∂∇φ

∂ f
∂φ

. (4.3.28)

This form highlights the relation with the compatibility condition of the classical case (4.2.4)
which states for η = η(φ):

∂q
∂φ

=
∂η

∂φ

∂ f
∂φ

. (4.3.29)

We proceed with presenting variation entropy solutions. In practice hyperbolic
problems with discontinuities are an interesting application. When discontinuities
appear the chain rule cannot be applied anymore and thus the foregoing derivation
is not valid in the current form. In the classical entropy case at this point the
conservation law of the entropy is replaced by an entropy inequality. This is well-
defined at discontinuities. For the variation entropy concept, this is not possible at
a discontinuity due to the gradient in η(∇φ). As such the concept of a variation
entropy solution can be applied to problems with sharp layers but is in the current
form not defined in case of discontinuities. We wish to emphasize that variation
entropy solutions may be very suitable in numerics though. A numerical method
approximates gradients at discontinuities (e.g., continuous finite-elements) and as
such ill-defined gradients do not appear. The variation entropy solution provides a
local stability condition that may be used to eliminate the spurious oscillations near
sharp layers or shocks.

In the following we proceed with a smooth solution to bypass this singularity
problem. We aim to closely resemble the classical entropy case in the following and
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accordingly replace the variation entropy evolution equation by the variation entropy
condition:

∂tη +∇ · q ≤ 0. (4.3.30)

This means that the variation entropy evolves according to the flux q but may
experience sudden increases. The rigorous counterpart of (4.3.30) is:∫ ∞

0

∫
Ω

η

(
∂tw +

∂ f
∂φ
· ∇w

)
dxdt ≥ 0. (4.3.31)

In a similar fashion as for entropy solutions in the classical sense we define variation
entropy solutions.

Definition 4.3.15. (Variation entropy solution) We call the smooth function φ a variation
entropy solution if it is an integral solution and additionally satisfies (4.3.31) for each
variation entropy–variation entropy flux pair.

Let us now consider the solutions φε : Ω× I → R of the approximate viscous
problem:

∂tφ
ε +∇ · f ε = ε∆φε, (x, t) ∈ Ω× I , (4.3.32)

with viscosity parameter ε > 0, flux f ε ≡ f (φε). Let the vanishing viscosity solution
denote φ = limε→0 φε.

Theorem 4.3.16. (Vanishing viscosity) The smooth function φ is a variation entropy
solution.

Proof. The proof basically is the variation entropy counterpart of the classical en-
tropy case presented in Evans [72]. The vanishing viscosity solution is an integral
solution just as used for the classical entropy case. What remains is to show that
it also satisfies the variation entropy condition. Taking the gradient of (4.3.32) and
subsequently the inner product with ∂η/∂∇φε provides

∂tη
ε +∇ · qε = ε

∂ηε

∂∇φε
· ∇(∆φε), (4.3.33)

where the superscript ε indicates dependence on ∇φε. Next, by applying the chain
rule we can evaluate the expression as:

∆ηε = ∇ · (∇ηε)

= ∇ ·
(

Hxφε ∂ηε

∂∇φε

)
=
(
HxφεH∇φε ηε

)
: Hxφε +

∂ηε

∂∇φε
· ∇(∆φε). (4.3.34)

Substitution yields:

∂tη
ε +∇ · qε = ε∆ηε − ε HxφεH∇φε ηεHxφε, (4.3.35)



90 variation entropy theory

where the flux qε satisfies the compatibility condition (4.3.27) and where the super-
script ε denotes dependence on φε instead of φ. By the convexity of ηε the second
term on the right-hand side1 has the sign:(

HxφεH∇φε ηε
)

: Hxφε ≥ 0, (4.3.36)

which implies

∂tη
ε +∇ · qε ≤ ε∆ηε. (4.3.37)

We proceed by multiplying (4.3.35) by w ∈ C∞
c (Ω× (0, ∞)), w ≥ 0, integrate and

use (4.3.36):∫ ∞

0

∫
Ω

η

(
∂tw +

∂ f
∂φ
· ∇w

)
dxdt =

∫ ∞

0

∫
Ω

ε
(
HxφH∇φη

)
: Hxφw− εη∆wdxdt

≥ −
∫ ∞

0

∫
Ω

εη∆wdxdt. (4.3.38)

Applying the dominated convergence theorem we get∫ ∞

0

∫
Ω

η

(
∂tw +

∂ f
∂φ
· ∇w

)
dxdt ≥ 0. (4.3.39)

Corollary 4.3.17. (Decay of variation entropy) Let Ω be a periodic domain or have no-
inflow boundaries and let φ be a smooth function. The variation entropy of a vanishing
viscosity solution decays in time:∫

Ω
η(∇φ(x, t)) dΩ ≤

∫
Ω

η(∇φ0(x)) dΩ, for all t > 0. (4.3.40)

Proof. Integration of (4.3.30) yields:

d
dt

∫
Ω

η(∇φ(x, t)) dΩ ≤ 0 ⇒∫
Ω

η(∇φ(x, t)) dΩ ≤
∫

Ω
η(∇φ0(x)) dΩ, for all t > 0. (4.3.41)

4.3.4 Augmented conservation laws

We consider ‘augmented conservation laws’, i.e. PDEs with a convective, diffusive
and source component of the form:

∂tφ +∇ · f = s, (x, t) ∈ Ω× I , (4.3.42)

with flux f = f (φ,∇φ) and source term s = s(φ). Here we assume that the
matrix ∂ f /∂∇φ is negative semi-definite. Let (η, q) be a variation entropy/variation

1 Note that its classical entropy counterpart is ∇φε · ∇φε∂2ηε/∂(φε)2.
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entropy flux pair. A straightforward computation shows that using the homogeneity
property (4.3.10), the evolution equation takes the form:

∂tη +∇ · q = D +S , (4.3.43)

where the flux q and the non-conservative terms D and S are respectively given
by:

q = η
∂ f
∂φ

+
∂ f

∂∇φ
∇η, (4.3.44a)

D =
(
HxφH∇φη

)
:
(

∂ f
∂∇φ

Hxφ

)
, (4.3.44b)

S =
∂s
∂φ

η. (4.3.44c)

We emphasize that this form closely resembles an augmented conservation law
with convection, diffusion and reaction components. The reaction term is the only
term that can create variation entropy (remark that it vanishes for a constant
source s). Note that negative eigenvalues of the diffusion matrix are an essential
requirement for well-posedness. Positive eigenvalues create variation entropy which
leads to a blow-up of the solutions. In the next lemma we show that the term D on
the right-hand side of (4.3.43) destroys variation entropy.

Lemma 4.3.18. (Negativity of D) The term D on the right-hand side of (4.3.43) contributes
to dissipation of the variation entropy, i.e. it takes negative values only.

Proof. The convexity of the function η = η(∇φ) implies that there exists a real
nonsingular matrix M such that

H∇φη = MTM. (4.3.45)

Substitution into the expression for D gives

D =
(
HxφH∇φη

)
:
(

∂ f
∂∇φ

Hxφ

)
=

(
MHxφ

∂ f
∂∇φ

)
: (MHxφ) ≤ 0, (4.3.46)

where the inequality follows from the fact that the diffusivity matrix is negative
semi-definite.

4.4 selection of the variation entropy

Here we provide some examples of variation entropies and discuss objectivity of
variation entropies. We present regularization of the 2-norm in detail. For the sake
of simplicity we assume smooth solutions in this section.

4.4.1 Some examples

Some examples of variation entropies are:

• The linear function η(∇φ) = a · ∇φ, with a ∈ Rd.
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• The function η(∇φ) = |||∇φ|||A defined as |||∇φ|||2A := ∇φTA∇φ, with A ∈
Rd×d a symmetric positive-semidefinite matrix.

• The standard p-norm, i.e. η(∇φ) = ‖∇φ‖p with p ≥ 1.

By Corollary 4.3.9, any superposition of the previous variation entropies is also a
variation entropy.

Proposition 4.4.1. The alternative form of the variation entropy is

η̂(r, θ) = rF(θ) (4.4.1)

where F = F(θ) is given by

for d = 2 :

F(θ) =


a1 cos θ + a2 sin θ for η(∇φ) = a · ∇φ(

a11 cos2 θ + 2a21 cos θ sin θ + a22 sin2 θ
)1/2 for η(∇φ) = |||∇φ|||A

(| cos θ|p + | sin θ|p)1/p for η(∇φ) = ‖∇φ‖p

(4.4.2)

for d = 3 :

F(θ, ϕ) =



a1 cos θ sin ϕ + a2 sin θ sin ϕ + a3 cos ϕ for η(∇φ) = a · ∇φ(
a11 cos2 θ sin2 ϕ + a22 sin2 θ sin2 ϕ + a33 cos2 ϕ

+2a21 cos θ sin θ sin2 ϕ + 2a31 cos θ sin ϕ cos ϕ

+2a32 sin θ sin ϕ cos ϕ)1/2 for η(∇φ) = |||∇φ|||A

(| cos θ sin ϕ|p + | sin θ sin ϕ|p + | cos ϕ|p)1/p for η(∇φ) = ‖∇φ‖p.

Proof. We present the proof only for η(∇φ) = |||∇φ|||A with d = 2, the other forms
follow similarly. A direct calculation provides

∇φTA∇φ = a11∂xφ2 + 2a21∂xφ∂yφ + a22∂yφ2. (4.4.3)

Next, we can trivially write

|||∇φ|||A = ‖∇φ‖2

(
a11

∂xφ2

‖∇φ‖2
2
+ 2a21

∂xφ∂yφ

‖∇φ‖2
2
+ a22

∂yφ2

‖∇φ‖2
2

)1/2

. (4.4.4)

Switching to polar coordinates with radial distance r and angle θ, the right-hand
side of (4.4.4) takes the form

rF(θ) = r
(
a11 cos2 θ + 2a21 cos θ sin θ + a22 sin2 θ

)1/2
. (4.4.5)

Note that fulfilling the convexity condition requires the positive semi-definiteness
of the matrix A:

F(θ) + F′′(θ) =
det A
F(θ)3 ≥ 0. (4.4.6)

Here det A denotes the determinant of matrix A.
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The linear variation entropy fulfills the convexity condition in spherical coordi-
nates with equality, for d = 2 this reads

F(θ) + F′′(θ) = 0. (4.4.7)

Thus there is no space for the variation entropy to decrease. It is known that the
entropy does not remain constant at shocks. This makes the linear variation entropy
a non-suitable mechanism to deal with shock waves in a numerical simulation.

For the 1-norm variation entropy, i.e. η = ‖∇φ‖1, we have

F(θ) + F′′(θ) = 0, θ 6= mπ/2 m ∈ Z. (4.4.8)

We remark that the 1-norm is not differentiable along the axis. Thus also for the
1-norm there is also no space for the variation entropy to decrease. For p > 1 the
convexity condition is not an equality which makes it suitable for shocks.

Next we consider the quadratic form. Proposition 4.4.1 reveals that the matrix A ∈
Rd×d in the quadratic form may depend on θ (the spherical coordinate angles). We
explicitly state the evolution equation of η = |||∇φ|||A for an augmented conservation
law. Note that the derivatives take the form

∂η

∂∇φ
=

1
η

A∇φ, (4.4.9a)

(H∇φη) =
1
η

A− 1
η3 A∇φ(A∇φ)T. (4.4.9b)

Substitution of (4.4.9) into (4.3.43)-(4.3.44) reveals that the variation entropy evolves
as:

∂tη +∇ · q =D +S , (4.4.10)

where the flux q and the non-conservative terms D and S are respectively given
by:

q = η
∂ f
∂φ

+

(
∂ f

∂∇φ
Hxφ

)
∇φTA

η
, (4.4.11a)

D =

(
Hxφ

(
A
η
− 1

η3 A∇φ : A∇φ

))
:
(

∂ f
∂∇φ

Hxφ

)
, (4.4.11b)

S =
∂s
∂φ

η. (4.4.11c)

4.4.2 Objectivity

A reasonable demand on the continuous level is to ask for objectivity (frame-
invariance) of the variation entropy. Here we solely focus on rotation invariance, as
invariance by translation is immediate. Thus we wish to identify those variation
entropies which are not affected by a rotation of the coordinate system. We denote
with x the original spatial coordinates and x̃ = Rx the rotated coordinate system
with rotation matrix R (i.e. RT = R−1).

Let us first consider variation entropies which depend on spatial coordinates
solely via ∇φ. This means that possible coefficients, like in a and A appearing in
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η = a · ∇φ and η = |||∇φ|||A respectively, are constant with respect to the spatial
coordinates. In this case rotation invariance may be written as:

η(∇x̃φ) = η(∇xφ), (4.4.12)

or equivalently:

η(R∇x̃φ) = η(∇x̃φ), η(RT∇xφ) = η(∇xφ). (4.4.13)

The subscript refers to the corresponding coordinate system.

Theorem 4.4.2. (Objectivity) The only objective variation entropy with constant coefficients
is the total variation measured in the 2-norm, η = ‖∇φ‖2 (up to multiplication by a
constant).

Proof. We use the alternative form of Lemma 4.3.10. Let the angles of the rotation
matrix R be $ and let polar angles of ∇φ denote θ. A direct computation results in

η(R∇φ) = rF(θ+ $) = η̂(r, θ+ $). (4.4.14)

Demanding η(R∇φ) = η(∇φ) provides that F(θ+ $) = F(θ) for all angles $, i.e. F
is a constant.

Thus the only objective p-norm with constant coefficients is the norm with p = 2.
In particular, we wish to emphasize that the 1-norm is not objective. This makes it
unsuitable for usage in non-Cartesian grid computations.

Next we proceed with the case in which the coefficients may depend on spatial
coordinates. We first consider the linear variation entropy. Objectivity results when

a(x) · ∇xφ = a(x̃) · ∇x̃φ. (4.4.15)

By applying the chain rule we get

a(x) · ∇xφ = a(Rx) · RT∇xφ. (4.4.16)

Thus objectivity follows when the coefficient vector satisfies:

a(Rx) = Ra(x). (4.4.17)

Note that when a represents a convection velocity, a rotation of coordinate system
naturally implies the same rotation of the convective velocity.

Consider now the variation entropy η = |||∇φ|||A with A a symmetric positive
semi-definite matrix. This variation entropy is objective when

|||∇xφ|||A(x) = |||∇x̃φ|||A(x̃). (4.4.18)

A similar argument leads to the constraint:

A(Rx) = RA(x)RT. (4.4.19)

Remark that A = I is included in this case.
An overview of the variation entropy results is presented in Figure 4.2.
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Objective variation
entropies

η = ‖∇φ‖2

Variation entropies

Semi-norms

Linear
functions

η = a · ∇φ

η = ‖∇φ‖p,
p ≥ 1, p 6= 2

Norms

η = |||∇φ|||B
η = |||∇φ|||A

Figure 4.2: Overview of objective variation entropy results. The variation entropy ‖∇φ‖p is
not objective unless p = 2. The matrices A and B are positive semi-definite and
positive definite respectively. The vector and matrices in η = a · ∇φ, η = |||∇φ|||A
and η = |||∇φ|||B are chosen according to (4.4.17) and (4.4.19), and as such we
classify these variation entropies as objective.

4.4.3 Regularization of 2-norm variation entropy

Due to its importance, we discuss the 2-norm variation entropy here separately. In
particular we consider a regularized version in order to allow evaluation everywhere.
Thus we study the case where the variation entropy function is the regularized
absolute value operator ‖ · ‖ε,2 : Rd → R+ which is defined for b ∈ Rd, ε > 0 as:

‖b‖2
ε,2 := b · b + ε2. (4.4.20)

Notice that

‖b‖2 ≤ ‖b‖ε,2 ≤ ‖b‖2 + ε, (4.4.21)

as displayed in Figure 4.3.
The regularized absolute value has the derivatives:

∂b‖b‖ε,2 =
b
‖b‖ε,2

, (4.4.22a)

∂2
b‖b‖ε,2 =

(
I− bbT

‖b‖2
ε,2

)
1
‖b‖ε,2

, (4.4.22b)

which exist everywhere. The homogeneity constraint (4.3.10) is violated by a term
that scales with ε2:

b · ∂b‖b‖ε,2 − ‖b‖ε,2 =
ε2

‖b‖ε,2
. (4.4.23)
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Figure 4.3: Plot of the regularized norm in (a) 1-dimension and (b) 2-dimensions. Here
ε = 0.2.

Also the term that appears in A scales with ε2:

∂2
b‖b‖ε,2b = ε2 b

‖b‖3
ε,2

. (4.4.24)

Corollary 4.4.3. (Evolution equation of a regularized variation entropy) The regularized
variation η = ηε = ‖∇φ‖ε,2 satisfies the evolution equation:

∂tηε +∇ · qε = Dε +Sε +Rε, (4.4.25)

where the flux qε, the non-conservative terms Aε and Dε and the source term Sε are
respectively defined as:

qε =
∂ f
∂φ

ηε +
∂ f

∂∇φ
∇ηε, (4.4.26a)

Dε =
1
η3

ε

((
‖∇φ‖2

2I−∇φ∇φT
)

Hxφ
)

:
(

∂ f
∂∇φ

Hxφ

)
, (4.4.26b)

Sε =
∂s
∂φ

ηε, (4.4.26c)

Rε =
ε2

ηε

(
∇ ·

(
∂ f
∂φ

)
+

1
η2

ε

Hxφ :
(

∂ f
∂∇φ

Hxφ

)
− ∂s

∂φ

)
. (4.4.26d)

Proof. A direct substitution of η = ηε into (4.3.43)-(4.3.44) using (4.4.20)-(4.4.24)
yields

∂tηε +∇ · q =A +D +S , (4.4.27)
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where the flux q, the non-conservative terms A and D and the source term S are
respectively given by:

q =
∂ f
∂φ

(
ηε −

ε2

ηε

)
+

∂ f
∂∇φ

∇η, (4.4.28a)

A =
ε2

η2
ε

∇φ

ηε
·
(

Hxφ
∂ f
∂φ

)
, (4.4.28b)

D =
1
ηε

((
I− ∇φ∇φT

η2
ε

)
Hxφ

)
:
(

∂ f
∂∇φ

Hxφ

)
, (4.4.28c)

S =
∂s
∂φ

(
ηε −

ε2

ηε

)
. (4.4.28d)

The divergence of the flux writes as

∇ · q = ∇ ·
(

∂ f
∂φ

(
ηε −

ε2

ηε

)
+

∂ f
∂∇φ

∇η

)
,

= ∇ ·
(

∂ f
∂φ

ηε +
∂ f

∂∇φ
∇η

)
+

ε2

η3
ε

∇φ ·
(

Hxφ
∂ f
∂φ

)
− ε2

ηε
∇ ·

(
∂ f
∂φ

)
= ∇ · qε +A − ε2

ηε
∇ ·

(
∂ f
∂φ

)
. (4.4.29)

The diffusion term D can be written as

D =

(
1
ηε

(
I− ∇φ∇φT

η2
ε

)
Hxφ

)
:
(

∂ f
∂∇φ

Hxφ

)
,

=
1
η3

ε

((
‖∇φ‖2

2I−∇φ∇φT
)

Hxφ
)

:
(

∂ f
∂∇φ

Hxφ

)
+

ε2

η3
ε

Hxφ :
(

∂ f
∂∇φ

Hxφ

)
= Dε +

ε2

η3
ε

Hxφ :
(

∂ f
∂∇φ

Hxφ

)
. (4.4.30)

Substitution of (4.4.29)-(4.4.30) into (4.4.27)-(4.4.28) proves the claim.

Consider the one-dimensional case of (4.4.25)-(4.4.26), i.e.

∂

∂t
‖∂xφ‖ε,2 + ∂x

(
∂ f
∂φ
‖∂xφ‖ε,2 +

∂ f
∂(∂xφ)

∂x (‖∂xφ‖ε,2)

)
=

∂s
∂φ
‖∂xφ‖ε,2 +Rε. (4.4.31)

We focus on the last term on the right-hand side. It can be written as

Rε =

(
∂x

(
∂ f
∂φ

)
− ∂s

∂φ

)
gε

1(∂xφ) +

(
(∂xxφ)2 ∂ f

∂∂xφ

)
gε

2(∂xφ), (4.4.32)

where the functions gε
1 and gε

2 are defined as

gε
1(∂xφ) =

ε2

‖∂xφ‖ε,2
, (4.4.33a)

gε
2(∂xφ) =

ε2

‖∂xφ‖3
ε,2

. (4.4.33b)

In Figure 4.4 we plot gε
1 and gε

2 for several values of ε.
The function gε

1 vanishes in the limit ε ↓ 0 and its value at the origin is gε
1(0) = ε.
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(a) gε
1 = gε

1(∂xφ)

(b) gε
2 = gε

2(∂xφ)

Figure 4.4: Plot of the functions gε
1 (a) and gε

2 (b). On the horizontal axis ∂xφ varies.

On the other hand, gε
2 behaves as a (scaled) delta distribution centered at the origin.

The value at the origin is gε
2(0) = ε−1 and the area under the profile gε

2 is 2 (which
is independent of ε). Thus the regularization focuses the diffusion contribution at
points where ∂xφ approaches zero, i.e. the extrema of φ. For ε ↓ 0 we conclude that
in one dimension variation entropy can either be produced by diffusion at local
extrema or by the source term.

In the multi-dimensional case (d > 1) the variation entropy diffusion D does
not vanish. This is a clear separation of the 1-dimensional case and the multi-
dimensional case. We explicitly state the temporal evolution of the non-regularized
variation. The limit of ε ↓ 0 in (4.4.25)-(4.4.26) yields:

∂t‖∇φ‖2 +∇ · q = D +S , (4.4.34)

where the flux q, the non-conservative terms A and D and the source term S are
respectively defined as:

q =
∂ f
∂φ
‖∇φ‖2 +

∂ f
∂∇φ

∇‖∇φ‖2, (4.4.35a)

D =
1

‖∇φ‖2

((
I− ∇φ∇φT

‖∇φ‖2
2

)
Hxφ

)
:
(

∂ f
∂∇φ

Hxφ

)
, (4.4.35b)

S =
∂s
∂φ
‖∇φ‖2, (4.4.35c)

which is not defined for ∇φ = 0.
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Remark 4.4.4. We emphasize that the well-known total variation diminishing (TVD)
constraint:

d
dt

∫
Ω
‖∇φ(x, t)‖2 dΩ ≤ 0⇒

∫
Ω
‖∇φ(x, t)‖2 dΩ ≤

∫
Ω
‖∇φ0(x)‖2 dΩ,

for t > 0 (4.4.36)

is special case of decay of variation entropy (substitute η = ‖∇φ‖2 into Corollary 4.3.17).

We wish to indicate the effect of regularization on the total variation. To that
purpose we compute the total variation and its regularized counterpart for two
functions: (i) a linear approximation of the Heaviside function

φL,E (x) =


0 if x ≤ −E

1
2

(
1 + x

E
)

if x < |E |
1 if x ≥ E

, (4.4.37)

and (ii) a smoothed Heaviside function:

φS,E (x) =


0 if x ≤ −E

1
2

(
1 + x

E +
1
π sin

( xπ
E
))

if x < |E |
1 if x ≥ E

. (4.4.38)

This smoothed Heaviside is often used for levelset computations, see e.g., [3, 5]. We
plot the approximated Heaviside functions and the (regularized) 2-norms of their
derivatives in Figure 4.5.
The total variation and its regularizations are defined as:

TV(φE ) =
∫ E
−E
‖∂xφE (x)‖2 dx, (4.4.39a)

TVε(φE ) =
∫ E
−E
‖∂xφE (x)‖ε,2 dx, (4.4.39b)

TVε(φE ) =
∫ E
−E
‖∂xφE (x)‖2 + ε dx. (4.4.39c)

The total variation (4.4.39a) is independent of the regularization parameter E since
the functions (4.4.37)-(4.4.38) monotonically increase from 0 to 1 and thus we have:

TV(φL,E ) = TV(φS,E ) = 1. (4.4.40)

The regularized total variation (4.4.39b) for the linear approximation (4.4.37) equals:

TVε(φL,E ) =
√

1 + 4E2ε2. (4.4.41)

Generally a small value is chosen for the parameters E and ε which indicates that for
the linear approximation the regularized total variation is nearly indistinguishable
from its exact counterpart. In Figure 4.6 we show the (regularized) total variation
for the both approximations.
We see that also for the smooth Heaviside small regularization parameters E and ε

indicate a close resemblance with the exact value. Note that the estimate

TV(φ) ≤ TVε(φ) ≤ TVε(φ), (4.4.42)

which is a direct consequence of (4.4.21), is confirmed by Figure 4.6.
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Figure 4.5: Plot of (a) the smooth Heaviside and (b) the (regularized) 2-norms of its deriva-
tive. Here ε = 0.2 and E = 0.1.

4.5 conclusion and discussion

The purpose of this chapter is to answer the two questions:

• How can we construct a local continuous generalization of the TVD stability condi-
tion?

• Is there a connection between entropy solutions and the TVD property?

To accomplish this we have developed the new stability concept variation entropy for
nonlinear conservation laws. The core idea is to develop an entropy concept based
on the gradient of the solution of a conservation law instead of on the solution itself.
This may be a more natural and suitable approach when dealing with shock waves,
which are characterized by their large gradients.

Variation entropy solutions are formulated in the continuous setting and as such
employing this concept eliminates the restrictions of the TVD property. Variation
entropies are homogeneous convex functions. As a result, all semi-norms are suitable
variation entropies. A particular choice is the standard 2-norm variation entropy
which can be viewed as local continuous evolution equation of the TVD property.
This sheds light on the TVD property from the perspective of entropy solutions. In
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Figure 4.6: Plot of total variation and its regularization for (a) the linearized Heaviside
(E = 0.1) and (b) the smooth Heaviside for E = 0.05, 0.1, 0.02.

other words, variation entropy solutions are the link between classical entropy solutions
and the TVD property.

This work opens several doors for future research. The class of variation entropy
solutions can be used to design new numerical methods. Numerical solutions in this
class cannot create variation entropy and thus satisfy a local TVD stability property.
This precludes spurious oscillations which is crucial near shock waves.

A particular open problem is the construction of discontinuities capturing mech-
anisms in finite element methods. A discontinuity capturing operator could be
directly based on the variation entropy condition. It could add diffusion where
the variation entropy condition is harmed and render inoperative elsewhere. We
believe that a natural way to arrive at a discontinuity capturing method is via the
variational multiscale (VMS) method. In Chapter 5 we explore this approach and
use the multiscale split projector to demand the variation entropy condition. This
naturally results in a consistent VMS method equipped with a penalty term that
adds diffusion when the variation entropy condition is violated.
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4.a the 3-dimensional version of the convexity condition

Theorem 4.A.1. Let the dimension d = 3. Assume a zero source term, i.e. s = 0. The
variation entropy η = η(∇φ) diminishes in time, i.e.∫

Ω
η(∇φ(x, t)) dΩ ≤

∫
Ω

η(∇φ0(x)) dΩ, (4.A.1)

for all t > 0, if and only if the variation entropy is given by

η = η(∇φ) = η(r, ϕ) = F(θ, ϕ)r, (4.A.2)

where r and the ϕ are the polar coordinates corresponding to ∇φ. The scalar-valued function
F = F(ϕ, θ) satisfies

A ≥ 0, (4.A.3a)

B ≤ A. (4.A.3b)

with

A = 4
(

2F +
∂F
∂ϕ

cot ϕ +
∂2F
∂θ2 csc2 ϕ

)
,

B =
√

2 csc2 ϕ

(
∂F
∂ϕ

2

(1− cos 4ϕ) + 32
(

∂F
∂θ

)2

+ 8
(

∂2F
∂θ2

)2

+32

((
∂2F

∂ϕ∂θ

)2

−
(

∂F
∂θ

)2
)

sin2 ϕ

+8
(

∂F
∂ϕ

∂2F
∂θ2 − 4

∂2F
∂ϕ∂θ

∂F
∂θ

)
sin(2ϕ)

)1/2

. (4.A.4a)

Proof. We provide the details of the restriction (4.A.3a)-(4.A.3b) on F. We follow the
same procedure as in the 2-dimensional case and thus we show that the eigenvalues
of the Hessian are positive. Therefore we employ spherical coordinates:

v1 = r cos θ sin ϕ (4.A.5a)

v2 = r sin θ sin ϕ (4.A.5b)

v3 = r cos ϕ (4.A.5c)

The first derivatives can be written in spherical coordinates as:

∂

∂v1
= cos θ sin ϕ

∂

∂r
− sin θ

r sin ϕ

∂

∂θ
+

cos θ cos ϕ

r
∂

∂ϕ
(4.A.6a)

∂

∂v2
= sin θ sin ϕ

∂

∂r
+

cos θ

r sin ϕ

∂

∂θ
+

sin θ cos ϕ

r
∂

∂ϕ
(4.A.6b)

∂

∂v3
= cos ϕ

∂

∂r
− sin ϕ

r
∂

∂ϕ
(4.A.6c)
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The computation of the second derivatives is straightforward but at the same time
quite involved. Here we only provide the resulting components of the Hessian,
which are

∂2

∂v2
1

η =
sin2 θ

r
F− sin θ cos θ

r
∂F
∂θ

+
sin θ cos θ

r sin2 ϕ

∂F
∂θ

+
sin2 θ

r sin2 ϕ

∂2F
∂θ2 +

sin2 θ cos ϕ

r sin ϕ

∂F
∂ϕ

a f f f f f f f f ggggg

− sin θ cos θ cos ϕ

r sin ϕ

∂2F
∂ϕ∂θ

+
cos2 θ cos2 ϕ

r
F +

cos θ cos2 ϕ sin θ

r sin2 ϕ

∂F
∂θ

− cos θ sin θ cos ϕ

r sin ϕ

∂2F
∂ϕ∂θ

+
cos2 θ cos2 ϕ

r
∂2F
∂ϕ2 , (4.A.7a)

∂2

∂v2
2

η =
cos2 θ

r
F +

sin θ cos θ

r
∂F
∂θ
− sin θ cos θ

r sin2 ϕ

∂F
∂θ

+
cos2 θ

r sin2 ϕ

∂2F
∂θ2 +

cos2 θ cos ϕ

r sin ϕ

∂F
∂ϕ

a f f f f f f f f ggggg

+
sin θ cos θ cos ϕ

r sin ϕ

∂2F
∂ϕ∂θ

+
sin2 θ cos2 ϕ

r
F− cos θ cos2 ϕ sin θ

r sin2 ϕ

∂F
∂θ

+
cos θ sin θ cos ϕ

r sin ϕ

∂2F
∂ϕ∂θ

+
sin2 θ cos2 ϕ

r
∂2F
∂ϕ2 , (4.A.7b)

∂2

∂v2
3

η =

(
F +

∂2F
∂ϕ2

)
sin2 ϕ

r
, a f e f f f f f f f f f f f f f f f f f f f f f 66666666 f f f f f f f f f f f ggggg

(4.A.7c)

∂2η

∂v1∂v2
=

∂2η

∂v2∂v1
= cos2 ϕ

sin2 θ − cos2 θ

r sin2 ϕ

∂F
∂θ
− sin θ cos θ

r sin2 ϕ

∂2F
∂θ2 a f e f ggggghhhhiiiiiiiimmmm

− sin θ cos θ cos ϕ

r sin ϕ

∂F
∂ϕ
− cos θ sin2 ϕ sin θ

r
Fa f e f ggggghhhh

+
(cos2 θ − sin2 θ) cos ϕ

r sin ϕ

∂2F
∂ϕ∂θ

+
sin θ cos θ cos2 ϕ

r
∂2F
∂ϕ2 , (4.A.7d)

∂2

∂v1∂v3
η =

∂2

∂v3∂v1
η = −sin ϕ cos θ cos ϕ

r

(
F +

∂2F
∂ϕ2

)
− sin θ cos ϕ

r sin ϕ

∂F
∂θ

a f e f ggggghhhh

+
sin θ

r
∂2F

∂ϕ∂θ
, a f e f ggggghhhh (4.A.7e)

∂2

∂v2∂v3
η =

∂2

∂v3∂v2
η = −sin ϕ sin θ cos ϕ

r

(
F +

∂2F
∂ϕ2

)
+

cos θ cos ϕ

r sin ϕ

∂F
∂θ

a f e f ggggghhhh

− cos θ

r
∂2F

∂ϕ∂θ
.a f e f ggggghhhh (4.A.7f)
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The eigenvalues of the Hessian can be computed to be:

λ1 = 0, (4.A.8a)

λ2 =
1
8r

[
8F + 4

∂F
∂ϕ

cot ϕ + 4
∂2F
∂θ2 csc2 ϕ

+
√

2 csc2 ϕ

(
∂F
∂ϕ

2

(1− cos 4ϕ) + 32
∂F
∂θ

2

+ 8
∂2F
∂θ2

2

+32

((
∂2F

∂ϕ∂θ

)2

−
(

∂F
∂θ

)2
)

sin2 ϕ

+8
(

∂F
∂ϕ

∂2F
∂θ2 − 4

∂2F
∂ϕ∂θ

∂F
∂θ

)
sin(2ϕ)

)1/2
]

, (4.A.8b)

λ3 =
1
8r

[
8F + 4

∂F
∂ϕ

cot ϕ + 4
∂2F
∂θ2 csc2 ϕ

−
√

2 csc2 ϕ

(
∂F
∂ϕ

2

(1− cos 4ϕ) + 32
∂F
∂θ

2

+ 8
∂2F
∂θ2

2

+32

((
∂2F

∂ϕ∂θ

)2

−
(

∂F
∂θ

)2
)

sin2 ϕ

+8
(

∂F
∂ϕ

∂2F
∂θ2 − 4

∂2F
∂ϕ∂θ

∂F
∂θ

)
sin(2ϕ)

)1/2
]

. (4.A.8c)

Positivity of the eigenvalues leads to the restrictions on F.
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5
A T H E O R E T I C A L F R A M E W O R K F O R
D I S C O N T I N U I T Y C A P T U R I N G

“We believe that the multiscale framework with a proper set of optimality conditions is
the right underlying theoretical structure that may more naturally lead to discontinuity
capturing formulations. − Bazilevs et al. [19]

This chapter is reproduced from [61]:

M.F.P. ten Eikelder, Y. Bazilevs and I. Akkerman, A theoretical framework for discontinu-
ity capturing: Joining variational multiscale analysis and variation entropy theory, Comput.
Methods. Appl. Mech. Engrg. (2020) 112664

abstract

In this chapter we show that the variational multiscale method together with the variation
entropy concept form the underlying theoretical framework of discontinuity capturing.
Variation entropy theory (Chapter 4) is the recently introduced concept that equips total
variation diminishing solutions with an entropy foundation. This is the missing ingredient
in order to show that the variational multiscale method can capture sharp layers. The novel
framework naturally equips the variational multiscale method with a class of discontinuity
capturing operators. This class includes the popular YZβ method and methods based on the
residual of the variation-entropy. The discontinuity capturing mechanisms do not contain
ad hoc devices and appropriate length scales are derived. Numerical results obtained with
quadratic NURBS are virtually oscillation-free and show sharp layers, which confirms the
viability of the methodology.
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5.1 introduction

Discontinuities in physical quantities such as densities, pressures and velocities often
occur in scientific and industrial problems. Common examples include explosions,
cavitation events, two-fluid flows and traffic congestion. These phenomena are gener-
ally modeled by (nonlinear) conservation laws. Numerical methods that aim to solve
these conservation laws encounter difficulties at the shock waves. Straightforward
discretizations pollute the discrete solution by spurious oscillations. To overcome
this, the numerical method typically introduces additional diffusion/viscosity near
the shock. There exist many possibilities, depending on the underlying numerical
method, on how to determine this diffusion term.

