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1. Introduction

In probability theory, Lp spaces for p > 0 together with the topology of conver-
gence in probability have been widely applied. However, in that case we restrict
ourselves to only a part of all the measurable functions and to an underlying prob-
ability space. One of the main aims of this thesis is to generalize this concept to
the set of all measurable functions with the usual a.e. equivalence classes (which
we call L0) and (possibly) non-finite measure spaces. The other main aim is to
establish an ordered structure on this L0 space. We will start our discussion by
first defining L0 and establishing that L0 is an ordered vector space. After this we
will define the generalisation of the topology of convergence in probability, which is
called the topology of convergence in measure and we will explore properties of this
topology relating to the convergence in measure, continuity of maps, metrizability
(i.e. under what circumstances can this topology be generated by a single metric?),
completeness (i.e. convergence of Cauchy sequences) and local convexity (when can
the topology be generated by a set of semi-norms?). After this we will generalise
the notion of essential suprema from sets of random variables to sets of measurable
functions. It turns out that for most properties considered in this text, such as
metrizability, completeness and the existence of an essential supremum, requiring
the underlying measure space to be σ-finite (i.e. the underlying space can be cov-
ered by countably many measurable sets of finite measure) suffices. Discussions on
weaker conditions in these instances are also included in this text.
The last section of this thesis contains an overview of a widely used application of
our L0 space: namely Stochastic Differential Equations (SDEs). The main focus of
this section is obtaining a maximal solution to such equation under local Lipschitz
conditions.
The following Appendix contains an overview of commonly used definitions and
results from the theory on general topological spaces, Grönwall’s inequality for
measurable functions (used in the section on SDEs) and different characterisations
of the Radon-Nikodym theorem relating to the corresponding derivative possibly
taking non-finite values (used in the section on the essential supremum).
For the properties of the topology of convergence in measure on L0 a commonly
returning source of the results will be ”Measure Theory Volume 2”, written by
David Fremlin. This thesis will, in part, display his vision as described in the
book in a comprehensive and orderly way together with other results from different
sources. Furthermore, not mentioned details, generalizations and further results
will be displayed as well.
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2. The structure on L0

We start our discussion with the definition of the space of measurable functions
up to a.e. equivalence and establish that it is a linear space.

2.1. Definition of L0. Assume (S,Σ, µ) is a measurable space. Unless otherwise
specified, we associate R with the Borel sigma algebra.

Definition 2.1. L 0(S,Σ, µ) =
{
f : S � R : f is measurable

}
.

In order to be able to define the L0 space, we first need to define the a.e. (almost
everywhere) equal equivalence classes.

Definition 2.2. Let f ∈ L 0(S,Σ, µ). Then g ∈ ḟ ⇐⇒ g =a.e. f.
Next, we will to provide that this indeed defines an equivalence class on L 0(S,Σ, µ).

Theorem 2.3. For f ∈L0(S,Σ, µ), ḟ as defined above is an equivalence class.

Proof. (1) µ({f ̸= f}) = µ(∅) = 0, and so f =a.e. f.
(2) f =a.e g ⇐⇒ µ({f ̸= g}) = 0 ⇐⇒ µ({g ̸= f}) = 0 ⇐⇒ g =a.e. f .
(3) Suppose f =a.e. g and g =a.e h. Since: {g = f ̸= h} ⊆ {g ̸= h} and {g ̸=

f ̸= h} ⊆ {g ̸= f} we have:

0 ≤ µ({f ̸= h}) = µ({g = f ̸= h} ∪ {g ̸= f ̸= h})
≤ µ({g ̸= h}) + µ({g ̸= f}) = 0.

It follows that µ({f ̸= h} = 0.
□

Now we can finally define L0(S,Σ, µ), which is the space of such equivalence
classes.

Definition 2.4. L0(S,Σ, µ) =
{
ḟ : f ∈ L 0(S,Σ, µ)

}
.

2.2. Linear structure on L0. Now that we have defined the L0 space, we can
consider properties of this space. We know that L 0(S,Σ, µ) has linear structure (is
a vector space). On this space, the addition of two measurable functions is defined
pointwise. We can define addition on the L0(S,Σ, µ) space in such a way that a lot
of properties from L 0(S,Σ, µ) are inherited, in specific the linear structure.

Definition 2.5. For ḟ , ġ ∈ L0(S,Σ, µ), c ∈ R, we can define addition and scalar
multiplication on L0(S,Σ, µ) as follows:

ḟ ⊕ ġ = ˙(f + g)

cḟ = ˙(cf).

Remark 2.6.

(1) This definition is well defined:

• The sum of two measurable functions is measurable, so ḟ⊕ġ ∈ L0(S,Σ, µ)
• Different representation will not change the resulting equivalence class:
Let f1, f2, g1, g2 ∈ L 0(S,Σ, µ) such that f1 =a.e. f2 and g1 =a.e. g2.
Then since {f1 + g1 ̸= f2 + g2} ⊆ {f1 ̸= f2} ∪ {g1 ̸= g2} :
0 ≤ µ({f1 + g1 ̸= f2 + g2}) ≤ µ({f1 ̸= f2})+µ({g1 + g2}) = 0+0 = 0.

Hence: ˙(f1 + g1) = ˙(f2 + g2).
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• In the same fashion as above, we can conclude that cḟ ∈ L0(S,Σ, µ)
and if f1 =a.e. f2, then cf1 =a.e. cf2.

(2) For convenience, we will write ḟ + ġ instead of ḟ ⊕ ġ.

Using this definition for addition and scalar multiplication, it follows (almost
directly) from the fact that L 0(S,Σ, µ) has a linear structure, that L0(S,Σ, µ) has
a linear structure.

Corollary 2.7. L0(S,Σ, µ) is a vector space over R, where addition and scalar
multiplication are defined as in definition 2.5.

Proof. Let ḟ , ġ, ḣ ∈ L0(S,Σ, µ) and a, b ∈ R.

(1) ḟ + ġ
def2.5
= ˙(f + g) ∈ L0(S,Σ, µ).

(2) cḟ
def2.5
= ˙(cf) ∈ L0(S,Σ, µ).

(3) ḟ+(ġ+ḣ)
def2.5
= ḟ+ ˙(g + h)

def2.5
= ˙(f + g + h) = ˙((f + g) + h)

def2.5
= ˙(f + g)+

ḣ
def2.5
= (ḟ + ġ) + ḣ.

(4) ḟ + ġ
def2.5
= ˙(f + g) = ˙(g + f)

def2.5
= ġ + ḟ .

(5) Consider 0(x) = 0 ∀x ∈ S. Since 0 is measurable: 0 ∈ L 0 and so

ḟ + 0̇
def2.5
= ˙(f + 0) = ḟ .

(6) f ∈ L 0 =⇒ (−f) ∈ L 0, so ḟ + ˙(−f) def2.5
= ˙(f + (−f)) = 0̇.

(7) a(bḟ)
def2.5
= a( ˙bf)

def2.5
= ˙(abf)

def2.5
= (ab)ḟ .

(8) 1ḟ = 1̇f.

(9) a(ḟ + ġ)
def2.5
= a ˙(f + g)

def2.5
= ˙(a(f + g)) = ˙(af + ag)

def2.5
= aḟ + aġ.

(10) (a+ b)ḟ
def2.5
= ˙((a+ b)f) = ˙(af + bf)

def2.5
= ˙(af) + ˙(bf)

def2.5
= aḟ + bḟ .

□

2.3. Multiplicative structure on L0. We know that for f, g ∈ L 0, since the
(pointwise) multiplication of two measurable functions is again measurable, we
have that f · g ∈ L 0. Let f1, f2, g1, g2 ∈ L 0. Then in case f1 =a.e. f2 and
g1 =a.e. g2 we have f1 · g1 =a.e. f2 · g2 (the proof is similar to the one in remark
2.6).
Hence the following definition is well-defined on L0(S,Σ, µ):

ḟ ⊗ ġ = ˙(f · g), and for convenience, we will again use the notation: ḟ · ġ.

2.4. Order structure on L0. A straightforward property of R is that it has an
ordered structure: indeed, if we take two elements from R, we can always say that
one is smaller/greater than the other or equal by subtracting the two numbers. It
is not as easily seen as on R, but on L0(S,Σ, µ) we can also compare two elements
and say how these two elements relate to each other with respect to their ’size’.
This notion is defined below.

Definition 2.8. For ḟ , ġ ∈ L0(S,Σ, µ): ḟ ≤ ġ ⇐⇒ f ≤a.e. g.

Remark 2.9. As it holds that for f1, f2, g1, g2 ∈ L 0(S,Σ, µ), in case f1 =a.e.

f2 and g1 =a.e. g2, then: f1 ≤a.e. g1 =⇒ f2 ≤a.e. g2 (Proof similar to the one
seen in remark 2.6): this definition is well defined.

It can be shown that this notion of ordering in L0(S,Σ, µ) behaves like an order-
ing is expected to behave when having the example of R in mind. The next lemma
will help us prove an intuitive property we expect from an ordering.
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Lemma 2.10. For f,g,h ∈ L 0(S,Σ,µ) f ≤a.e. g ≤a.e. h =⇒ f ≤a.e. h.

Proof. Lets ∈ {f > h}, then s must be in one of the following sets:

(1) s ∈ {g ≤ h and g < f} or
(2) s ∈ {h ≤ g and g < f} or
(3) s ∈ {h < g and f ≤ g}.

Note that {g ≤ h and g < f} ⊆ {g < f}, {h ≤ g and g < f} ⊆ {g < f} and {h <
g and f ≤ g} ⊆ {h < g}. It follows that:

0 ≤ µ({f > h})
≤ µ({g ≤ h and g < f} ∪ {h ≤ g and g < f} ∪ {h < g and f ≤ g})
≤ µ({g ≤ h and g < f}+ µ({h ≤ g and g < f}) + µ({h < g and f ≤ g})
≤ µ({g < f}) + µ({g < f}) + µ({h < g}) = 0 + 0 + 0 = 0.

□

Theorem 2.11. Let u, v, w ∈ L0(S,Σ, µ). Then u ≤ v ≤ w =⇒ u ≤ w.

Proof. From theorem 2.10 and definition 2.8 it follows that if: u = ḟ , v = ġ, w = ḣ,
then: u ≤ v ≤ w ⇐⇒ f ≤a.e. g ≤a.e. h =⇒ f ≤a.e. h ⇐⇒ u ≤ w. □

Remark 2.12. Let u, v, w ∈ L0(S,Σ, µ)

• Using similar proving techniques as in theorem 2.10 one can prove that:
u ≤ u
u ≤ v ≤ u =⇒ u = v
u ≤ v =⇒ u+ w ≤ v + w
0 ≤ u =⇒ 0 ≤ cu, c non-negative scalar
Because of the last two properties above, we can call L0(S,Σ, µ) (per defi-
nition) a partially ordered linear space.