In the finite-difference and finite-volume world, additional diffusion is often
the result of one of the following approaches. Perhaps the simplest technique to
introduce diffusion is to use a standard upwind method. This removes the spurious
oscillations, but the price one has to pay is a significant decrease of accuracy. An
alternative is to use a monotonic upwind scheme for conservation laws (MUSCL)
[182, 192, 195, 196], also known as a limiter scheme, which reduces the numerical
flux to first-order near the shock. Several other approaches equip the numerical
method with discrete features. Examples include schemes with the monotonicity
property [88], the total variation diminishing schemes [88, 90, 175] or methods that
ensure the maximum principle [88, 204], e.g., in two-fluid flow simulations [8, 53,
63].

In the context of finite element methods, the spurious wiggles were first addressed
with the Streamline upwind-Petrov Galerkin (SUPG) method for incompressible flow
problems in the well-known 1982 paper [33] and for compressible flow problems in
[116, 187]. The compressible flow case required a quasi-linear form which leads to
the concept of generalized advection operators. In both cases the SUPG method adds
diffusion only in the direction of the flow and is not subject to artificial diffusion
criticism. The SUPG method provides accurate solutions without oscillations when
strong shocks are absent. In regions near sharp layers a more robust formulation
was needed. To this purpose, several shock capturing operator mechanisms are
introduced. One of the first of these techniques has been proposed in [112]. This
method provides control of gradient of the solution. The sharp layers in compressible
flows were addressed by Hughes et al. who proposed to use entropy variables [107]
and entropy variables in combination with the SUPG operator [91, 110]. Le Beau
and Tezduyar equipped the original SUPG method with a shock capturing operator
in conservative variables [138, 139]. The numerical computations reveal that results
of using entropy variables without shock-capturing are nearly indistinguishable
from using conservative variables with shock-capturing [138]. This might indicate
a similarity or relation between shock capturing methods and entropy variables.
Another important discontinuity capturing method is YZβ shock-capturing [19, 185,
189, 190]. This shock-capturing method is based on scaled residuals and contains
user-defined parameters which can be chosen depending on the smoothness of
the layer. Other work on discontinuity capturing includes the CAU method [77] in
which the flow velocity in the SUPG term is replaced by an approximate upwind
direction and the work of Sampaio and Coutinho [54] in which an effective transport
velocity is used. For a more complete overview of stabilized methods and shock
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capturing techniques for compressible flows we refer to the review papers [114, 121,
122].

A particular class of stabilized finite element methods is that of the variational
multiscale methods [100, 103, 115]. The idea is to incorporate the effect of the
small-scales via a model equation in the resolved part of the solution. This improves
the stability of the finite element scheme. This framework provides a theoretical
foundation of stabilized methods. It has been widely applied for the computation
of incompressible turbulence [4, 16, 17, 49, 58, 94, 131, 163]. The corresponding
turbulence model is residual-based and does not contain ad-hoc mechanisms. The
technique finds also applications in free surface flow and FSI computations [3, 5,
133, 141]. The multiscale formulation is often augmented with an artificial disconti-
nuity capturing term when sharp layers may occur. The VMS method offers rich
possibilities to design new methods. It can be used to enforce a particular property
in the numerical method, such as a total variation bounding constraint [67] and the
maximum principle [70]. Other recent work includes a VMS method that employs
particular fine-scale models to arrive at a discontinuity capturing term [147].

Recently a popular discontinuity capturing method known by the name entropy
viscosity method has been introduced [85]. This method bases the added nonlinear
viscosity on the entropy residual. The motivation originates from the fact that the
entropy satisfies a conservation equation in smooth regions and an inequality at
shock waves. Basing the viscosity on the entropy production does not affect the
smooth regions while in shock regions numerical dissipation is added. The entropy
viscosity method has been further developed in the framework of discontinuous
Galerkin methods in [206]. Furthermore, the stability of explicit entropy viscosity
methods has been analyzed [28]. The method is a promising technique and has
shown quite well behavior on many benchmark problems. It is however an heuristic
approach for which, to the best knowledge of the authors, the theoretical justification
is still missing. We cite

Guermond et al. [85]: ‘the amount of theory to justify the approach is almost non-
existent. The justification of the method is mainly heuristic for the time being.’.

The idea of using an entropy concept to locate sharp layers is interesting. We
have recently proposed the variation entropy theory [59] which provides entropy
solutions with a new perspective and can be viewed an extension of total variation
diminishing solutions. In order to identify sharp layers in solution profiles, the
idea is to look at the gradient of the solution instead of at the solution itself. The
variation entropy concept provides an entropy framework to analyze the behavior
of the gradient of the solution using the so-called variation entropy condition. In a
numerical setting this can be a tool to locate Gibbs oscillations.

All the previously mentioned techniques that add numerical diffusion in the
region of the sharp layer are in some way the result of equipping the method with
a favorable numerical property. The methods are ad hoc technologies that are not
derived from the continuous partial differential equation. We note that Bazilevs et
al. [19] conjecture that the variational multiscale method is the correct theoretical
groundwork for discontinuity capturing methods:
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Bazilevs et al. [19]: ‘While stabilized methods may be derived on the basis of the varia-
tional multiscale methodology, discontinuity capturing is an ad hoc technique. Nevertheless,
it is a widely used technology that enables a practitioner to successfully tackle real-world
applications. We believe that the multiscale framework with a proper set of optimality
conditions is the right underlying theoretical structure that may more naturally lead to
discontinuity capturing formulations. This conjecture is intriguing and warrants further
investigation.’.

In the current chapter we prove that this conjecture is valid. To establish this, we
unify previous ideas and concepts into a variational multiscale-variation entropy
framework. We believe that the variation entropy theory was the missing element in
order to be able to demonstrate the correctness of the conjecture in [19]. The variation
entropy idea tells us the location of the viscosity whereas the multiscale concept
provides a way to model the viscosity via the missing scales. Merging the variational
multiscale method with the variation entropy framework naturally augments the
VMS method with a discontinuity capturing operator. We sketch this in Figure 5.1.
We propose a discontinuity capturing viscosity that is variation-entropy residual-
based. In some sense this is similar to the entropy viscosity method [85] where the
residual is based on the entropy. In contrast, our discontinuity capturing term comes
with theoretical foundations. We emphasize that the proposed framework does not
contain ad hoc devices. The approximate small-scale models are physics-based by
means of Green’s functions and residuals.

Variational multiscale
analysis

Variation entropy
theory

Discontinuity
capturing

Merge

Figure 5.1: Merging the variational multiscale method and the variation entropy concept
leads to a discontinuity capturing term

The remainder of the work can be summarized as follows. The Section 5.2 briefly
introduces the notion of entropy and variation entropy solutions. In Section 5.3 we
present the discontinuity capturing framework based on the variational multiscale
analysis and variation entropy theory. Section 5.4 presents numerical results and in
Section 5.5 we draw the conclusions and outline avenues for future research.

5.2 entropy solutions

5.2.1 The classical entropy

Let Ω ⊂ Rd be an open and connected domain. Consider the scalar-valued conser-
vation problem:
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find φ : Ω× I → R such that

∂tφ +∇ · f = 0, (x, t) ∈ Ω× I , (5.2.1a)

φ(x, 0) = φ0(x). (5.2.1b)

The problem is equipped with appropriate boundary conditions. We assume that
the initial condition φ0 ∈ L∞(Ω) has compact support in Ω. The smooth (nonlinear)
flux denotes f = f(φ), the spatial coordinate is x ∈ Ω and time is t ∈ I = (0, te)

with te > 0. The problem (5.2.1) can produce discontinuities and shocks which
motivates the usage of weak solutions. A weak solution φ is a bounded function
that satisfies ∫ ∞

0

∫
Ω
(φ∂tv + f · ∇v)dxdt +

∫
Ω

φ0(x)v(x, 0)dx = 0, (5.2.2)

for all test functions v ∈ C∞
c (Ω× (0, ∞)) (i.e. v is smooth and has compact support).

An important observation is that physically and mathematically correct solutions
are vanishing viscosity solutions. This is a key ingredient in the concept of entropy
solutions which are weak solutions that satisfy an additional inequality, denoted as
the entropy condition.

Definition 5.2.1. A solution of (5.2.1) is called an entropy solution if it satisfies, in the
distributional sense, the entropy condition:

∂tη(φ) +∇ · q(φ) ≤ 0, (5.2.3)

for all convex entropy functions η. Condition (5.2.3) is rigorously understood as∫ ∞

0

∫
Ω
(η(φ)∂tv + q(φ) · ∇v) dxdt ≥ 0, (5.2.4)

for all test functions v ∈ C∞
c (Ω× (0, ∞)), v ≥ 0.

Definition 5.2.2. A pair of functions (η, q) = (η(φ), q(φ)) is called an entropy-entropy
flux pair for the conservation law (5.2.1) if

• η is convex

• the compatibility condition is satisfied:

∂q
∂φ

=
∂η

∂φ

∂f
∂φ

. (5.2.5)

For smooth solutions the entropy condition is satisfied with equality, while the
entropy dissipates at shock waves. In absence of boundary conditions, integration
of (5.2.3) over Ω leads to dissipation of the overall entropy:

d
dt

∫
Ω

η(φ) dΩ ≤ 0⇒
∫

Ω
η(φ(x, t)) dΩ ≤

∫
Ω

η(φ0(x)) dΩ, for all t > 0. (5.2.6)

This a-priori estimate is the so-called entropy stability property and can be under-
stood as a nonlinear L2-stability for conservation laws when taking η(φ) = φ2/2.

Theorem 5.2.3. Entropy solutions are unique (in the scalar case).

Proof. See [72, 135].

For more details about entropy solutions one can consult e.g., [14, 72, 135, 183].
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5.2.2 The variation entropy

The idea of the variation entropy (VE), developed in [59], is to consider the entropy of
the conservation law of∇φ instead of φ. We start off with the same conservation law:

find φ : Ω× I → R such that

∂tφ +∇ · f = 0, (x, t) ∈ Ω× I , (5.2.7a)

φ(x, 0) = φ0(x). (5.2.7b)

in which the initial condition φ(x, 0) = φ0(x) ∈ L∞(Ω) is assumed to have compact
support. The flux f = f(φ) ∈ C(Ω, R) is possibly nonlinear.

Remark 5.2.4. In this work we restrict ourselves to the hyperbolic case, i.e. f = f(φ),
unless explicitly indicated. It is also possible to consider the parabolic case in which the
flux depends on ∇φ, i.e. f = f(φ,∇φ). In that case one needs to assume that the matrix
∂f/∂∇φ is symmetric negative definite.

Definition 5.2.5. The convex function η = η(∇φ) is said to be a variation entropy if
η(0) = 0 and it satisfies the variation entropy condition

∂tη +∇ · q ≤ 0, (5.2.8)

in weak sense where the flux q satisfies the compatibility condition

q =
∂f
∂φ
∇φ · ∂η

∂∇φ
. (5.2.9)

Remark 5.2.6. For parabolic problems the variation entropy condition reads

∂tη +∇ · q−D ≤ 0, (5.2.10)

in weak sense where the flux q and the non-conservative term D are respectively given by:

q =
∂f
∂φ
∇φ · ∂η

∂∇φ
+

∂f
∂∇φ

∇η, (5.2.11a)

D =
(
HxφH∇φη

)
:
(

∂f
∂∇φ

Hxφ

)
. (5.2.11b)

Here Hxφ and H∇φη are the Hessians of φ and η.

Proposition 5.2.7. A variation entropy satisfies the homogeneity property:

v · ∂η

∂v
= η, for all v ∈ Rd. (5.2.12)

Theorem 5.2.8. A function η is a variation entropy if and only if

• η is positive homogeneous function of degree 1:

η(γv) = γη(v) for all γ ≥ 0, v ∈ Rd. (5.2.13)

• η is sub-additive:

η(v1 + v2) ≤ η(v1) + η(v2) for all v1, v2 ∈ Rd. (5.2.14)
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Proposition 5.2.9. A convex function η is a variation entropy if and only if it is given by

η = η(∇φ) = η̂(r, θ) = F(θ)r, (5.2.15)

where F = F(θ) is a scalar-valued function and r and θ are the spherical polar coordinates
of ∇φ. The convexity condition is in the 2-dimensional case:

F(θ) + F′′(θ) ≥ 0. (5.2.16)

Remark 5.2.10. The convexity demand in three dimensions is more involved. We refer to
[59] for details.

Proposition 5.2.11. All semi-norms of ∇φ are variation entropies.

Corollary 5.2.12. A direct consequence of the homogeneity property (5.2.12) in Theorem
5.2.8 is that the variation entropy flux is given by

q =
∂f
∂φ

η, (5.2.17)

and that the variation entropy condition is thus rigorously understood as∫ ∞

0

∫
Rd

η

(
∂tv +

∂f
∂φ
· ∇v

)
dxdt ≥ 0, (5.2.18)

for all test functions v ∈ C∞
c (Ω× (0, ∞)), v ≥ 0.

In the case of parabolic conservation laws we can write

q =
∂f
∂φ

η +
∂f

∂∇φ
∇η. (5.2.19)

Note that (5.2.17) is similar to the form of the compatibility condition of the
classical entropy case when taking the derivative with respect to ∇φ:

∂q
∂∇φ

=
∂f
∂φ
⊗ ∂η

∂∇φ
. (5.2.20)

Examples of variation entropies are

η = η(∇φ) = ‖∇φ‖2, (5.2.21a)

η = η(∇φ) = c · ∇φ, for c ∈ Rd, (5.2.21b)

η = η(∇φ) = |||∇φ|||A :=
(
∇φTA∇φ

)1/2
,

for positive semi-definite matrix A. (5.2.21c)

where ‖ · ‖2 is the standard 2-norm. Variation entropy (5.2.21b) is the only linear
variation entropy.

Definition 5.2.13. A pair of functions (η, q) is called a variation entropy-variation entropy
flux pair for the conservation law (5.2.7) if

• η is a variation entropy,

• the flux q is given by (5.2.17).



114 a theoretical framework for discontinuity capturing

Definition 5.2.14. We call φ = φ(x, t) a variation entropy solution of (5.2.7) if φ is a weak
solution and φ satisfies (5.2.8) in a weak sense for each variation entropy-variation entropy
flux pair (η, q).

Physically relevant solutions are vanishing viscous solutions φε satisfying:

∂tφ
ε +∇ · f(φε) = ε∆φε. (5.2.22)

Suppose φε is uniformly bounded in L∞(Ω) and

φε → φ a.e. as ε→ 0, (5.2.23)

then we say that φ is a physically relevant solution. In the following theorem we
state that physically relevant solutions are, apart from classical entropy solutions,
also variation entropy solutions.

Theorem 5.2.15. The limit solution φ = limε→0 φε is a variation entropy solution.

Proof. See [59].

Analogously to the classical entropy case, in absence of boundary conditions we
can integrate over the domain Ω to get a dissipation of the overall variation entropy:

d
dt

∫
Ω

η(∇φ)dΩ ≤ 0⇒
∫

Ω
η(∇φ(x, t)) dΩ ≤

∫
Ω

η(∇φ0(x)) dΩ

for all t > 0. (5.2.24)

5.3 the vms-variation entropy framework for discontinuity cap-
turing methods

In this section we employ the variation entropy concepts within the variational
multiscale framework to derive a class of discontinuity capturing methods.

5.3.1 Starting point

We take the point of view that a good numerical method solves the conservation
law problem:

find φ : Ω× I → R such that

∂tφ +∇ · f = 0, (x, t) ∈ Ω× I , (5.3.1a)

φ(x, 0) = φ0(x), x ∈ Ω, (5.3.1b)

with smooth flux f = f(φ) and at the same time does not harm the variation entropy
condition

∂tη +∇ · q ≤ 0, (5.3.2)

for variation entropy η. In the remainder of this section we derive a multiscale
framework which endeavors this.
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Remark 5.3.1. As stated in Remark 5.2.4 we focus here on hyperbolic conservation laws.
We want to emphasize that changing to the parabolic case is a trivial execution. Furthermore,
one can augment the conservation law with a non-zero source term.

We start off with the regularized conservation law:

find φε : Ω× I → R such that

∂tφ
ε +∇ · f(φε) = ε∆φε, (x, t) ∈ Ω× I , (5.3.3a)

φε(x, 0) = φ0(x), x ∈ Ω, (5.3.3b)

with regularization parameter ε ≥ 0. The initial condition φ(x, 0) = φ0(x) ∈ L∞(Ω)

is assumed to have compact support. Note that the limit solution is a variation
entropy solution (Theorem 5.2.15). The weak form of this problem is:

find φε ∈ W such that for all w ∈ W

(w, ∂tφ
ε)L2(Ω) − (f(φε),∇w)L2(Ω) = −(φε, w)W . (5.3.4)

Here (·, ·)L2(Ω) is the standard L2-innerproduct and we have used the self-adjoint
positive-definite linear viscosity operator to define an inner product:

(u, v)W := (ε∇u,∇v)L2(Ω) . (5.3.5)

A natural norm is the energy norm:

‖v‖2
W :=

∥∥∥ε1/2∇v
∥∥∥2

L2(Ω)
. (5.3.6)

For more details about the construction of an energy norm we refer to [165].

5.3.2 Mesh representation and geometrical mapping

Let the parametric domain be Ω̂ := (−1, 1)d ⊂ Rd and let us denote the mesh in the
parametric domain withM. The elements Q ofM have element size hQ = diag(Q)

(diagonal length). We denote the physical domain by Ω ⊂ Rd and the continuously
differentiable geometrical map (with continuously differentiable inverse) by F :
Ω̂→ Ω. Each parametric element Q ∈ M maps into a physical element

ΩK = F(Q), (5.3.7)

which induces a physical mesh:

K = F(M) := {ΩK : ΩK = F(Q), Q ∈ M} . (5.3.8)

We denote the corresponding Jacobian by J = DF = ∂x/∂ξ, or in index notation
Jij = ∂xi/∂ξ j. We define the second-rank element metric tensor as

G =
∂ξ

∂x

T ∂ξ

∂x
= J−TJ−1, or in index notation Gij =

∂ξk

∂xi

∂ξk

∂xj
. (5.3.9)
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The inverse is given by

G−1 =
∂x
∂ξ

∂x
∂ξ

T
= JJT, with the index notation G−1

ij =
∂xi

∂ξk

∂xj

∂ξk
. (5.3.10)

Furthermore we define the physical mesh size hK as

h2
K =

h2
Q

d
‖J‖2

F, (5.3.11)

where the subscript F refers to the Frobenius norm given by

‖J‖2
F =

d

∑
i,j=1

(
∂xi

∂ξ j

)2

= Tr(JJT) = Tr(G−1), (5.3.12)

with Tr the trace operator. The Frobenius norm is a natural choice for mesh metrics
since it is rotation-invariant and appears in several well-known mesh quality mea-
sures. Another benefit is its lower computational costs compared to the standard
p-norm [130]. Furthermore, on a Cartesian mesh it reduces to the length of the
diagonal of an element. We use the notation ∇ξ to distinguish differentiation with
respect to the reference coordinates ξ from the gradient in physical coordinates ∇.

On uniform Cartesian meshes we use the notation ∂x/∂ξ := ∂x1/∂ξ1 = ∂x2/∂ξ2 =

∂x3/∂ξ3 > 0.

5.3.3 The multiscale split

The residual-based variational multiscale approach splits the solution into a large-
scale and a small-scale component. The large-scale component is solved numerically,
whereas the small-scale contribution is treated in an approximate sense. Assume
that there exists an idempotent (and possibly nonlinear) projector Ph :W →Wh.
The trial solution and weighting function spaces split as

W = PhW ⊕ (I −Ph)W =Wh ⊕W ′, (5.3.13)

where Wh is the coarse-scale linear subspace and W ′ is its infinite-dimensional
complement. This allows us to decompose φε ∈ W and w ∈ W as:

φε = (φε)h + (φε)′ and w = wh + w′, (5.3.14)

where (φε)h = Phφε and wh = Phw. BecauseWh is a subset ofW , (5.3.4) implies
that for all wh ∈ Wh

(wh, ∂t((φ
ε)h + (φε)′))L2(Ω) − (f((φε)h + (φε)′),∇wh)L2(Ω)

= −
(
(φε)h + (φε)′ , wh

)
W

, (5.3.15)

regardless of the possible nonlinearity of Ph. Take for the coarse-scale spaceWh ⊂
H1(Ω). Sending ε→ 0 in (5.3.15) and noting that due to∣∣∣((φε)h , wh

)
W

∣∣∣ ≤ ‖ (φε)h ‖W‖wh‖W → 0 as ε→ 0, (5.3.16)
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we arrive at

(wh, ∂t(φ
h + φ′))L2(Ω) − (f(φh + φ′),∇wh)L2(Ω) = −

(
φ′, wh

)
W

, (5.3.17)

for all wh ∈ Wh, with φh := limε→0 (φε)h and φ′ := limε→0 (φε)′. Here we use an
abuse of notation for the term on the right-hand side which is the limit of the small-
scale regularization term. In contrast to the large-scale component, the small-scale
term does not vanish in general due to the (possibly) unbounded gradient ∇φ′.
Note that this weak formulation is still exact. However, the infinite-dimensionality
ofW ′ does not allow for a discrete implementation.

Let η be a positive-valued variation entropy function η = η(∇φ) : Rd → R+

(and thus nonlinear, eliminating the linear variation entropy (5.2.21b)). We assume
that η(∇w) ∈ L2(Ω) ∀w ∈ W . The large-scale solution space associated with η is
defined as

V h := η(∇Wh), (5.3.18)

with the elements
ηh := η(∇φh) ∈ V h. (5.3.19)

We define the small-scale variation entropy as η′ := η(∇φ)− ηh. Let us denote the
residual of the conservation law and that of the variation entropy condition as:

RCLφ := ∂tφ +∇ · f, (5.3.20a)

RVEη := ∂tη +∇ · q

=
∂η

∂∇φ
· ∇ (RCLφ) . (5.3.20b)

5.3.4 A standard optimality projector

To establish scale separation the projector Ph needs to be selected. We construct
the projector via the minimization of a functional. The standard approach is the
following. Consider the minimization problem:

find φh ∈ Wh such that:

L (φ− φh) = in f
θh∈Wh

L (φ− θh) (5.3.21)

where the quadratic functional is given by

L (φ) = 1
2‖φ‖

2
W . (5.3.22)

Lemma 5.3.2. The functional M :Wh → R given by

M (wh) := 1
2‖φ− wh‖2

W (5.3.23)

is strictly convex.
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Proof. This follows from the positive definiteness of the second derivative which
equals

d2M (wh)(uh, vh) = (uh, vh)W , (5.3.24)

for uh, vh ∈ Wh.

Theorem 5.3.3. AssumingWh is closed, problem (5.3.21)-(5.3.22) has a unique solution.

Proof. This is a consequence of Lemma 5.3.2. See also [70].

The multiscale split projector (5.3.13) is now defined as:

Phφ = argminφh∈WhL (φ− φh) . (5.3.25)

We obtain a stationary point when the Gateaux derivative of the functional L in
direction wh vanishes:

Ph : φ ∈ W → φh ∈ Wh: find φh ∈ Wh such that for all wh ∈ Wh:

dL (φ− φh)(wh) = 0. (5.3.26)

Evaluating (5.3.26), the multiscale split projector takes the form:

Ph : φ ∈ W → φh ∈ Wh: find φh ∈ Wh such that for all wh ∈ Wh:

(wh, φh − φ)W = 0. (5.3.27)

Employing this relation in the VMS weak formulation, via the multiscale split
(5.3.14), cancels the symmetric contributions on the small-scales:

(wh, φ′)W = 0. (5.3.28)

As a result, the small-scale solution space is given by

W ′ =
{

φ′ ∈ W : (wh, φ′)W = 0 for all wh ∈ Wh
}

. (5.3.29)

Remark 5.3.4. The orthogonality (5.3.28) is linked to correct energy behavior for the
convection-diffusion and the incompressible Navier-Stokes equations. For details we refer to
[57, 58].

In the standard VMS framework the small-scales of the governing equations need
to be modeled to arrive at a numerical method. For general details about small-scale
modeling we refer to [17, 57, 113]. We employ the standard small-scale model for φ′:

φ̂′ =− τCLRCLφh, (5.3.30a)

∂tφ̂
′ = 0, (5.3.30b)

The scalar stabilization parameter τCL is a mesh-dependent approximation (based
on inverse estimates, see e.g [86]) of the inverse of the differential operator. We
use the hat-sign to indicate that (5.3.30) is a small-scale model instead of it being
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the actual small-scales. In the following we use this approximation and ignore the
hat-sign. The current approach is known as the concept of static small-scales, due
to assumption (5.3.30b). We note that, as an alternative, one can employ dynamic
small-scales. In that case a dynamic version of (5.3.30a) is used and the second
modeling assumption, relation (5.3.30b), is not made. This dynamic approach has
some advantages [48, 57, 58]. Furthermore, we remark that nonlinear contributions
of the small-scales can be incorporated in the residual, see e.g., [17].

By employing the orthogonality (5.3.28) and the small-scale model (5.3.30) in an
SUPG fashion in (5.3.15) we arrive at:

find φh ∈ Wh such that for all wh ∈ Wh

(wh, ∂tφ
h)L2(Ω) − (∇wh, f(φh))L2(Ω)

+∑
K

(
(τCL)K

∂f
∂φh · ∇wh, RCL(φ

h)

)
L2(ΩK)

= 0. (5.3.31)

The consequence is thus that both the large and small-scale components stemming
from the regularized term vanish. However, when incorporating the variation
entropy condition in the projector the small-scale contribution does not vanish. We
present this approach in the next subsection.

5.3.5 A variation entropy optimality projector

Here we present a new optimality projector that uses the variation entropy condition.
This naturally leads to a discontinuity capturing term.

Remark 5.3.5. Here we choose to enforces the variation entropy condition in an indirect
manner. As an alternative one could use a more direct approach. We present the corresponding
steps in Appendix 5.A. This alternative approach does not provide a convex problem and as
such uniqueness of the minimization problem can not be guaranteed.

Consider the minimization problem:

find φh ∈ Wh such that:

L (φ− φh) = in f
θh∈Kh

L (φ− θh), (5.3.32)

where the constraint set reads:

Kh :=
{

φh ∈ Wh : (vh, η(∇φh)− η(∇φ))L2(Ω) ≤ 0 for all vh ∈ V h
}

. (5.3.33)

Lemma 5.3.6. The solution space Kh is convex.

Proof. This is direct consequence of the sub-additivity and the homogeneity of the
variation entropy. Indeed let 0 ≤ ζ ≤ 1 and let φh

1 , φh
2 ∈ Kh then

(vh, η(ζ∇φh
1 + (1− ζ)∇φh

2))L2(Ω)

≤ (vh, η(ζ∇φh
1) + η((1− ζ)∇φh

2))L2(Ω) (sub-additivity)

≤ (vh, ζη(∇φh
1) + (1− ζ)η(∇φh

2))L2(Ω) (homogeneity)

≤ (vh, ζη(∇φ) + (1− ζ)η(∇φ))L2(Ω) (φh
1 , φh

2 ∈ Kh)

= (vh, η(∇φ))L2(Ω), (5.3.34)
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for all vh ∈ V h. This implies ζφh
1 + (1− ζ)φh

2 ∈ Kh.

Theorem 5.3.7. Problem (5.3.32)-(5.3.33) has a unique solution.

Proof. The constraint set Kh is convex. Uniqueness follows from Lemma 5.3.2 in a
similar fashion as in Theorem 5.3.3. Details can be found in [70].