Having established that L0 is an partially ordered linear space and that it, until
now, verifies our intuitive feeling of how an ordering behaves, one might also hope to
find that we can define a minimum/maximum of two elements in our ordered space.
It turns out that since we can do this on L 0(S,Σ, µ), we also have this property
on L0(S,Σ, µ). Such ordered spaces where we can define minima and maxima are
called Riesz spaces.

Definition 2.13. A set X is called a Riesz space if it is a partially ordered linear
space, where ∀x, y ∈ X : ∃z, w ∈ X so that ∀a ∈ X:

z ≤ a ⇐⇒ x ≤ a and y ≤ a

a ≤ w ⇐⇒ a ≤ w and a ≤ w.

We denote : z = sup{x, y} and w = inf{x, y}.

Before we can prove that L0(S,Σ, µ) is a Riesz space, we will prove a well-known
equivalent characterisation of a maximum of two elements in an a.e. context.

Lemma 2.14. For f1, f2, g ∈ L 0(S,Σ,µ):

f1 ≤a.e. g and f2 ≤a.e. g ⇐⇒ max(f1, f2) ≤a.e. g.

Proof. =⇒
First note, that if f1, f2 are measurable, max(f1, f2) is measurable as well and so
we can consider s ∈ {max(f1, f2) > g} ∈ Σ. Then:
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(1) s ∈ {f1 > g and f2 > g} or
(2) s ∈ {f1 > g and f2 ≤ g} or
(3) s ∈ {f1 ≤ g and f2 > g}.

Hence:

0 ≤ µ({max(f1, f2) > g})
≤ µ({f1 > g and f2 > g} ∪ {f1 > g and f2 ≤ g} ∪ {f1 ≤ g and f2 > g})
≤ 2µ({f1 > g}) + µ({f2 > g}) = 0.

⇐=
Given is that µ{max(f1, f2) > g}=0. We know {f1 > g} ⊆ {max(f1, f2) > g}, so
µ({f1 > g}) = 0. Analogous argument for f2. □

Given lemma 2.14, we can now swiftly prove that L0 indeed is a Riesz space.

Theorem 2.15. L0(S,Σ, µ) is a Riesz space.

Proof. Let u = ḟ , v = ġ ∈ L0(S,Σ, µ). I claim that sup{u, v} = ˙max(f, g).

Indeed: Let w = ḣ ∈ L0(S,Σ, µ), then:
˙max(f, g) ≤ w ⇐⇒ max(f, g) ≤a.e. h ⇐⇒ f ≤a.e. h and g ≤a.e. h ⇐⇒ u ≤

w and v ≤ w.
Analogously, it can be proven that inf{u, v} = ˙min(f, g). □

Now that we have established that L0 is a Riesz space, we can now define iden-
tities which follow (almost) directly from L 0 which involve absolute values. The
absolute value is formally defined below.

Definition 2.16. For u ∈ L0(S,Σ, µ): |u| = sup{u,−u}.

Remark 2.17. Note that this definition is analogous to the definition for f ∈ L 0 :
|f(x)| = max(f(x),−f(x)).

Below we will prove that if u = ḟ , then |u| is just the equivalence class containing
|f |.

Theorem 2.18. Let u = ḟ , v = ġ ∈ L0(S,Σ, µ), c ∈ R. Then the following identi-
ties hold:

(1) | ˙(f)| = ( ˙|f |) (We can take the dot out of the absolute value)
(2) |cu|=|c||u|
(3) sup{u, v} = 1

2 (u+ v + |u− v|)
(4) inf{u, v} = 1

2 (u+ v − |u− v|)
(5) |u+ v| ≤ |u|+ |v|.

Proof. We can prove that first identity as follows:

| ˙(f)| def 2.16= sup{ḟ , −̇f} ≤ ġ
def 2.13⇐⇒ ḟ ≤ ġ and −̇f ≤ ġ

def 2.8⇐⇒ f ≤a.e. g and −f ≤a.e.

g
theorem 2.14⇐⇒ max(f,−f) ≤a.e. g

def 2.8⇐⇒ ( ˙|f |) ≤ ġ.
By using that: |cf | = c|f |,max(f, g) = 1

2 (f + g + |f − g|),min(f, g) = 1
2 (f + g −

|f − g|), |f + g| ≤ |f | + |g| for f, g ∈ L 0(S,Σ, µ), c ∈ R, the proofs of the other
identities are analogous to that of the first identity. □

We know that for f ∈ L 0 : f+(x)
def
= max(f(x), 0), f−(x)

def
= max(−f(x), 0) so

that f = f+ − f− and |f | = f+ + f−. From the previous theorems one might
expect that if we, for u ∈ L0,define u+ analogous to it’s counterpart in L 0, that
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these identities also hold in L0. This is indeed the case and is stated in the next
definition and theorem. The proof of the theorem is similar to that of theorem 2.18.

Definition 2.19. For u ∈ L0(S,Σ, µ):

u+ = sup{u, 0̇} and u− = sup(−u, 0̇).

Theorem 2.20. For u ∈ L0(S,Σ, µ):

(1) u = u+ − u−

(2) |u| = u+ + u−.
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3. Topology of convergence in measure

In the previous section we established that L0(S,Σ, µ) has a linear structure and
is ordered. The natural next questions that arise are questions regarding defining
(non-trivial) topologies on this space. In this section we will define the topology
of convergence in measure on L0(S,Σ, µ). This topology will generalise the well
known notion of convergence in probability to more general measure spaces.

We will define a topology on L 0, which we can then extend to L0. The topol-
ogy is defined via a set of functions on L 0 whose output is on the non-negative
real numbers line.

Definition 3.1. Let F ∈ Σ such that µ(F ) <∞, then τF : L 0(S,Σ, µ) → R≥0 :

τF (f) =
∫
S
min(|f |, 1F )dµ.

We set: P = {τF : µ(F ) <∞} as the set of all such functions for (S,Σ, µ).

Remark 3.2. This definition is well defined:

• Since |f | and 1F are two measurable functions, min(|f |, 1F ) is measurable
as well.

• Since min(|f |, 1F ) ≤ 1F on S:∫
S
min(|f |, 1F )dµ ≤

∫
S
1F dµ = µ(F ) <∞.

For a given function as defined in definition 3.1, it turns out that the triangle
inequality holds.

Theorem 3.3. For f,g ∈ L 0(S,Σ, µ):

τF (f + g) ≤ τF (f) + τF (g).

Proof. Note that:
0 ≤ min(|f + g|, 1F ) ≤ min(|f |+ |g|, 1F ) ≤ min(|f |, 1F ) + min(|g|, 1F ).
This last inequality can be verified by checking every possible case individually.
Since the integral is an increasing function and is linear, we obtain the identity by
taking the integral on the left side and right side of the above inequalities. □

From the definition of τF (definition 3.1), one might wonder whether we can
define a metric on L 0 using this function. After all, when we set:

ϕF (f, g) = τF (f − g)

we then have the following properties:

(1) ϕF (f, h) = τF (f − g + g − h)
thm 3.3
≤ τF (f − g) + τF (g − h) = ϕF (f, g) +

ϕF (g, h)
(2) ϕF (f, g) = τF (f − g) ≥ 0
(3) ϕF (f, g) = ϕF (g, f).

But now consider the case that S = R, Σ = B(R), µ = λ (Lebesgue measure), F =
(0, 1] and take f(x) = 0 and g(x) = 1{0}(x). Then since f(x) =a.e. g(x): |f−g| =a.e.

0. And so: ϕF (f, g) = 0 while f ̸= g in L 0.
Another problem that arises is that min(|f |, 1F ) sets f to 0 outside of F , so
any difference between two functions outside of F will not be considered. This
can be seen, for example, in case we again have: S = R, Σ = B(R), µ =
λ (Lebesgue measure), F = [0, 1) but now set f(x) = 1[1,∞) and g(x) = 0. Then f ̸=
g, but since
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min(|f − g|, 1F )(x) = 0 : ϕF (f, g) = 0 for this case. This shows that ϕF (in its
current form) is not a metric in every case. But since it does have the three listed
properties above, we can call ϕF (per definition) a pseudometric on L 0.

Using all of the above, we can now define the topology of convergence in measure
on L 0(S,Σ, µ).

Definition 3.4. The topology of convergence on L 0 is defined as follows:
G ⊆ L 0 is called open ⇐⇒
∀f ∈ G ∃Ff ∈ Σ (µ(Ff ) <∞) and ∃δf > 0 : ϕFf

(f, g) < δf =⇒ g ∈ G.

Remark 3.5. This definition is reminiscent of the definition of a set being open in
R. Here, δf serves the same purpose as ϵ and ϕFf

(f, g) < δf =⇒ g ∈ G the same
purpose as a open ball with radius ϵ around a point x in an open subset of R having
to be fully contained in that open set.

Theorem 3.6. The topology of convergence of measure on L 0 is a topology on
L 0.

Proof. (1) That ∅ and L 0 are open in L 0 follow directly from the definition.
(2) Let Gi ⊆ L 0 be open ∀ i ∈ I . Let f ∈

⋃
i∈I

Gi, then per definition f ∈ Gj

for some j ∈ I, so ∃Ff , δf > 0 such that ϕFf
(f, g) < δf � g ∈ Gj ⊆

⋃
i∈I

Gi

(3) Let Gi ⊆ L 0 be open for i ∈ {1, .., n}. Let f ∈
n⋂

i=1

Gi, then f ∈ Gi for all

i = 1, .., n and correspondingly (by the definition of openness) we have F i
f

and δif for i = 1, .., n.

Note that µ(
n⋃

i=1

F i
f ) ≤

n∑
i=1

µ(F i
f ) <∞.

Choose Ff =
n⋃

i=1

F i
f and δf = min(δ1f , ..., δ

n
f ).

Since min(|f − g|, 1F i
f
) ≤ min(|f − g|, 1 n⋃

i=1
F i

f

) and the integral is increasing:

ϕF i
f
(f, g) ≤ ϕ n⋃

i=1
F i

f

(f, g). Hence for any i = 1, .., n:

ϕF i
f
(f, g) ≤ ϕFf

(f, g) < δf < δif gives g ∈ Gi (by assumed openness of Gi)

for i = 1, .., n.

In conclusion:
n⋂

i=1

Gi is open.

□

Now that we have established this topology on L 0, we can now extend this to
L0. Note that for f, g ∈ L 0: if f =a.e. g, then min(|f |, 1F ) =a.e. min(|g|, 1F ),
hence τF (f) = τF (g) (see definition 3.1). It follows that the following definitions
are well defined:

Definition 3.7. Let F ∈ Σ such that µ(F ) <∞, then: τ̄F : L0(S,Σ, µ) � R≥0 :

τ̄F (ḟ) = τF (f) and ϕ̄F (ḟ , ġ) = ϕF (f, g).