We proceed by opening the solution space. We penalize violating the constraint
defined in (5.3.33). The constraint problem (5.3.32)-(5.3.33) converts into the uncon-
strained minimization problem:

find φh ∈ Wh such that:

J (φ− φh, φ, φh) = in f
θh∈Wh

J (φ− θh, φ, θh), (5.3.35a)

where we have defined the functional J :W ′ ×W ×Wh → R as

J (w1, w2, w3) = L (w1) +
1
2
‖√µ {η(∇w2)− η(∇w3)}− ‖

2
L2(Ω). (5.3.35b)

where {·}−, defined as {a}− = (a− |a|)/2, isolates the negative part of its argument.
Here µ = µ(Ω) ≥ 0 is a parameter penalizing excess variation entropy of the coarse
scale solution. The unit of µ is [µ] = [φ]2/([η]2T)1. In the case that the unit of η

is that of the solution over length, i.e. [η] = [φ]/L, µ has the unit of a viscosity:
[µ] = L2/T.

Proposition 5.3.8. The functional J = J (φ− φh, φ, φh) is bounded:

L (φ− φh) ≤J (φ− φh, φ, φh) ≤Jup(φ− φh) (5.3.36a)

where the upper bound is given by

Jup(φ− φh) = L (φ− φh) +
1
2
‖√µη(∇(φ− φh))‖2

L2(Ω). (5.3.36b)

Proof. This follows from the sub-additivity of η (5.2.14):

η(∇φ)− ηh = η(∇φ)− η(∇φ + (∇φh −∇φ))

≥ η(∇φ)− η(∇φ)− η(∇φh −∇φ)

= − η(∇φh −∇φ). (5.3.37)

Remark 5.3.9. In the case that the variation entropy equals η = ‖∇φ‖2, the upper bound
converts into

Jup(φ− φh) =
1
2
||φ− φh||2W +

1
2
‖µ1/2∇(φ− φh)‖2

L2(Ω)

=
1
2
‖(ε + µ)1/2∇(φ− φh)‖2

L2(Ω), (5.3.38)

which is the energy norm with viscosity ε + µ.

1 In this work we use the notation [a] to denote the unit of quantity a. Furthermore, L denotes and
length unit and T a time unit.
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We penalize violating the constraint defined in (5.3.33) by defining the projector
Ph φ :W →Wh as:

Ph φ = argminφh∈WhJ (φ− φh, φ, φh) . (5.3.39)

Remark 5.3.10. This can be viewed as a nonlinear Tikhonov-like regularization of orthogonal
projection inW . Alternatively, it can be seen as a penalty regularization of the inequality-
constrained projection

Ph
c φ = arg


min

φh∈Wh
L (φ− φh)

subject to η
(
∇φh) ≤ η(∇φ) a.e. in Ω

 . (5.3.40)

The first-order optimality conditions for Ph follow from equating the Gateaux
derivative in direction wh to zero. Noting that

d η(∇φh)(∇wh) =
∂η

∂∇φh · ∇wh, (5.3.41)

we obtain the problem:

Ph : φ ∈ W → φh ∈ Wh: find φh ∈ Wh such that for all wh ∈ Wh:(
φ′, wh

)
W

= −
(

µ{η′}−
∂ηh

∂∇φh ,∇wh
)

L2(Ω)

. (5.3.42)

Using the homogeneity of ηh, i.e. relation (5.2.12), we can write:

∂η

∂∇φh =
1
ηh

(
∂ηh

∂∇φh ⊗
∂ηh

∂∇φh

)
∇φh. (5.3.43)

Thus we arrive at (
φ′, wh

)
W

=
(

K∇φh,∇wh
)

L2(Ω)
, (5.3.44)

in which the matrix K is given by:

K = ν

(
∂ηh

∂∇φh ⊗
∂ηh

∂∇φh

)
, (5.3.45a)

ν = − µ
{η′}−

ηh . (5.3.45b)

The parameter ν ≥ 0, referred to as variation entropy viscosity, scales with the relative
error of the variation entropy ηh and has unit [ν] = [µ] = [φ]2[η]−2T−1. Note that K
has the unit of a viscosity:

[K] = [ν]
[η]2

[∇φ]2
=

L2

T
. (5.3.46)

The matrix (5.3.45a) acts as diffusion based on the variation entropy residual. Note that
the diffusion operator of the streamline upwind method [33] acts in the direction
of the flow. For discontinuity capturing control of gradients in the direction ∇φh is
relevant [112]. The diffusion operator K acts in the direction ∂η/∂∇φh. This is the
direction in which the variation entropy changes and is thus a natural direction to
add diffusion.
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Lemma 5.3.11. The matrix K is symmetric positive semi-definite.

Proof. Symmetry is trivial and the positive semi-definiteness is a direct consequence
of ν being positive.

Remark 5.3.12. One could alternatively start from the constrained projector Ph
c and

approximate the Lagrange multiplier associated with the constraint by penalizing −µ{η′}−
to obtain the same result.

At this point, no approximation has been made. We may substitute (5.3.44)-(5.3.45)
into (5.3.17), illustrating how unresolved viscous dissipation in the fine-scale solution
is expressed in terms of variation entropy in the coarse-scale problem when the
coarse scales are defined by the nonlinear projector Ph. Notice that, when taking
the limit ε → 0 the right-hand side of (5.3.45) does not vanish in this limit. This
is consistent with the necessity of shock-capturing operators in the inviscid limit.
Further, the right-hand side of (5.3.45) is independent of the precise choice of viscous
operator, as one would hope in the case that an arbitrary regularization introduced
for analysis purposes.

5.3.6 Small-scale model variation entropy

The current VMS-VE framework requires a model for the negative part of the small-
scale variation entropy {η′}−. This opens the door to explore several small-scale
models leading to different numerical methods. Note that the small-scale variation
entropy η′ = η(∇φ)− ηh is linked to the small-scale solution φ′ via:

{η′}− = {η(∇φ)− ηh}−
= {η(∇φh +∇φ′)− ηh}−
≤ {η(∇φ′)}−
= 0. (5.3.47)

Thus employing the model {η′}− = {η(∇φ′)}− where the small-scale solution φ′ is
determined by the standard static model (5.3.30) causes the discontinuity capturing
operator to vanish.

We propose a model for {η′}− inspired by the variation entropy condition. Other
possibilities may lead to an improved method with practical benefits and/or theoret-
ical advantages. Remark that in the case of smooth solutions the variation entropy
condition converts into an equality. Here we use the standard VMS method and
write down the Euler-Lagrange equations of small-scale equation. Following this
reasoning we propose the model for {η′}−:

{̂η′}−VE = −τVE

{
RVE

(
ηh
)}

+
, (5.3.48)

where the hat-symbol indicates the modeling step. Here τVE ≥ 0 represents a time-
scale associated with the variation entropy. We note that τVE is an element-wise
parameter: τVE = (τVE)K. We wish to emphasize that model (5.3.48) is residual-based,
both directly with residual RVE and with residual RCL, see (5.3.20b).
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5.3.7 Variation entropy viscosity

The variation entropy viscosity corresponding to the model (5.3.48) is:

νVE = µ τVE

{
RVE

(
ηh)}

+

ηh , (5.3.49)

where the subscript VE refers to the variation-entropy residual. Despite the fact
that the variation entropy viscosities are element-wise parameters, for the ease of
notation we do not explicitly write a subscript K referring to element K in this
subsection. Note that the variation entropy viscosity (5.3.49) vanishes when the
variation entropy condition is satisfied.

The product µ τVE needs to be modeled. A natural approach would be to model
the terms separately. In this case, a standard VMS approach could be used to
model the intrinsic time-scale associated with the variation entropy, τVE, i.e. one
could use a discrete approximation of the inverse of the corresponding differential
operator2. The term µ is a penalty parameter that links the variation entropy to the
regularization term. Recall that the unit of µ is [φ]2[η]−2T−1. Since µ is associated
with the variation entropy, a natural choice for the time-scale in µ is τ−1

VE . Following
this approach, the model for τVE would cancel in the product µ τVE. This suggests
the alternative to model the product µ τVE as one quantity instead of modeling the
separate terms. This is how we proceed. As µ connects the variation entropy to
the regularization term associated with the conservation law and this connection
is governed by the operator ∂η/∂∇φ · ∇ (see (5.3.20b)), we employ this operator
to determine the product µ τVE. By applying the chain rule this operator may be
written as:

∂ηh

∂∇φh · ∇ =

(
∂ξ

∂x
∂ηh

∂∇φh

)
∂

∂ξ

=

(
J−1 ∂ηh

∂∇φh

)
∂

∂ξ
. (5.3.50)

Note that the unit of the product µ τVE is the inverse square of that of the operator
∂η/∂∇φ · ∇ (the units are [φ]2[η]−2 and [φ]−1[η] respectively). We propose to use
the discrete approximation of the inverse square of the operator ∂η/∂∇φ · ∇ as a
model for µ τVE. We take:

µ τVE = C h2
Q

∣∣∣∣∣∣∣∣∣∣∣∣ ∂ηh

∂∇φh

∣∣∣∣∣∣∣∣∣∣∣∣−2

G
, (5.3.51)

where C is some unitless constant. Remark that a similar approximation technique
also employing reference coordinates has been used to derive the stabilization
parameter τCL, see e.g., [17]. The variation entropy viscosity thus converts into

νVE = C h2
Q

∣∣∣∣∣∣∣∣∣∣∣∣ ∂ηh

∂∇φh

∣∣∣∣∣∣∣∣∣∣∣∣−2

G

{
RVE

(
ηh)}

+

ηh . (5.3.52)

2 In the linear convection-diffusion case one could use τVE = τCL as the differential operators equal (see
(5.3.78) in Section 5.3.10).
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Remark 5.3.13. Viscosity coefficients are usually determined via introducing a shock-
capturing quantity and a length-scale. In the small-scale model (5.3.48) the quantity{
RVE

(
ηh)}

+
/ηh serves as shock-capturing quantity (and has unit T−1).

The next step is to select a variation entropy. We propose two options. The simplest
choice for the variation entropy is to take ηh = ‖∇φh‖2. Remark that this variation
entropy is objective, see [59]. The corresponding variation entropy viscosity takes
the form:

ηh = ‖∇φh‖2 ⇒ νVE = C h2
Q

(
‖∇φh‖2

|||∇φh|||G

) {
RVE

(
‖∇φh‖2

)}
+

|||∇φh|||G
. (5.3.53)

Another option is to select η =
∣∣∣∣∣∣∇φh

∣∣∣∣∣∣
A which is defined for a positive semi-

definite symmetric matrix as |||∇φ|||2A := ∇φTA∇φ, see (5.2.21c). This is indeed a
variation entropy and is rotation invariant whenever

A(Rx) = RA(x)RT (5.3.54)

for rotation matrix R, see [59]. We suggest to take A = G−1, i.e. ηh =
∣∣∣∣∣∣∇φh

∣∣∣∣∣∣
G−1 =

‖∇ξφh‖2. Trivially G−1 = G−1(x) satisfies (5.3.54). The variation entropy viscosity
corresponding to this choice is:

ηh = ‖∇ξφh‖2 ⇒ νVE = C h2
Q

{
RVE

(
‖∇ξφh‖2

)}
+

‖∇ξφh‖2
. (5.3.55)

Proposition 5.3.14. On an uniform Cartesian mesh there holds on element K:

G−1
K = JKJT

K =

(
∂x
∂ξ

)2

IK, (5.3.56a)

h2
K =

h2
Q

d
‖JK‖2

F = h2
Q

(
∂x
∂ξ

)2

, (5.3.56b)

‖∇ξφh‖2 =
∣∣∣∣∣∣∣∣∣∇φh

∣∣∣∣∣∣∣∣∣
G−1

K

= ‖∇φh‖2
∂x
∂ξ

, (5.3.56c)∣∣∣∣∣∣∣∣∣∇φh
∣∣∣∣∣∣∣∣∣

G
= ‖∇φh‖2

∂ξ

∂x
. (5.3.56d)

Lemma 5.3.15. On uniform Cartesian quadratic/cubic meshes we have

νVE (‖∇φh‖2) = C h2
K

{
RVE

(
‖∇φh‖2

)}
+

‖∇φh‖2
, (5.3.57a)

νVE (‖∇ξφh‖2) = C h2
Q

{
RVE

(
‖∇φh‖2

)}
+

‖∇φh‖2
. (5.3.57b)

Proof. Using (5.3.56b) and (5.3.56d) the first identity is obtained:

νVE(‖∇φh‖2) = C h2
Q

(
‖∇φh‖2

|||∇φh|||G

)2 {RVE
(
‖∇φh‖2

)}
+

‖∇φh‖2

= C h2
Q

(
∂x
∂ξ

)2
{
RVE

(
‖∇φh‖2

)}
+

‖∇φh‖2

= C h2
K

{
RVE

(
‖∇φh‖2

)}
+

‖∇φh‖2
. (5.3.58)
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The second expression follows via (5.3.20b), (5.3.56a) and (5.3.56c):

νVE(‖∇ξφh‖2) = C h2
Q

{
RVE

(
‖∇ξφh‖2

)}
+

‖∇ξφh‖2

= C h2
Q

{
G−1∇φh

‖∇ξφh‖2
· ∇(RCL

(
φh))}

+

‖∇φh‖2∂x/∂ξ

= C h2
Q

{
(∂x/∂ξ)2∇φh

‖∇φh‖2∂x/∂ξ
· ∇(RCL

(
φh))}

+

‖∇φh‖2∂x/∂ξ

= C h2
Q

{
RVE

(
‖∇φh‖2

)}
+

‖∇φh‖2
. (5.3.59)

Corollary 5.3.16. On uniform Cartesian quadratic/cubic meshes we have the identity:

νVE (‖∇φh‖2) =

(
∂x
∂ξ

)2

νVE (‖∇ξφh‖2). (5.3.60)

To avoid singularities we introduce a regularized variation entropy ηh
ε , see also

[59]. Let us define the regularization of variation entropy
∣∣∣∣∣∣∇φh

∣∣∣∣∣∣
A for regularization

parameter 0 < ε� 1 via:(
ηh

ε

)2
=
∣∣∣∣∣∣∣∣∣∇φh

∣∣∣∣∣∣∣∣∣2
ε,A

:=
∣∣∣∣∣∣∣∣∣∇φh

∣∣∣∣∣∣∣∣∣2
A
+ ε2 Tr(A)

d
. (5.3.61)

Furthermore we also define:

‖∇φ‖2
ε,2 := ‖∇φ‖2

2 + ε2. (5.3.62)

The resulting expressions for the variation entropies chosen above are

ηh = ‖∇φh‖2 ⇒
(

ηh
ε

)2
= ‖∇φh‖2

ε,2 , (5.3.63a)

ηh = ‖∇ξφh‖2 ⇒
(

ηh
ε

)2
=
∣∣∣∣∣∣∣∣∣∇φh

∣∣∣∣∣∣∣∣∣2
ε,G−1

= ‖∇ξφh‖2
2 + ε2‖J‖2

F/d

=: ‖∇ξφh‖2
εξ ,2 , (5.3.63b)

where the regularization parameters are related as

ε2
ξ = ε2‖J‖2

F/d. (5.3.64)

We apply the regularization both to the shock-capturing quantities and the prefactors
yielding the following regularized variation entropy viscosities:

ηh
ε = ‖∇φh‖ε,2 ⇒ νVE = C h2

Q

(
‖∇φh‖ε,2

|||∇φh|||ε,G

) {
RVE

(
‖∇φh‖ε,2

)}
+

|||∇φh|||ε,G
, (5.3.65a)

ηh
ε = ‖∇ξφh‖2

εξ ,2 ⇒ νVE = C h2
Q

{
RVE

(
‖∇ξφh‖εξ ,2

)}
+

‖∇ξφh‖εξ ,2
. (5.3.65b)
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Remark 5.3.17. Applying solely regularization in (5.3.52) to derive regularized versions of
the expressions (5.3.53) and (5.3.55) does not exclude singularities.

The specific regularization choice ensures that Corollary 5.3.16 also holds in the
regularized case.

Corollary 5.3.18. On uniform Cartesian quadratic/cubic meshes we have the identity:

νVE (‖∇φh‖ε,2) =

(
∂x
∂ξ

)2

νVE (‖∇ξφh‖εξ ,2), (5.3.66)

where the terms in the brackets after νVE refer to (5.3.65a) and (5.3.65b) respectively.

5.3.8 Diffusion matrices

Let us first consider the case ηh
ε = ‖∇φh‖ε,2. We use the non-regularized ηh =

‖∇φh‖2 to derive the diffusion matrix and find via (5.3.45):

KK = (νVE)K
∇φh

‖∇φh‖2
⊗ ∇φh

‖∇φh‖2
(5.3.67)

with variation entropy (νVE)K given in (5.3.65a). Using the relation (5.3.44) we see
that in this case the matrix KK results in isotropic diffusion:(

∇wh, KK∇φh
)

L2(ΩK)
=
(
∇wh, (νVE)K∇φh

)
L2(ΩK)

. (5.3.68)

In the other situation, i.e. ηh
ε = ‖∇ξφh‖εξ ,2, using also the corresponding non-

regularized variation entropy yields for the diffusion matrix:

KK = (νVE)K
G−1∇φh

‖∇ξφh‖2
⊗ G−1∇φh

‖∇ξφh‖2
. (5.3.69)

with variation entropy (νVE)K given in (5.3.65b). The resulting diffusion contribution
in the weak form is based on local gradients:(

∇wh, KK∇φh
)

L2(ΩK)
=

(
∇wh, (νVE)K

J∇ξφh

‖∇ξφh‖2
‖∇ξφh‖2

)
L2(ΩK)

=
(
∇ξwh, (νVE)K ∇ξφh

)
L2(ΩK)

. (5.3.70)

Remark 5.3.19. We note that Guermond and Nazarov [84] use reference coordinates to
enforce the maximum principle. They observe that local reference coordinates can provide
more control over the gradients.

Theorem 5.3.20. On uniform Cartesian quadratic/cubic meshes the choices η = ‖∇φ‖ε,2

and η = ‖∇ξφ‖εξ ,2 coincide.

Proof. This is a direct consequence of Corollary 5.3.18:(
∇ξwh, (νVE)K (‖∇ξφh‖εξ ,2) ∇ξφh

)
L2(ΩK)

=(
∇wh, (νVE)K (‖∇ξφh‖εξ ,2)

(
∂x
∂ξ

)2

∇φh

)
L2(ΩK)

=

(
∇wh, (νVE)K (‖∇φh‖ε,2) ∇φh

)
L2(ΩK)

. (5.3.71)



5.3 the vms-variation entropy framework 127

5.3.9 Complete semi-discrete formulations

By substituting the diffusion terms (5.3.68) and (5.3.70) with corresponding variation
entropy viscosities (5.3.65) into (5.3.44) and using the SUPG model of (5.3.31) in
(5.3.15), we arrive at the following variational formulation:

find φh ∈ Wh such that for all wh ∈ Wh:(
wh, ∂tφ

h
)

L2(Ω)
−
(
∇wh, f

(
φh
))

L2(Ω)︸ ︷︷ ︸
Galerkin

+∑
K

(
(τCL)K

∂f
∂φh · ∇wh, RCL(φ

h)

)
L2(ΩK)︸ ︷︷ ︸

Stabilization

+



∑
K
(∇wh, (νVE)K∇φh)L2(ΩK)︸ ︷︷ ︸

Discontinuity capturing
in physical coordinates

if ηh
ε = ‖∇φh‖ε,2

∑
K
(∇ξwh, (νVE)K∇ξφh)L2(ΩK)︸ ︷︷ ︸

Discontinuity capturing
in reference coordinates

if ηh
ε = ‖∇ξφh‖εξ ,2


= 0 (5.3.72a)

where the variation entropy viscosity is:

νVE =


C h2

Q

(
‖∇φh‖ε,2

|||∇φh|||ε,G

) {
RVE

(
‖∇φh‖ε,2

)}
+

|||∇φh|||ε,G
if ηh

ε = ‖∇φh‖ε,2

C h2
Q

{
RVE

(
‖∇ξφh‖εξ ,2

)}
+

‖∇ξφh‖εξ ,2
if ηh

ε = ‖∇ξφh‖εξ ,2.

(5.3.72b)

We conclude that the variation entropy optimality projector with the proper mod-
eling choices naturally augments the VMS method with a discontinuity capturing
term:

VMS + VE DC

This proves the conjecture of Bazilevs et al. [19]:

‘the multiscale frame-work with a proper set of optimality conditions is the right un-
derlying theoretical structure that may more naturally lead to discontinuity capturing
formulations.’

Remark 5.3.21. It is possible to set a maximum to the introduced viscosity, see e.g., [85].
Based on first-order upwind techniques (which yields in some cases a monotone method) a
natural choice would be to take the maximum viscosity as:

νmax = CmaxhK

∥∥∥∥ ∂f
∂φ

∥∥∥∥
2

, (5.3.73)

where Cmax is some constant.
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5.3.10 The convection-diffusion problem

In the preceding part of this section we have solely focused on the hyperbolic case.
As claimed, the parabolic case is a straightforward extension, which we demonstrate
here using the convection-diffusion model problem.

Let φ0 = φ0(x), divergence-free velocity field a = a(φ) and diffusivity κ ≥ 0 be
given. The problem reads:

find φ = φ(x, t) : Ω×R+ → R such that:

∂tφ + a · ∇φ− κ∆φ = 0 in Ω× I , (5.3.74a)

φ = g on ∂Ω, (5.3.74b)

φ(x, 0) = φ0(x) in Ω. (5.3.74c)

The standard weak formulation is:

find φ ∈ H1
g(Ω) such that for all w ∈ H1

0(Ω):

(w, ∂tφ + a · ∇φ)L2(Ω) + (∇w, κ∇φ)L2(Ω) = 0 in Ω× I , (5.3.75a)

φ(x, 0) = φ0(x) in Ω, (5.3.75b)

where we use the standard notation for the function spaces with
H1

g(Ω) :=
{

w ∈ H1(Ω) : w = g on ∂Ω
}

. We note that the this problem suits the
abstract framework with function spaces W = H1

g(Ω),W∗ = H−1(Ω). The linear
operator L : H1

g(Ω)→ H−1(Ω) is defined as

H−1(Ω)〈Lφ, w〉H1
0 (Ω) = (w, ∂tφ)L2(Ω) − (∇w, aφ− κ∇φ)L2(Ω). (5.3.76)

Applying the methodology results in the following method:

find φh ∈ Wh
g such that for all wh ∈ Wh

0 :

(wh, ∂tφ
h + a · ∇φh)L2(Ω) + (∇wh, κ∇φh)L2(Ω)︸ ︷︷ ︸

Galerkin contribution

+ ∑
K
((τCL)K(a · ∇wh + κ∆wh), RCLφh)L2(ΩK)︸ ︷︷ ︸

VMS stabilization

+



∑
K
(∇wh, νK∇φh)L2(ΩK)︸ ︷︷ ︸
Discontinuity capturing
in physical coordinates

if ηh
ε = ‖∇φh‖ε,2

∑
K
(∇ξwh, νK∇ξφh)L2(ΩK)︸ ︷︷ ︸

Discontinuity capturing
in reference coordinates

if ηh
ε = ‖∇ξφh‖εξ ,2


= 0 (5.3.77a)
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where the variation entropy viscosity is:

νVE =


C h2

Q

(
‖∇φh‖ε,2

|||∇φh|||ε,G

) {
L
(
‖∇φh‖ε,2

)}
+

|||∇φh|||ε,G
if ηh

ε = ‖∇φh‖ε,2

C h2
Q

{
L
(
‖∇ξφh‖εξ ,2

)}
+

‖∇ξφh‖εξ ,2
if ηh

ε = ‖∇ξφh‖εξ ,2.

(5.3.77b)

We wish to emphasize that convection-diffusion and variation entropy operators
coincide:

RCLφh = Lφh, (5.3.78a)

RVEηh = Lηh. (5.3.78b)

The element-wise stabilization parameter (τCL)K is defined as in [57].

5.3.11 Connection to the YZβ method

In order to establish the connection to the YZβ method [19] we present an alternative
small-scale model. Instead of using the model (5.3.48), one can use an approximation.
Using the definition (5.3.20b) we may write:

{̂η′}−VE = −τVE

{
∂ηh

∂∇φh · ∇(RCL(φ
h))

}
+

. (5.3.79)

Again using (5.3.50) we now approximate (5.3.79) as a residual-based model via:

{̂η′}−CL = − τVE h−1
Q

∥∥∥∥J−1 ∂ηh

∂∇φh

∥∥∥∥
2
|RCL

(
φh
)
|

= − τVE h−1
Q

∣∣∣∣∣∣∣∣∣∣∣∣ ∂ηh

∂∇φh

∣∣∣∣∣∣∣∣∣∣∣∣
G
|RCL

(
φh
)
|, (5.3.80)

Using the model (5.3.51) for µτVE, the corresponding variation entropy viscosity
takes the form:

νCL = µ τVE h−1
Q

∣∣∣∣∣∣∣∣∣∣∣∣ ∂ηh

∂∇φh

∣∣∣∣∣∣∣∣∣∣∣∣
G

|RCL
(
φh) |

ηh

= C hQ

∣∣∣∣∣∣∣∣∣∣∣∣ ∂ηh

∂∇φh

∣∣∣∣∣∣∣∣∣∣∣∣−1

G

|RCL
(
φh) |

ηh , (5.3.81)

where the subscript refers to the conservation law residual. In this case the variation
entropy viscosity (5.3.81) scales with the residual of the conservation law but
generally does not vanish when the variation entropy condition is satisfied.

Using the same large-scale variation entropies, i.e. ηh = ‖∇φh‖2 and ηh =

‖∇ξφh‖2, we get the expressions:

ηh = ‖∇φh‖2 ⇒ νCL = C hQ
|RCL

(
φh) |

|||∇φh|||G
, (5.3.82a)

ηh = ‖∇ξφh‖2 ⇒ νCL = C hQ
|RCL

(
φh) |

‖∇ξφh‖2
. (5.3.82b)
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Lemma 5.3.22. On uniform Cartesian quadratic/cubic meshes we have

νCL (‖∇φh‖2) = C hK
|RCL

(
φh) |

‖∇φh‖2
, (5.3.83a)

νCL (‖∇ξφh‖2) = C hQ

(
∂x
∂ξ

)−1 |RCL
(
φh) |

‖∇φh‖2
. (5.3.83b)

Proof. The proof is similar to that of Lemma 5.3.15 and uses (5.3.56b)-(5.3.56d).

Corollary 5.3.23. On uniform Cartesian quadratic/cubic meshes we have the identity:

νCL (‖∇φh‖2) =

(
∂x
∂ξ

)2

νCL (‖∇ξφh‖2). (5.3.84)

The regularized versions of the variation entropy viscosities are:

ηh
ε = ‖∇φh‖ε,2 ⇒ νCL = C hQ

|RCL
(
φh) |

|||∇φh|||ε,G
, (5.3.85a)

ηh
ε = ‖∇ξφh‖2

εξ ,2 ⇒ νCL = C hQ
|RCL

(
φh) |

‖∇ξφh‖εξ ,2
. (5.3.85b)

Corollary 5.3.24. On uniform Cartesian quadratic/cubic meshes we have the identity:

νCL (‖∇φh‖ε,2) =

(
∂x
∂ξ

)2

νCL (‖∇ξφh‖εξ ,2). (5.3.86)

Theorem 5.3.25. On uniform Cartesian quadratic/cubic meshes the choices η = ‖∇φ‖ε,2

and η = ‖∇ξφ‖εξ ,2 coincide.

Substitution yields weak formulation (5.3.72) where the variation entropy viscosity
are now given by (5.3.85). As variation entropy we take ηh = ‖∇φh‖2 which yields:(

∇wh, KK∇φh
)

L2(ΩK)
=

(
∇wh, C hQ

|RCL
(
φh) |

|||∇φh|||ε,G
∇φh

)
L2(ΩK)

. (5.3.87)

This is the (regularized version of the) discontinuity capturing term used by Akker-
man et al. [3] for the level-set convection equation. On Cartesian uniform meshes it
reduces to(

∇wh, KK∇φh
)

L2(ΩK)
=

(
∇wh, C hK

|RCL
(
φh) |

‖∇φh‖ε,2
∇φh

)
L2(ΩK)

. (5.3.88)

For convection-diffusion problems this coincides with the YZβ discontinuity captur-
ing operator [19] with parameter β = 1. This term is used for non-uniform meshes
as well.

Remark 5.3.26. Remark that YZβ discontinuity capturing and the beyond SUPG dis-
continuity capturing are nearly identical in a one-dimensional pure convection case with
stabilization parameter h/a.

Remark 5.3.27. The discontinuity capturing operator YZβ with parameter β = 2, in
contrast to β = 1, does not fit in the presented framework. The fact that the choice β = 1 is
preferred over β = 2, see [19], confirms the viability of the presented theory.
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5.4 numerical comparison

In this section we evaluate the numerical methods on benchmark problems. All the
computations are performed with tIGAr [124]. We employ C1-continuous quadratic
NURBS and use the generalized-α time-integrator with the parameter ρ∞ = 1.0.
Note that this is the only time-integrator within the generalized-α family linked
to correct energy behavior, see e.g., [57]. The regularization parameter is taken as
ε2 = 10−2.

We show the results of using

1. the well-known SUPG method.

2. the YZβ method with β = 1. The connection of this method with the developed
framework is presented in Section 5.3.11.

3. the new method which is summarized in Section 5.3.9.

All the computations are performed on Cartesian meshes. Here the choices η =

‖∇φ‖2 and η = ‖∇ξφ‖2 coincide (Theorem 5.3.20). Non-Cartesian computations
may be subject of another work.

First we evaluate the convergence behavior of the new methods on a smooth pure
advection problem. Then we evaluate the methods on two nonlinear benchmark
problems: (i) the Buckley-Leverett equation with gravity and (ii) the KPP rotating
wave problem. Both tests involve non-convex fluxes and are challenging since the
corresponding solutions have a two-dimensional composite wave-structure. These
problems have been employed in other works concerning discontinuity capturing
mechanisms, see e.g., [19, 43, 85, 99, 137]. We refer the reader for a comparison of
the results to those works.

5.4.1 Convergence for smooth solutions

In this first numerical experiment we consider a smooth profile to test the conver-
gence of the methods. The problem reads:

∂tφ +∇ · f = 0, (5.4.1a)

φ(x, 0) =

 exp
(
− 1

1− r2

)
if r < 1.0,

0.0 otherwise,
(5.4.1b)

f(φ) = aφ. (5.4.1c)

with radius r =
√

x2 + y2.

The convection velocity field is constant and has value a = (0.1, 0.15). The
time-step size is chosen as ∆t = 4hK and we take C = 0.5. Figure 5.3 shows
second-order/third-order convergence in the L2-norm for each of the three methods
which for finer meshes yields second-order convergence due to the choice of the
time-integrator.
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(a) 2D topview (b) 3D sideview

Figure 5.2: Smooth solution problem with quadratic NURBS. The final solution at t = 1.0.
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Figure 5.3: L2 convergence of the smooth solution problem with quadratic NURBS.

5.4.2 Buckley-Leverett with gravity

The gravitational Buckley-Leverett problem with a Riemann initial configuration
reads:

find φ = φ(x, t) : Ω× I → R such that:

∂tφ +∇ · f = 0, (5.4.2a)

φ(x, 0) =

{
1.0 if x2 + y2 ≤ 0.5,

0.0 otherwise,
(5.4.2b)

f(φ) =
(

φ2

φ2 + (1− φ)2 ,
φ2(1− 5(1− φ)2)

φ2 + (1− φ)2 )

)
. (5.4.2c)

The Buckley-Leverett problem emerges from a two-phase immiscible incompressible
fluid problem. It represents a saturation equation in which gravitational effects are
incorporated. This results in different fluxes in both spatial directions. The problem
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has also been considered in [43, 85, 127]. The solution is advanced in time until
t = 0.5.

All computations are performed on a 100x100 mesh with time-step size ∆t = 0.01.
We show in Figures 5.4-5.6 the solution profiles at final time t = 0.5. The gray
scale of the viscosity magnitude is per Figure chosen such that the location of
the diffusion becomes most apparent. The results of the SUPG method contain
excessive oscillations. The discontinuity capturing viscosity based on the variation
entropy condition focuses on the sharp layer, whereas basing it on the residual of
the conservation law spreads it out.

(a) 2D topview (b) 3D sideview

Figure 5.4: Buckley-Leverett problem, the solution at final time t = 0.5 using the SUPG
method.
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(a) 2D topview (b) 3D sideview

(c) viscosity magnitude

Figure 5.5: Buckley-Leverett problem, the solution at final time t = 0.5 using the YZβ
method with constant C = 0.25.
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(a) 2D topview (b) 3D sideview

(c) viscosity magnitude

Figure 5.6: Buckley-Leverett problem, the solution at final time t = 0.5 using the VE method
with constant C = 0.25.
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5.4.3 KPP rotating wave

The KPP rotating wave problem is:

find φ = φ(x, t) : Ω× I → R such that:

∂tφ +∇ · f = 0, (5.4.3a)

φ(x, 0) =

{
3.5π if x2 + y2 ≤ 1,

0.25π otherwise,
(5.4.3b)

f(φ) = (sin φ, cos φ) . (5.4.3c)

The test case was proposed in [137] and is named after the authors Kurganov,
Petrova, and Popov. Several reconstruction schemes, e.g., central-upwind schemes
as WENO5, Minmod 2 and SuperBee, are not successful for this test.

All computations are performed on a 100x100 mesh with time-step size ∆t = 0.01.
Figures 5.7-5.9 show the solution profiles of the various methods at final time t = 1.

The results of the SUPG method display sharp layers with excessive oscillations.
The solution quality improves greatly when using any of the other methods. Again,
the discontinuity capturing viscosity is more localized near the sharp layers when
it is based on the variation entropy condition (displayed in Figure 5.9) than on the
residual of the conservation law (see Figure 5.8). We see at some locations a viscosity
value that is higher than required. In Figure 5.10 we show the results of using a
maximum for the viscosity via equation (5.3.73) with Cmax = 1.0. The gray scale of
the viscosity magnitude of Figures 5.9 and 5.10 is the same to highlight the effect of
using a maximum viscosity. The overly diffusive regions are now removed and the
resulting profile has minimal smearing and the spurious oscillations are virtually
absent.

Remark 5.4.1. In this testcase it is apparent that the viscosity of the new method is active
in regions where variation entropy is created. Gibbs oscillations appear right next to the
discontinuity and this is where the viscosity acts. Note that the viscosity is absent at the
location of the shockwave itself. This is in contrast to the entropy viscosity method [85] in
which the viscosity focuses on the shockwave itself rather than on the oscillations next to it.
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(a) 2D topview (b) 3D sideview

Figure 5.7: KPP rotating wave problem, the solution at final time t = 1.0 using the SUPG
method.

(a) 2D topview (b) 3D sideview

(c) viscosity magnitude

Figure 5.8: KPP rotating wave problem, the solution at final time t = 1.0 using the YZβ
method with constant C = 0.25.
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(a) 2D topview (b) 3D sideview

(c) viscosity magnitude

Figure 5.9: KPP rotating wave problem, the solution at final time t = 1.0 using the VE
method with constant C = 0.25.
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(a) 2D topview (b) 3D sideview

(c) viscosity magnitude

Figure 5.10: KPP rotating wave problem, the solution at final time t = 1.0 using the VE
method with constant C = 0.25 and using the maximum viscosity (5.3.73).
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5.5 conclusions

In this chapter we have presented a general framework for discontinuity capturing
mechanisms. The framework does not employ ad hoc devices which is, to the best
knowledge of the authors, in contrast to previous discontinuity capturing methods.
The developed theory contains two key ingredients, namely variation entropy theory
and variational multiscale analysis. Variation entropy provides us the location of
the viscosity and VMS models this viscosity via the missing scales. Merging the
variation entropy concept into the variational multiscale method naturally equips
the variational multiscale method with a discontinuity capturing term.

The discontinuity capturing viscosity is based on the variation entropy condition.
In smooth regions the variation entropy relation is governed with an equality,
and this is where the discontinuity capturing term vanishes. Near sharp layers,
however, the variation entropy relation becomes an inequality. Here the discontinuity
capturing term switches on; dissipation based on the variation entropy production
is added to the formulation.

Many spurious oscillation diminishing methods are isotropic of nature or add
diffusion in the crosswind direction. The discontinuity capturing viscosity acts in
the direction identified by the change of the variation entropy. We believe that this
is a natural direction, since this is where sharp layers are expected. In particular
cases the viscosity reduces to an isotropic one.

The steps of the framework to arrive at a discontinuity capturing term can be
summarized as follows:

1. Regularize the conservation law.

2. Perform a multiscale split and subsequently take the limit of regularization
parameter to zero.

3. Select a projector based on the variation entropy condition.

4. Select a small-scale variation entropy model.

5. Compute the variation entropy viscosity.

6. Select a large-scale variation entropy.

We have tested the new discontinuity capturing method on nonlinear benchmark
problems. The computations are performed with quadratic NURBS. The numerical
results are virtually oscillation-free and have minimal smearing. Compared to the
well-known YZβ method [19], the diffusion of the new discontinuity method is
more localized near sharp layers. These are the locations where variation entropy
can be created. We emphasize that the diffusion should not be added at the shock
but right next to it.

This chapter sheds light on the different concepts of entropy solutions, the total
variation diminishing property and their relation to discontinuity capturing mecha-
nisms. In particular, it establishes a connection between total variation/variation
entropy and discontinuity capturing.

The current framework provides some insight into discontinuity capturing tech-
niques, however we certainly do not claim that it is sufficient in this context. There
are several openings.
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• The first concerns the choice of the variation entropy. Numerical results indi-
cate that taking the 2-norm of the gradient leads to good behavior. Improve-
ment might be achieved with another choice of the variation entropy.

• Another point that deserves interest is the small-scale variation entropy model.
We have taken the simplest options and perhaps at this point progress can be
made.

• Furthermore, a numerical investigation of the performance of the new method
on curved/non-Cartesian meshes could be investigated.

Summarizing, this work proposes a novel paradigm for the construction of discon-
tinuity capturing operators. We think that the framework has a more fundamental
mathematical foundations than previously proposed methods. The reason is that
it naturally emerges from the conservation law and does not contain ad hoc de-
vices. This, together with the good numerical results illustrate the viability of the
framework. The basic questions of discontinuity capturing operators, i.e. (i) where
to add diffusion?, and (ii) how much diffusion should be added? are answered. The
results of this work indicate that diffusion should be added there where variation
entropy is being produced with an amount that scales with the variation entropy
production.

We close this chapter with the following note. The variational multiscale method
has proven to be a powerful tool for the simulation of turbulent flows, as displayed
in the seminal work [17]. In the current work we have demonstrated that, in addition
to this,

the variational multiscale method is suitable to deal with sharp layers/discontinuities.

The reason for this is simple: both turbulence and shock wave problems contain
features that do not ‘fit’ on a coarse mesh; the variational multiscale framework
incorporates these features into the numerical method.
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5.a an alternative optimality projector

Here we present an alternative projector that directly penalizes violation of the
variation entropy condition. Consider the minimization problem:

find φh ∈ Wh such that:

L (φ− φh) = in f
θh∈Kh

L (φ− θh), (5.A.1)

where the constraint set reads:

Kh :=
{

φh ∈ Wh : (vh, RVEηh)L2(Ω) ≤ 0 for all vh ∈ V h
}

. (5.A.2)

We proceed by opening the solution space with a penalty approach. We define the
projector by

Ph φ = argminφh∈Wh

{
1
2

∥∥∥φ− φh
∥∥∥2

W
+

1
2

∥∥∥√µτVE{RVEηh}+
∥∥∥2

L2(Ω)

}
, (5.A.3)

where µ and τVE play the same role as before. Just like for the projector of Section
5.3.5, when the variation entropy condition is not harmed the first-order optimality
conditions reduce to an H1(Ω) orthogonality. This optimality projector Ph implies:

find φh ∈ Wh such that, for all wh ∈ Wh(
φ′, wh

)
W

=
(

µτ2
VE{RVEηh}+, dRVEηh(∇φh)(∇wh)

)
L2(Ω)

. (5.A.4)

Employing the definition of RVE and the chain rule we arrive at:(
φ′, wh

)
W

=

(
µτ2

VE{RVEηh}+
∂ηh

∂∇φh , d (∇RCL) (φ
h)(wh)

)
L2(Ω)

+
(

µτ2
VE{RVEηh}+, H∇φh ηh∇wh,∇RCLφh

)
L2(Ω)

. (5.A.5)

Using the homogeneity property and interchanging differential operators we may
write: (

φ′, wh
)
W

=
(

K∇φh, τVE∇
(

dRCL(φ
h)(wh)

))
L2(Ω)

+
(

K̄∇wh, τVE∇RCLφh
)

L2(Ω)
. (5.A.6)

where τVE denotes the time-scale linked to the variation entropy and where the
matrices are given by:

K = νVE
∂ηh

∂∇φh ⊗
∂ηh

∂∇φh , (5.A.7a)

K̄ = νVEηhH∇φηh, (5.A.7b)

νVE = µτVE
{RVEηh}+

ηh . (5.A.7c)
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We arrive at the same expression for νVE, we may employ the model (5.3.51). At this
point it is unclear how to arrive at a numerical method from the small-scale model.
There are several options however these include unwanted approximations and/or
require neglecting some terms. We do not proceed with this projector however we
present some discussion on the diffusion matrices below.

Proposition 5.A.1. The matrices K and K̄ are symmetric positive semi-definite.

Proof. Symmetry is trivial and the positive semi-definiteness of is a direct conse-
quence of νVE being positive and the convexity of ηh (for K̄).

Note that both K and K̄ have the unit of a viscosity and both are based on the
variation entropy residual. The matrix K is the same as found before and acts in the
direction is represented by ∂η/∂∇φh. Below we analyze the matrix K̄.

Let u|| denote the projection of u onto ∂η/∂∇φh:

u|| :=
ˆ∂ηh

∂∇φh ⊗
ˆ∂ηh

∂∇φh u (5.A.8)

where the hat-symbol indicates scaling to unit size: v̂ = v/‖v‖2. Note that we have
the identity

u|| ·
∂ηh

∂∇φh = u · ∂ηh

∂∇φh , (5.A.9)

and that the vector

u⊥ := u− u|| =

(
I−

ˆ∂ηh

∂∇φh ⊗
ˆ∂ηh

∂∇φh

)
u (5.A.10)

is perpendicular to u. Whereas the matrix K provides control over gradient in
the direction ∂η/∂∇φh (represented by u||), the matrix K̄ can provide control of
gradients in the direction orthogonal to that (represented by u⊥). In this case K̄u
should be proportional to u⊥. This is only the case if η = ‖∇φh‖2, as stated in the
next proposition.

Proposition 5.A.2. The matrix K̄ acts in the direction orthogonal to ∂η/∂∇φh if and only
if η = ‖∇φh‖2 (up to multiplication with a constant).

Proof. Up to scaling by a constant, we need to find ηh such that:

K̄u = νVEu⊥ (5.A.11)

for all vectors u. Substitution of (5.A.7b) and (5.A.10) gives:

νVEηhH∇φh ηu = νVE

(
I−

ˆ∂ηh

∂∇φh ⊗
ˆ∂ηh

∂∇φh

)
u. (5.A.12)

Taking u = ∇φh provides

ηhH∇φh η∇φh = ∇φh − ηh
ˆ∂ηh

∂∇φh

∥∥∥∥ ∂η

∂∇φh

∥∥∥∥−1

2
. (5.A.13)
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Next, we use the homogeneity property (5.2.12) to find:

∇φh − ηh
ˆ∂ηh

∂∇φh

∥∥∥∥ ∂η

∂∇φh

∥∥∥∥−1

2
= 0. (5.A.14)

Rearranging gives ∥∥∥∥ ∂ηh

∂∇φh

∥∥∥∥
2
∇φh =

ˆ∂ηh

∂∇φh ηh. (5.A.15)

Taking the norm leads to: ∥∥∥∥ ∂ηh

∂∇φh

∥∥∥∥
2

∥∥∥∇φh
∥∥∥

2
= ηh. (5.A.16)

By again using homogeneity we arrive at∥∥∥∥ ∂ηh

∂∇φh

∥∥∥∥
2

∥∥∥∇φh
∥∥∥

2
=

∂ηh

∂∇φh · ∇φh. (5.A.17)

This means that the vectors ∂η/∂∇φh and ∇φh point in the same direction. We
conclude η = ‖∇φh‖2, up to multiplication with a constant.
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Part III

A N E N E R G Y- D I S S I PAT I V E M E T H O D F O R F R E E - S U R FA C E
F L O W

In this part we present an energy-dissipative level-set method for the
incompressible Navier-Stokes equations with surface tension. The con-
struction is based on so-called functional entropy variables.





6
A N E N E R G Y- D I S S I PAT I V E L E V E L - S E T
M E T H O D F O R T H E I N C O M P R E S S I B L E
T W O - P H A S E N AV I E R - S T O K E S E Q UAT I O N S
W I T H S U R FA C E T E N S I O N

This chapter is reproduced from [60]:

M.F.P. ten Eikelder and I. Akkerman, An energy-dissipative level-set method for the
incompressible two-phase Navier-Stokes equations with surface tension using functional
entropy variables, under review (2020).

abstract

This chapter presents the first energy-dissipative level-set method for the incompressible
Navier-Stokes equations with surface tension. The methodology relies on the recently proposed
concept of functional entropy variables. Discretization in space is performed with isogeometric
analysis. A new perturbed midpoint scheme is proposed for the temporal-integration. The
fully-discrete scheme is unconditionally energy-dissipative, pointwise divergence-free and
satisfies the maximum principle for the density. Numerical examples in two and three
dimensions verify the energetic stability of the methodology.
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6.1 introduction

This chapter proposes a novel energy-dissipative numerical method for the com-
putation of the incompressible Navier-Stokes equations with surface tension. Our
discretization employs the level-set method to capture the fluid interface and hinges
on so-called functional entropy variables. The method unconditionally dissipates the
total energy of the system, is pointwise divergence-free and satisfies the maximum
principle for the density. The energetic stability improves robustness features and
as such the proposed approach is suitable choice for the simulation of immiscible
fluids.

6.1.1 Free-surface flow modeling

Incompressible free-surface flows with surface tension appear in a large class of
applications ranging from marine and offshore engineering, e.g., sloshing of LNG in
tanks or wave impacts, to bubble dynamics. Applications typically involve violent
free-surface flows. As a result topological changes (e.g., break-up or coalescence)
occur. Numerical methods for two-fluid flow problems typically follow the free-
surface motion with either mesh-motion or with an extra variable that captures
the topological changes. The first class of methods is known as interface-tracking
methods whereas the second are the interface-capturing methods. When there is a
large amount of topological changes interface-tracking methods are an unfortunate
choice. On the other hand, interface capturing methods [109, 186, 194] naturally
deal with the interface and seem in this case to be the more suitable choice.

Interface capturing methods can roughly be divided into phase-field methods,
volume-of-fluid methods and level-set methods, see [64] for a discussion. The
phase field models [80, 82, 143, 144] are known for their rigorous thermodynamical
structure. The main issue is that numerical methods for phase field models do
not provably satisfy the maximum principle for the density [174]. Volume-of-fluid
methods [93, 157, 167] are popular methods, also for compressible flows modeling
[10, 126], but suffer from the same discrepancy. The maximum principle is generally
only guaranteed if a CFL-like condition is fulfilled, see e.g., [63]. When simulating
air-water flows the maximum principle is crucial due to the large density jump.
Therefore we employ in this chapter the level-set method [2, 168, 169, 181] which by
construction satisfies the maximum principle for the density. The level set method
does not limit the complexity of the free-surface flow nor the flow regime. It has
proven to be suitable tool for free-surface flows in marine applications, e.g., [3, 5, 6,
151].

6.1.2 Surface tension

Apart from the ability to capture the interface location, the extra variable in interface
capturing methods may be used to evaluate the surface tension contribution. In
volume-of-fluid and level-set methods the interface normal and curvature may be
computed similarly. It is well-known, see e.g., [1, 158], that surface tension effects
are better represented when using the level-set approach as compared with the
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volume-of-fluid approach. We refer to [83] for error analysis of the surface tension
force in the level-set method. The standard and most popular approach is to use
the continuum model of Brackbill et al. [31]. In the discrete approximation the
evaluation of the curvature often employs a projection step for lower-order methods
which leads to inaccuracies. In a recently paper [203] the authors show that the
accuracy of the curvature improves significantly when using a smooth higher-order
NURBS-based isogeometric discretization [101].

6.1.3 Energetic stability

Level-set methods are, to the best knowledge of the authors, never equipped with
a thermodynamically stable algorithm. However the notion of energetic stability1

is of practical importance. In [3] it is shown that for a viscous air-water level-
set simulation in certain situations artificial energy may be created. This leads
to a nonphysical prediction of the fluid behavior. The approach of proving an
energetic stability result in a Galerkin-type formulation includes the selection of
appropriate weights. Unfortunately, the suitable test functions are not available in
typical finite element methods. This applies to the spatial and temporal discretization
independently.

6.1.4 This work

In this chapter we address one of the main discrepancies of regularized-interface
level-set methods, namely the above mentioned absence of an energetic stability
property. We circumvent the limitation caused by the function spaces by introducing
the unavailable weighting function as a new variable via so-called functional entropy
variables. This concept is the natural alternative to entropy variables when the
mathematical entropy associated with the system of equations is a functional (instead
of a function) of the conservation variables. We naturally integrate this new variable
into the level-set model via the surface tension term. This creates the required
extra freedom and as a result the associated weak form is equipped with energetic
stability for standard divergence-conforming function spaces. The formulation does
not require the evaluation of the curvature and is as such not limited to higher-order
discretizations. To inherit energetic stability in a semi-discrete sense we employ a
NURBS-based isogeometric analysis Galerkin-type discretization. Furthermore, we
introduce a SUPG stabilization mechanism that does not upset the energy-dissipative
property of the method. Additionally, we augment the momentum equation with
a residual-based discontinuity capturing term. For the temporal discretization we
propose a new time-stepping scheme which can be understood as a perturbation
of the midpoint rule. The result is a consistent fully-discrete energy-dissipative
scheme that is pointwise divergence-free and satisfies the maximum principle for
the density.

1 Note that thermodynamically stable resembles energetically stable in the isothermal case as Clausius-
Duhem inequality reduces to an energy-dissipative inequality.
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6.1.5 Structure of this chapter

The remainder of this chapter is organized as follows. Section 6.2 presents and
analyzes the energy behavior of the sharp-interface incompressible Navier-Stokes
equations with surface tension. In Section 6.3 we use the sharp-interface model as
a starting point to derive the regularized level-set model and provide a detailed
analysis in terms of energy behavior. Additionally, we extensively discuss the level-
set form of the surface tension contribution. In Section 6.4 we employ the functional
entropy variables to obtain a modified energy-dissipative formulation. Then, in
Section 6.5 we present the semi-discrete energetically stable formulation. Next, in
Section 6.6 we present the fully-discrete energy-dissipative method. Section 6.7
shows the numerical experiments in two and three dimensions which verify the
energy-dissipative property of the scheme. We draw conclusions in Section 6.8.

Remark 6.1.1. To keep the work comprehensible we have intentionally not included multi-
scale stabilization mechanisms and redistancing procedures. Incorporating these additional
techniques in the currently proposed algorithm would allow the simulation of violent flows.
These developments lie beyond the scope of this paper.

6.2 sharp-interface formulation

6.2.1 Governing equations

Let Ω ⊂ Rd, d = 2, 3, denote the spatial domain with boundary ∂Ω. We consider
two immiscible incompressible fluids that occupy subdomains Ωi ⊂ Ω, i = 1, 2,
in the sense Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩Ω2 = ∅. A time-dependent smooth interface
Γ = ∂Ω1 ∩ ∂Ω2 separates the fluids. The problem under consideration consists of
solving the incompressible Navier-Stokes equations with surface tension dictating
the two-fluid flow:

ρi (∂tu + u · ∇u)− µi∆u +∇p = ρig, in Ωi(t) (6.2.1a)

∇ · u = 0 in Ωi(t), (6.2.1b)

[[[u]]] = 0 on Γ(t), (6.2.1c)

[[[S(u, p)ν]]] = σκν on Γ(t), (6.2.1d)

V = u · ν on Γ(t), (6.2.1e)

with u(x, 0) = u0(x) in Ωi(0) and Γ(0) = Γ0 for the fluid velocity u : Ω→ Rd and
the pressure p : Ω→ R. The stress tensor is given by:

S(u, p) = τ(u)− pI in Ωi(t) (6.2.2)

with viscous stress tensor:

τ(u) = 2µi∇su in Ωi(t). (6.2.3)

The jump of a vector v is denoted as

[[[v]]] = (v|Ω1
− v|Ω2

)|Γ. (6.2.4)
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The problem is augmented with appropriate boundary conditions. We denote with
x ∈ Ω the spatial parameter and with t ∈ T = (0, T) the time with end time
T > 0. Furthermore, we set g = −g where g is the gravitational acceleration
and  is the vertical unit vector. The initial velocity is u0 : Ω → Rd. We use
the standard convention for the various differential operators, i.e. the temporal
derivative reads ∂t and the symmetric gradient denotes ∇s· = 1

2

(
∇ ·+∇T·

)
. The

constants µi > 0 and ρi > 0 denote the dynamic viscosity and density of fluid i
respectively. The normal speed of Γ(t) is denoted as V, the normal of Γ(t), denoted
ν, is pointing from Ω2(t) into Ω1(t) and the tangential vector is t. The curvature
is κ = ∇ · ν, i.e. κ(x, t) is negative when Ω1(t) is convex in a neighborhood of
x ∈ Γ(t). Furthermore, the outward-pointing normal of ∂Ω denotes n. We defined
un = u · n and uν = u · ν as the normal velocity of ∂Ω and Γ(t), respectively. The
equation (6.2.1a) represents the the balance of momentum while (6.2.1b) is the
continuity equation. Next, (6.2.1c) states that the velocities are continuous across the
separating interface. The fourth equation, (6.2.1d), stipulates that the discontinuity
of the stresses at the interface is governed by surface tension. In absence of surface
tension it reduces to an equilibrium of the stresses. Note that a direct consequence
of (6.2.1d) is the continuity of tangential stress at the interface:

[[[2µi(∇su)ν]]] · t = 0 on Γ(t). (6.2.5)

We assume that the surface tension coefficient σ ≥ 0 is constant, i.e. Maragoni effects
are precluded. Furthermore, we assume that line force terms vanish as a result of
boundary conditions or additional conditions (see also [173]). We refer to [160] for
some well-posed properties of the problem.

We introduce the notation

ρ = ρ1χΩ1(t) + ρ2χΩ2(t), (6.2.6a)

µ = µ1χΩ1(t) + µ2χΩ2(t), (6.2.6b)

with indicator χD of domain D. System (6.2.1) may now be written as:

ρ (∂tu + u · ∇u)− µ∆u +∇p = ρg in Ω, (6.2.7a)

∇ · u = 0 in Ω, (6.2.7b)

[[[u]]] = 0 on Γ(t), (6.2.7c)

[[[S(u, p)ν]]] = σκν on Γ(t), (6.2.7d)

V = u · ν on Γ(t), (6.2.7e)

where τ(u) ≡ 2µ∇su and u(x, 0) = u0(x) in Ωi(0) and Γ(0) = Γ0 .
As we aim to develop an energy-dissipative level-set method, we first study the

energy behavior of the sharp-interface model associated with system (6.2.7). This is
the purpose of the remainder of Section 6.2. After the energy analysis in Section
6.2.2 we present a standard weak formulation of (6.2.7) in Section 6.2.3.
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6.2.2 Energy evolution

We consider the dissipation of the energy of the problem (6.2.7). The total energy
consists of three contributions, namely kinetic (K), gravitational (G) and surface
energy (S):

Es(u) = E K
s (u) + E G

s + E S
s , (6.2.8a)

E K
s (u) :=

∫
Ω

1
2 ρ‖u‖2

2 dΩ, (6.2.8b)

E G
s :=

∫
Ω

ρgy dΩ, (6.2.8c)

E S
s :=

∫
Γ(t)

σ dΓ, (6.2.8d)

with y = x ·  the vertical coordinate. The subscript s refers to the sharp-interface
model.

Theorem 6.2.1. Let u and p be smooth solutions of the incompressible Navier-Stokes
equations with surface tension (6.2.7). The total energy Es, given in (6.2.8), satisfies the
dissipation inequality:

d
dt

Es(u) = −
∫

Ω
τ(u) : ∇u dΩ +Bs ≤ 0 +Bs, (6.2.9)

where Bs contains the boundary contributions:

Bs =
∫

∂Ω
nT (S(u, p)−

( 1
2 ρ‖u‖2 + ρgy

)
I
)

u dS. (6.2.10)

Proof. To establish the dissipative property (6.2.9) we will first consider the evolution
of each of the energy contributions (6.2.8) separately and subsequently substitute
these in the strong form (6.2.7).

We start off with the kinetic energy evolution. The following sequence of identities
holds:

d
dt

E K
s =

∫
Ω1(t)

ρu · ∂tu dΩ +
∫

Ω2(t)
ρu · ∂tu dΩ

+
∫

∂Ω1(t)∩Γ(t)

1
2 ρ‖u‖2u · n1 dS +

∫
∂Ω2(t)∩Γ(t)

1
2 ρ‖u‖2u · n2 dS

=
∫

Ω
ρu · (∂tu + (u · ∇) u) dΩ +

∫
Ω

1
2 ρ‖u‖2∇ · u dΩ

−
∫

∂Ω

1
2 ρ‖u‖2un dS, (6.2.11)

where n1 and n2 denote the outward unit normal of Ω1(t) and Ω2(t), respectively.
The first identity results from the Leibniz-Reynolds transport theorem. To obtain
the second equality one adds a suitable partition of zero, subsequently applies the
divergence theorem on both Ω1(t) and Ω1(t), and lastly uses the chain rule.
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In a similar fashion we have the identities for the gravitational energy evolution:

d
dt

E G
s =

∫
∂Ω1(t)∩Γ(t)

ρgyu · n1 dS +
∫

∂Ω2(t)∩Γ(t)
ρgyu · n2 dS

=
∫

Ω1(t)
ρg · u dΩ +

∫
Ω1(t)

ρgy∇ · u dΩ

+
∫

Ω2(t)
ρg · u dΩ +

∫
Ω2(t)

ρgy∇ · u dΩ−
∫

∂Ω
ρgyu · n dS

=
∫

Ω
ρgu ·  dΩ +

∫
Ω

ρgy∇ · u dΩ−
∫

∂Ω
ρgyun dS. (6.2.12)

The first identity emanates from the Leibniz-Reynolds transport theorem and the
second is a direct consequence of the divergence theorem.

Finally, we consider the energetic contribution due to surface tension. We have
from the Reynolds transport theorem in tangential calculus, see e.g., [176], the
identity:

d
dt

E S
s =

∫
Γ(t)

σκuν dΓ−
∫

∂Γ(t)
σu · ν∂ d(∂Γ), (6.2.13)

where we recall that we do not account for Maragoni forces (σ is constant). Here ν∂

is the unit-normal vector to ∂Γ(t), tangent to Γ(t). We refer to [37, 177] for alternative
insightful derivations of (6.2.13). We discard the last member of the right-hand side
of (6.2.13) as it represents a line force.

We multiply the momentum equation by u and subsequently integrate over the
domain:∫

Ω
uTρ (∂tu + u · ∇u) dΩ +

∫
Ω

uT (∇p− µ∆u) dΩ +
∫

Ω
ρgu ·  dΩ = 0. (6.2.14)

Considering the second expression in (6.2.14) in isolation we have the two identities:∫
Ω

uT (∇p− µ∆u) dΩ =
∫

Ω1(t)
uT∇ (pI− µ1∇su) dΩ

+
∫

Ω2(t)
uT∇ (pI− µ2∇su) dΩ

+
∫

Ω1(t)
µ1u · ∇(∇ · u) dΩ +

∫
Ω2(t)

µ2u · ∇(∇ · u) dΩ

=
∫

Ω
∇u : S(u, p) dΩ−

∫
∂Ω

nTS(u, p)u dΩ

+
∫

Ω
µu · ∇(∇ · u) dΩ +

∫
Γ(t)

σκuν dΓ. (6.2.15)

The first identity follows from adding a suitable partition of zero. For the second
equality we perform integration by parts and make use of the jump (6.2.7d) where
we note that on Γ(t) we have n1 = −ν and n2 = ν.

We deduce from the continuity equation:

−
∫

Ω
(p + 1

2 ρ‖u‖2
2 + ρgy)∇ · u dΩ +

∫
Ω

µu · ∇(∇ · u) dΩ = 0. (6.2.16)

Next, we collect the identities (6.2.11), (6.2.12), (6.2.13), (6.2.15) and (6.2.16), substitute
these into (6.2.14). The first member in (6.2.14) cancels with the first term in the
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ultimate expression in (6.2.11). By virtue of (6.2.15) the second term in (6.2.14) drops
out. The third member of (6.2.14) disappears due to (6.2.12). Some of the other terms
in (6.2.11), (6.2.12) and (6.2.15) vanish due to (6.2.13) and (6.2.16). Gathering the
expressions we eventually arrive at:

d
dt

Es = −
∫

Ω
τ(u) : ∇u dΩ +

∫
∂Ω

nT (S(u, p)−
( 1

2 ρ‖u‖2 + ρgy
)

I
)

u dS. (6.2.17)

This completes the proof with

Bs =
∫

∂Ω
nT (S(u, p)−

( 1
2 ρ‖u‖2 + ρgy

)
I
)

u dS. (6.2.18)

6.2.3 Weak formulation

Recall that we suppress line force contributions as a result of boundary or auxiliary
conditions. At this point we also assume homogeneous boundary conditions to
increase readability of the remainder of this chapter. Results can be easily extended
to non-homogeneous boundary conditions. We define (·, ·)Ω as the L2(Ω) inner
product on the interior and (·, ·)Γ as the L2(Γ) inner product on the boundary.
We take zero-average pressures for all t ∈ T . The space-time velocity-pressure
function-space satisfying homogeneous boundary condition u = 0 denotes UT and
the corresponding weighting function space denotes U . The standard conservative
weak formulation corresponding to strong form (6.2.7) reads:

Find {u, p} ∈ U such that for all {w, q} ∈ U :

(w, ρ (∂tu + u · ∇u))Ω − (∇ ·w, p)Ω + (∇w, τ(u))Ω

+ (w, σκν)Γ(t) − (w, ρg)Ω = 0, (6.2.19a)

(q,∇ · u)Ω = 0, (6.2.19b)

with interface speed V = u · ν. The weak formulation (6.2.19) is equivalent to the
strong form (6.2.7) for smooth solutions and the associated energy evolution relation
coincides with that of the strong form (6.2.7).

Remark 6.2.2. To show the energy evolution for the case of non-homogeneous boundary
conditions one may enforce boundary conditions with a Lagrange multiplier construction
[57, 58, 102, 117] and subsequently use (6.2.13) to identify the surface energy contribution.

Remark 6.2.3. In order to avoid evaluating second-derivatives the alternative form
+(∇w, σPT)Γ for the surface tension term in (6.2.19) with tangential projection PT =

I− ν⊗ ν may be used. In Appendix 6.A.1 we provide the derivation of this alternative form.

6.3 regularized-interface level-set model

In this section we present the regularized-interface level-set model and analyze its
energy behavior. To do so, in Section 6.3.1 we provide the level-set formulation of
(6.2.7) which we subsequently present in non-dimensional form Section 6.3.2. Then
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in Section 6.3.3 we regularize the sharp-interface level-set formulation. We conclude
with a detailed study of the energy behavior of this level-set formulation in Section
6.3.4.