Because of these definitions, we can now easily extend the topology of conver-
gence in measure structure on L 0 to L0 without losing any properties that were
proven before. The proofs of the theorems below are analogous to the L 0 cases.
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Theorem 3.8. ϕ̄F is a pseudometric on L0

Definition 3.9. The topology of convergence on L0 is defined as follows:
G ⊆ L0 is called open ⇐⇒
∀u ∈ G ∃Fu ∈ Σ (µ(Fu) <∞) and ∃δu > 0 : ϕ̄F u(v, u) < δu =⇒ v ∈ G.

Theorem 3.10. The topology of convergence in measure on L0 is a topology on
L0.
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4. Convergence in measure

In the previous section, we have defined a topology on L 0(S,Σ, µ) called the
topology of convergence in measure. In this section, we will work out the notion of
sequential convergence with respect to this topology.

Definition 4.1. Let fn, f ∈ L 0(S,Σ, µ) for n=1,2,... . Then fn � f in measure
⇐⇒ ∀F ∈ Σ such that µ(F ) <∞ : ϕF (fn, f) → 0 (n→ ∞).

Proposition 4.2. Definition 4.1 is equivalent to the definition of convergence in
general topological spaces (see Appendix A.8).

Proof. =⇒
Assume definition 4.1 and let G ⊆ L 0(S,Σ, µ) be an open neighbourhood of f ∈
L 0(S,Σ, µ). Then by definition 3.4, for f ∈ G ∃Ff ∈ Σ (µ(Ff ) <∞) and ∃δf >
0 such that: v ∈ L 0(S,Σ, µ) and ϕFf

(v, f) < δf =⇒ v ∈ G. By our assumption
it holds that ϕFf

(fn, f) → 0. It holds that ∃N : ∀n ≥ N ϕFf
(fn, f) < δf which

implies that fn ∈ G for n ≥ N .
⇐=
Suppose that for any open neighbourhood G of f ∈ L 0(S,Σ, µ) ∃N : ∀n ≥ N :
fn ∈ G. Let ϵ > 0 and F ∈ Σ (with finite measure). Define:

U(f ;ϕF ; ϵ) = {g ∈ L 0(S,Σ, µ) : ϕF (f, g) < ϵ}.

Then U(f ;ϕF ; ϵ) is open and so for by our assumption, for n ≥ N : ϕF (fn, f) <
ϵ. As ϵ > 0 and F ∈ Σ (with finite measure) were arbitrary, the proof is now
complete. □

Remark 4.3. Convergence as defined in definition 4.1, does not have unique limits
in general. Take, for example, ([0, 1),B([0, 1)), λ) with fn(x) =

1
n , f(x) = 0, g(x) =

1{0}. Then fn → f in measure as well as fn → g in measure, while f ̸= g.

It turns out that this type of convergence is weaker than convergence a.e. and
this is given in the following theorem and example.

Theorem 4.4. If (fn)n≥1 ⊂ L 0, then fn →a.e. f =⇒ fn → f in measure .

Proof. Note that fn �a.e. f ⇐⇒ µ({ lim
n→∞

fn ̸= f}) = 0 ⇐⇒ µ({ lim
n→∞

|fn − f | ≠
0}) = 0. And so since {|fn − f | > 0} ⊇ {min(|fn − f |, 1F ) > 0} we have that
µ({|fn − f | > 0}) ≥ µ({min(|fn − f |, 1F ) > 0}) ≥ 0 and as this inequality holds
for all n, we have hence that min(|fn − f |, 1F ) �a.e. 0. Since min(|fn − f |, 1F ) is
dominated by 1F , by the DCT (Dominated Convergence Theorem), we obtain:

lim
n→∞

ϕF (fn, f) =
∫
0dµ = 0.

□

The following counterexample to the converse of theorem 4.4 is a worked out
version of the one found at [1, p. 174 245Cc].

Example 4.5. Let µ be the Lebesgue measure on [0,1] and define:

fn(x) = 2m1[2−mk,2−m(k+1)](x)
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where n+ 1 = 2m + k (n,m, k integers) and 0 ≤ k < 2m. Note that 2m ≥ 1.
This results into that for F ∈ Σ with µ(F ) <∞:
If x ∈ [2−mk, 2−m(k + 1)], then min(2m1[2−mk,2−m(k+1)], 1F )(x) ≤ 1

If x /∈ [2−mk, 2−m(k + 1)], then min(2m1[2−mk,2−m(k+1)], 1F )(x) = 0.
Hence we obtain:

0 ≤ ϕF (fn, 0) =

∫
[0,1]

min(2m1[2−mk,2−m(k+1)], 1F )dµ

≤
∫
[0,1]

1[2−mk,2−m(k+1)]dµ

= µ([2−mk, 2−m(k + 1)]) = 2−m.

Since m goes to infinity when n goes to infinity, we see that ϕF (fn, 0) → 0. But
also lim sup

n�∞
fn = ∞, hence no a.e. convergence.

In order to extend these results to L0, we first need to make sure that a.e.
convergence does not depend on the represented element in the equivalence class.

Theorem 4.6. Let (fn)n≥1, (gn)n≥1 ⊆ L 0: If fn =a.e. gn ∀n ≥ 1, f =a.e. g and
fn �a.e. f then gn �a.e. g

Proof.

µ({ lim
n→∞

gn ̸= g}) = µ({ lim
n→∞

gn ̸= f}) (g =a.e. f)

= µ({ lim
n→∞

fn ̸= f}) = 0 (gn =a.e. fn)

□

Now we give a definition of a.e. convergence in L0 which is well defined (we call
this order∗-convergent).

Definition 4.7. Let f, fn ∈ L 0, then (ḟn)n≥1 is order∗-convergent to ḟ ⇐⇒
lim
n→∞

fn =a.e. f

Now that we have extended the concept of almost everywhere convergence in
L 0(S,Σ, µ) to L0(S,Σ, µ), we can now extend most of the previous results in this
section to L0(S,Σ, µ), where the proofs are analogous to the L 0 case.

Definition 4.8. Let ḟn, ḟ ∈ L0(S,Σ, µ) for n=1,2,... . Then ḟn � ḟ in measure

⇐⇒ ∀F ∈ Σ such that µ(F ) <∞ : ϕ̄F (ḟn, ḟ) → 0 (n→ ∞).

Proposition 4.9. Definition 4.8 is equivalent to the definition of convergence in
general topological spaces (see Appendix A.8).

Theorem 4.10. If ˙(fn)n≥1 ⊆ L0, then ḟn is order∗-convergent to ḟ implies that

ḟn → ḟ in measure but the converse of generally false.

Remark 4.11. One of the only results that does not extend to L0 is the one stated in
remark 4.3. But still, in general, L0(S,Σ, µ) does not have unique limits. Consider

the case: L0(S, {S,∅}, µ), where µ(S) = ∞. Then any sequence ˙(fn)n≥1 converges

in measure to any ḟ ∈ L0(S, {S,∅}, µ).
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The most obvious solution to not obtaining unique limits is requiring that the
topology of convergence in measure is Hausdorff. Define T as the set containing all
open sets with respect to the topology of convergence in measure on L0(S,Σ, µ). It
turns out that that requiring T to be Hausdorff is equivalent to requiring (S,Σ, µ)
to be semi-finite which is formally defined below.

Definition 4.12. A measure space (S,Σ, µ) is defined to be semi-finite if ∀A ∈ Σ
with µ(A) = ∞ ∃B ∈ Σ with B ⊆ A and µ(B) ∈ (0,∞).

Example 4.13. The measure space as described at remark 4.11 (namely (S, {S,∅}, µ),
where µ(S) = ∞) is not semi-finite.

The proof below of theorem 4.14, is the proof found at [1, p. 175 245Ea] with
some details worked out.

Theorem 4.14. (S,Σ, µ) is semi-finite ⇐⇒ T is Hausdorff.

Proof. =⇒
Suppose (S,Σ, µ) is semi-finite and that u = ḟ , v = ġ are distinct members of L0.

Then it holds that µ({x : f(x) ̸= g(x)}) > 0 ( if not: f =a.e. g =⇒ ḟ = ġ). As
(S,Σ, µ) is semi-finite: ∃F ∈ Σ : µ(F ) < ∞ with F ⊆ {x : f(x) ̸= g(x)}. We know
that ϕ̄F (u, v) ≥ 0, where ϕ̄F (u, v) = 0 ⇐⇒ f =a.e. g on F which is not possible
in this case, so ϕ̄F (u, v) > 0. As u, v were arbitrary, T is Hausdorff by [1, p. 506
2A3L].
⇐=
Suppose that T is Hausdorff and that E ∈ Σ with µ(E) > 0. Then u = 1̇E ̸= 0̇
and so there are open neighbourhoods Gu of u and G0 of 0 such that Gu ∩G0 = ∅.
Since Gu is open: ∃Fu ∈ Σ (finite measure), and δu > 0 such that: ϕ̄Fu(u, v) <
δu =⇒ v ∈ Gu. As 0̇ /∈ Gu : ϕ̄Fu

(u, 0̇) > δu > 0. Since u = 1̇E we hence see
that: µ(E ∩ Fu) = ϕ̄Fu

(u, 0̇) > 0. And so: as Fu ∩E has finite measure and E was
arbitrary, our proof is now complete. □
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5. Continuity on L0

Now that we have established a topology on L0 (topology of convergence in mea-
sure), a natural question that arises is: When are maps from L0 (or product space
of L0) to L0 continuous? We know for the usual topology on R2 for instance that
the maps (x, y) 7→ x + y and (x, y) 7→ xy are continuous, but are these maps also
continuous when we have L0 as our (co-)domain and the topology of convergence in
measure? To answer these questions, we first need to get familiar with the concept
of a topology being linear.

That the map (x, y) 7→ x + y is continuous on a topological space might seem
natural, but this is actually a special property and is entailed in the following
definition.

Definition 5.1. A linear topological space is a linear space U over R (or C) together
with a topology T , where the maps:

U × U � U given by (u, v) 7→ u+ v
R× U � U given by (α, u) 7→ αu

are both continuous. U × U and R× U are given with their product topologies.

Remark 5.2. Since the composition of continuous functions is continuous, the map
(u, v) � u− αv is also continuous

Thus far we have only worked with L0 and the topology of convergence is mea-
sure, which is defined via a set of pseudo-metrics P = {ϕF : F ∈ Σ, µ(F ) < ∞}
and these pseudo-metrics were on their part defined via the functionals, τF , from
definition 3.1. This topology is actually a special case of a class of topologies on a
linear space U over R defined via a family of functionals τ : U → [0,∞] and where
ϕ(u, v) = τ(u − v) defines a pseudo-metric. Given a family of functionals T and
family of corresponding pseudo-metrics P , one can define openness analogous to
definition 3.9, namely:
On a general space S together with the topology generated the set of pseudo-metrics
P = {ϕi : i ∈ I} (I is some index set):

G ⊆ S is called open
⇐⇒

∀u ∈ S ∃ϕi ∈ P and ∃δu > 0 : v ∈ S and ϕi(u, v) < δu =⇒ v ∈ G.