6.3.1 Sharp-interface level-set formulation

We employ the interface capturing level-set method to reformulate model (6.2.19).
To this purpose we introduce the level-set function φ : Ω(t) → R to describe the
evolution of the interface Γ(t). The sub-domains and interface are identified as:

Ω1(t) ≡ {x ∈ Ω(t)|φ(x, t) > 0} , (6.3.1a)

Ω2(t) ≡ {x ∈ Ω(t)|φ(x, t) < 0} , (6.3.1b)

Γ(t) ≡ {x ∈ Ω(t)|φ(x, t) = 0} . (6.3.1c)

The motion of the interface Γ(t) is governed by pure convection:

∂tφ + u · ∇φ = ∂tφ + V‖∇φ‖ = 0. (6.3.2)

This results from taking the temporal derivative of the zero-level set. The domain
indicator may now be written as:

χΩ1 = H(φ), (6.3.3a)

χΩ2 = 1− H(φ), (6.3.3b)

where H is the Heaviside function with the half-maximum convention:

H(φ) =


0 φ < 0
1
2 φ = 0

1 φ > 0.

(6.3.4)

The resulting density and fluid viscosity are:

ρ(φ) = ρ1H(φ) + ρ2(1− H(φ)), (6.3.5a)

µ(φ) = µ1H(φ) + µ2(1− H(φ)), (6.3.5b)

and the viscous stress now depends on u and φ:

τ(u, φ) = 2µ(φ)∇su. (6.3.6)

In order to write the surface term in (6.2.19) in the level-set context we need expres-
sions for the surface normal, the curvature and require to convert the surface integral
into a domain integral. This is how we proceed. We first define the regularized
2-norm ‖ · ‖ε,2 : R→ R+ for dimensionless b ∈ Rd and ε ≥ 0 as:

‖b‖2
ε,2 := b · b + ε2. (6.3.7)

The surface normal is now continuously extended into the domain via

ν̂(φ) =
∇φ

‖∇φ‖ε,2
. (6.3.8)
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The curvature results from taking the divergence of (6.3.8):

κ̂(φ) := ∇ · ν̂ = ∇ ·
(
∇φ

‖∇φ‖ε,2

)
. (6.3.9)

We may now convert the surface integral into∫
Γ(t)

σw · ν κ dΓ =
∫

Ω
σw · ν̂(φ) κ̂(φ)δΓ(φ) dΩ. (6.3.10)

Here δΓ = δΓ(φ) denotes the Dirac delta concentrated on the interface Γ(t):

δΓ(φ) := δ(φ)‖∇φ‖ε,2. (6.3.11)

which extends the integral over boundary Γ(t) to the domain Ω [155]. In (6.3.11)
δ(φ) represents the Dirac delta distribution. The expression in (6.3.10) is exact for
ε = 0 and an approximation otherwise. We refer to Chang et al. [41] for an insightful
derivation. For more rigorous details the reader may consult [95]. Note that we have
suppressed ε in (6.3.8)-(6.3.11). The corresponding strong form writes in terms of
the variables u, p and φ as:

ρ(φ) (∂tu + u · ∇u)−∇ · τ(u, φ) +∇p + σδΓ(φ)κ̂(φ)ν̂(φ)− ρ(φ)g = 0, (6.3.12a)

∇ · u = 0, (6.3.12b)

∂tφ + u · ∇φ = 0, (6.3.12c)

with u(x, 0) = u0(x) and φ(x, 0) = φ0(x) in Ω. From this point onward we skip the
hat symbols for simplicity.

6.3.2 Non-dimensionalization

We now perform the non-dimensionalization of the incompressible Navier-Stokes
equations with surface tension. Here we re-scale the system (6.3.12) based on
physical variables. The dimensionless variables are given by:

x∗ =
x
L0

, u∗ =
u

U0
, t∗ =

tU0

L0
, ρ∗ =

ρ

ρ1
,

µ∗ =
µ

µ1
, φ∗ =

φ

L0
, p∗ =

p
ρ1U2

0
, (6.3.13)

where L0 is a characteristic length scale and U0 is a characteristic velocity. A direct
consequence is

κ∗(φ∗) := ∇∗ ·
(
∇∗φ∗
‖∇∗φ∗‖ε,2

)
= L0κ(φ), (6.3.14a)

δ∗Γ(φ
∗) := δ(φ∗)‖∇∗φ∗‖ε,2 = L0δΓ(φ), (6.3.14b)

where we have used the scaling property of the Dirac delta:

δ(αφ) =
1
|α|δ(φ), α 6= 0. (6.3.15)
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The dimensionless system reads:

ρ∗(φ∗) (∂t∗u∗ + u∗ · ∇∗u∗)−∇∗ · τ∗(u∗, φ∗) +∇∗p∗dawd

+
1

We
δ∗Γ(φ

∗)κ∗(φ∗)ν∗(φ∗) +
1

Fr2 ρ∗(φ∗) = 0, (6.3.16a)

∇∗ · u∗ = 0, (6.3.16b)

∂t∗φ
∗ + u∗ · ∇∗φ∗ = 0, (6.3.16c)

where dimensionless viscous stress is given by:

τ∗ = τ∗(u∗, φ∗) =
1

Re
µ∗(φ∗)

(
∇∗u∗ +∇∗Tu∗

)
. (6.3.17)

The used dimensionless coefficients are the Reynolds number (Re) which expresses
relative strength of inertial forces and viscous forces, the Weber number (We)
measuring the ratio of inertia to surface tension and the Froude number (Fr) which
quantifies inertia with respect to gravity. The expressions are given by:

Re =
ρ1U0L0

µ1
, (6.3.18a)

We =
ρ1U2

0 L0

σ
, (6.3.18b)

Fr =
U0√
gL0

. (6.3.18c)

We suppress the star symbols in the remainder of this Chapter.

6.3.3 Regularization

In the following we smear the interface over an interface-width of ε > 0 via replac-
ing the (sharp) Heaviside function (6.3.4) by a regularized differentiable Heaviside
Hε(φ). We postpone the specific form of Hε(φ) to Section 6.6. The regularized
delta function is δΓ,ε(φ) = δε(φ)‖∇φ‖ε,2 with one-dimensional continuous regu-
larized delta function δε(φ) = H′ε(φ). We refer to [136] for details concerning the
approximation of the Dirac delta. The density and fluid viscosity are computed as

ρε ≡ ρε(φ) := ρ1Hε(φ) + ρ2(1− Hε(φ)), (6.3.19a)

µε ≡ µε(φ) := µ1Hε(φ) + µ2(1− Hε(φ)). (6.3.19b)

Our procedure to arrive at an energy-dissipative formulation, presented in Section
6.4, requires a conservative formulation of the momentum equation. Using the
continuity and level-set equations, the associated model follows straightforwardly:

∂t(ρε(φ)u) +∇ · (ρε(φ)u⊗ u)−∇ · τε(u, φ) +∇p

+
1

We
δΓ,ε(φ)κ(φ)ν(φ) +

1
Fr2 ρε(φ) = 0, (6.3.20a)

∇ · u = 0, (6.3.20b)

∂tφ + u · ∇φ = 0, (6.3.20c)

where τε(u, φ) = 2µε(φ)∇su and u(x, 0) = u0(x) and φ(x, 0) = φ0(x) in Ω. At this
point we have assumed a constant interface width ε. In the following we omit the ε

for the sake of notational simplicity.
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Remark 6.3.1. In case of a non-constant ε one requires to augment the right-hand side of
(6.3.20a) with ∂ρε/∂ε (∂tε + u · ∇ε).

Remark 6.3.2. At this point we remark that as an alternative one may also employ a
skew-symmetric form for the convective terms. Via a partial integration step,

(w,∇ · (ρu⊗ u))Ω = 1
2 (w, ρu · ∇u)Ω − 1

2 (∇w, ρu⊗ u)Ω + 1
2 (w, uu · ∇ρ)Ω

+ 1
2 (w, ρu∇ · u)Ω, (6.3.21)

we may replace the convective term in (6.3.20) by the first three terms on the right-hand
side of (6.3.21). In the current situation the specific form of the convective terms (conser-
vative or skew-symmetric) is not essential. This changes when the formulation is equipped
with multiscale stabilization terms. In the single-fluid case (in absence of surface tension)
the well-known multiscale discretization that represents an energy-stable system is the
skew-symmetric form, see e.g., [57, 58, 71]. In contrast to the current two-phase model,
this property is for the single-fluid case directly inherited by the fully-discrete case when
employing the mid-point rule for time integration.

6.3.4 Energy evolution

In the following we show the energy balance of the level-set formulation (6.3.20).
The kinetic, gravitational and surface energy associated with system (6.3.20) are:

E K(u, φ) :=
( 1

2 ρ(φ)u, u
)

Ω , (6.3.22a)

E G(φ) :=
1

Fr2 (ρ(φ), y)Ω , (6.3.22b)

E S(φ) :=
1

We
(1, δΓ(φ))Ω . (6.3.22c)

The total energy is the superposition of the separate energies:

E (u, φ) = E K(u, φ) + E G(φ) + E S(φ). (6.3.23)

The local energy is given by:

H = 1
2 ρ(φ)‖u‖2

2 +
1

Fr2 ρ(φ)y +
1

We
δΓ(φ). (6.3.24)

We present the local energy balance and subsequently the global balance. To that
purpose we first need to introduce some notation and Lemmas associated with the
surface energy. Let us define the normal projection operator:

PN(φ) :=
∇φ

‖∇φ‖ε,2
⊗ ∇φ

‖∇φ‖ε,2
, (6.3.25)

and the tangential projection operator:

PT(φ) := I− PN(φ). (6.3.26)

The associated gradient operators are the gradient along the direction normal to the
interface:

∇N = PN(φ)∇, (6.3.27)

and the gradient tangent to the interface:

∇Γ = PT(φ)∇ = ∇−∇N . (6.3.28)
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Lemma 6.3.3. The term ‖∇φ‖ε,2 evolves in time according to:

∂t‖∇φ‖ε,2 +∇ · (‖∇φ‖ε,2u)− ‖∇φ‖ε,2∇Γu = 0. (6.3.29)

Proof. This follows when evaluating the normal derivative of the level-set equation.
Taking the gradient of the level-set equation and subsequently evaluating the inner
product of the result with ν(φ) yields:

∇φ

‖∇φ‖ε,2
· ∇ (∂tφ + u · ∇φ) = 0. (6.3.30)

Applying the gradient operator to each of the members provides

∇φ

‖∇φ‖ε,2
· ∇ (∂tφ) + u ·

(
∇ (∇φ)

∇φ

‖∇φ‖ε,2

)
+∇u :

(
∇φ

‖∇φ‖ε,2
⊗∇φ

)
= 0. (6.3.31)

The first term in (6.3.31) coincides with the first member in expression (6.3.29). For
the second term in (6.3.31) we note that the term in brackets equals the gradient of
‖∇φ‖ε,2. Finally, one recognizes the normal projection operator in the latter term of
(6.3.31). This delivers:

∂t‖∇φ‖ε,2 + u · ∇‖∇φ‖ε,2 + ‖∇φ‖ε,2∇Nu = 0. (6.3.32)

Adding a suitable partition of zero completes the proof.

Remark 6.3.4. The evolution (6.3.29) may be linked to the recently proposed variation
entropy theory [59]. Variation entropy is local continuous generalization of the celebrated
TVD (total variation diminishing) property derived from entropy principles. It serves as
a derivation of discontinuity capturing mechanisms [61]. Using the continuity equation
(6.3.20b) we obtain an alternative form of (6.3.29):

∂tη(∇φ) +∇ ·
(

η(∇φ)
∂ f
∂φ

)
+ η(∇φ)∇N

∂ f
∂φ

= 0, (6.3.33)

with η(∇φ) = ‖∇φ‖ε,2 and f (φ, u) = uφ. In the stationary case, i.e. when the term
∇N(∂ f /∂φ) is absent, relation (6.3.33) represents the evolution of variation entropy η(∇φ).
This occurs when the velocity normal to the interface is constant.

Lemma 6.3.5. The surface Dirac δΓ(φ) evolves in time according to:

∂tδΓ(φ) +∇ · (δΓ(φ)u)− δΓ(φ)∇Γu = 0. (6.3.34)

Proof. Multiplying the level-set equation by δ′(φ) provides:

∂tδ(φ) + u · ∇δ(φ) = 0. (6.3.35)

The superposition of (6.3.29) multiplied by δ(φ) and (6.3.35) multiplied by ‖∇φ‖ε,2

provides the result. In other words, the operator

δ(φ)
∇φ

‖∇φ‖ε,2
· ∇+ ‖∇φ‖ε,2δ′(φ)I , (6.3.36)

in which I denotes the identity operator, applied to the level-set equation delivers
the evolution of the surface Dirac (6.3.34).
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To derive the local energy balance we introduce the following identity.

Proposition 6.3.6. It holds:

−∇ · (PT(φ)δΓ(φ)) = δΓ(φ)ν(φ)κ(φ)− ε2δ′(φ)ν(φ). (6.3.37)

Proof. See Appendix 6.A.2.

We now present the local energy balance.

Lemma 6.3.7. The local energy balance associated with system (6.3.20) takes the form:

∂tH+∇ · (((H+ p) I− τ(u, φ)) u)− 1
We
∇ · (δΓ(φ)PTu) + τ(u, φ) : ∇u

+ε2 1
We

δ′(φ)uν = 0. (6.3.38)

The divergence terms represent the redistribution of energy over the domain and
the second to last term accounts for energy dissipation due to diffusion. The last
term that emanates from the regularization is unwanted. We return to this issue in
Section 6.4.

Proof. First we consider the local kinetic energy of the system (6.3.20). By straight-
forwardly applying the chain-rule we find:

∂t

(
ρ

1
2
‖u‖2

2

)
= u · ∂t(ρu)− 1

2‖u‖
2
2

∂ρ

∂φ
∂tφ. (6.3.39)

From the momentum and level-set equations, i.e. (6.3.20a) and (6.3.20c), we deduce:

u · ∂t(ρu)− 1
2‖u‖

2
2

∂ρ

∂φ
∂tφ = − u · ∇ · (ρu⊗ u) + uT∇ · τ(u, φ)− u · ∇p

− 1
We

κδΓuν −
1

Fr2 ρu ·  + 1
2‖u‖

2
2

∂ρ

∂φ
u · ∇φ. (6.3.40)

For the energetic contribution due the gravitational force, the chain-rule and the
level-set equation (6.3.20c) convey that:

∂t

(
1

Fr2 ρy
)
=

1
Fr2 y

∂ρ

∂φ
∂tφ = − 1

Fr2 y
∂ρ

∂φ
u · ∇φ. (6.3.41)

And for the local surface energy evolution we invoke Lemma 6.3.5:

∂t

(
1

We
δΓ(φ)

)
=

1
We

(
δ(φ)

∇φ

‖∇φ‖ε,2
· ∇+ ‖∇φ‖ε,2δ′(φ)I

)
∂tφ

= −∇ ·
(

1
We

δΓ(φ)u
)
+

1
We

δΓ(φ)∇Γu. (6.3.42)

Superposition of (6.3.40)-(6.3.42) yields:

∂tH = − u · ∇ · (ρu⊗ u) + 1
2‖u‖

2
2

∂ρ

∂φ
u · ∇φ

− 1
Fr2 ρu · − 1

Fr2 y
∂ρ

∂φ
u · ∇φ

− 1
We

κδΓuν −∇ ·
(

1
We

δΓ(φ)u
)
+

1
We

δΓ(φ)∇Γu

+ uT∇ · τ(u, φ)− u · ∇p. (6.3.43)



6.3 regularized-interface level-set model 163

With the aim of simplifying (6.3.43) we introduce the identities:

−uT∇ · (ρu⊗ u) + 1
2‖u‖

2
2

∂ρ

∂φ
u · ∇φ = −∇ ·

( 1
2 ρ‖u‖2u

)
− 1

2 ρ‖u‖2∇ · u, (6.3.44a)

− 1
Fr2 ρu · − 1

Fr2 y
∂ρ

∂φ
u · ∇φ = −∇ ·

(
1

Fr2 ρyu
)
+

1
Fr2 ρy∇ · u, (6.3.44b)

1
We

δΓ(φ)∇Γu = ∇ ·
(

1
We

δΓ(φ)PTu
)
+

1
We

δΓκuν

− ε2 1
We

δ′(φ)uν. (6.3.44c)

The first and the second identity follow from expanding the gradient and divergence
operators. To obtain the third we note

δΓ(φ)∇Γu = ∇ · (δΓ(φ)PTu)− u · ∇ (δΓ(φ)PT) (6.3.45)

and apply Proposition 6.3.6 on the second term. Invoking (6.3.44) into (6.3.43) and
adding a suitable partition of zero yields:

∂tH +∇ · (((H+ p) I− τ(u, φ)) u)−∇ ·
(

1
We

δΓ(φ)PTu
)

= −τ(u, φ) : ∇u− ε2 1
We

δ′(φ)uν

+

(
− 1

2 ρ‖u‖2 + p +
1

Fr2 ρy
)
∇ · u. (6.3.46)

With the aid of the continuity equation (6.3.20b) the latter member on the right-hand
side of (6.3.46) vanishes. This completes the proof.

Remark 6.3.8. The energy balance of Lemma 6.3.7 may also be written as:

∂tH+∇ · ((H+ p) u)− 1
Re
∇ ·

(
2µ(φ)∇

( 1
2‖u‖

2
2
))
− 1

We
∇ · (δΓ(φ)PTu)

+ τ(u, φ) : ∇u + ε2 1
We

δ′(φ)uν = 0. (6.3.47)

In this form we clearly see that the second divergence term represents the diffusion of kinetic
energy density.

We can now present the global energy evolution.

Theorem 6.3.9. Let u, p and φ be smooth solutions of the strong form (6.3.20). The
associated total energy E , given in (6.3.23), satisfies the dissipation inequality:

d
dt

E (u, φ) = −(τ(u, φ),∇u)Ω +B ≤ 0 +B, (6.3.48)

where B contains the boundary contributions:

B =
∫

∂Ω
nTτ(u, φ)u− un

(
ρ 1

2‖u‖
2
2 +

1
Fr2 ρy + p

)
dS, (6.3.49)

and where we have set ε = 0.
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Proof. This follows from integrating the energy balance of Lemma 6.3.7 over Ω and
using the divergence theorem:∫

Ω
∂tH dΩ +

∫
Ω

τ(u, φ) : ∇u dΩ +
∫

∂Ω
un (H+ p)− nTτ(u, φ)u dΩ

+
∫

Ω
ε2 1

We
δ′(φ)uν dΩ−

∫
∂Ω

1
We

δΓ(φ)nTPT(φ)u dS = 0. (6.3.50)

We discard the line force terms on the right-hand side and reorganize to get:

d
dt

E (u, φ) = −
∫

Ω
τ(u, φ) : ∇u dΩ−

∫
Ω

ε2 1
We

δ′(φ)uν dΩ

+
∫

∂Ω
nTτ(u, φ)u− un

(
ρ 1

2‖u‖
2
2 +

1
Fr2 ρy + p

)
dS. (6.3.51)

Using the homogeneous boundary condition and setting ε = 0 finalizes the proof.

The energy balance associated with the original model (6.2.7) and that of the
level-set formulation (6.3.20) comply.

Corollary 6.3.10. The energetic balance associated with regularized model (6.3.20) (Theorem
6.3.9) is consistent that of the original model (6.2.7) (Theorem 6.2.1).

Proof. In the limit ε→ 0 we may transform (6.3.51) back to get:

d
dt

Es(u) =
∫

∂Ω
nTτ(u)u− un

(
ρ 1

2‖u‖
2
2 +

1
Fr2 ρy + p

)
dS

−
∫

Ω
τ(u) : ∇u dΩ. (6.3.52)

To close this section we note that one may avoid evaluating second derivatives
appearing in the surface tension term. This holds for the original model (6.2.7)
which we have addressed with briefly in Remark 6.2.3. In the following Proposition
we note that this alternative form directly converts to the regularized model (6.3.20).

Proposition 6.3.11. We have the identity:∫
Ω

1
We

δΓ(φ)κ(φ)ν(φ) ·w dΩ =
∫

Ω

1
We

δΓ(φ)∇w : PT(φ) dΩ

+
1

We

∫
Ω

ε2δ′(φ)ν(φ)w dΩ. (6.3.53)

Proof. See Appendix 6.A.2.

With the aid of Proposition 6.3.11 one can directly evaluate the surface tension
term and does not require any additional procedure such as the one from [120].
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6.4 energy-dissipative formulation

We aim to develop an energetically stable Galerkin-type finite element method for
the regularized level-set model (6.3.20). In Sections 6.2 and 6.3 we have in great detail
depicted the procedure to arrive at the energy-dissipative statement. This procedure
involves several steps that are not valid when dealing with standard finite element
discretization spaces. For instance the operator (6.3.36) associated with the surface
energy is not permittable in a standard discrete setting . Independently, the temporal
discretization also gives rise to issues. Standard second-order semi time-discrete
formulations of (6.3.20) are also not equipped with an energy-dissipative structure.
We demonstrate this in Appendix 6.B. Lastly, we note that the standard regularized-
interface model contains an unwanted term stemming from the regularization.

The first two issues arise from the fact that the standard model is too restrictive
with regard to the function spaces. Enlarging the standard function spaces intro-
duces many complications and as such we do not further look into this strategy. The
alternative is modify the regularized model (6.3.20). This is the road we pursue. We
employ the concept of functional entropy variables proposed by Liu et al. [144]. Liu and
co-workers introduce the concept of functional entropy variables for the isothermal
Navier-Stokes-Korteweg equations [144] and for the Navier-Stokes-Korteweg equa-
tions including the interstitial working flux term [145]. Here we apply the formalism
to the level-set formulation of the incompressible Navier-Stokes equations with
surface tension. This creates the extra space to resolve both discrepancies mentioned
above. Additionally, the unwanted regularization term also vanishes.

6.4.1 Functional entropy variables

Energetic stability for the incompressible Navier-Stokes equations with surface
tension coincides with stability with respect to a mathematical entropy function.
Thus to construct an energy-dissipative formulation for the incompressible Navier-
Stokes equations the natural approach seems to adopt entropy principles. For
systems of conservation laws classical entropy variables are defined as the partial
derivatives of an entropy with respect to the conservation variables. The Clausius-
Duhem inequality plays the role of energetic stability and this results from pre-
multiplication of the system of conservation laws by the entropy variables. The
standard approach of constructing an entropy stable discretization as in Hughes et
al. [107, 171] is not applicable since the mathematical entropy is not an algebraic
function of the conservation variables. In the situation of a general mathematical
entropy functional the derivatives should be taken in the functional setting. The
corresponding Clausius-Duhem inequality is then the result from the action of the
entropy variables on the system of conservation laws.

In the current study we wish to inherit the notion of energetic stability for the
incompressible model with surface tension. To this purpose we use as mathematical
entropy functional the energy density (6.3.24) which we recall here:

H = 1
2 ρ‖u‖2

2 +
1

Fr2 ρy +
1

We
δΓ. (6.4.1)
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Following the approach described above, energetic stability results from the action
of the entropy variables on the system of equations. In contrast to [144] and [145]
the notion of conservation variables does not exist. Instead, the derivatives of H
should here be taken with respect to the model variables U = (φ, ρu). Remark that
(6.4.1) is a functional of the model variables U:

H = H(U) =
‖ρu‖2

2
2ρ(φ)

+
1

Fr2 ρ(φ)y +
1

We
δ(φ)‖∇φ‖ε,2. (6.4.2)

Note that H contains a gradient term ‖∇φ‖ε,2 which is non-local and thus the
appropriate derivative is the functional derivative. We define the entropy variables
as functional derivatives:

V = [V1; V2; V3; V4]
T :=

δH
δU

=

[
δH
δφ

;
δH

δ(ρu1)
;

δH
δ(ρu2)

;
δH

δ(ρu3)

]T

. (6.4.3)

The resulting functional derivatives are for test functions δv = [δv1, δv2, δv3, δv4]
T:

δH
δφ

[δv1] = − 1
2‖u‖

2
2ρ′(φ)δv1 +

1
Fr2 ρ′(φ)yδv1

+
1

We
δ(φ)

∇φ

‖∇φ‖ε,2
· ∇δv1 +

1
We
‖∇φ‖ε,2δ′(φ)δv1, (6.4.4a)

δH
δ(ρu1)

[δv2] = u1δv2, (6.4.4b)

δH
δ(ρu2)

[δv3] = u2δv3, (6.4.4c)

δH
δ(ρu3)

[δv4] = u3δv4. (6.4.4d)

We emphasize that it is essential to use the expression in terms of the model variables
(6.4.2) to evaluate (6.4.4). The associated explicit form of (6.4.4) reads:

δH
δφ

= − 1
2‖u‖

2
2ρ′(φ) +

1
Fr2 ρ′(φ)y− 1

We
δ(φ)∇ ·

(
∇φ

‖∇φ‖ε,2

)
+

1
We

δ′(φ)
ε2

‖∇φ‖ε,2
, (6.4.5a)

δH
δ(ρu)

= uT. (6.4.5b)

We may use the functional entropy variables to systematically recover the energy
balance (6.3.38).

Theorem 6.4.1. Applying the functional entropy variables to the incompressible two-phase
Navier-Stokes equations with surface tension recovers the energy balance (6.3.38):

∂tH+∇ · (((H+ p) I− τ(u, φ)) u) + τ(u, φ) : ∇u− 1
We
∇ · (δΓ(φ)PTu)

+ε2 1
We

δ′(φ)uν = 0. (6.4.6)
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Proof. Application of the functional entropy variables on the time-derivatives pro-
vides:

V
[

∂U
∂t

]
=

δH
δU

[
∂U
∂t

]
=

∂H
∂t

. (6.4.7)

Next we apply the entropy variables on the fluxes to get:

V

[
u · ∇φ

∇ · (ρu⊗ u) +∇p

]
= −

(
1
2‖u‖

2
2 −

1
Fr2 y

)
∂ρ

∂φ
u · ∇φ + uT∇ · (ρu⊗ u)

+∇ · (pu)− p∇ · u

+
1

We
δ(φ)

∇φ

‖∇φ‖ε,2
· ∇(u · ∇φ)

+
1

We
‖∇φ‖ε,2δ′(φ)(u · ∇φ). (6.4.8)

Testing the entropy variables with the surface tension term gives:

V

 0
1

We
δΓ(φ)ν(φ)κ(φ)

 =
1

We
δΓ(φ)κ(φ)uν(φ). (6.4.9)

Testing the entropy variables with the viscous stress yields:

V

[
0

−∇ · τ(u, φ)

]
= −∇ · (τ(u, φ)u) + τ(u, φ) : ∇u. (6.4.10)

And finally testing with the body force yields:

V

 0
1

Fr2 ρ

 =
1

Fr2 ρu · . (6.4.11)

Addition of (6.4.8), (6.4.9), (6.4.10) and (6.4.11) gives:

V

 u · ∇φ

∇ · (ρu⊗ u) +∇p−∇ · τ +
1

Fr2 ρ +
1

We
δΓ(φ)ν(φ)κ(φ)

 a f a f dasd f a f se f segssegsgsgseg

= − 1
2‖u‖

2
2

∂ρ

∂φ
u · ∇φ + uT∇ · (ρu⊗ u)

+∇ · (pu)− p∇ · u

+
1

Fr2 ρu ·  + 1
Fr2 yu · ∇ρ

+
1

We
δ(φ)

∇φ

‖∇φ‖ε,2
· ∇(u · ∇φ) +

1
We
‖∇φ‖ε,2δ′(φ)(u · ∇φ)

+
1

We
ν(φ)κ(φ)uν(φ)

−∇ · (τ(u, φ)u) + τ(u, φ) : ∇u. (6.4.12)
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Recognize the operator (6.3.36) on the fourth line of the right-hand side of (6.4.12).
We may thus use Lemma 6.3.5 and write:

1
We

δ(φ)
∇φ

‖∇φ‖ε,2
· ∇(u · ∇φ) +

1
We
‖∇φ‖ε,2δ′(φ)(u · ∇φ)

= ∇ ·
(

1
We

δΓ(φ)u
)
− 1

We
δΓ(φ)∇Γu. (6.4.13)

Invoking the identities (6.3.44) and (6.4.13) the expression (6.4.12) collapses to

V

 u · ∇φ

∇ · (ρu⊗ u) +∇p−∇ · τ(u, φ) +
1

Fr2 ρ +
1

We
δΓ(φ)ν(φ)κ(φ)

 a f a f dasd f a f se f segssegsgsgseg

= ∇ ·
( 1

2 ρ‖u‖2u
)
+ 1

2 ρ‖u‖2∇ · u
+∇ · (pu)− p∇ · u

+∇ ·
(

1
Fr2 ρyu

)
− 1

Fr2 ρy∇ · u

+∇ ·
(

1
We

δΓ(φ)u
)
−∇ ·

(
1

We
δΓ(φ)PTu

)
+ ε2 1

We
δ′(φ)uν = 0

−∇ · (τ(u, φ)u) + τ(u, φ) : ∇u. (6.4.14)

We merge the terms in (6.4.14) and use the continuity equation (6.3.20b) to cancel
the terms containing the divergence of velocity. Taking the superposition of (6.4.7)
and (6.4.14) while recognizing H on the right-hand side of (6.4.14) completes the
proof.

6.4.2 Modified formulation

Theorem 6.4.1 implies that an energy-dissipative relation may be recovered when
the functional entropy variables are available as test functions. For standard test
function spaces we can not select the weight V1. We circumvent this issue, similar as
in [144], by explicitly adding V1 as a new unknown v to the system of equations.
Thus we introduce the extra variable:

v := −$

2
‖u‖2

2 +
1

Fr2 $y− 1
We

δ(φ)∇ ·
(
∇φ

‖∇φ‖ε,2

)
+

1
We

δ′(φ)
ε2

‖∇φ‖ε,2
, (6.4.15)
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where we use the notation $ = $(φ) := ρ′(φ). The question arises how to couple the
extra variable (6.4.15) to the regularized-interface model (6.3.20). In this regard, note
that a direct consequence of (6.4.15) is:

−
(

v +
$

2
‖u‖2

2 −
1

Fr2 $y
)
∇φ =

1
We

δ(φ)∇ ·
(
∇φ

‖∇φ‖ε,2

)
∇φ

− 1
We

δ′(φ)
ε2

‖∇φ‖ε,2
∇φ

=
1

We
∇ ·

(
∇φ

‖∇φ‖ε,2

)
∇φ

‖∇φ‖ε,2
δΓ(φ)

− ε2 1
We

δ′(φ)ν(φ). (6.4.16)

Recall that the regularized-interface model (6.3.20) is only associated with an energy-
dissipative structure for ε = 0, see Theorem 6.3.9. This dissipative structure does not
change when performing a consistent modification. Thus adding a suitable partition
of zero based on (6.4.16) to the momentum equation (6.3.20a) keeps the same energy
behavior. Instead, we suggest to replace the surface tension term in (6.3.20), i.e.

1
We
∇ ·

(
∇φ

‖∇φ‖ε,2

)
∇φ

‖∇φ‖ε,2
δΓ(φ), (6.4.17)

by the left-hand side of (6.4.16), i.e.

−
(

v +
$

2
‖u‖2

2 −
1

Fr2 $y
)
∇φ. (6.4.18)

In this way we eliminate the unwanted regularization term. The new strong form
writes in terms of the variables u, p, φ and v as:

∂t(ρ(φ)u) +∇ · (ρ(φ)u⊗ u)−∇ · τ(u, φ) +∇p

−
(

v +
$

2
‖u‖2

2 −
1

Fr2 $y
)
∇φ +

1
Fr2 ρ(φ) = 0, (6.4.19a)

∇ · u = 0, (6.4.19b)

∂tφ + u · ∇φ = 0, (6.4.19c)

v + $
‖u‖2

2
2
− 1

Fr2 $y +
1

We
δ(φ)∇ ·

(
∇φ

‖∇φ‖ε,2

)
− 1

We
δ′(φ)

ε2

‖∇φ‖ε,2
= 0, (6.4.19d)

with u(0) = u0 and φ(0) = φ0 in Ω.

Remark 6.4.2. Even in absence of surface tension effects the substitution (6.4.16) is essential
to arrive at an energy-dissipative system.

The corresponding weak formulation reads:
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Find (u, p, φ, v) ∈ WT such that for all (w, q, ψ, ζ) ∈ W :

(w, ∂t(ρu))Ω − (∇w, ρu⊗ u)Ω − (∇ ·w, p)Ω + (∇w, τ(u, φ))Ω

+
1

Fr2 (w, ρ)Ω − (w, v∇φ)Ω −
(

w,
(

$

2
‖u‖2

2 −
1

Fr2 $y
)
∇φ

)
Ω
= 0, (6.4.20a)

(q,∇ · u)Ω = 0, (6.4.20b)

(ψ, ∂tφ + u · ∇φ)Ω = 0, (6.4.20c)(
ζ, v + $

‖u‖2
2

2
− 1

Fr2 $y
)

Ω
−
(

1
We

δ(φ)
∇φ

‖∇φ‖ε,2
,∇ζ

)
Ω

−
(

1
We
‖∇φ‖ε,2δ′(φ), ζ

)
Ω
= 0, (6.4.20d)

where we recall $ = ∂ρ/∂φ and have u(x, 0) = u0(x) and φ(x, 0) = φ0(x) in Ω.
The solution space WT and corresponding test-function space W are divergence-
compatible. We takeWT := VT ×Q3

T andW := VT ×Q3
T where we refer to [65, 69]

for the precise definitions of VT and QT.

Theorem 6.4.3. Let (u, p, φ) be a smooth solution of the weak form (6.4.20). The formulation
(6.4.20) has the properties:

1. The formulation satisfies the maximum principle for the density, i.e. without loss of
generality we assume that ρ2 ≤ ρ1 and then have:

ρ2 ≤ ρ(φ) ≤ ρ1. (6.4.21)

2. The formulation is divergence-free as a distribution:

∇ · u ≡ 0. (6.4.22)

3. The formulation satisfies the dissipation inequality:

d
dt

E (u, φ) = −(∇u, τ(u, φ))Ω ≤ 0. (6.4.23)

Dissipation inequality (6.4.23) is not equipped with terms supported on the outer
boundary ∂Ω since these vanish due to assumed boundary conditions.

Proof. 1. This is a direct consequence of the definition of ρ = ρ(φ).

2. The divergence-conforming space allows to take q = ∇ · u in (6.4.20b) and
hence we find:

0 = (∇ · u,∇ · u)Ω ⇒ ∇ · u ≡ 0. (6.4.24)

3. Selection of the weights ψ = v in (6.4.20c) and ζ = −∂tφ in (6.4.20d) yields:

(v, ∂tφ + u · ∇φ)Ω = 0, (6.4.25a)

−
(

∂tφ, v + $
‖u‖2

2
2
− 1

Fr2 $y
)

Ω
+

(
1

We
δ(φ)

∇φ

‖∇φ‖ε,2
,∇∂tφ

)
Ω

+

(
1

We
‖∇φ‖ε,2δ′(φ), ∂tφ

)
Ω
= 0. (6.4.25b)
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We add the equations (6.4.25) and find:

(v, u · ∇φ)Ω −
($

2
‖u‖2

2, ∂tφ
)

Ω
+

1
Fr2 (∂tφ, $y)Ω

+

(
1

We
δ(φ)

∇φ

‖∇φ‖ε,2
,∇∂tφ

)
Ω
+

(
1

We
‖∇φ‖ε,2δ′(φ), ∂tφ

)
Ω

= 0. (6.4.26)

Performing integration by parts yields:(
∂tφ,−$

2
‖u‖2

2 + $
1

Fr2 y− 1
We

δ(φ)∇ ·
(
∇φ

‖∇φ‖ε,2

)
+

1
We

δ′(φ)
ε2

‖∇φ‖ε,2

)
Ω
= −(v, u · ∇φ)Ω. (6.4.27)

Recall that the line integral terms vanish due to auxiliary boundary conditions.

Noting that
δH
δφ

= −$

2
‖u‖2

2 + $
1

Fr2 y− 1
We

δ(φ)∇ ·
(
∇φ

‖∇φ‖ε,2

)
+

1
We

δ′(φ)
ε2

‖∇φ‖ε,2
we arrive at:

δE

δφ

[
∂φ

∂t

]
:=
(

∂φ

∂t
,
δH
δφ

)
Ω
= − (v, u · ∇φ)Ω. (6.4.28)

Next we take w = u in (6.4.20a) to get:

(u, ∂t(ρu))Ω − (∇u, ρu⊗ u)Ω − (w, 1
2‖u‖

2
2$(φ)∇φ)Ω − (∇ · u, p)Ω

+(∇u, τ(u, φ))Ω − (u, v∇φ)Ω +
1

Fr2 (u, $y∇φ)Ω +
1

Fr2 (u, ρ)Ω = 0. (6.4.29)

From the identities (6.3.44), the continuity equation (6.4.22), homogeneous boundary
conditions and integration by parts we extract the identities:

−(∇u, ρu⊗ u)Ω − (u, 1
2‖u‖

2
2$(φ)∇φ)Ω = 0 (6.4.30a)

−(∇ · u, p)Ω = 0, (6.4.30b)
1

Fr2 (u, $y∇φ)Ω +
1

Fr2 (u, ρ)Ω = 0. (6.4.30c)

Noting that
δH

δ(ρu)
= uT and employing (6.4.30) we arrive at:

δE

δ(ρu)

[
∂(ρu)

∂t

]
:=
(

∂(ρu)
∂t

,
δH

δ(ρu)

)
Ω
= − (∇u, τ(u, φ))Ω + (u, v∇φ)Ω . (6.4.31)

Addition of (6.4.28) and (6.4.31) yields:

d
dt

E =
δE

δφ

[
∂φ

∂t

]
+

δE

δ(ρu)

[
∂(ρu)

∂t

]
= −(∇u, τ(u, φ))Ω. (6.4.32)

6.5 energy-dissipative spatial discretization

In this section we present the spatial discretization of the modified model (6.4.20).
First we introduce some notation, then discuss the stabilization mechanisms and
subsequently provide the semi-discrete formulation.
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6.5.1 Notation

We employ an isogeometric analysis discretization. To provide the appropriate
setting, we introduce the parametric domain denoted as Ω̂ := (−1, 1)d ⊂ Rd with
corresponding meshM. The element size hQ = diag(Q) of an element Q inM is its
diagonal length. The physical domain Ω ⊂ Rd follows as usual via the continuously
differentiable geometrical map (with continuously differentiable inverse) F : Ω̂→ Ω
and the corresponding physical mesh reads:

K = F(M) := {ΩK : ΩK = F(Q), Q ∈ M} . (6.5.1)

The Jacobian mapping is J = ∂x/∂ξ. The physical mesh size hK is given by

h2
K :=

h2
Q

d
‖J‖2

F, (6.5.2)

with the subscript F referring to the Frobenius norm. Note that on a Cartesian mesh
it reduces to the diagonal-length of an element. The element metric tensor reads

G =
∂ξ

∂x

T ∂ξ

∂x
= J−TJ−1, (6.5.3)

with inverse

G−1 =
∂x
∂ξ

∂x
∂ξ

T
= JJT. (6.5.4)

Using the metric tensor we see that the Frobenius norm is objective:

‖J‖2
F = Tr

(
G−1

)
, (6.5.5)

where Tr denotes the trace operator.
We define approximation spacesWh

T ⊂ WT,Wh ⊂ W spanned by finite element
or NURBS basis functions. The div-conforming solution space isWh

T := V h
T × (Qh

T)
3

and the corresponding test-function space is W0,h := V0,h × (Q0,h)
3. We refer to

[68, 69] for the precise definitions. Furthermore, we use the conventional notation
superscript h to indicate the discretized (vector) field of the corresponding quantity.

6.5.2 Stabilization

It is well-known that a plain Galerkin discretization is prone to the development
of numerical instabilities. This motivates the use of stabilization mechanisms. We
employ the standard SUPG stabilization [33] for the level-set convection, i.e. we
augment the discrete level-set equation with

+∑
K

(
τKuh · ∇ψh, RIφ

h
)

ΩK
, (6.5.6)

with residual

RIφ
h := ∂tφ

h + uh · ∇φh. (6.5.7)
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We use the standard definition for stabilization parameter τ as also given in [57]. To
ensure that the stabilization term does not upset the energetic stability property we
balance it with the term:

−∑
K

(
τKwh · ∇vh, RIφ

h
)

ΩK
(6.5.8)

in the momentum equation.

Remark 6.5.1. In the current work we focus on an energy-dissipative method without
multiscale stabilization contributions in the momentum equation such as [17]. Standard
stabilized methods are not directly associated with an energy-dissipative property and thus
specific techniques are required to establish such a property, see e.g., [58, 71, 159]. We
note that these methods are developed for the single-fluid case. An extension to the current
two-fluid case may be the topic of another work.

A popular method to stabilize the momentum equation is to use discontinuity
capturing devices. We follow this road and augment the momentum equation with
the discontinuity capturing term:

+∑
K

(
∇wh, θK∇uh

)
ΩK

. (6.5.9)

The discontinuity capturing viscosity is given by:

θK = ChK
‖RRRM(ρhuh)‖ε,2

‖∇uh‖ε,2
, (6.5.10)

with conservative momentum residual

RRRM(ρhuh) := ∂t(ρ
huh) +∇ · (ρhuh ⊗ uh) +∇ · τ(uh, φh) +∇ph

+
1

We
δ(φh)κ∇φh +

1
Fr2 ρh , (6.5.11)

and C a user-defined constant. The term clearly dissipates energy.

Remark 6.5.2. In order to avoid evaluating second derivatives in the surface tension
contribution, one may project the residual onto the mesh and subsequently use Proposition
6.3.6.

Remark 6.5.3. Even though we present the stabilization and discontinuity capturing terms
in an ad hoc fashion, we wish to emphasize that these may be derived with the aid of the
multiscale framework. The natural derivation for discontinuity capturing terms can be found
in [61].
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6.5.3 Semi-discrete formulation

The semi-discrete approximation of (6.4.20) is stated as follows:

Find (uh, ph, φh, vh) ∈ Wh
T such that for all (wh, qh, ψh, ζh) ∈ W0,h:

(wh, ∂t(ρ
huh))Ω − (∇wh, ρhuh ⊗ uh)Ω − (∇ ·wh, ph)Ω

+
(
∇wh, τ(uh, φh)

)
Ω
+

1
Fr2 (w

h, ρh )Ω

−
(

wh, vh∇φh
)

Ω
−
(

wh, $(φh)

(
‖uh‖2

2
2
− 1

Fr2 y

)
∇φh

)
Ω

+∑
K

(
∇wh, θK∇uh

)
ΩK
−∑

K

(
τKwh · ∇vh, RIφ

h
)

ΩK
= 0, (6.5.12a)

(qh,∇ · uh)Ω = 0, (6.5.12b)(
ψh, ∂tφ

h + uh · ∇φh
)

Ω
+ ∑

K

(
τKuh · ∇ψh, RIφ

h
)

ΩK
= 0, (6.5.12c)(

ζh, vh + $(φh)

(
‖uh‖2

2
2
− 1

Fr2 y

))
Ω

−
(

1
We

δ(φh)
∇φh

‖∇φh‖ε,2
,∇ζh

)
Ω

−
(

1
We
‖∇φh‖ε,2δ′(φh), ζh

)
Ω
= 0. (6.5.12d)

where uh(0) = uh
0 and φh(0) = φh

0 in Ω and we recall $h(0) = $(φh(0)). The initial
fields uh

0 and φh
0 are obtained via standard L2-projections of respectively u0(x) and

φ0(x) onto the mesh. The density and fluid viscosity are computed as

ρh ≡ ρ(φh), (6.5.13a)

µh ≡ µ(φh). (6.5.13b)

The discrete counterparts of the kinetic, gravitational and surface energy are:

E K,h ≡ E K(uh; φh), (6.5.14a)

E G,h ≡ E G(φh), (6.5.14b)

E S,h ≡ E S(φh). (6.5.14c)

The total energy is the superposition of the separate energies:

E h := E K,h + E G,h + E S,h. (6.5.15)

Similarly, the semi-discrete local energy reads

Hh ≡ H(Uh). (6.5.16)

The semi-discrete formulation (6.5.12) inherits to a large extend Theorem 6.4.3. The
notable difference lies in the usage of stabilization terms.
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Theorem 6.5.4. Let (uh, ph, φh, vh) be a smooth solution of the weak form of incompressible
Navier-Stokes equations with surface tension (6.5.12). The formulation (6.5.12) has the
properties:

1. The formulation satisfies the maximum principle for the density, i.e. without loss of
generality we assume that ρ2 ≤ ρ1 and then have:

ρ2 ≤ ρ(φh) ≤ ρ1. (6.5.17)

2. The formulation is divergence-free as a distribution:

∇ · uh ≡ 0. (6.5.18)

3. The formulation satisfies the dissipation inequality:

d
dt

E h = −
(
∇uh, τ

(
uh, φh

))
Ω
−∑

K

(
∇uh, θK∇uh

)
ΩK
≤ 0. (6.5.19)

The proof of Theorem 6.5.4 goes along the same lines as that of Theorem 6.4.3.

Proof. 1 & 2. The first two properties are directly inherited from the continuous case.
Note that the weighting function choice for the second property is in general not
permitted. The specific NURBS function spaces proposed by Evans et al. [68, 69] do
allow this selection.

3. Selection of the weights ψh = vh in (6.5.12c) and ζh = −∂tφ
h in (6.5.12d) gives:(

vh, ∂tφ
h + uh · ∇φh

)
Ω
+ ∑

K

(
τKuh · ∇vh, RIφ

h
)

ΩK
= 0, (6.5.20a)

−
(

∂tφ
h, vh + $h ‖u‖2

2
2
− 1

Fr2 $hy
)

Ω

+

(
1

We
δ(φh)

∇φh

‖∇φh‖ε,2
,∇∂tφ

h
)

Ω

+

(
1

We
‖∇φh‖ε,2δ′(φh), ∂tφ

h
)

Ω
= 0. (6.5.20b)

Addition of the equations (6.5.20) results in:

(vh, uh · ∇φh)Ω −
(

$h

2
‖uh‖2

2, ∂tφ
h
)

Ω
+

1
Fr2

(
∂tφ

h, $hy
)

Ω

+

(
1

We
δ(φh)

∇φh

‖∇φh‖ε,2
,∇∂tφ

h
)

Ω
+

(
1

We
‖∇φh‖ε,2δ′(φh), ∂tφ

h
)

Ω

−∑
K

(
τKuh · ∇vh, RIφ

h
)

ΩK
= 0. (6.5.21)

By performing integration by parts we obtain:(
∂tφ

h, −$h

2
‖uh‖2

2 + $h 1
Fr2 y− 1

We
δ(φh)∇ ·

(
∇φh

‖∇φh‖ε,2

)
+

1
We

δ′(φh)
ε2

‖∇φh‖ε,2

)
Ω

=− (vh, uh · ∇φh)Ω −∑
K

(
τKuh · ∇vh, RIφ

h
)

ΩK
. (6.5.22)
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Recognize
δHh

δφh on the left-hand side to arrive at:

δE h

δφh

[
∂φh

∂t

]
:=
(

∂φh

∂t
,
δHh

δφh

)
Ω
= − (vh, uh · ∇φh)Ω

−∑
K

(
τKuh · ∇vh, RIφ

h
)

ΩK
. (6.5.23)

Next we take wh = uh in (6.4.20a) to get:

(uh, ∂t(ρ
huh))Ω − (∇uh, ρhuh ⊗ uh)Ω − (uh, 1

2‖u
h‖2

2$h∇φh)Ω

−(∇ · uh, ph)Ω + (∇uh, τ(uh, φh))Ω

−
(

uh, vh∇φh
)

Ω
+

1
Fr2

(
uh, $hy∇φh

)
Ω
+

1
Fr2 (u

h, ρh )Ω

+∑
K

(
∇uh, θK∇uh

)
ΩK
−∑

K

(
τKuh · ∇vh, RIφ

h
)

ΩK
= 0. (6.5.24)

Similar as in the continuous case, we have the identities:

−(∇uh, ρhuh ⊗ uh)Ω − (uh, 1
2‖u

h‖2
2$h∇φh)Ω = 0, (6.5.25a)

−(∇ · uh, ph)Ω = 0, (6.5.25b)
1

Fr2

(
uh, $hy∇φh

)
Ω
+

1
Fr2 (u

h, ρh )Ω = 0. (6.5.25c)

Noting that
δHh

δ(ρhuh)
= (uh)T and employing (6.5.25) we arrive at:

δE h

δ(ρhuh)

[
∂(ρhuh)

∂t

]
:=
(

∂(ρhuh)

∂t
,

δHh

δ(ρhuh)

)
Ω

= − (∇uh, τ(uh, φh))Ω +
(

uh, vh∇φh
)

Ω

−∑
K

(
∇wh, θK∇uh

)
ΩK

+ ∑
K

(
τKuh · ∇vh, RIφ

h
)

ΩK
.

(6.5.26)

The superposition of (6.5.23) and (6.5.26) yields:

d
dt

E h =
δE h

δφh

[
∂φh

∂t

]
+

δE h

δ(ρhuh)

[
∂(ρhuh)

∂t

]
= − (∇uh, τ(uh, φh))Ω

−∑
K

(
∇uh, θK∇uh

)
ΩK

. (6.5.27)

6.6 energy-dissipative temporal discretization

In this section we present the energy-stable time-integration methodology. We
present a modified version of the mid-point time-discretization method. First
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we introduce some required notation in Section 6.6.1 and then explain the time-
discretization of the terms that differ from the standard midpoint rule in Section
6.6.2 and 6.6.3. The eventual method is presented in Section 6.6.4.

The simplest fully-discrete algorithm would be to start from the semi-discrete
version of (6.5.12) and then discretize in time using the second-order mid-point
time-discretization. An important observation is that this approach does not lead to
a provable energy-dissipative formulation, see Appendix 6.B. We note that this is in
contrast to the single-fluid case (in absence of surface tension effects).

In the following we present our strategy to arrive at a provable energy-dissipative
formulation. Our approach is to mirror the semi-discrete case as closely as possible.
We first focus on the terms that are directly associated with temporal derivatives of
the energies and then treat the remaining terms.

6.6.1 Notation

Let us divide the time-interval T into sub-intervals Tn = (tn, tn+1) (with n =

0, 1, ..., N) and denote the size of interval Tn as time-step ∆tn = tn+1 − tn. We use
subscripts to indicate the time-level of the unknown quantities, i.e. the unknowns at
time-level n are uh

n, ph
n, φh

n and vh
n. Lastly, we denote the intermediate time-levels and

associated time derivatives as:

uh
n+1/2 := 1

2 (u
h
n + uh

n+1),
1

∆tn
[[uh]]n :=

1
∆tn

(uh
n+1 − uh

n), (6.6.1a)

φh
n+1/2 := 1

2 (φ
h
n + φh

n+1),
1

∆tn
[[φh]]n :=

1
∆tn

(φh
n+1 − φh

n) (6.6.1b)

ρh
n+1/2 := ρ(φh

n+1/2),
1

∆tn
[[ρh]]n :=

1
∆tn

(ρh
n+1 − ρh

n), (6.6.1c)

1
∆tn

[[ρhuh]]n :=
1

∆tn

(
ρh

n+1uh
n+1 − ρh

nuh
n

)
, (6.6.1d)

µh
n+1/2 := µ(φh

n+1/2), (6.6.1e)

where ρh
n = ρ(φh

n), and defined [[ah]]n := ah
n+1− ah

n for the jump of a certain quantity
ah.

6.6.2 Identification energy evolution terms

In order to identify the energy evolution terms we wish to have the fully discrete
version of

d
dt

E K,h = (wh, ∂t(ρ
huh))Ω + (ζh, $(φh) 1

2‖u
h‖2

2)Ω, (6.6.2a)

d
dt

E G,h = − 1
Fr2 (ζ

h, $(φh)y)Ω, (6.6.2b)

d
dt

E S,h = −
(

1
We

δ(φh)
∇φh

‖∇φh‖ε,2
,∇ζh

)
Ω
−
(

1
We
‖∇φh‖ε,2δ′(φh), ζh

)
Ω

. (6.6.2c)

Three issues arise: (i) the approximation of the internal energy density 1
2‖uh‖2

2
in the additional equation (6.5.12d), (ii) the approximation of the interface density
jump term $h and (iii) the approximation of the surface tension contribution.
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In the following we discuss the considerations for their time-discretization.

(i) The first matter is resolved when taking a shift in the time-levels in the energy
density, analogously as in Liu et al. [144], i.e. we take 1

2 uh
n · uh

n+1 in the additional
equation.

(ii) Concerning the second problem, we require a stable time-discretization of
$h such that the approximation of $h∂tφ

h equals that of ∂tρ
h. This suggests to

approximate $h at the intermediate time level tn+1/2 as

$h(tn+1/2) ≈ $h
F,n+1/2 :=

ρ(φh
n+1)− ρ(φh

n)

φh
n+1 − φh

n
, (6.6.3)

such that

[[ρh]]n
∆tn

= $h
F,n+1/2

[[φh]]n
∆tn

. (6.6.4)

Unfortunately, the approximation (6.6.3) is not defined when φh
n+1 = φh

n and can
behave badly when φh

n+1 ≈ φh
n. If $h is a polynomial function of φh we may use

truncated Taylor expansions around φh
n+1/2 to find:

$h
F,n+1/2 =

M

∑
j=0

1
22j(2j + 1)!

$(2j)(φh
n+1/2)[[φ

h]]
2j
n , (6.6.5)

where M chosen such that latter terms in the sum vanish and where we use
the notation h(m)(x) = dmh/dxm for the m-th derivative of a function h = h(x).
Remark that (6.6.5) is well-defined. This motivates to use a (piecewise) higher-order
polynomial for $h. We define the regularized Heaviside as

Hε(φ
h
n) := Hp(φ

h
n/ε) (6.6.6)

where Hp = Hp(φ) is the piecewise polynomial regularization:

Hp = Hp(φ) =



0 φ < −1,

− 3
4φ

5 − 5
2φ

4 − 5
2φ

3 + 5
4φ+ 1

2 −1 ≤ φ < 0,

− 3
4φ

5 + 5
2φ

4 − 5
2φ

3 + 5
4φ+ 1

2 0 ≤ φ < 1,

1 1 ≤ φ.

(6.6.7)

This function is C3-continuous at φ = 0 and C3-continuous at φ = −1,φ = 1.
Furthermore, we base the regularization of Dirac on the Heaviside, i.e. we have
δε(φh) = H(1)

ε (φh).

Remark 6.6.1. The regularized Dirac delta δε(φh) has area 1.

Remark 6.6.2. If $h is non-polynomial one may use perturbed trapezoidal rules. In case of
positive higher-order derivatives this leads to a stable approximation for $h.
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Remark 6.6.3. This regularization closely resembles the popular goniometric regularization:

Hg = Hg(φ) =


0 φ < −1,

1
2

(
1 +φ+ 1

π sin(πφ)
)

−1 ≤ φ < 1,

1 1 ≤ φ.

(6.6.8)

Figure 6.1 shows the polynomial regularization Hp = Hp(φ), the goniometric regularization
Hg = Hg(φ) and their first two derivatives. At φ = −1 and φ = 1 the goniometric
regularization is C2-continuous where Hp = Hp(φ) is C3-continuous.
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Figure 6.1: Comparison of polynomial and goniometric regularization of the Heaviside.

Since $h(tn+1/2) is a piecewise polynomial, (6.6.5) only holds if φh
n and φh

n+1 are in
the same ‘piece’. In the other case we have φh

n 6= φh
n+1 and thus we may use $h

F,n+1/2.
Thus, to define $h(tn+1/2) in the auxiliary equation we distinguish the cases

1. φh
n and φh

n+1 are in the same ‘piece’ of the polynomial Hε

2. φh
n and φh

n+1 are in another ‘piece’ of the polynomial Hε.
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In the first case employ the truncated series (6.6.5) whereas in the second case we
directly employ the left-hand side of (6.6.5):

$h(tn+1/2) ≈ $h
a,n+1/2 :=

$h
T,n+1/2 in case 1

$h
F,n+1/2 in case 2,

(6.6.9)

with Taylor series representation:

$h
T,n+1/2 := [[[ρ]]]

(
H(1)

ε (φh
n+1/2) +

1
24

H(3)
ε (φh

n+1/2)[[φ
h]]2n

+
1

1920
H(5)

ε (φh
n+1/2)[[φ

h]]4n

)
. (6.6.10)

Definition (6.6.9) satisfies condition (6.6.4):

[[ρh]]n
∆tn

= $h
a,n+1/2

[[φh]]n
∆tn

. (6.6.11)

Remark 6.6.4. The approximation $h
F,n+1/2 (case 2), defined in (6.6.3), is well-behaved

when φh
n+1 ≈ φh

n. To see this, we consider without loss of generality the case where φh
n < −ε

and −ε < φh
n+1 < 0. A Taylor series representation of Hε around φh

n+1 = −ε reveals:

$h
F,n+1/2 = [[[ρ]]]

1
24 (φ

h
n+1 + ε)4H(4)

ε (ξ)

φh
n+1 − φh

n
, (6.6.12)

for some ξ ∈ (−ε, φh
n+1). It is now convenient to express φh

n as a perturbation of −ε relative
to the distance between φh

n and −ε. In other words, we write φh
n = −ε− υ(φh

n+1 + ε) for
υ = −(φh

n + ε)/(φh
n+1 + ε) > 0. Substitution into (6.6.12) gives:

$h
F,n+1/2 = [[[ρ]]]

1
24ε(1 + υ)

(φh
n+1 + ε)3H(4)

ε (ξ). (6.6.13)

Noting that |H(4)
P (φ)| < 60 we obtain the bound:

|$h
F,n+1/2| ≤|[[[ρ]]]|

5
2ε(1 + υ)

|φh
n+1 + ε|3

≤|[[[ρ]]]|5
2

ε2. (6.6.14)

(iii) We now turn our focus to the surface tension contribution, which writes in
semi-discrete form:

−
(

1
We

δ(φh)
∇φh

‖∇φh‖ε,2
,∇ζh

)
Ω
−
(

1
We
‖∇φh‖ε,2δ′(φh), ζh

)
Ω

. (6.6.15)

Recall that in the semi-discrete form the surface energy evolution follows when
substituting ζh = −∂tφ

h:(
1

We
‖∇φh‖ε,2δ′(φh), ∂tφ

h
)

Ω
+

(
1

We
δ(φh)

∇φh

‖∇φh‖ε,2
,∇∂tφ

h
)

Ω
=

1
We

(
∂tδ(φ

h), ‖∇φh‖ε,2

)
Ω
+

1
We

(
δ(φh), ∂t‖∇φh‖ε,2

)
Ω
=

d
dt

(
δ(φh),

1
We
‖∇φh‖ε,2

)
Ω
=

d
dt

E S,h. (6.6.16)
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Here we have utilized following identities:
• for the first term:

(I) ∂tφ
hδ′(φh) = ∂tδ(φ

h), (6.6.17a)

• for the second term:

(II) ∇∂tφ
h · ∇φh

‖∇φh‖ε,2
= ∂t‖∇φh‖ε,2, (6.6.17b)

• and for combining the terms:

(III) ‖∇φh‖ε,2∂tδ(φ
h) + δ(φh)∂t‖∇φh‖ε,2 = ∂t

(
δ(φh)‖∇φh‖ε,2

)
. (6.6.17c)

We wish to follow the same steps in the fully-discrete setting. However, these
identities are not directly guaranteed in a fully discrete sense. In the following
we describe the fully-discrete approximation of each of the three terms in (6.6.15),
i.e. δ′(φh), δ(φh) and ∇φh/‖∇φh‖ε,2, that complies with these identities. To that
purpose we introduce the mid-point approximation of the time-derivative.

Proposition 6.6.5. The mid-point approximation of the time-derivative satisfies the product-
rule in the following sense:

[[ah · bh]]n
∆tn

= ah
n+1/2 ·

[[bh]]n
∆tn

+
[[ah]]n
∆tn

· bh
n+1/2, (6.6.18)

where ah and bh are scalar or vector fields.

(III) We start off with the last identity (6.6.17c). The fully-discrete version of the
product rule in (6.6.17c) follows from Proposition 6.6.5:

[[δ(φh)‖∇φh‖ε,2]]n
∆tn

=
[[δ(φh)]]n

∆tn

(
‖∇φh‖ε,2

)
n+1/2

+
(

δ(φh)
)

n+1/2

[[‖∇φh‖ε,2]]n
∆tn

. (6.6.19)

This implies that we require the approximation:

δ(φh)(tn+1/2) ≈ (δ(φh))n+1/2, (6.6.20a)

‖∇φh‖ε,2(tn+1/2) ≈
(
‖∇φh‖ε,2

)
n+1/2

. (6.6.20b)

We now aim to identify the first and the second term on the right-hand side of
(6.6.19) with first and second term on the right-hand side of (6.6.16) respectively.

(I) To identify the first term we require, in a similar fashion as for $, the approxi-
mation ςh

n+1/2 ≈ δ′(φh)(tn+1/2) to satisfy:

[[δ(φh)]]n
∆tn

= ςh
n+1/2

[[φh]]n
∆tn

. (6.6.21)

To this purpose we define

ςh
n+1/2 :=

ςh
T,n+1/2 in case 1

ςh
F,n+1/2 in case 2,

(6.6.22)
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with truncated series:

ςh
T,n+1/2 := δ

(1)
ε (φh

n+1/2) +
[[φh]]2n

24
δ
(3)
ε (φh

n+1/2), (6.6.23)

and the fraction:

ςh
F,n+1/2 :=

δε(φh
n+1)− δε(φh

n)

φh
n+1 − φh

n
. (6.6.24)

(II) We take the approximation:(
∇φh

‖∇φh‖ε,2

)
(tn+1/2) ≈

(
∇φh)

n+1/2

(‖∇φh‖ε,2)n+1/2
=

∇φh
n+1 +∇φh

n

‖∇φh
n+1‖ε,2 + ‖∇φh

n‖ε,2
, (6.6.25)

such that (6.6.17b) is satisfied in a fully-discrete sense:

∇ [[φh]]n
∆tn

·
(
∇φh)

n+1/2

(‖∇φh‖ε,2)n+1/2
=
‖∇φh

n+1‖ε,2 − ‖∇φh
n‖ε,2

∆t
. (6.6.26)

6.6.3 Discretization other terms

We discretize the continuity equation using the mid-point rule, i.e.(
qh,∇ · uh

n+1/2

)
Ω
= 0, (6.6.27)

which implies pointwise divergence-free solutions on a fully-discrete level.
Next, we require the fully-discrete version of the identities:

−(∇uh, ρhuh ⊗ uh)Ω − (uh, 1
2‖u

h‖2
2$(φh)∇φh)Ω = 0, (6.6.28a)

+
1

Fr2 (u
h, ρh )Ω +

1
Fr2 (u

h, y$(φh)∇φh)Ω = 0, (6.6.28b)

which make use of the pointwise divergence-free property. These identities are
fulfilled when we have

∇ρ(φh) = $(φh)∇φh. (6.6.29)

Applying the chain-rule implies that we can take as approximation in the momentum
equation:

$h(tn+1/2) ≈ $h
m,n+1/2 := [[[ρ]]]H′ε(φ

h
n+1/2), (6.6.30)

where the subscript m refers to the momentum equation.