This class of topologies has special properties which makes (dis)proving it is a linear
topology easier.
The proof of the following theorem can be found at [1, p. 514 2A5B].

Theorem 5.3. Let U be a linear space over R, and T a family of functionals
τ : U � [0,∞] and suppose all τ have the following properties:

(1) τ(u+ v) ≤ τ(u) + τ(v)
(2) τ(αu) ≤ τ(u),where |α| ≤ 1
(3) lim

α→0
τ(αu) = 0

For τ ∈ T , we define ϕτ : U × U � [0,∞] by ϕτ (u, v) = τ(u − v). Then each ϕτ
is a pseudometric on U and the topology defined by P={ϕτ : τ ∈ T} gives a linear
topological space

With the theorem above, we can now more easily prove that L0 indeed is a linear
topology.
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The proof below of theorem 5.4 is a worked out version of the one found at [1, p.
174 245Da].

Theorem 5.4. Let (X,Σ, µ) be a measure space. Then the topology of convergence
in measure is a linear topology on L0(µ).

Proof. By theorem 5.3, we only have to check that τ̄F as defined in theorem 3.7
satisfies the 3 conditions.

(1) By the definition of τ̄F and theorem 3.3, it immediately follows that: τ̄F (ḟ+

ġ) ≤ τ̄F (ḟ) + τ̄F (ġ).

(2) Let u = ḟ ∈ L0 and c ∈ R : |c| ≤ 1. Then since:
|cf | ≤ |f | =⇒ min(|cf |, 1F ) ≤a.e. min(|f |, 1F ), we get that (since the
integral is increasing) τF (cf) ≤ τF (f) and so by definition 3.7: τ̄F (cu) ≤
τ̄F (u)

(3) Given u = ḟ ∈ L0 and ϵ > 0. Since lim
n→∞

2−nf =a.e. 0 (pointwise). We

have that lim
n→∞

min(|2−nf |, 1F ) =a.e. 0 and so by the DCT:

lim
n→∞

τ̄F (2
−nu) =

∫
0dµ = 0

hence per definition of a converging sequence in R”: for any ϵ > 0 there
exists a n such that τ̄F (2

−nu) < ϵ. Now take c ∈ R such that |c| ≤ 2−n.
Then since the integral is increasing:

τ̄F (cu)
def3.1
= τ̄F (|c|u) ≤ τ̄F (2

−nu) < ϵ

As ϵ was arbitrary we have now proven per definition that lim
c→0

τ̄F (cu) = 0.

□

In order to prove that more maps are continuous (such as the absolute value
function) it will be more convenient for us to once again prove some results re-
lated to topologies based on pseudometrics, as introduced below remark 5.2, which
will make our lives easier. The theorems we will prove are reminiscent of different
characterisations a function f : R → R of being continuous (we can say that the
inverse image of an open set is open or we could equivalently use the epsilon/delta
definition). First we will, as done in the cases of f : R → R, introduce the notion
of an ”open ball” in the setting of topologies based on pseudo-metrics.

Definition 5.5. Let X be a topology defined on P, a non-empty set of pseudomet-
rics. Then for ϕ0, .., ϕn ∈ P , x ∈ X and ϵ > 0:
U(x;ϕ0, ..., ϕn; ϵ) = {y ∈ X : max

i≤n
ϕi(y, x) < ϵ}.

As done in the case of R, one can define openness of a set via ”open balls”:

Definition 5.6. Under the same conditions as definition 5.5: G ⊆ X is open
⇐⇒ ∀x ∈ G ∃ϕ0, ..., ϕn ∈ P and δ > 0 : U(x;ϕ0, ..., ϕn; δ) ⊆ G

One might readily notice that this definition is not exactly on par with the
characterisation of a set being open in L0 given earlier. It can be shown that these
definitions are equivalent and below it will be shown that they are equivalent in the
case of L0

Proposition 5.7. The definition used in definition 3.9 is equivalent with definition
5.6 in the L0 case.
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Proof. =⇒
Assume definition 3.9 and let G ⊆ L0 be open. Then ∀f ∈ G ∃ϕFf

and δf > 0 :
U(f ;ϕFf

; δf ) ⊆ G and this satisfies definition 5.6.
⇐=
Now assume G ⊆ L0 is open in the sense of definition 5.6. Then:

∀f ∈ G ∃ϕF0
, ..., ϕFn

∈ P and δ > 0 : U(f ;ϕF0
, ..., ϕFn

; δ) ⊆ G.

Take Ff =
n⋃

i=0

Fi. Then since ϕFf
≥ ϕFi ∀i ≥ 0:

U(f ;ϕFf
; δ) ⊆ U(f ;ϕF0 , ..., ϕFn ; δ) ⊆ G.

□

Now that we have established the notion of being open via ”open balls”, it should
not come as a surprise that these ”open balls” themselves are open.
The proof below of theorem 5.8 can also be found at [1, p. 505 2A3G].

Theorem 5.8. Under the same conditions as definition 5.5, U(x;ϕ0, .., ϕn; ϵ) is
open

Proof. Take y ∈ U(x;ϕ0, .., ϕn; ϵ). Set ν = max
i≤n

ϕi(y, x) and δ = ϵ− ν.

In case z ∈ U(y;ϕ0, .., ϕn; δ), then

ϕi(z, x) ≤ ϕi(z, y) + ϕi(y, x) < δ + ν = ϵ ∀i = 1, .., n

as ϕi ≤ max
i≤n

ϕi pointwise. Since i was arbitrary:

U(y;ϕ0, .., ϕn; δ) ⊆ U(x;ϕ0, .., ϕn; ϵ).

□

With the theorems above, we can now prove a characterisation of continuity in
this context which is reminiscent of the ϵ, δ definition in R.
The proof is a worked out version of [1, p. 505 2A3H].

Theorem 5.9. Let X,Y be sets, where P and Θ denote the (non-empty) sets of
pseudometrics on X and Y respectively and X ,Y the corresponding topologies.
Then: ϕ : X � Y is continuous ⇐⇒ ∀x ∈ X, θ ∈ Θ, ϵ > 0 there exist ϕ0, ..., ϕn ∈
P, δ > 0 such that if y ∈ X and max

i≤n
ϕi(y, x) < δ, then θ(ϕ(x), ϕ(y)) < ϵ

Proof. =⇒
Suppose ϕ is continuous and take x ∈ X, θ ∈ Θ, ϵ > 0. By theorem 5.8, U(ϕ(x); θ, ϵ) ∈
Y . So per definition of continuity G = ϕ−1(U(ϕ(x); θ, ϵ) ∈ X . Now, let x ∈ G, so
(since G is open) ∃ϕ0, ..., ϕn ∈ P, δ > 0 : U(x;ϕ0, .., ϕn; δ) ⊆ G. So whenever y ∈ X
and max

i≤n
ϕi(y, x) < δ : θ(ϕ(x), ϕ(y)) < ϵ holds.

⇐=
Take H ∈ Y and consider G = ϕ−1(H). If x ∈ G, then ϕ(x) ∈ H and so, since
H is open, ∃θ0, .., θn ∈ Θ and ϵ > 0 such that U(ϕ(x); θ0, .., θn; ϵ) ⊆ H. By our
assumption, it holds that for each i ≤ n ∃ϕi0, .., ϕimi

∈ P and δi > 0 such that:

y ∈ X and max
j≤mi

ϕij(y, x) < δi =⇒ θi(ϕ(x), ϕ(y)) < ϵ.
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Set δ = min
i≤n

δi, then U(x;ϕ00, .., ϕ0m0
, .., ϕnmn

; δ) ⊆ G.

Indeed for i ≤ n and y ∈ U(x;ϕ00, .., ϕ0m0
, .., ϕnmn

; δ) :

max
j≤mi

ϕij(x, y) ≤ max
j≤mi,i=1,..,n

ϕij(x, y) < δ ≤ δi =⇒ θi(ϕ(x), ϕ(y)) < ϵ.

As i was arbitrary, this gives that ϕ(y) ∈ U(ϕ(x); θ0, .., θn; ϵ) ⊆ H, which gives:
y ∈ G. Hence as U(x;ϕ00, .., ϕ0m0 , .., ϕnmn ; δ) ⊆ G, G is open by definition 5.6. □

Remark 5.10. Under the same circumstances as theorem 5.9, when we now have
a map ψ : Xk � Y (where Xk denotes the k times product topology of X, where
X is as defined in the theorem) it can be proven that the statements following are
equivalent [1, p. 510 2A3T]:

ψ : Xk � Y continuous
⇐⇒

∀(x1, ..., xk) ∈ Xk, θ ∈ Θ, ϵ > 0 : ∃ϕ0j , .., ϕnj ∈ P ∃δ > 0 :
max
i≤n

ϕij(yj , xj) < δ ∀j = 1, ..., k =⇒ θ(ψ(x1, .., xk), ψ(y1, .., yk)) < ϵ.

Now we can finally prove that more maps are continuous

Theorem 5.11. The following maps are all continuous under the topology of con-
vergence in measure of L0 and the usual product topology on (L0)2:

(1) (u, v) 7→ sup{u, v}
(2) (u, v) 7→ inf{u, v}
(3) u 7→ |u|
(4) u 7→ u+

(5) u 7→ u−

Proof. We start by proving that u 7→ |u| is continuous.
For any u, v ∈ L0, it holds that ||u| − |v|| ≤ |u − v|. Indeed: using theorem 2.18:
|u| = |(u − v) + v| ≤ |u − v| + |v| =⇒ |u| − |v| ≤ |u − v|. By symmetry it also
holds that |v| − |u| ≤ |u− v|, hence proven that ||u| − |v|| ≤ |u− v|. And so (since
the integral is increasing) ϕ̄F (|u|, |v|) ≤ ϕ̄F (u, v) (where F has finite measure).
By continuity of the map u 7→ u (theorem 5.3), theorem 5.9 states that for any
ϕF ∈ P, u ∈ L0, ϵ > 0 we can find ϕ̄F0

, .., ϕ̄Fn
∈ P and δ > 0 such that:

max
i≤n

ϕ̄Fi
(u, v) < δ =⇒ ϕ̄F (u, v) < ϵ. Since ϕ̄(|u|, |v|) ≤ ϕ̄F (u, v) holds for any

u, v ∈ L0, we have that: max
i≤n

ϕ̄Fi
(u, v) < δ =⇒ ϕ̄F (|u|, |v|) ≤ ϕ̄F (u, v) < ϵ.

Hence proven by theorem 5.9, that u 7→ |u| is continuous.
Since sup and inf can be written in the form of theorem 2.18 and as addition
and subtraction are continuous (theorem 5.4) as well as compositions of continuous
functions being continuous: so are sup, inf,+ ,−. □

For maps from Rk to R such as (x1, .., xk) 7→ x1 and (x1, .., xk) 7→ x1 · x5k it
is well established that they are continuous. One might ask themselves whether

similar maps from (L0)
k → L0 are continuous as well. It turns out that continuity

of maps Rk → R implies continuity of analogous maps (L0)
k → L0.

In order to make this result precise and then prove it, we first want to link mea-
surable functions f : X → R to measurable functions h : R → R. This can be
done by means of composing f with h. It turns out that this composition is again
a measurable function.
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Lemma 5.12. Let (X,Σ, µ) be a measure space. Let h : R → R be measurable and
f : X → R also be measurable. Then h ◦ f is measurable as well.

Proof. Let H ∈ B(R). Then since: (h ◦ f)−1(H) = f−1(h−1(H)), we have that
since h is measurable h−1(H) ∈ B(R) and so by using this fact and that f is also
measurable, we get that f−1(h−1(H)) ∈ Σ. □

Remark 5.13.
• Using this result, it can be proven that if h : Rk → R is measurable and
fi : X → R is measurable ∀i = 1, .., k, then h ◦ (f1, .., fk) : R → R is
measurable as well [2].

• As done in previous sections, as h◦f is in the space of measurable functions,
we can translate it to L0. We define the translation by h̄:

h : Rk → R, then h̄ : (L0)
k → L0:

h̄(ḟ1, .., ḟk)) = ( ˙h ◦ (f1, .., fk))
This definition is well defined: Suppose f1 =a.e. f

′
1, ..., fk =a.e. f

′
k. Then:

0 ≤ µ({h ◦ (f1, .., fk) ̸= h ◦ (f ′1, .., f ′k})
≤ µ({f1 ̸= f ′1} ∪ ... ∪ {fk ̸= f ′k}) ≤ 0.

It turns out that if h is continuous, then h̄ is continuous as well.
The proof below is a generalisation of the proof seen at [1, p. 174 245Dc].

Theorem 5.14. For any continuous function h : Rk → R, h̄ (as defined in remark
5.13) is continuous.

Proof. Take ui = ḟi ∈ L0(for i = 1, .., k), F ∈ Σ (µ(F ) < ∞) and ϵ > 0. Then
by remark 5.10, it suffices to prove that ∃δ > 0 : ϕ̄F (ui, vi) < δ ∀i = 1, .., k =⇒
ϕ̄F (h̄(v1, .., vk), h̄(u1, .., uk)) < ϵ. We will do a proof by contradiction.
Suppose ∃δ > 0 : ϕ̄F (ui, vi) < δ ∀i = 1, .., k =⇒ ϕ̄F (h̄(v1, .., vk), h̄(u1, .., uk)) < ϵ
does not hold. Then for some ϵ > 0 we can find ∀n ∈ N a vin = ˙gin such that
ϕ̄F (vin, ui) ≤ 4−n ∀i = 1, .., k but ϕ̄F (h̄(v1n, .., vkn), h̄(u1, .., uk)) ≥ ϵ. Set

Ein = {x ∈ F : |gin(x)− fi(x)| ≥ 2−n} where i ∈ {1, .., k}.

Then we see that:

ϕ̄F (vin, ui) =

∫
F

min(|gin − fi|, 1)dµ

≥
∫
F

min(|gin − fi|, 1)1Ein
dµ

≥ 2−n

∫
F

1Ein
dµ (|gin − fi| ≥ 2−n on Ein and 1 ≥ 2−n)

= 2−nµ(Ein) (Ein ⊆ F )

and so the following holds:

µ(Ein) ≤ 2nϕ̄F (vin, ui) ≤ 2n · 4−n = 2−n (ϕ̄F (vin, ui) ≤ 4−n)

It also holds that since Eim is measurable, so is Ei =
⋂
n≥1

⋃
m≥n

Eim and that:

µ(Ei) = lim
n→∞

µ(
⋃

m≥n

Eim)
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≤ lim
n→∞

∞∑
m=n

µ(Eim)

≤ lim
n→∞

∞∑
m=n

2−m = 0 (tail of a convergent series, hence 0 ).

So Ei has 0 measure. And this implies that E =
k⋃

i=1

Ei also has 0 measure.

But lim
n→∞

gin(x) = fi(x) ∀x ∈ F \ E, i = 1, .., k since

F \ E = {x ∈ F : ∀i = 1, .., k ∃n ≥ 1 : ∀m ≥ n |gim(x)− fi(x)| ≤ 2−m}

and since we assumed h is a continuous function from Rk to R

lim
n→∞

h(g1n(x), .., gkn(x)) = h(f1(x), .., fk(x)) ∀x ∈ F \ E.

ϕ̄F (h̄(v1n, .., vkn), h̄(u1, .., uk)) =∫
F\E min(1, |h(g1n, .., gkn)−h(f1, .., fk)|)dµ+

∫
E
min(1, |h(g1n, .., gkn)−h(f1, .., fk)|)dµ

and that: ∫
E
min(1, |h(g1n, ..gkn)− h(f1, .., fk)|)dµ ≤

∫
E
1dµ = µ(E) = 0

and also:

0 ≤ min(1, |h(g1n, .., gkn)− h(f1, .., fk)|) ≤ |h(g1n, .., gkn)− h(f1, .., fk)|

so that by the squeeze theorem: lim
n→∞

min(1, |h(g1n, .., gkn) − h(f1, .., fk)|) = 0.

Hence by the DCT (min(1, |h(g1n, .., gkn)− h(f1, .., fk)| ≤ 1):

lim
n→∞

∫
F\E min(1, |h(g1n, .., gkn)− h(f1, .., fk)|)dµ = 0

so overall: lim
n→∞

ϕ̄F (h̄(v1n, .., vkn), h̄(u1, .., uk)) = 0 and we have hence reached our

contradiction. □

Remark 5.15. With theorem 5.14, we know have that continuity of maps h : Rk →
R one to one translates to continuity in analogous cases for maps (L0)k → L0.
Examples of now established continuous maps are (L0)k → L0 are:

(1) (u, v) 7→ u · v
(2) (u, v) 7→ u
(3) (u, v) 7→ cos(u).
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6. L0 metric space

In previous sections we have defined pseudometrics on L0, which on their part
defined the topology of convergence in measure. We have also seen that these pseu-
dometrics are not metrics in general, but we have thus far not explored whether
we can use the defined pseudo-metrics to define a metric on L0. It turns out that,
under a certain assumption on our measure space (X,Σ, µ), we can indeed do this
where the defined metric itself generates the same topology as the topology of con-
vergence in measure.

Definition 6.1. We call a topology (X,T) metrizable, if we can define a metric
on X whose standard topology on this metric space generates T.

Remark 6.2. Consider a metric space (M,d). We know that since d is a metric, it
is also a pseudometric. Now consider the topology on M generated by the set of
pseudo-metrics P = {d} (as defined in text below 5.2). Then one can easily observe
that the topology generated by P is equivalent to the metric space topology (see
Appendix A.4) on (M,d).

As we want to prove that under some assumption, we can define a metric which
generates the same topology in measure, by remark 6.2 we have to hence prove
that two topologies generated by pseudo-metrics are equivalent. Remark 6.3 will
provide a method to show two such topologies are equivalent.

Remark 6.3. Suppose we have a set X and two non-empty families P,Θ of pseudo-
metrics on X, generating the topologies P,G on X and suppose we want to check
whether the two topologies are equivalent. We can do this by firstly considering
the identity map ϕ : (X,P) → (X,G) and check whether this map is continuous.
As both topologies are generated by pseudo-metrics, this is equivalent as saying
that: ∀θ ∈ Θ, x ∈ X ∃ϕ0, .., ϕn ∈ P and δ > 0 : y ∈ X and max

i≤n
ϕi(y, x) < δ =⇒

θ(y, x) < ϵ. When we now reverse the roles of P and G, we obtain a method to
determine when P = G.

Definition 6.4. A measure space (X,Σ, µ) is called σ-finite ⇐⇒ X can be covered
by countably many non-decreasing sets of measurable sets En of finite measure.

Example 6.5. Consider (R,B(R), λ). Then this space is σ-finite as R =
∞⋃

n=1
[−n, n]

and ∀n ∈ N : λ([−n, n]) = 2n <∞.

The following proof is an adjusted version of the one found at [1, p. 175 245Eb].

Theorem 6.6. (X,Σ, µ) is a σ-finite measure space ⇐⇒ the topology of conver-
gence in measure on L0(X,Σ, µ) is metrizable.

Proof. =⇒
Let X =

∞⋃
n=0

En, where µ(En) <∞ ∀n ≥ 0. Then we claim that

ϕ̄(u, v) =
∞∑

n=0

ϕ̄En (u,v)
1+2nµ(En)

defines a metric.

First we will prove that ϕ̄(u, v) is a pseudo-metric.
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(1) (Triangle inequality). Let u = ḟ , v = ġ, w = ḣ ∈ L0. We have proven

earlier that: ϕ̄En
(ḟ , ḣ) ≤ ϕ̄En

(ḟ , ġ) + ϕ̄En
(ġ, ḣ) (See theorem 3.8).

Hence ∀n ≥ 0:
ϕ̄En (u,v)

1+2nµ(En)
≤ ϕ̄En (u,w)+ϕ̄En (w,v)

1+2nµ(En)
.

We have also seen earlier that: ϕ̄En
(u, v) ≤ µ(En) < ∞ and so it holds

that:
ϕ̄En (u,v)

1+2nµ(En)
≤ µ(En)

1+2nµ(En)
≤ 1

2n

and this proves that ϕ̄(u, v) <∞ as

ϕ̄(u, v) =
∞∑

n=0

ϕ̄En (u,v)
1+2nµ(En

≤
∞∑

n=0

1
2n <∞.

Combining everything gives:

ϕ̄(u, v) =
∑
n≥0

ϕ̄En (u,v)
1+2nµ(En)

≤
∑
n≥0

ϕ̄En (u,w)+ϕ̄En (w,v)
1+2nµ(En)

= ϕ̄(u,w) + ϕ̄(w, v)

(2) (Non-negativity) ϕ̄(ḟ , ġ) ≥ 0, since ϕEn
(f, g) ≥ 0 ∀n.

(3) (Symmetry) ϕ̄(ḟ , ġ) = ϕ̄(ġ, ḟ), since ϕEn
(f, g) = ϕEn

(g, f) ∀n.
Now consider ϕ̄(u, v) = 0 for u = ḟ , v = ġ. Then since ϕ̄(u, v) is a sum over
non-negative numbers, all summands must be equal to 0. And so we get that∫
min(|f − g|, 1En

)dµ = 0 ∀n. Since min(|f − g|, 1En
) is non-negative, we hence

obtain that min(|f − g|, 1En
) =a.e. 0, so µ({min(|f − g|, 1En

) ̸= 0}) = 0 ∀n. Note
that:

min(|f − g|, 1En)(s) ̸= 0 ⇐⇒ 1En(s) ̸= 0 and |f − g|(s) ̸= 0 ⇐⇒
1En(s)|f − g|(s) ̸= 0.