Remark 6.6.6. Note that we employ two different approximations for $h(tn+1/2), namely
(6.6.9) in the additional equation (6.5.12d) and (6.6.30) in the momentum equation (6.5.12a).

The remaining terms utilize the standard midpoint discretization.
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6.6.4 Fully-discrete energy-dissipative method

We are now ready to present the fully-discrete energy-dissipative method:

Given uh
n, ph

n, φh
n and vh

n, find uh
n+1, ph

n+1, φh
n+1 and vh

n+1 such that for all (wh, qh, ψh, ζh) ∈
W0,h:

(wh,
[[ρhuh]]n

∆tn
)Ω − (∇wh, ρh

n+1/2uh
n+1/2 ⊗ uh

n+1/2)Ω

−(∇ ·wh, ph
n+1)Ω + (∇wh, τ(uh

n+1/2, φh
n+1/2))Ω

+
1

Fr2 (w
h, ρh

n+1/2)Ω −
(

wh, vh
n+1∇φh

n+1/2

)
Ω

−
(

wh, $h
m,n+1/2

(
‖uh

n+1/2‖2
2

2
− 1

Fr2 y

)
∇φh

n+1/2

)
Ω

−∑
K

(
τKwh · ∇vh

n+1, RIφ
h
n+1/2

)
ΩK

= 0, (6.6.31a)(
qh,∇ · uh

n+1/2

)
Ω
= 0, (6.6.31b)

(ψh,
[[φh]]n
∆tn

+ uh
n+1/2 · ∇φh

n+1/2)Ω

+∑
K

(
τKuh

n+1/2 · ∇ψh, RIφ
h
n+1/2

)
ΩK

= 0, (6.6.31c)(
ζh, vh

n+1 + $h
a,n+1/2

(
1
2 uh

n+1 · uh
n −

1
Fr2 y

))
Ω

− 1
We

(
ζhςh

n+1/2,
(
‖∇φh‖ε,2

)
n+1/2

)
Ω

− 1
We

(
δ(φh)n+1/2∇ζh,

(
∇φh)

n+1/2

(‖∇φh‖ε,2)n+1/2

)
Ω

= 0. (6.6.31d)

Remark 6.6.7. Due to Proposition 6.6.5 the time-derivative in the momentum equation
may be implemented as:

[[ρhuh]]n
∆tn

= ρh
n+1/2

[[uh]]n
∆tn

+
[[ρh]]n
∆tn

uh
n+1/2. (6.6.32)

Theorem 6.6.8. The algorithm (6.6.31) has the properties:

1. The scheme satisfies the maximum principle for the density, i.e. without loss of
generality we assume that ρ2 ≤ ρ1 and then have:

ρ2 ≤ ρh
n ≤ ρ1, for all n = 0, 1, ..., N. (6.6.33)

2. The scheme is divergence-free as a distribution:

∇ · uh
n+1/2 ≡ 0. (6.6.34)
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3. The scheme satisfies the dissipation inequality:

[[E h]]n
∆tn

= −
(
∇uh

n+1/2, τ(uh
n+1/2, φh

n+1/2)
)

Ω

−∑
K

(
∇uh

n+1/2, θK∇uh
n+1/2

)
ΩK

≤ 0, for all n = 0, 1, ..., N. (6.6.35)

Proof. 1 & 2. Analogously to the semi-discrete case.

3. Selection of the weights ψh = vh
n+1 in (6.6.31c) and ζh = −[[φh]]n/∆tn in (6.6.31d)

yields:

(vh
n+1,

[[φh]]n
∆tn

+ uh
n+1/2 · ∇φh

n+1/2)Ω

+∑
K

(
τKuh

n+1/2 · ∇vh
n+1, RIφ

h
n+1/2

)
ΩK

= 0, (6.6.36a)

−
(
[[φh]]n
∆tn

, vh + $h
a,n+1/2

(
1
2 uh

n+1 · uh
n −

1
Fr2 y

))
Ω

+
1

We

(
[[φh]]n
∆tn

ςh
n+1/2,

(
‖∇φh‖ε,2

)
n+1/2

)
Ω

+
1

We

(
δ(φh

n+1/2)∇
[[φh]]n
∆tn

,

(
∇φh)

n+1/2

(‖∇φh‖ε,2)n+1/2

)
Ω

= 0. (6.6.36b)

We add the equations (6.6.36) and find:

(vh
n+1, uh

n+1/2 · ∇φh
n+1/2)Ω −

(
[[φh]]n
∆tn

, 1
2 $h

a,n+1/2uh
n+1 · uh

n

)
Ω

+

(
[[φh]]n
∆tn

, $h
a,n+1/2

1
Fr2 y

)
Ω

+∑
K

(
τKuh

n+1/2 · ∇vh
n+1, RIφ

h
n+1/2

)
ΩK

+

(
[[φh]]n
∆tn

ςh
n+1/2,

1
We

(
‖∇φh‖ε,2

)
n+1/2

)
Ω

+

(
δ(φh

n+1/2)∇
[[φh]]n
∆tn

,
1

We

(
∇φh)

n+1/2

(‖∇φh‖ε,2)n+1/2

)
Ω

= 0. (6.6.37)

Using (6.6.11), (6.6.19), (6.6.21) and (6.6.26) we get(
[[ρh]]n
∆tn

,− 1
2 uh

n+1 · uh
n +

1
Fr2 y

)
Ω
+

(
1

We
,
[[δ(φh)‖∇φh‖ε,2]]n

∆tn

)
Ω

= −(vh
n+1, uh

n+1/2 · ∇φh
n+1/2)Ω

= −∑
K

(
τKuh

n+1/2 · ∇vh
n+1, RIφ

h
n+1/2

)
ΩK

. (6.6.38)
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Next we take wh = uh
n+1/2 in (6.6.31a) to get:

(uh
n+1/2,

[[ρhuh]]n
∆tn

)Ω = (∇uh
n+1/2, ρh

n+1/2uh
n+1/2 ⊗ uh

n+1/2)Ω

+ (uh
n+1/2, 1

2‖u
h
n+1/2‖2

2$h
m,n+1/2∇φh

n+1/2)Ω

− 1
Fr2 (u

h
n+1/2, ρh

n+1/2)Ω

− 1
Fr2

(
uh

n+1/2, $h
m,n+1/2y∇φh

n+1/2

)
Ω

− (∇ · uh
n+1/2, ph

n+1)Ω − (∇uh
n+1/2, τ(uh

n+1/2, φh
n+1/2))Ω

+
(

uh
n+1/2, vh

n+1∇φh
n+1/2

)
Ω

−∑
K

(
∇uh

n+1/2, θK∇uh
n+1/2

)
ΩK

+ ∑
K

(
τKuh

n+1/2 · ∇vh
n+1, RIφ

h
n+1/2

)
ΩK

. (6.6.39)

By virtue of (6.6.28) and (6.6.34) we have the identities:

(∇uh
n+1/2, ρh

n+1/2uh
n+1/2 ⊗ uh

n+1/2)Ω

+(uh
n+1/2, 1

2‖u
h
n+1/2‖2

2$h
m,n+1/2∇φh

n+1/2)Ω = 0, (6.6.40a)

−(∇ · uh
n+1/2, ph

n+1)Ω = 0, (6.6.40b)
1

Fr2 (u
h
n+1/2, ρh

n+1/2)Ω +
1

Fr2

(
uh

n+1/2, $h
m,n+1/2y∇φh

n+1/2

)
Ω

= 0. (6.6.40c)

These reduce (6.6.39) to

(uh
n+1/2,

[[ρhuh]]n
∆tn

)Ω = − (∇uh
n+1/2, τ(uh

n+1/2, φh
n+1/2))Ω

−∑
K

(
∇uh

n+1/2, θK∇uh
n+1/2

)
ΩK

+
(

uh
n+1/2, vh

n+1∇φh
n+1/2

)
Ω

+ ∑
K

(
τKuh

n+1/2 · ∇vh
n+1, RIφ

h
n+1/2

)
ΩK

. (6.6.41)

Addition of (6.6.38) and (6.6.41) by using (6.6.32) gives:(
uh

n+1/2, ρh
n+1/2

[[uh]]n
∆tn

)
Ω
+

(
[[ρh]]n
∆tn

, uh
n+1/2 · uh

n+1/2 − 1
2 uh

n+1 · uh
n

)
Ω

+
1

Fr2

(
[[ρh]]n
∆tn

, y
)

Ω
+

1
We

(
1,
[[δ(φh)‖∇φh‖ε,2]]n

∆tn

)
Ω

= − (∇uh
n+1/2, τ(uh

n+1/2, φh
n+1/2))Ω

−∑
K

(
∇uh

n+1/2, θK∇uh
n+1/2

)
ΩK

. (6.6.42)

Using the identity

‖uh
n+1/2‖2 − 1

2 uh
n+1 · uh

n = 1
2 (‖u

h‖2)n+1/2 ≡ 1
2‖u

h
n+1‖2 + 1

2‖u
h
n‖2, (6.6.43)
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we identify the sum of the first two terms on the left-hand side of (6.6.42) as the
change of kinetic energy. Next, the third term on the left-hand side of (6.6.42)
represents change in gravitational energy. The latter term on the left-hand side of
(6.6.42) resembles the surface energy evolution. We are left with:

[[E h]]n
∆tn

= −
(
∇uh

n+1/2, τ(uh
n+1/2, φh

n+1/2)
)

Ω

−∑
K

(
∇uh

n+1/2, θK∇uh
n+1/2

)
ΩK

. (6.6.44)

Remark 6.6.9. Following Brackbill [31] we employ the time-step restriction ∆tn ≤ ∆tmax

with

∆tmax =

(
ρ̄ (minQ hQ)

3
We

2π

)1/2

, (6.6.45)

where ρ̄ = (ρ1 + ρ2)/2.

6.7 numerical experiments

In this section we evaluate the proposed numerical methodology on several numeri-
cal examples in two and three dimensions. To test the formulation we use both a
static and dynamic equilibrium problem and check the energy-dissipative property
of the method. We do not test the method on a ‘violent’ problem in order to avoid
the usage of redistancing procedures. All problems are evaluated with NURBS basis
functions that are mostly C1-quadratic but every velocity space is enriched to cubic
C2 in the associated direction [68, 69].

6.7.1 Static spherical droplet

Here we test the surface tension component of the formulation by considering a
spherical droplet in equilibrium [31, 75, 201, 203]. Viscous and gravitational forces
are absent and hence the surface tension forces are in balance with the pressure
difference between the two fluids. The interface balance (6.2.1d) thus reduces to:

[[[p]]] = −σκ, (6.7.1)

which is also referred to as the Young-Laplace equation. The exact curvature is given
by:

κ = −d− 1
r

, (6.7.2)

where we recall d = 2, 3 as the number of spatial dimensions. The spherical droplet
of radius r = 2 of fluid 1 with density ρ1 = 1.0 is immersed in fluid 2 with density
ρ2 = 0.1 . The surface tension coefficient is σ = 73. This implies that surface tension
forces dominate since We ≈ 1.3× 10−6, where we have taken U0 = 0.1 and L0 = 1.0.
The computational domain is a cubic with a side length of 8 units and the spherical
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droplet is positioned in the center of it. On all surfaces a non-penetration boundary
condition (un = 0) is imposed.

We employ three meshes with uniform elements: 20× 20, 40× 40 and 80× 80. We
take ε = 2hK for all simulations in this section. The time-step is taken as ∆tn = 10−3

which satisfies (6.6.45) for each of the meshes. We exclude the discontinuity cap-
turing mechanisms for this problem, i.e. we set C = 0. In Figure 6.2 we display the
pressure for the finest mesh.

Figure 6.2: Pressure

In Figure 6.3 we display the pressure contours for each of the meshes. The corre-
sponding pressure jump is 37.97, 36.80 and 36.56 for the meshes 20× 20, 40× 40
and 80× 80 respectively. This implies second-order convergence.
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Figure 6.3: Pressure slice at y = 4.0.
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In the Figures 6.4 and 6.5 we depict the energy evolution and dissipation for
each of the meshes. The theoretical value of the surface energy is 2πrσ ≈ 917.34
which is well represented on the finest mesh. We see that the total and surface
energies are (virtually) constant and the kinetic energy grows but has an insignificant
contribution to the total energy.
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Figure 6.4: Static droplet. Energy evolution for the various meshes.
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Figure 6.5: Static droplet. Energy dissipation for the various meshes.

Note that this test-case represents a physically stable situation and as such it is
desirable that velocities and thus the kinetic energy vanish. Since the system is not in
a total energy-stable state we note the occurrence of small parasitic currents. Remark
that this is not in conflict with the energy-dissipative property of the numerical
discretization; even though kinetic energy increases, the total energy dissipates. We
use the typical way to report the magnitude of the parasitic currents (Figure 6.6),
i.e. after one time-step and after 50 time-steps. Even though the parasitic currents
are very small, they are unfortunately present. This is a well-known problem. One
can use several nonphysical ‘tricks’ to reduce parasitic currents. A possibility is to
use a so-called balanced-force algorithm [1] which assumes that the curvature is
determined analytically.

Remark 6.7.1. The occurrence of parasitic currents is a property of the regularized model,
not of the discretization. To see this, note that spurious oscillations would only be absent in
a stationary state of the numerical model. A stationary state is the state with the minimum
energy, and as such it is a minimizer of

H = 1
2 ρ‖u‖2

2 +
1

Fr2 ρy +
1

We
δΓ, (6.7.3)
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in which we recall that δΓ(φ) is regularized: δΓ(φ) = δε(φ)‖∇φ‖ε,2. The minimizers are
characterized by

δH
δφ

[δv1] = − 1
2‖u‖

2
2ρ′(φ)δv1 +

1
Fr2 ρ′(φ)yδv1 (6.7.4a)

+
1

We
δε(φ)

∇φ

‖∇φ‖ε,2
· ∇δv1 +

1
We
‖∇φ‖ε,2δ′ε(φ)δv1 = 0, (6.7.4b)

δH
δ(ρu1)

[δv2] = u1δv2 = 0, (6.7.4c)

δH
δ(ρu2)

[δv3] = u2δv3 = 0, (6.7.4d)

δH
δ(ρu3)

[δv4] = u3δv4 = 0. (6.7.4e)

In absence of gravity we arrive at:

− 1
We

δε(φ)∇ ·
(
∇φ

‖∇φ‖ε,2

)
+

1
We

δ′ε(φ)
ε2

‖∇φ‖ε,2
= 0. (6.7.5)

Assuming that near the interface φ is not constant, we can discard the second term by
setting ε = 0, which yields the requirement:

− 1
We

δε(φ)κ(φ) = 0. (6.7.6)

This only holds when

• κ(φ) = 0: a straight interface.

• δε(φ) = 0: away from the regularized interface.

In other words, parasitic currents occur near a curved interface. This explains why spurious
currents, even though possibly very small, will always be present in this model (except for
straight interfaces).

Remark 6.7.2. We note that additional dissipation mechanisms for the surface evolution
can upset energy-stability of the system. Well-balanced dissipation, introduced for the
Navier-Stokes-Korteweg equations [79], is a possible strategy to resolve this.
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(a) At time-step 1. (b) At time-step 50.

Figure 6.6: Magnitude of the velocity, measured in the standard 2-norm.

In Figure 6.7 we plot the variable vh
n+1. Note that the maximum theoretical value

is

max
x∈Ω

v = − σ min
x∈Ω

(
δε(φ)∇ ·

(
∇φ

‖∇φ‖ε,2

))
≈ σ

2
max
x∈Ω

δε(φ)

≈ 161.3, (6.7.7)

where the maxx∈Ω δε(φ) = maxx∈Ω
1
ε (Hp)(1)(

φ
ε ) =

1
2hK

maxx∈Ω H(1)
p ( φ

ε )

= 1
2∗ 8

80 ∗
√

2
5
4 . We see that the finest mesh is able to accurately represent vh

n+1 whereas

on the coarser meshes vh
n+1 is smeared out significantly.

6.7.2 Droplet coalescence 2D

In this example, inspired by Gomez et al. [81], we simulate the merging of two
droplets into a single one. Gravitational forces are absent. Due to pressure and
capillarity forces the single droplet then develops to a circular shape. We take as
computational domain the unit box Ω = [0, 1]d and apply no-penetration boundary
conditions. The initial configuration consists of two droplet at rest (u0 = 0) with
centers at c1 = (0.4, 0.5) and c2 = (0.78, 0.5) and radii r1 = 0.25 and r2 = 0.1
respectively. The diffuse interfaces of the droplets initially overlap on a small part
of the domain. If this not the case the droplets remain at their position and thus no
merging would occur. In contrast with the Navier-Stokes Korteweg equations, in
this situation the interface has a finite width, due to the definition of Hε(φ). The
Navier-Stokes Korteweg equations have no absolute notion of interface width; its
effect is decaying exponentially. The droplets have a larger density (ρ1 = 100) than
the surrounding fluid (ρ2 = 1) while the viscosities are equal: µ1 = µ2 = 1. We
take as surface tension the low value of σ = 0.1 which causes a slowly merging
process. To initialize the level-set we split the domain into two parts (x ≤ 0.665 and
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(a) 20×20 mesh. (b) 40×40 mesh.

(c) 80×80 mesh.

Figure 6.7: The auxiliary variable v for the various meshes.

x > 0.665), such that each contains one droplet, and apply the standard distance
initialization to each subdomain. We use 50× 50 elements, set the time-step as
∆t = 0.1 and take C = 0.4.

We show in the Figures 6.8-6.13 a detailed view of the merging process. The colors
patterns are set per snapshot such that difference are most apparent.
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Figure 6.8: Coalescence 2D. Solutions at t = 2: level-set field and velocity arrows (left) and
pressure field (right).

Figure 6.9: Coalescence 2D. Solutions at t = 6: level-set field and velocity arrows (left) and
pressure field (right).

Figure 6.10: Coalescence 2D. Solutions at t = 10: level-set field and velocity arrows (left)
and pressure field (right).
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Figure 6.11: Coalescence 2D. Solutions at t = 18: level-set field and velocity arrows (left)
and pressure field (right).

Figure 6.12: Coalescence 2D. Solutions at t = 30: level-set field and velocity arrows (left)
and pressure field (right).

Figure 6.13: Coalescence 2D. Solutions at t = 80: level-set field and velocity arrows (left)
and pressure field (right).
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In the Figures 6.14 and 6.15a we show the energy evolution and dissipation. In
this case the theoretical value of the initial surface energy is 2π(r1 + r2)σ ≈ 0.2199.
We observe that the total and surface energies monotonically decrease in time. The
kinetic energy increases when the droplets move towards each other (t < 10) and
decreases during the merging process and subsequently flattens out.

In order to test whether the equilibrium state has been reached we evaluate the
circularity of the droplet. The circularity is defined as the fraction of the perimeter
evaluated from the droplet volume and the perimeter itself:

γ =

2
(

π
∫
{Ω:φ>0}

dΩ
)1/2

∫
Ω

δε(φ)‖∇φ‖ε,2 dΩ
. (6.7.8)

The circularity depicted in Figure 6.15b confirms the equilibrium state as γ tends to
1.
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Figure 6.14: Coalescence 2D. Energy evolution.
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Figure 6.15: Coalescence 2D. Energy dissipation rate and circularity.
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6.7.3 Droplet coalescence 3D

Here we simulate the merging of two droplets in three dimensions. We use the same
physical parameters as in the two-dimensional case. The centers of the droplets are
at c1 = (0.4, 0.5, 0.6) and c2 = (0.75, 0.5, 0.5) and the radii remain the same: r1 = 0.25
and r2 = 0.1. Also here the diffuse interfaces of the droplets initially overlap. Again,
to initialize the level-set we partition the domain, see Figure 6.16a and apply the
standard distance initialization to each subdomain. The initial configuration is
depicted in Figure 6.16b. We use 50× 50× 50 elements, set the time-step as ∆t = 0.1
and take C = 0.1.

(a) Slice of initial condition at y = 0.5 (b) Zero level-set contours of initial condition

Figure 6.16: Coalescence 3D. Initial condition.

We show in Figure 6.17 snapshots of the merging process. In Figure 6.18 we
visualize the energy evolution and dissipation. The theoretical value of the initial
surface energy is 4π(r2

1 + r2
2)σ ≈ 0.0911. The behavior of the various energies is

similar as in the two-dimensional case. Also in this case the energy-dissipative
property of the numerical method is confirmed.

6.8 conclusion

In this work we have proposed a new fully-discrete energy-stable level-set method
for the incompressible Navier-Stokes equations with surface tension. To the best
knowledge of the authors, this is the first provable energy-dissipative level-set
method. Apart from being energetically stable, the method satisfies the maximum
principle for the density and is pointwise divergence-free.

We have provided a consistent derivation of our regularized-interface level-set
model starting from a sharp-interface model. In addition we have presented a
detailed analysis of both models in term of energy behavior. This analysis implies
that an energy-dissipative Galerkin-type discretization of the regularized-interface
level-set model poses severe restrictions on the functional spaces. Independently,
standard second-order temporal discretizations are also not associated with an
energy-dissipative structure. Lastly, the standard regularized-interface model con-
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(a) Zero level-set contours at t = 10 (b) Zero level-set contours at t = 20

Figure 6.17: Coalescence 3D. Solutions at t = 10 and t = 20.
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Figure 6.18: Coalescence 3D. Energy evolution and dissipation rate.

tains an unwanted regularization term. We circumvent each of these problems by
creating extra space via the concept of functional entropy variables. This introduces
an extra variable to the model which is coupled via the surface tension term. This
leads in a natural way to the fully-discrete energy-stable level-set method. The
eventual methodology use isogeometric analysis to ensure divergence-free solutions.
Furthermore, the method is equipped with an SUPG stabilization mechanism in
the level-set equation that is energetically-balanced in the momentum equation.
Additionally, we use a residual-based discontinuity capturing term to stabilize
the momentum equation. The temporal discretization is performed using a per-
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turbed mid-point scheme. We have presented numerical examples in two and three
dimensions which confirm the energy-stability of the method.

We see several research directions for further work. A first suggestion is to equip
the developed method with multiscale stabilization mechanisms that are energeti-
cally stable. Attainable solutions may be inspired by stabilization mechanisms that
are energetically stable for single fluid flow [58, 71]. Another possible research
direction entails the development of energy-dissipative re-distancing procedures.
A first thought here would be to use a two-step numerical scheme in which the
redistancing procedure is decoupled from the current algorithm. The two above
mentioned extensions would allow to simulate more violent flows, such as a dam-
break problem, in an energy-dissipative manner. Lastly we note that another missing
feature of the level-set method is local mass conservation. This might perhaps be
obtained by using similar techniques as presented in this paper.
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6.a equivalence surface tension models

We show equivalence of the surface tension models for the sharp-interface model
and the regularized-interface level-set model.

6.a.1 Sharp-interface model

In order to avoid directly evaluating the curvature in the surface tension term, one
may employ integration by parts as proposed by Bänsch [13]. First we introduce
some notation. The normal extensions of the scalar field f and vector field v defined
on Γ are, see also [37]:

f̂ (x) := f (ΠΓ(x)), (6.A.1a)

v̂(x) := v(ΠΓ(x)), (6.A.1b)

where ΠΓ(x) is defined as the normal projector of x onto the interface Γ. The surface
gradients of these fields are now given by

∇Γ f := ∇ f̂ , (6.A.2a)

∇Γv := ∇v̂, (6.A.2b)

while the tangential divergence of v is the trace of the surface gradient:

∇Γ · v := Tr(∇Γv) = ∇ · v̂. (6.A.3)

Note the slight abuse of notation; we use the same notation for the surface gradient
as employed for the surface gradient in the regularized level-set model. Alternative
expressions for the surface gradients are

∇Γ f = PT · ∇ f , (6.A.4a)

∇Γv = ∇v · PT, (6.A.4b)

where PT denotes the tangential projection tensor:

PT = I− ν̂⊗ ν̂, (6.A.5)

where ν̂ is continuous extension of the outward unit normal pointing from Ω1 into
Ω2 and I is identity matrix. Using the above identities we have

∇ · ŵ = ∇Γ ·w = Tr(∇Γw) = Tr(PT∇w) = PT : ∇w. (6.A.6)

Lemma 6.A.1. Buscaglia et al. [37]: For any tangentially differentiable vector field w we
have: ∫

Γ(t)
∇Γ ·w dΓ =

∫
Γ(t)

κν̂ ·w dΓ +
∫

∂Γ(t)
ν∂ ·w d(∂Γ). (6.A.7)

Using 6.A.6 and Lemma 6.A.1 we may write the surface tension term as

1
We

∫
Γ(t)

κν ·w dΓ =
1

We

∫
Γ(t)
∇ · ŵ dΓ− 1

We

∫
∂Γ(t)

ν∂ ·w d(∂Γ)

=
1

We

∫
Γ(t)

PT : ∇w dΓ− 1
We

∫
∂Γ(t)

ν∂ ·w d(∂Γ). (6.A.8)
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6.a.2 Regularized-interface level-set model

In the following we utilize index notation.

Proposition 6.A.2. It holds:

∇j
(
(PT)ij(φ)δΓ(φ)

)
= − δΓ(φ)

∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2

+ ε2 ∇iδ(φ)

‖∇φ‖ε,2
. (6.A.9)

Proof. We compute

(PT)ij(φ)∇jδΓ(φ) =

(
Iij −

∇iφ

‖∇φ‖ε,2

∇jφ

‖∇φ‖ε,2

)
×
(

δ(φ)
∇kφ

‖∇φ‖ε,2
∇j∇kφ + ‖∇φ‖ε,2∇jδ(φ)

)
= δ(φ)

∇kφ

‖∇φ‖ε,2
∇i∇kφ + ‖∇φ‖ε,2∇iδ(φ)

− ∇iφ

‖∇φ‖ε,2

∇jφ

‖∇φ‖ε,2
δ(φ)

∇kφ

‖∇φ‖ε,2
∇j∇kφ

− ∇iφ

‖∇φ‖ε,2

∇jφ

‖∇φ‖ε,2
‖∇φ‖ε,2∇jδ(φ)

= δΓ(φ)
∇kφ

‖∇φ‖ε,2

(
∇i∇kφ

‖∇φ‖ε,2

− ∇iφ

‖∇φ‖ε,2

∇jφ

‖∇φ‖ε,2

∇j∇kφ

‖∇φ‖ε,2

)
+ ε2 ∇iδ(φ)

‖∇φ‖ε,2

= δΓ(φ)
∇kφ

‖∇φ‖ε,2
(PT)ij

∇j∇kφ

‖∇φ‖ε,2
+ ε2 ∇iδ(φ)

‖∇φ‖ε,2
. (6.A.10)

On the other hand we have:

δΓ(φ)∇j(PT)ij(φ) = − δΓ(φ)
∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2
− δΓ(φ)∇j

∇jφ

‖∇φ‖ε,2

∇iφ

‖∇φ‖ε,2

= − δΓ(φ)
∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2

− δΓ(φ)
∇jφ

‖∇φ‖ε,2

( ∇j∇iφ

‖∇φ‖ε,2

− ∇iφ

‖∇φ‖ε,2

∇kφ

‖∇φ‖ε,2

∇j∇kφ

‖∇φ‖ε,2

)
= − δΓ(φ)

∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2

− δΓ(φ)
∇jφ

‖∇φ‖ε,2
(PT)ik

∇k∇jφ

‖∇φ‖ε,2
. (6.A.11)
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Addition of (6.A.10) and (6.A.11) yields:

∇j
(
(PT)ij(φ)δΓ(φ)

)
= (PT)ij(φ)∇jδΓ(φ) + δΓ(φ)∇j(PT)ij(φ)

= − δΓ(φ)
∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2

+ ε2 ∇iδ(φ)

‖∇φ‖ε,2
. (6.A.12)

Lemma 6.A.3. It holds:

1
We

∫
Ω

δΓ(φ)∇jwi(PT)ij(φ) dΩ =
1

We

∫
Ω

δΓ(φ)
∇iφ

‖∇φ‖ε,2
∇j

∇jφ

‖∇φ‖ε,2
wi dΩ

− 1
We

∫
Ω

ε2 ∇iδ(φ)

‖∇φ‖ε,2
wi dΩ. (6.A.13)

Proof. Performing integration by parts we get:

1
We

∫
Ω

δΓ(φ)∇jwi(PT)ij(φ) dΩ = − 1
We

∫
Ω
∇j
(
δΓ(φ)(PT)ij(φ)

)
wi dΩ

+
1

We

∫
∂Ω

δΓ(φ)njwi(PT)ij(φ) dS. (6.A.14)

Under the standing assumption we suppress the line force term. Using Proposition
6.A.2 finalizes the proof.

6.b energy evolution midpoint level-set discretization

We provide the energy evolution of a standard time-discrete level-set method using
the midpoint rule. We consider the conservative discretization, which reads for
time-step n:

Given un, pn and φn, find un+1, pn+1 and φn+1 such that:

[[ρu]]n
∆tn

+∇ · (ρn+1/2un+1/2 ⊗ un+1/2) +∇pn+1 −∇ · τ(un+1/2)

+
1

We
κ(φn+1/2)ν(φn+1/2)δΓ(φn+1/2) +

1
Fr2 ρn+1/2 = 0, (6.B.1a)

∇ · un+1/2 = 0, (6.B.1b)

[[φ]]n
∆tn

+ un+1/2 · ∇φn+1/2 = 0, (6.B.1c)

where ρ ≡ ρ(φ) on the indicated time-level.
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Theorem 6.B.1. The time-discrete formulation (6.B.1) satisfies the energy evolution prop-
erty:

[[E (u, φ)]]n
∆tn

= −
∫

Ω
∇un+1/2 : τ(un+1/2) dΩ + error (6.B.2a)

error = ∆t2
n

∫
Ω

1
8

∥∥∥∥ [[u]]n∆tn

∥∥∥∥2 [[ρ]]n
∆tn

dΩ

− 1
We∆tn

∫
Ω
[[δ(φ)]]n (‖∇φn+1/2‖ε,2 − (‖∇φ‖ε,2)n+1/2) dΩ

− 1
We∆tn

∫
Ω
[[‖∇φ‖ε,2]]n

×
(

δ(φn+1/2)
‖∇φ‖n+1/2

‖∇φn+1/2‖ε,2
− δ(φ)n+1/2

)
dΩ

+
1

We∆tn

∫
Ω
[[φ]]3n×(

δ(3)(φn+1/2)/24 + [[φ]]2nδ(5)(φn+ξ)/1920
)
‖∇φn+1/2‖ε,2 dΩ

+
∫

Ω

1
We∆tn

δ′(φn+1/2)[[φ]]n
ε2

‖∇φn+1/2‖ε,2
dΩ, (6.B.2b)

for some ξ ∈ (0, 1).

Remark 6.B.2. The semi-discrete convective method has the same energy evolution (6.B.2).
For completeness we provide the convective method:

Given un, pn and φn, find un+1, pn+1 and φn+1 such that:

ρn+1/2

(
[[u]]n
∆tn

+ un+1/2 · ∇un+1/2

)
+∇pn+1 −∇ · τ(un+1/2)

+
1

We
κ(φn+1/2)ν(φn+1/2)δΓ(φn+1/2)−

1
Fr2 ρn+1/2 = 0, (6.B.3a)

∇ · un+1/2 = 0, (6.B.3b)

[[φ]]n
∆tn

+ un+1/2 · ∇φn+1/2 = 0, (6.B.3c)

where ρ ≡ ρ(φ) on the indicated time-level.