Hence we obtain that

0 = µ({min(|f − g|, 1En
) ̸= 0}) = µ({|f − g|1En

̸= 0})

which means per definition that f =a.e. g on En.
Now, since X =

⋃
n≥0

En it can be seen that

⋃
n≥0

{|f − g|1En
̸= 0} = {|f − g| ≠ 0}.

Indeed, if s ∈ {|f − g| ≠ 0}, then since s ∈ X ∃n ∈ N : s ∈ En, hence
s ∈ {|f − g|1En ̸= 0}. The other way around holds trivially.
Since (En)n≥0 is non-decreasing, we have that ({|f − g|1En ̸= 0})n≥0 is non-
decreasing, hence obtain: µ(|f − g| ̸= 0) = lim

n→∞
µ(|f − g|1En

̸= 0) = 0. And

so we have that f =a.e. g, so per definition: u = v.
We will now prove that this metric generates the topology of convergence in mea-
sure, using remark 6.2 and 6.3. Let F ∈ Σ, µ(F ) < ∞ and ϵ > 0. Then since⋃
n≥1

En = X, we have that
⋂
n≥1

F \ En = ∅, so it holds that lim
n→∞

µ(F \ En) = 0,

meaning that ∃n : µ(F \En) ≤ 1
2ϵ. Using this, we can now establish that if u, v ∈ L0

and ϕ̄(u, v) ≤ ϵ
2(1+2nµ(En))

, then ϕ̄F (u, v) < ϵ.

Indeed, let u = ḟ , v = ġ, then since ∀m ≥ 0 it holds that:

ϕ̄Em(u,v)
1+2mµ(Em) ≤

∞∑
m=0

ϕEm (u,v)
1+2mµ(Em) = ϕ̄(u, v).
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Hence it holds that for n :
ϕ̄En(u, v) ≤ (1 + 2nµ(En))ϕ̄(u, v) ≤ ϵ

2 and also ϕ̄F\En
(u, v) ≤ µ(F \ En) ≤ ϵ

2 .
So overall we obtain:

ϕ̄F (u, v) =

∫
min(|f − g|, 1F )dµ

≤
∫

min(|f − g|, 1En
)dµ+

∫
min(|f − g|, 1F\En

)dµ < ϵ.

In the other direction, first write:

ϕ̄(u, v) =
∞∑

n=0

ϕ̄En (u,v)
1+2nµ(En)

=
m∑

n=0

ϕ̄En (u,v)
1+2nµ(En)

+
∞∑

n=m

ϕ̄En (u,v)
1+2nµ(En)

.

As we have earlier established that ϕ̄(u, v) is a convergent series, we can choose

m :
∞∑

n=m

ϕ̄En (u,v)
1+2nµ(En)

≤ ϵ
2 . Then when we have: ϕ̄Em

(u, v) ≤ ϵµ(E0)
4 , we see that as:

m∑
n=0

µ(E0)
1+2nµ(En)

≤
m∑

n=0

µ(E0)
1+2nµ(E0)

≤
m∑

n=0

1
2n ≤ 2.

And so the following also holds:

ϕ̄(u, v) =

∞∑
n=0

ϕ̄En
(u, v)

1 + 2nµ(En)
=

m∑
n=0

ϕ̄En
(u, v)

1 + 2nµ(En)
+

∞∑
n=m

ϕ̄En
(u, v)

1 + 2nµ(En)

≤ ϵ

4

m∑
n=0

µ(E0)

1 + 2nµ(En)
+
ϵ

2

≤ ϵ

2
+
ϵ

2
= ϵ.

These show that {ϕ̄} defines the same topology as {ϕ̄F : µ(F ) <∞}.
⇐=
Suppose the topology of convergence in measure is metrizable by a metric ϕ̄. Then
since the set {u ∈ L0 : ϕ̄(u, 0) < 2−n} is open by the topology on the metric space,
we know by the topology of convergence in measure that:
∀n ∈ N ∃ measurable set Fn of finite measure and a δn > 0 (see definition 3.9):

ϕ̄Fn
(u, 0) < δn =⇒ ϕ̄(u, 0) < 2−n.

Set E = X \
⋃

n∈N
Fn. If E does not have zero measure, then u = 1̇E ̸= 0, hence

since ϕ̄ is a metric ∃n ∈ N: ϕ̄(u, 0) > 2−n (else ϕ̄(u, 0) = 0, contradiction as u ̸= 0).
Now:

µ(E ∩ Fn) = ϕ̄Fn(u, 0) ≥ δn while E ∩ Fn = ∅, hence a contradiction.

So µ(E) = 0 and X =
⋃

m≥1

Fm ∪ E is a countable union of sets of finite measure

and is non decreasing: hence X is σ-finite. □
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7. Completeness of L0

In the previous sections we have defined convergence on L0(S,Σ, µ) with respect
to the topology of convergence in measure. In the case of sequences in R, we know
that every Cauchy sequence converges with respect to the standard topology. In
this section we define and will consider restrictions on our measure space (S,Σ, µ)
such that every Cauchy sequence in L0(S,Σ, µ) converges. Before we do this, we will
make a slight detour and build up general theory surrounding defining completeness
using filters. This generalises the notion of a sequence being Cauchy with respect
to a metric or norm to non-metrizable and not normable spaces.

Definition 7.1. Let U be a set. Then F ⊆ P(U) is called a filter on U if:

(1) A1, ..., An ∈ F , then
n⋂

i=1

Ai ∈ F

(2) If A ∈ F and A ⊆ B ⊆ U , then B ∈ F
(3) ∅ /∈ F and U ∈ F .

Example 7.2. Let U be a non-empty set and let (un)n≥1 be a sequence in U . Define
F = {F ⊆ U : {n : un /∈ F} is finite }. Then F is a filter on U . Indeed:

(1) Let A,B ∈ F . Then since {n : un /∈ A} and {n : un /∈ B} are finite sets,
so is {n : un /∈ A ∩ B} as {un /∈ A ∩ B} = {un /∈ A or un /∈ B}, finite set.
Hence: A ∩B ∈ F

(2) Let A ∈ F and suppose A ⊆ B ⊆ U . Then since un /∈ B =⇒ un /∈ A:
{n : un /∈ B} ⊆ {n : un /∈ A}, finite. Hence: B ∈ F .

(3) Since {n : un /∈ ∅} = N: ∅ /∈ F . It also holds that U ∈ F .

Definition 7.3. Let U be a linear space (vector space) over R (or C) and T a
linear space topology on U (see def 5.1). A filter F (as defined in definition 7.1) is
called Cauchy if for every open set in G in U containing 0 ∃F ∈ F : F-F={u− v :
u, v ∈ F} ⊆ G.

Definition 7.4. Let F be a Cauchy filter on U. Then F is said to converge to
x ∈ U (Notation: F → x) if every open set containing x belongs to F .

Under the same circumstances as definition 7.4, if we now assume that (U, T ) is
Hausdorff any converging Cauchy filter F → x ∈ U has a unique limit.
Indeed: Suppose F → x1 ∈ U and F → x2 ∈ U , where x1 ̸= x2, then F contains
all open sets containing x1 as well as all open sets containing x2. Then, since U
is Hausdorff, there is an open neighbourhood Ux1

of x1 and Ux2
of x2 such that:

Ux1 ∩ Ux2 = ∅. Since Ux1 , Ux2 ∈ F we have that Ux1 ∩ Ux2 = ∅ ∈ F(definition
7.1), contradiction.
In general, Cauchy filters do not have unique limits. For instance, consider: U = R
and T = {∅,R}. It is an easy check that this is a linear topology. It holds that
F = {R} is a filter on U as:

(1) R ∈ F
(2) ∅ /∈ F .

F is even Cauchy as R is the only open set containing 0, hence: R − R ⊆ R. But
F → x for any x ∈ R.

Definition 7.5. Under the same conditions as definition 7.3, U is said to be com-
plete if every Cauchy filter on U is convergent (convergent as in definition 7.4).
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In case we are in the situation as defined under remark 5.2, it turns out that F
being Cauchy is equivalent with being able to find an F ∈ F such that the difference
between all elements in F is less or equal to ϵ.
The proof below is an adjusted version of the one found at [1, p. 516 2A3G].

Lemma 7.6. Let U be linear space over R (or C) and let T be a family of functionals
from U to R (or C) (see text below remark 5.2) defining a linear space topology.
Then a filter F is Cauchy ⇐⇒ ∀τ ∈ T and ϵ > 0 ∃F ∈ F : τ(u−v) < ϵ ∀u, v ∈
F

Proof. =⇒
Suppose F is Cauchy, τ ∈ T and ϵ > 0. Then by theorem 5.8, U(0, ϕτ ; ϵ) is open,
hence by definition 7.3 ∃F ∈ F : F − F ⊆ G, so τ(u− v) < ϵ ∀u, v ∈ F .
⇐=
Let G be an open set containing 0, then by definition 5.6 ∃τ0, ..., τn ∈ T and
ϵ > 0 such that U(0, ϕτ0 , ..., ϕτn ; ϵ) ⊆ G. For each i ≤ n, ∃Fi ∈ F such that
τi(u − v) < ϵ ∀u, v ∈ Fi. Now, per definition of a filter, F =

⋂
i≤n

Fi ∈ F and

∀u, v ∈ F : τi((u− v)− 0) = ϕτi(u− v, 0) < ϵ ∀i ≤ n. And so F − F ⊆ G. □

Now that we have established the definition of being complete with the help of
filters, one might wonder if this is equivalent to our usual notion of every Cauchy
sequence converging in a normed space or metric space. It is indeed equivalent and
we will prove this for the case that U is a normed space. The proof of the case that
U is a metric space is analogous.
This proof is a worked out version of the one found at [1, p. 516 2A5G].

Proposition 7.7. Let (U, ∥.∥) be a normed space over R (or C) and let T be the
linear topology defined on U from the set of functionals T = {∥.∥}.
Then U is complete in the sense of 7.5 ⇐⇒ every Cauchy sequence (wrt ∥.∥) in
U converges

Proof. =⇒
Let (un)n≥1 be a Cauchy sequence in U . Define F={F ⊆ U : {n : un /∈ F} is finite }.
Then F is a filter on U by example 7.2. Let ϵ > 0 and take m ∈ N such that
∥uj − uk∥ < ϵ whenever j, k ≥ m (this m exists per definition of un being Cauchy),
then F = {uj : j ≥ m} ∈ F (since {n : un /∈ F} = {1, ..,m − 1} is a finite set)
and ∥u− v∥ < ϵ ∀u, v ∈ F . Now, let G ⊆ U be open such that 0 ∈ G. Then
∃ϵ > 0 such that U(0; ∥.∥ ; ϵ) ⊆ G (by def 5.6). Hence we have (per definition of
F ): F − F ⊆ U(0, ∥.∥ , ϵ) ⊆ G, where F ∈ F , hence proven that F is Cauchy
and since U is assumed to be complete in the sense of definition 7.5, it has a limit
u. Now for any ϵ > 0, the set {v ∈ L0 : ∥v − u∥ < ϵ} = U(u; ∥.∥ ; ϵ) is an open
set containing u (by theorem 5.8), hence it belongs to F (by definition 7.4) and
so {n : un /∈ U(u; ∥.∥ ; ϵ)} = {n : ∥un − u∥ ≥ ϵ} is finite. But this means that
∃m : ∥un − u∥ < ϵ whenever n ≥ m. As ϵ was arbitrary: lim

n→∞
un = u.

⇐=
Let F be a Cauchy filter on U . Then for each n ≥ 1, we can choose a Fn ∈ F
such that ∥u− v∥ < 2−n ∀u, v ∈ Fn (since U(0, ∥.∥ , 2−n) is open in U). For each
n ≥ 1, F ′

n =
⋂
i≤n

Fi belongs again to F hence can’t be empty by definition 7.1.

Choose un ∈ F ′
n. If m ∈ N and k, j ≥ m, then uj , uk ∈ Fm (as F ′

j ⊆ F ′
m so

uj ∈ F ′
m, hence uj ∈ Fi ∀i ≤ m). But this means ∥uj − uk∥ < 2−m, so un is a
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Cauchy sequence and has hence a limit (by assumption), say u.
Now take ϵ > 0 and m ∈ N: 2−m+1 < ϵ. As un converges to u, ∃k ≥ m :
∥uk − u∥ < 2−m. Since we have earlier established that uk ∈ Fm we see that (as
∀u, v ∈ Fm : ∥u− v∥ < 2−m and ∥v − u∥ ≤ ∥v − uk∥+ ∥uk − u∥ < 2 · 2−m):

Fm ⊆ {v ∈ L0 : ∥v − uk∥ < 2−m}
⊆ {v ∈ L0 : ∥v − u∥ < 2−m+1}
⊆ {v ∈ L0 : ∥v − u∥ < ϵ}

and this implies that (per def of filter) {v ∈ L0 : ∥v − u∥ < ϵ} ∈ F . Since ϵ
arbitrary, F → u as we know by def 5.6 that for an open set containing u, say A,
∃ϵ > 0 such that {v : ∥v − u∥ < ϵ} ⊆ A, meaning that per definition of a filter
A ∈ F . As F was arbitrary, U is complete. □

Now that we have established general theory about complete linear topologies,
we can finally prove that under a certain assumption on (X,Σ, µ), L0 is complete
under the topology of convergence in measure. This assumption roughly states that
every set in Σ with ∞ measure can be approximated by a set with finite measure
and that every subset of Σ can be approximated by a single set H ∈ Σ which acts
as the ’least upper bound’ of this subset of Σ. This notion is made precise below.

Definition 7.8. A measure space (X,Σ, µ) is called localizable if:

(1) It is semi-finite (see definition 4.12)
(2) ∀E ⊆ Σ ∃H ∈ Σ such that:

• ∀E ∈ E : E \H is negligible (meaning: µ(E \H) = 0))
• If G ∈ Σ and ∀E ∈ E, E \G negligible, then H \G also negligible.

We call this H the essential supremum of E.

It turns out that being localizable is weaker than being σ-finite. This we will
prove via the notion of strictly localizable.

Definition 7.9. Let (X,Σ, µ) be a measure space. Then µ is called strictly local-
izable if there exists a partition (Xi)i∈I of X into measurable sets of finite measure
such that:

Σ = {E : E ⊆ X,E ∩Xi ∈ Σ ∀i ∈ I}
µ(E) =

∑
i∈I

µ(E ∩Xi).

Remark 7.10. The index set I in definition 7.9 may be uncountable.

The proofs of both proposition 7.11 and proposition 7.12 show and elaborate on
the proofs found at [1, p. 13 211L].

Proposition 7.11. A σ-finite measurable space is strictly localizable.

Proof. Let (X,Σ, µ) be a σ-finite measure space (X =
∞⋃

n=1
En) and let Fn be a

disjoint sequence of measurable sets of finite measure covering X defined as follows:

since X =
∞⋃

n=1
En, define F1 = E1, F2 = E2 \ E1, F3 = E3 \ E1 ∪ E2 etc.

If E ∈ Σ, then E ∩Fn ∈ Σ for all n and µ(E) =
∞∑

n=1
µ(E ∩Fn). In case E ⊆ X and

E ∩ Fn ∈ Σ ∀n, then E =
⋃

n∈N
E ∩ Fn ∈ Σ. □
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Proposition 7.12. A strictly localizable measure space is localizable.

Proof. Let (X,Σ, µ) be a strictly localizable measure space and let (Xi)i∈I be the
corresponding decomposition of X.
Let E be family of measurable subsets of X. Let F be the family of measurable
subsets F ⊆ X such that µ(F ∩ E) = 0 ∀E ∈ E .
Note that ∅ ∈ F and if (Fn)n≥1 is a sequence in F , then

⋃
n∈N

Fn ∈ F .

For each i ∈ I, set γi = sup{µ(F ∩Xi) : F ∈ F} and choose a sequence (Fin)n∈N
in F : lim

n→∞
µ(Fin ∩Xi) = γi.

Set

Fi =
⋃

n∈N
Fin ∈ F

F =
⋃
i∈I

Fi ∩Xi ⊆ X and

H = X \ F .

We see that F ∩Xi = Fi ∩Xi ∈ Σ ∀i ∈ I, and by the definition strictly localizable:
F ∈ Σ which gives H ∈ Σ.
For any E ∈ E it holds:

µ(E \H) = µ(E ∩ F )

=
∑
i∈I

µ(E ∩ F ∩Xi)

=
∑
i∈I

µ(E ∩ Fi ∩Xi) = 0

Thus F ∈ F . If G ∈ Σ and µ(E \G) = 0 ∀E ∈ E , then X \G, F ′ = F ∪ (X \G) ∈ F
and so it holds that γi ≥ µ(F ′ ∩Xi) ∀i ∈ I.
And so we obtain:

µ(F ∩Xi) = µ(
⋃
n∈N

Fin ∩Xi) (F ∩Xi = Fi ∩Xi =
⋃
n∈N

Fin ∩Xi)

≥ µ(Fin ∩Xi)

which gives: µ(F ∩Xi) ≥ sup
n
{µ(Fin ∩Xi)} = γi.

And so, as also F ′ ∩Xi ⊇ F ∩X, we obtain:

γi ≥ µ(F ′ ∩Xi) ≥ µ(F ∩Xi) ≥ γi.

So, µ(F ∩Xi) = µ(F ′ ∩Xi) ∀i ∈ I.
Because µ(Xi) < ∞ it follows that µ((F ′ \ F ) ∩Xi) = 0 ∀i ∈ I. Summing over i
yields: µ(F ′ \ F ) = 0 =⇒ µ(H \G) = 0. □

In the following example, we will show that being localizable is weaker than
being σ-finite.

Example 7.13. [1, p. 14 211N] Take X = R and Σ = B(R) together with counting
measure µ:

µ(A) =

{
|A| |A| <∞
∞ |A| = ∞.
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Then µ is not σ-finite, because if it were R would be a countable union of
countable sets, hence countable which is not true.
µ is strictly localizable: Set Xx = {x} ∀x ∈ X. Then (Xx)x∈X is a partition of
X and for any E ⊆ X, µ(E ∩ Xx) = 1 if x ∈ X else 0. And so we have that
µ(E) =

∑
x∈X

µ(E ∩Xx), which implies that µ is localizable by proposition 7.12.

Under the assumption that (X,Σ, µ) is localizable, it turns out that that if we
define a function f on a measurable set of X, under certain conditions of f , we can
approximate f by a function defined on the whole of X (in an almost everywhere
sense). This approximation is entailed in the next theorem.
The proof below represents the proof found at [1, p. 28 213N] together with some
details worked out.

Theorem 7.14. Let (X,Σ, µ) be a localizable measure space. Suppose Φ is a family
of measurable real valued functions defined on measurable subsets of X such that :
f, g ∈ Φ =⇒ f =a.e. g on dom(f) ∩ dom(g). Then ∃ h : X � R such for every
f ∈ Φ: h =a.e. f on dom(f).

Proof. For q ∈ Q and f ∈ Φ, set

Efq = {x ∈ dom(f) : f(x) ≥ q} ∈ Σ.

For each q ∈ Q, let Eq be an essential supremum of {Efq : f ∈ Φ} (see definition
7.8).
Define:

h∗(x) = sup{q : q ∈ Q, x ∈ Eq} ∈ [−∞,∞]

for x ∈ X and set sup∅ = −∞.
If f, g ∈ Φ and q ∈ Q, then:

Efq \ (X \ (dom(g) \ Egq)) = Efq ∩ dom(g) \ Egq

⊆ {x : x ∈ dom(f) ∩ dom(g), f(x) ̸= g(x)}

is negligible (by the definition of Φ) and so as f was arbitrary:

Eq \ (X \ (dom(g) \ Egq)) = Eq ∩ dom(g) \ Egq

is negligible as well (by definition of essential supremum).
As Egq \ Eq is negligible as well (definition essential supremum), we have that:

Egq△(Eq ∩ dom(g))

is negligible as well and so

Hg =
⋃
q∈Q

Egq△(Eq ∩ dom(g))

is also negligible. But if x ∈ dom(g) \Hg, then ∀q ∈ Q : x ∈ Eq ⇐⇒ x ∈ Egq(this
immediately follows from the definition of dom(g)\Hg when written out). It follows
that for such x : h∗(x) = g(x) and so h∗ =a.e. g on dom(g) and this holds ∀g ∈ Φ.
The function h∗ is not necessarily real valued but is measurable as it holds that:

{x : h∗(x) > a} =
⋃
q∈Q

{Eq : q > a}
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Indeed: Let x ∈ {x : h∗(x) > a}, then h∗(x) > a, so sup{q ∈ Q : x ∈ Eq} > a, so
x ∈ Eq for some q > a.
Let x ∈

⋃
q∈Q

{Eq : q > a}. Then x ∈ Eq for some q > a. Which means sup{q ∈ Q :

x ∈ Eq} > a.
Hence, we can modify h∗ by setting

h(x) =

{
h∗(x) h(x) ∈ R
0 h∗(x) ∈ {−∞,∞}.

Then we have obtained a measurable real valued function h : X → R, where for
any function g ∈ Φ : h(x) =a.e. g(x) ∀x ∈ dom(g). □

The proof of completeness under when we assume localizability will make use of
the following lemma below.

Lemma 7.15. Suppose (fn)n≥1 is a sequence in L0(S,Σ, µ) for which it holds that
for F ∈ Σ:

µ({x ∈ F : |fn+1(x)− fn(x)| ≥ 2−n} ≤ 2−n.

Then (fn)n≥1 converges a.e. on F .

Proof. Define the following set:

Hn = {x ∈ F : |fn+1(x)− fn(x)| ≥ 2−n}.