Proof. We give the proof for the conservative formulation, that of the convective
formulation follows analogously. Multiplication of the continuity equation by q =
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pn+1− ρn+1/2(
1
2 un+1/2 · un+1/2 +

1
Fr2 y) and the level-set equation by −([[[ρ]]] 1

2 un+1/2 ·

un+1/2 −
1

Fr2 [[[ρ]]]y + 1
We κ(φn+1/2))δ(φn+1/2) and subsequently integrating yields:∫

Ω
(pn+1 − ρn+1/2(

1
2 un+1/2 · un+1/2 −

1
Fr2 y))∇ · un+1/2 dΩ = 0, (6.B.4a)

−
∫

Ω

(
1
2 un+1/2 · un+1/2 −

1
Fr2 y

)
×
(
[[ρ]]n
∆tn

+ un+1/2 · ∇ρn+1/2

)
dΩ

−
∫

Ω

(
1

We
κ(φn+1/2)δ(φn+1/2)

)
×
(
[[φ]]n
∆tn

+ un+1/2 · ∇φn+1/2

)
dΩ = 0. (6.B.4b)

We add the equations (6.B.4) and find:

−
∫

Ω

(
1
2 un+1/2 · un+1/2 +

1
Fr2 y

)
[[ρ]]n
∆tn

dΩ

−
∫

Ω

1
We

κ(φn+1/2)δ(φn+1/2)
[[φ]]n
∆tn

dΩ =

−
∫

Ω
(pn+1 − ρn+1/2

1
2 un+1/2 · un+1/2)∇ · un+1/2 dΩ

+
∫

Ω

1
2 un+1/2 · un+1/2(un+1/2 · ∇ρn+1/2) dΩ

−
∫

Ω

1
Fr2 y(un+1/2 · ∇ρn+1/2 + ρn+1/2∇ · un+1/2) dΩ

+
∫

Ω

1
We

κ(φn+1/2)δ(φn+1/2)un+1/2 · ∇φn+1/2 dΩ. (6.B.5)

We take the second term on the left-hand side of (6.B.5) in isolation and perform
integration by parts to get:

−
∫

Ω

1
We

κ(φn+1/2)δ(φn+1/2)
[[φ]]n
∆tn

dΩ =∫
Ω

1
We
∇
(

δ(φn+1/2)
[[φ]]n
∆tn

)
∇φn+1/2

‖∇φn+1/2‖ε,2
dΩ =∫

Ω

1
We∆tn

δ(φn+1/2)∇[[φ]]n ·
∇φn+1/2

‖∇φn+1/2‖ε,2
dΩ

+
∫

Ω

1
We∆tn

δ′(φn+1/2)[[φ]]n‖∇φn+1/2‖ε,2 dΩ

−
∫

Ω

1
We∆tn

δ′(φn+1/2)[[φ]]n
ε2

‖∇φn+1/2‖ε,2
dΩ. (6.B.6)

For the first term on the right-hand side we use

∇[[φ]]n ·
∇φn+1/2

‖∇φn+1/2‖ε,2
= [[‖∇φ‖ε,2]]n

(‖∇φ‖ε,2)n+1/2

‖∇φn+1/2‖ε,2
, (6.B.7)

while for the second term employ a truncated Taylor series in the form:

[[δ(φ)]]n = [[φ]]nδ(1)(φn+1/2) + [[φ]]3nδ(3)(φn+1/2)/24

+ [[φ]]5nδ(5)(φn+ξ)/1920, (6.B.8)
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for some ξ ∈ (0, 1). Substitution of (6.B.7)-(6.B.8) into (6.B.6) and reorganizing gives:

−
∫

Ω

1
We

κ(φn+1/2)δ(φn+1/2)
[[φ]]n
∆tn

dΩ

=
1

We∆tn

∫
Ω

δ(φ)n+1/2[[‖∇φ‖ε,2]]n + [[δ(φ)]]n(‖∇φ‖ε,2)n+1/2 dΩ

+
1

We∆tn

∫
Ω
[[δ(φ)]]n (‖∇φn+1/2‖ε,2 − (‖∇φ‖ε,2)n+1/2) dΩ

+
1

We∆tn

∫
Ω
[[‖∇φ‖ε,2]]n

(
δ(φn+1/2)

‖∇φ‖n+1/2

‖∇φn+1/2‖ε,2
− δ(φ)n+1/2

)
dΩ

− 1
We∆tn

∫
Ω
[[φ]]3n

(
δ(3)(φn+1/2)/24 + [[φ]]2nδ(5)(φn+ξ)/1920

)
× ‖∇φn+1/2‖ε,2 dΩ

−
∫

Ω

1
We∆tn

δ′(φn+1/2)[[φ]]n
ε2

‖∇φn+1/2‖ε,2
dΩ, (6.B.9)

where the first term on the right-hand side represents the temporal change of surface
energy (see Lemma 6.6.5):

1
We

∫
Ω

[[δΓ(φ)]]n
∆tn

dΩ =
1

We∆tn

∫
Ω

δ(φ)n+1/2[[‖∇φ‖ε,2]]n

+ [[δ(φ)]]n(‖∇φ‖ε,2)n+1/2 dΩ. (6.B.10)

Next we multiply the momentum equation by un+1/2 and subsequently integrate to
get: ∫

Ω
un+1/2 ·

[[ρu]]n
∆tn

dΩ +
∫

Ω
un+1/2∇ · (ρn+1/2un+1/2 ⊗ un+1/2) dΩ

+
∫

Ω
un+1/2∇pn+1 dΩ +

∫
Ω

un+1/2∇ · τ(un+1/2, φn+1/2) dΩ

+
∫

Ω
un+1/2ρn+1/2

1
Fr2  dΩ

+
∫

Ω

1
We

κ(φn+1/2)un+1/2 · ν(φn+1/2)δΓ(φn+1/2) dΩ = 0. (6.B.11)

The time-derivative term may be written as∫
Ω

un+1/2 ·
[[ρu]]n
∆tn

dΩ = ∆t−1
n

∫
Ω

1
2 ρn+1‖un+1/2‖2 − 1

2 ρn‖un‖2 dΩ

+ ∆t−1
n

∫
Ω

1
2 (ρn+1 − ρn)un · un+1 dΩ. (6.B.12)

Writing the convective term into skew-symmetric form and working out the product
gives: ∫

Ω
un+1/2∇ · (ρn+1/2un+1/2 ⊗ un+1/2) dΩ =∫

Ω

1
2‖un+1/2‖2un+1/2 · ∇ρn+1/2 dΩ

+
∫

Ω

1
2‖un+1/2‖2ρn+1/2∇ · un+1/2 dΩ. (6.B.13)
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Substitution of (6.B.12)-(6.B.13) into (6.B.11) and performing integration by parts
gives:

∆t−1
n

∫
Ω

1
2 ρn+1‖un+1/2‖2 − 1

2 ρn‖un‖2 dΩ =

−
∫

Ω

1
2‖un+1/2‖2un+1/2 · ∇ρn+1/2 dΩ

−
∫

Ω

1
2‖un+1/2‖2ρn+1/2∇ · un+1/2 dΩ

−
∫

Ω
un+1/2∇pn+1 dΩ−

∫
Ω

un+1/2ρn+1/2
1

Fr2  dΩ

+
∫

Ω
∇un+1/2 : τ(un+1/2, φn+1/2) dΩ

−
∫

Ω

1
We

κ(φn+1/2)un+1/2 · ν(φn+1/2)δΓ(φn+1/2) dΩ

−∆t−1
n

∫
Ω

1
2 (ρn+1 − ρn)un · un+1 dΩ. (6.B.14)

Addition of (6.B.5) and (6.B.14) while using (6.B.9)-(6.B.10) gives:

∆t−1
n

∫
Ω

1
2 ρn+1‖un+1‖2 +

1
Fr2 yρn+1 +

1
We

δΓ(φn+1) dΩ

−∆t−1
n

∫
Ω

1
2 ρn‖un‖2 +

1
Fr2 yρn +

1
We

δΓ(φn) dΩ

=
∫

Ω
∇un+1/2 : τ(un+1/2, φn+1/2) dΩ

+ error, (6.B.15)

with error defined in (6.B.2b). Recognizing the left-hand side as the change in energy
completes the proof.
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7
C O N C L U S I O N S A N D F U T U R E W O R K

The overarching theme in this dissertation has been the development of finite
element isogeometric methods that inherit the stability properties of the underlying
mathematical model. The emphasize lies on the construction of techniques applicable
to free surface flow simulations. Stability issues in two-fluid simulations typically
arise from either (i) the multiscale formulation, (ii) sharp layers or (iii) the interface
separating the fluid. In order to address these problems, we had formulated the
objectives:

(i) Develop an energy-stable finite element method for turbulent flow.

(ii) Derive a discontinuity capturing mechanism from the underlying physical
system.

(iii) Construct an energy-dissipative, maximum-principle satisfying numerical
method for the simulation of free surface flows.

Each of these objectives is linked to one part of the thesis. The aim of this chapter
is to outline the main conclusions of the research and to suggest possible future
research directions.

7.1 conclusions

We summarize the main conclusions that can be drawn from each of the three parts
below.

7.1.1 Part I: Energy-dissipative multiscale formulations

Stabilized finite element methods provide a way to stabilize the finite element
solution. These methods may be derived from variational multiscale (VMS) analysis.
This procedure provides a way to account for the small-scales: that part of the
solution that does not fit on the mesh. This methodology provides nodally exact
solutions for some linear one-dimensional model problems. However, complications
arise when the mathematical models are time-dependent or nonlinear. The reason
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lies in the selection of a splitting operator and in the construction of a model for the
small-scales. These components do not fit in the rigorous multiscale framework that
the VMS methodology offers as for the linear model problem. However, existing
VMS methods still yield good numerical solutions for these problems. Unfortunately,
these solutions are not energy-stable. The aim of this part of the dissertation has
been to rectify this situation.

The standard small-scale models have a static nature: the time-derivative of the
small-scale component is neglected in the eventual formulation. The main reason
for this approximation is that it leads to a conceptually easier formulation. However,
this step is not properly justified and as such upsets the energy behavior of the
system. The remedy for this problem is to use dynamic small-scales. Dynamic
small-scale models keep the small-scale time-derivative as a separate term in the
model. A consequence is that the formulation consists of a large- and a small-scale
part that are treated as separate equations.

The small-scale models contain an algebraic stabilization parameter, often denoted
τ. The parameter τ is exact in the special case of stationary, linear, one-dimensional
convection-diffusion equations with constant coefficients and linear elements. How-
ever, in the time-dependent, nonlinear, multidimensional case, τ contains an ap-
proximation. It turns out that the standard approach does not comply with the
energetic stability of the underlying model in this case. Numerical results show
both positive and negative small-scale contributions to energy dissipation for the
standard methods. The analysis reveals that energetic-stability can be retrieved
when employing the H1

0-projection operator. It is well-known this is a good projector
for the convection-diffusion equations and it reduces the formulation to standard
Galerkin in absence of convection. However, the projection operator is often not
explicitly specified when deriving a VMS formulation. To arrive at an energy-stable
method one can assume H1

0-orthogonality converting the VMS formulation into a
Galerkin/least-squares (GLS) formulation. An an alternative, one may also enforce
the H1

0-projection operator via a separate equation.
Stabilized methods for the incompressible Navier-Stokes equations introduce

some extra complications in terms of energetic stability. One wishes to retrieve
the Galerkin method for laminar flows since this method is well-established in
that regime. This suggests that the natural orthogonality for the incompressible
Navier-Stokes equations is induced by the Stokes equations. Employing the Stokes
projector significantly reduces the complexity of the formulation. It appears that a
convenient property for energetic-stability is a divergence-conforming discretization.
A certain selection of NURBS-spaces in the isogeometric method provide a way
to obtain this. This is the road we take. To arrive at the eventual energy-stable
numerical method we enforce divergence-free small-scale velocities fields and use a
GLS-type formulation. The new numerical method shows that solutions improve, in
terms of energy behavior, upon those obtained with the standard VMS method.

In conclusion, standard multiscale formulations employ several approximation
steps that may upset the energetic-stability of the method. The multiscale framework
itself provides the possibility to carefully select a combination of a projection
operator and a small-scale model that does not upset the energetic-dissipative
structure of the underlying model. The orthogonality implied by the multiscale
projector can either be assumed or enforced.
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7.1.2 Part II: A framework for discontinuity capturing methods

Discontinuity capturing methods aim to reduce or eliminate spurious oscillations in
numerical solutions. Since the 1980’s and many different forms of discontinuity cap-
turing devices have been suggested. These methods have a large ad hoc component
which gives an unsatisfying feeling and implies that there is room for improvement.
Moreover, the fact that (very) good results have been obtained with this technique
suggests that there should be an underlying theoretical foundation. Apart from the
lacking profound understanding of the origin of the instabilities, it was unclear how
the discontinuity capturing term enters the finite element formulation. The purpose
of this part of the dissertation has been to resolve these issues.

The standard entropy solutions provide a stability concept which is based on the
solution itself. On the other hand, it is well-known that spurious oscillations typically
appear near sharp layers in solution profiles. Since sharp layers are characterized by
large gradients we may identify the origin of these oscillations by looking into the
behavior of the gradient of the solution. These observations suggest to develop a
stability concept based on the gradient of the solution. This has led to a new stability
concept for nonlinear conservation laws called variation entropy theory.

Variation entropy theory provides an entropy stability concept based on the
gradient of the solution instead of on the solution itself. The associated variation
entropy solutions are those solution that, apart from solving the conservation law,
satisfy the so-called variation entropy condition. Harming this condition is the source
of the instabilities.

Now that the origin of the instabilities has been established, the question is how
to use this insight to construct a numerical method with a discontinuity capturing
mechanism. The answer is variational multiscale analysis. The VMS approach
provides a way a incorporate the effect of the missing scales into a numerical
method. In the VMS methodology the user may select the optimality projector to
split the solution into large- and small-scales. This is where the variation entropy
condition pops up: to reduce oscillations near sharp layers one chooses variation
entropy solutions as the optimal solutions.

Following this path naturally leads to a stabilized method with a discontinuity
capturing mechanism. The new discontinuity capturing diffusion does not use
any ad hoc devices and is based on the variation entropy condition. In absence of
sharp layers the variation entropy condition is fulfilled, and in these regions the
discontinuity capturing term vanishes. Near sharp layers, however, the variation
entropy condition might be harmed. If so, the discontinuity capturing term switches
on; dissipation based on the amount of variation entropy production is added to the
formulation. The discontinuity capturing term provides diffusion in the direction
identified by the change of the variation entropy. This implies that diffusion is
not added at the sharp layer but right next to it. The corresponding numerical
results show that, compared to other discontinuity capturing methods, the new
discontinuity method is more localized near sharp layers. These are the region where
Gibbs oscillation typically pop up.

In conclusion, these insights provide a profound understanding of the origin of
the spurious oscillations and the discontinuity capturing mechanisms. Additionally,
this framework sheds light on the TVD (total variation diminishing) property since
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the TVD property may be derived from variation entropy theory. The derivation of
a discontinuity capturing operator consists of two ingredients: variation entropy
theory and variational multiscale analysis. Variation entropy theory tells us where to
add viscosity and VMS tells us how to add the viscosity. In Figure 7.1 we visualize
the relations between the various concepts.

Variational multiscale
analysis

Hughes (1995) [100]

Variation entropy

solutions
this dissertation

Entropy solutions
Kruvzkov (1970) [135]

TVD
solutions
Harten (1983) [88]

Stabilized
methods
Brooks and Hughes
(1982) [33]

Discontinuity
capturing

methods
various methods
1980’s

this dissertation

this dissertation

Hughes et al.
(1998) [103]

Figure 7.1: The connection between the various concepts in stabilized methods.

7.1.3 Part III: An energy-dissipative method for free surface flow

Level-set methods have proven to be powerful methods for the simulation of complex
(flow) phenomena in which a large amount of topological changes occur. One of
the key features is the satisfaction of the maximum principle for the dependent
fields, which are for flow simulations the density and the viscosity. Unfortunately,
the level-set methods have some deficiencies. In this part of the dissertation we have
rectified one of these issues being the possibility of artificial energy creation.

Starting from a sharp-interface model of the incompressible Navier-Stokes equa-
tions, we have derived the standard level-set regularized-interface model. A standard
regularization procedure used for this model makes the model energy-inconsistent
with the sharp-interface model. More importantly, standard spatial and temporal
discretization procedures are not energy-stable. The reason is that both the dis-
cretization in space and time require the selection of certain weighting functions
that are not available in the standard setting. The key remedy is to create extra
‘space’ via the concept of functional entropy variables. This introduces a new variable,
which represents the unavailable test function, into the model. The new variable
is coupled to the existing model via the surface tension term. This concept turns
out to resolve each of the three problems mentioned above: the regularization and
the test function choice for spatial and temporal discretization. Similar as for the
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methodology developed in Part I, it turns out essential to have divergence-free
discrete velocity field. As such, this is where isogeometric analysis naturally comes
into play. The fully-discrete energy-dissipative methodology follows when using a
novel perturbed mid-point scheme for the temporal discretization.

In conclusion, the standard level-set model for the incompressible Navier-Stokes
equations with surface tension is too restrictive to obtain a guaranteed, locally
energy-dissipative discretization. Functional entropy variables provide a possibility
to circumvent this and allow to develop an energy-dissipative discretization.

7.2 future work

The main goal of this thesis is to develop algorithms that inherit the stability
properties of the underlying mathematical model with particular emphasize on
techniques relevant for free surface flow. Various interesting methods have been
suggested and their applicability has been shown. This has several opened doors
for the development of improved techniques and for applying the tailored methods
to other relevant problems. We note that instabilities emerging from boundary
conditions have not been addressed in this thesis. This has been the topic of another
work [179]. Below we suggest some possibilities and first thoughts for future work.

• A first suggestion would be to construct a stabilized energy-dissipative method
for two-fluid flow. To establish this one could look into merging the techniques
developed in Part I and III. We note that recently a new stabilized energy-
dissipative method has been proposed by J.A. Evans et al. [71]. This method
goes for a large extend along the same lines as the techniques developed
in Part I and also uses the Stokes projector. This method might be useful
alternative for the method of Part I.

• The established discontinuity capturing mechanism in Part II may be seen as
a penalty method. In order to guarantee satisfaction of the variation entropy
condition one may try to enforce this via a Lagrange multiplier construction.

• The framework in Part II has been established for scalar conservation laws. We
anticipate that one can directly apply discontinuity capturing devices inspired
by this framework to each equation of a system of conservation laws. However,
rigorously establishing the extension to systems of conservation laws is not
trivial and requires some additional effort.

• Even though the level-set method has now been equipped with the energy-
stability property several deficiencies remain. We mention the absence of
local mass conservation and the seemingly artificial redistancing procedures.
The first issue is simply the consequence of the fact that the regularized
Dirac delta is not a member of the discretization space. Perhaps the ideas
used by functional entropy variables may turn out useful here. The reason is
that this framework provides a way to consistently convert the model into a
form which can circumvent the need to select a particular weighting function.
Concerning redistancing methods, we hope that an ‘ideal’ level-set method
does not require these procedures at all. Until that is available, we suggest
to look into redistancing methods that do not upset the thermodynamical
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structure of the method. One may need to introduce a redistancing energy to
achieve this.

As a last remark we wish to emphasize that the developed variation entropy concept
is a general theory and its applicability is not limited to a certain discretization
method. As such, it may have profound impact for the design of many discretization
methods for problems in which shock waves or sharp layers occur. An interesting
class of methods in this regard are the discontinuous Galerkin methods. Recently,
S.K.F. Stoter et al. [178, 180] have shown these methods may be derived by using
discontinuous approximation spaces in the variational multiscale method. Perhaps
the framework of S.K.F. Stoter et al. can be combined with the strategy used in Part
II of this thesis.
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S U M M A RY

Numerical procedures and simulation techniques in science and engineering have
progressed significantly during the last decades. The finite element method plays
an important role in this development and has gained popularity in many fields
including fluid mechanics. A recent finite element solution strategy is isogeometric
analysis. Isogeometric analysis replaces the usual finite element basis functions by
higher-order splines. This leads to significantly more accurate results and equips
the numerical method with several desirable properties.

By naively applying the finite element isogeometric method one may obtain
solutions that are seriously perturbed and are as such not physically relevant. The
reason is often linked to the stability of the method; a finite element method is
not a priori stable. The overall objective of this thesis is centered around this point.
The aim is to develop numerical techniques that inherit the stability properties of
the underlying physical system. In particular we are interested in finite element
techniques that can be applied to free-surface flow simulations. Stability issues in
free-surface flow computations may already appear in single-fluid flow problems.
Other causes of instabilities are steep layers or discontinuities and instabilities
arising from the numerical treatment of the interface that separates the fluids. This
thesis addresses each of these topics.

Several stabilized finite element methods have been proposed to stabilize standard
finite element solutions. These methodologies are provably stable for model prob-
lems and yield significantly improved solutions for more realistic problems. Despite
that the proposed stabilized methods often show good behavior, they are generally
not energetically stable for the more advanced problems.

In the first part of this dissertation we remedy this discrepancy for single-fluid
flow with the aid of variational multiscale analysis. This technology provides a way
to derive multiscale models and methods that satisfy certain objectives ab initio.
The concept is to split the solution into large-scales that live on the mesh and
small-scales of which their effect is modeled. As such, the two main ingredients
of this paradigm are the projection operator that dicates the scale separation and
the small-scale model. The idea is to select a projection operator that renders the
multiscale model energy-dissipative. This design criterion leads to projectors that
have a natural connection to the mathematical model, e.g., the Stokes projector for
the incompressible Navier-Stokes equations. Concerning the small-scale model, we
note that standard small-scale models have a static form which may seem a bit
strange when dealing with dynamical problems. A dynamical form is arguably more
suitable and permits to associate the eventual method with an energy that dissipates
in time. Lastly, we note that it is convenient to have a divergence-conforming
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discretization in order to obtain energy-dissipation. This is naturally provided by
the isogeometric discretization.

Stabilized multiscale formulations produce oscillation-free solutions in absence
of steep layers in the solution profiles. However, when sharp layers appear, these
methods do not preclude oscillations. Even though these oscillations are generally
small in size, they might render the simulation unfeasible; e.g., a negative density
is nonphysical. Therefore, the stabilized finite element method is often augmented
a term that introduces artificial diffusion. These mesh-dependent residual-based
terms, known as discontinuity capturing terms, significantly improve the solution
quality and reduce the oscillations. Unfortunately, these terms are known to have
a large ad hoc character and a derivation is missing. As such, since the initiation
of stabilized methods many different forms have been suggested. This gives a
somewhat dissatisfying feeling and suggests room for improvement.

In the second part of this dissertation we provide the missing derivation using
variational multiscale analysis. To do so, we first introduce a new concept called
variation entropy theory. This theory introduces a new stability concept that grants a
profound understanding of oscillations near sharp layers. Employing this stability
concept in variational multiscale analysis naturally leads to a class of consistent
discontinuity capturing mechanisms. The variation entropy theory may be under-
stood as a way to localize the oscillations whereas variational multiscale analysis is
the paradigm that tells us how to use this information to construct a discontinuity
capturing method.

Free-surface simulations for maritime applications are often performed using the
level-set method. In this method the interface separating the fluids is represented
by the zero level-set of a higher-dimensional field. Level-set simulations generally
use a diffuse-interface model that results from a mesh-dependent smearing of the
interface. The key features of this approach are its ability to naturally deal with
topological changes and the fact that the density and viscosity satisfy the (standard)
maximum principle. A deficiency of the level-set method is that it may create
artificial energy.

The last part of this thesis cures this imperfection for the incompressible Navier-
Stokes equations with surface tension. We present a novel fully-discrete energy-
dissipative level-set method. Standard finite element methods are too restrictive
to inhibit energy-instabilities in a level-set formulation. Functional entropy vari-
ables provide the means to circumvent this limitation by discretizing a modified
model. The modified model introduces a new variable that renders the model less
restrictive. This, in combination with isogeometric analysis, allows to derive an
energy-dissipative discretization. A new time-integration scheme, based on the
perturbed midpoint rule, eventually yields the fully-discrete energy-dissipative
method.

In summary, this dissertation sheds light on stability issues in existing isogeomet-
ric finite element methods for free-surface problems and offers resolutions for these
issues.



S A M E N VAT T I N G

Numerieke procedures en simulatietechnieken in wetenschap en techniek zijn de
afgelopen decennia aanzienlijk verbeterd. De eindige-elementenmethode speelt een
belangrijke rol in deze ontwikkeling en is populair geworden op vele gebieden,
waaronder vloeistofmechanica. Een recente oplossingssmethode binnen de eindige
elementen methoden is isogeometrische analyse. Isogeometrische analyse vervangt de
gebruikelijke basis functies in eindige-elementen methoden door splines van hogere
orde. Dit leidt tot aanzienlijk nauwkeurigere resultaten en voorziet de numerieke
methode van verschillende gewenste eigenschappen.

Door naïef gebruik te maken van isogeometrische eindige elementen methoden
kan men tot oplossingen komen die ernstig verstoord zijn (d.w.z. grote fouten
bevatten), en als zodanig niet fysisch relevant zijn. De reden hangt vaak samen
met de stabiliteit van de methode; een eindige-elementenmethode is niet a priori
stabiel. De algemene doelstelling van dit proefschrift is rond dit punt gecentreerd.
Het doel is numerieke technieken te ontwikkelen die de stabiliteitseigenschap-
pen van het onderliggende fysische systeem overnemen. In het bijzonder zijn we
geïnteresseerd in eindige-elemententechnieken die kunnen worden toegepast op
simulaties van vrije oppervlakte stromingen. Stabiliteitsproblemen bij berekeningen
van vrije oppervlakte stromen kunnen al optreden in het deel van de eindige-
elementenmethode dat zich bezighoudt met een enkele vloeistofstroom. Andere
oorzaken van instabiliteiten zijn steile lagen of discontinuïteiten en instabiliteiten
als gevolg van de numerieke behandeling van het oppervlak dat de vloeistoffen
scheidt. Dit proefschrift behandelt elk van deze onderwerpen.

Er zijn verschillende gestabiliseerde eindige-elementenmethoden voorgesteld om stan-
daard eindige-elementoplossingen te stabiliseren. Deze methodologieën zijn aan-
toonbaar stabiel voor modelproblemen en leveren aanzienlijk verbeterde oplossingen
op voor meer realistische problemen. Ondanks dat de voorgestelde gestabiliseerde
methoden vaak goed gedrag vertonen, zijn ze over het algemeen niet energetisch
stabiel voor de meer geavanceerde problemen.

In het eerste deel van dit proefschrift verhelpen we deze discrepantie voor stro-
mingen met één vloeistof aan de hand van variatierekening met meerdere schalen. Deze
technologie biedt een manier om modellen en methoden met meerdere schalen af te
leiden die ab initio aan bepaalde doelstellingen voldoen. Het concept is om de oploss-
ing te splitsen in grote schalen die op het rooster bestaan en kleine schalen waarvan
het effect wordt gemodelleerd. Als zodanig zijn de twee belangrijkste ingrediënten
van dit paradigma de projectie operatie, die de scheiding van de schalen bepaalt, en
het model voor de kleine schalen. Het idee is om een projectie operatie te selecteren
die het meerdere-schalen model energie dissipatief maakt. Dit criterium leidt tot
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projecties die een natuurlijke connectie hebben met het wiskundige model; zo resul-
teren de onsamendrukbare Navier-Stokes-vergelijkingen in de Stokes-projectie. Wat
betreft het kleinschalige model, merken we op dat standaard kleinschalige modellen
een statische vorm hebben die minder goed past bij dynamische problemen. Een
dynamische vorm is mogelijk geschikter en maakt het mogelijk de uiteindelijke
methode te associëren met een energie die in de tijd afneemt. Als laatste merken we
op dat een divergentie-conformerende discretizatie method handig is om energie-
dissipatie te verkrijgen. Hier komt isogeometrische analyse goed van pas; het levert
een natuurlijke manier om divergentievrije velden te construeren.

Gestabiliseerde formuleringen met meerdere schalen produceren oscillatievrije
oplossingen in de afwezigheid van steile lagen in de oplossingsprofielen. Wan-
neer er echter scherpe lagen verschijnen, sluiten deze methoden oscillaties niet
uit. Hoewel deze oscillaties over het algemeen klein zijn, kunnen ze de simulatie
onbruikbaar maken; bijvoorbeeld een negatieve dichtheid is een niet-fysisch resul-
taat. Daarom wordt de gestabiliseerde eindige-elementenmethode vaak aangevuld
met een term die kunstmatige diffusie introduceert. Deze rooster-afhankelijke, op
residuen gebaseerde termen, bekend als discontinuiteit afvangende termen, verbeteren
de kwaliteit van de oplossing aanzienlijk en verminderen de oscillaties. Helaas is
bekend dat deze termen een groot ad hoc gedeelte hebben en dat een afleiding ervan
ontbreekt. Als zodanig zijn er sinds het begin van gestabiliseerde methoden veel ver-
schillende vormen voor deze termen voorgesteld. Dit geeft een wat onbevredigend
gevoel en suggereert dat er ruimte voor verbetering is.

In het tweede deel van dit proefschrift geven we deze ontbrekende afleiding met
behulp van variatierekening met meerdere schalen. Om dit te doen, introduceren
we eerst een nieuw concept genaamd variatie entropie theorie. Deze theorie intro-
duceert een nieuw stabiliteitsconcept dat een diepgaand begrip geeft van oscillaties
nabij scherpe lagen. Het gebruik van dit stabiliteitsconcept in variatierekening met
meerdere schalen leidt op een natuurlijke manier tot een klasse van consistente
mechanismen voor het afvangen van de discontinuïteit. De variatie entropie theorie
kan worden begrepen als een manier om de oscillaties te lokaliseren, terwijl varia-
tionele multischaalanalyse het paradigma is dat ons vertelt hoe we deze informatie
kunnen gebruiken om een discontinuïteit afvangende methode te construeren.

Vrije oppervlakte simulaties voor maritieme toepassingen worden vaak uitgevo-
erd met de niveauverzamelingen-methode. Bij deze methode wordt het oppervlak dat
de vloeistoffen scheidt weergegeven door de nul-niveauverzameling van een hoger-
dimensionaal veld. Numerieke simulaties aan de hand van deze techniek gebruiken
over het algemeen een diffuus-interface model. Dit model resulteert wanneer het
oppervlak rooster-afhankelijk wordt uitgesmeerd. De belangrijkste kenmerken van
deze benadering zijn het vermogen om op natuurlijke wijze om te gaan met topol-
ogische veranderingen en het feit dat de dichtheid en viscositeit voldoen aan het
maximumsprincipe. Een tekortkoming van de niveauverzamelingen-methode is dat
deze kunstmatige energie kan creëren.

Het laatste deel van dit proefschrift verhelpt deze onvolkomenheid voor de
onsamendrukbare Navier-Stokes-vergelijkingen met oppervlaktespanning. We pre-
senteren een nieuwe, volledig-discreet, energie-dissipatieve methode, die gebruikt
maakt van de niveauverzamelingen-methode. Standaard eindige-elementenmethoden
zijn te beperkend om energie instabiliteiten te voorkomen in een formulering die
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gebruikt maakt van niveauverzamelingen. Functionele entropie-variabelen bieden de
middelen om deze beperking te omzeilen door een aangepast model te discretiseren.
Het gewijzigde model introduceert een nieuwe variabele die het model minder
restrictief maakt. Dit, in combinatie met isogeometrische analyse, maakt het mogelijk
een energie-dissipatieve discretisatie af te leiden. Een nieuw tijdintegratieschema,
gebaseerd op de verstoorde middelpuntregel, levert uiteindelijk de volledig discrete
energie-dissipatieve methode op.

Samenvattend belicht dit proefschrift stabiliteitsproblemen in bestaande isoge-
ometrische eindige-elementenmethoden voor problemen met het vrije oppervlakken,
en biedt het oplossingen die deze problemen verhelpen.
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