Then µ(Hn) ≤ 2−n (as established earlier). Now define Bn =
⋃

m≥n

Hm. As Hm is

measurable, so is Bn. We also see that Bn is non-increasing, hence we have that:

µ(

∞⋂
n=1

⋃
m≥n

Hm) = lim
n→∞

µ(
⋃

m≥n

Hm)

≤ lim
n→∞

∞∑
m=n

µ(Hm)

≤ lim
n→∞

∞∑
m=n

2−m = 0 (tail convergent series).

We have hence proven that
⋂
n≥1

⋃
m≥n

Hm has 0 measure.

If x ∈ F \
⋂
n≥1

⋃
m≥n

Hm, then per definition ∃k : x ∈ F \
⋃

m≥k

Hm, so that |fm+1(x)−

fm(x)| ≤ 2−m ∀m ≥ k, hence we see that (fn(x))n≥1 is a Cauchy sequence in

R, hence is convergent (we define this limit as f(x)). Since
∞⋂

n=1

⋃
m≥n

Hm had zero

measure, we can hence say:

lim
n→∞

fn(x) =a.e. f(x) on F .

□

Now we can finally prove that under the condition of (X,Σ, µ) being localizable,
L0 is complete under the topology of convergence in measure.
The proof below is an adapted version of the one found at [1, p. 175 245E].
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Theorem 7.16. Let (X,Σ, µ) be a localizable measure space. Then L0(X,Σ, µ) is
complete under the topology of convergence in measure.

Proof. Suppose (X,Σ, µ) is localizable and let F be a Cauchy filter on L0. Per
definition of completeness (definition 7.5), we have to prove the Cauchy filter
converges (see definition 7.4). Let F be a set of finite measure. Then since
{x ∈ L0 : ϕ̄F (x, 0) ≤ 4−n} is open in L0 (see theorem 5.8) and contains 0, per defini-
tion of a Cauchy filter ∃An(F ) ∈ F such that An(F )−An(F ) ⊆ {ϕ̄F (x, 0) < 4−n},
hence meaning that ϕF (u, v) < 4−n ∀u, v ∈ An(F ). Per definition of F be-
ing a filter (definition 7.1):

⋂
k≤n

Ak(F ) ∈ F and is non-empty, so we can choose

uFn ∈
⋂

k≤n

Ak(F ). Then as

uFn+1 ∈
⋂

k≤n+1

Ak(F ) ⊆ An(F ) and u
F
n ∈ An(F )

we can say:

ϕ̄F (u
F
n+1, u

F
n ) ≤ 4−n ≤ 2−n.

As uFn ∈ L0, we can write uFn
= ḟFn , where fFn : X → R measurable.

Consider the following set: {x ∈ F : |fFn+1(x)− fFn (x)| ≥ 2−n}.
It holds that 2−n1{x∈F :|fF

n+1(x)−fF
n (x)|≥2−n} ≤ min(|fFn+1 − fFn |, 1F ).

Indeed:

(1) Case 1: s ∈ {x ∈ F : |fFn+1(x)− fFn (x)| ≥ 2−n}. Then the left-hand side of

the proven inequality gives 2−n. In case |fFn+1− fFn |(s) ≥ 1, the right-hand

side is 1 and 2−n ≤ 1 holds. In case |fFn+1 − fFn |(s) < 1, we have that the

inequality that we are proving gives: |fFn+1 − fFn |(s) ≥ 2−n and this holds.

(2) Case 2: s ∈ {x ∈ F : |fFn+1(x)− fFn (x)| < 2−n}. As then the left-hand side
is 0, the inequality is automatically satisfied.

And so, since the integral is an increasing function, we can take the integral on
both sides of the inequality above and preserve the inequality. Doing so gives:

2−nµ({x ∈ F : |fFn+1(x)− fFn (x)| ≥ 2−n}) ≤ ϕ̄F (u
F
n+1, u

F
n ) ≤ 4−n.

Hence obtaining

µ({x ∈ F : |fFn+1(x)− fFn (x)| ≥ 2−n}) ≤ 2nϕ̄F (u
F
n+1, u

F
n ) ≤ 2n4−n = 2−n.

Hence by lemma 7.15, we obtain that

lim
n→∞

fFn (x) =a.e. f
F (x) on F .

Claim: If E,G are two sets of finite measure such that E ⊆ G, then ϕ̄E(u
E
n , u

G
n ) ≤

2 · 4−n.
Proof claim: An(E), An(G) ∈ F implies that also An(E) ∩An(G) ∈ F and is non-
empty, hence they must have some point w in common.
This gives:

ϕ̄E(u
E
n , u

G
n ) ≤ ϕ̄E(u

E
n , w) + ϕ̄E(w, u

G
n )

≤ ϕ̄E(u
E
n , w) + ϕ̄G(w, u

G
n ) (E ⊆ G)

≤ 2 · 4−n.
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Consequently (in the same fashion as before)

µ({x ∈ E : |fGn (x)− fEn (x)| ≥ 2−n}) ≤ 2nϕ̄E(u
G
n , u

E
n ) ≤ 2−n+1

and also

lim
n→∞

fGn − fEn =a.e. 0 on E =⇒ fE =a.e. f
G on E.

Consequently, since we took E ⊆ G as arbitrary sets of finite measure, it follows
that for E ⊆ F , since E ∪ F has finite measure and E ⊆ E ∪ F : fE =a.e. f

E∪F on
E and fF =a.e. f

E∪F on F , implying that fE =a.e. f
F on E ∩ F .

Because µ is localizable, it follows by theorem 7.14, that ∃f measurable function on
X such that f =a.e. f

E on E for any measurable set E with finite measure. Now
consider u = ḟ ∈ L0 (f as defined above). Then for any set E of finite measure:

ϕ̄E(u, u
E
n ) =

∫
E

min(1, |f − fEn |)dµ

=

∫
E

min(1, |fE − fEn |dµ � 0 (f =a.e. f
E on E and fEn →a.e. f

E on E).

Now:

inf
A∈F

sup
v∈A

ϕ̄E(v, u) ≤ inf
n∈N

sup
v∈An(E)

ϕ̄E(v, u)

≤ inf
n∈N

sup
v∈An(E)

(ϕ̄E(v, u
E
n ) + ϕ̄E(u, u

E
n ))

≤ inf
n∈N

sup
v∈An(E)

2 · 4−n + ϕ̄E(u, u
E
n ) = 0.

As E was arbitrary, it follows that F → u.
Indeed, since inf

A∈F
sup
v∈A

ϕ̄E(v, u) = 0, we know sup
v∈A

ϕ̄E(v, u) gets arbitrarily close to

0, as an identity dependent on A ∈ F . Now, let G be an open set containing v.
Then by definition 5.6, ∃δ > 0 and ϕ̄E : U(v; ϕ̄E , δ) ⊆ G. As sup

v∈A
ϕ̄E(v, u) gets

arbitrarily close to 0, we can choose a A ∈ F and δ′ < δ such that:
A ⊆ {v ∈ L0 : ϕ̄E(v, u) < δ′} ⊆ {v ∈ L0 : ϕ̄E(v, u) < δ} ⊆ G. Hence since A ∈ F ,
per definition of a filter (definition 7.1): G ∈ F . Since F was arbitrary: L0 is
complete. □

Remark 7.17. In case we assume that L0 is σ-finite (which is stronger than being
localizable by theorem 7.11), we have that that the topology of convergence in
measure is metrizable by theorem 6.6 (namely by the metric ϕ̄ as defined in theorem

6.6). For a Cauchy sequence (ḟn)n≥1, it holds that:

0 = lim
n→∞

ϕ̄(ḟn, ḟn+1) = lim
n→∞

∞∑
m=1

ϕEm (fn,fn+1)
1+2mµ(Em) .

Since it holds for all n that:
ϕEm (fn,fn+1)
1+2mµ(Em) ≤ µ(Em)

1+2mµ(Em) ≤
1
2m

By the DCT (with respect to the counting measure):

lim
n→∞

ϕ̄(ḟn, ḟn+1) =
∞∑

m=1
lim

n→∞
ϕEm (fn,fn+1)
1+2mµ(Em) = 0.

Hence it holds that lim
n→∞

ϕEm
(fn, fn+1) = 0 ∀m ≥ 1. And so, for each m, we can

find a subsequence of f for which the following holds:
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ϕEm
(fEm

nk
, fEm

nk+1
) ≤ 2−k

Using the same method as in the proof of theorem 7.16:

µ({x ∈ Em : |fEm
nk+1

(x)− fEm
nk

(x)| ≥ 2−k}) ≤ 2−k

and so by, by lemma 7.15, (fEm
nk

)k≥1 converges a.e. on Em (to fEm). Then it holds

that fEm =a.e. f
En on En ∩ Em, hence using that σ-finite implies localizability:

there exists a h : X → R such that h =a.e. f
En on En ∀n ≥ 1. And so we obtain:

lim
n→∞

ϕ̄(ḟn, ḣ) = lim
n→∞

∞∑
m=1

ϕEm
(fn, h)

1 + 2mµ(Em)

≤
∞∑

m=1

lim
n→∞

ϕEm
(fEm

nk
, fn) + ϕEm

(fEm
nk

, h)

1 + 2mµ(Em)

Choosing nk sufficiently large, we obtain that the sum above will tend to 0 as
(ḟn)n≥1 is Cauchy and h =a.e. f

Em on Em.
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8. Local convexity of L0

The intuition behind a topological vector space being locally convex is that if we
have an open set containing 0 in our space, then we can always find a convex set
fully contained in the open set which also contains 0. As this is a strong property to
have, we will in this section consider whether local convexity applies in general to
L0 and the topology of convergence in measure. In order to define local convexity,
we will first introduce semi-norms. With these semi-norms we will define local
convexity in a manner that is equivalent to the intuition above.

Definition 8.1. A semi-norm on a vector space X is a map p : X → R such that
∀x, y ∈ X, s ∈ R:

(1) p(x) ≥ 0
(2) p(sx) = |s|p(x)
(3) p(x+ y) ≤ p(x) + p(y)

Example 8.2. Consider C(R) (the space of all continuous functions from R to R)
and define pn : C(R) → R

pn(f) = max
x∈[−n,n]

|f(x)|.

This definition is well-defined as f being continuous implies |f | being continuous,
which means |f(x)| achieves its maximum on the compact interval [−n, n].
pn is a semi-norm:

(1) pn(f) ≥ 0
(2) Let s ∈ R. Then pn(sf) = max

x∈[−n,n]
|sf(x)| = |sf(a)| for some a ∈ [−n, n].

Hence we have that:

|s||f(x)| ≤ |s||f(a)| ∀x ∈ [−n, n].
This means that in case s ̸= 0, we have that

|f(x)| ≤ |f(a)| ∀x ∈ [−n, n].
But as a ∈ [−n, n] this means:

|f(a)| = pn(f)

And so:

pn(sf) = |s||f(a)| = |s|pn(f).
In case s = 0, the equality above also holds.

(3)

pn(f + g) = max
x∈[−n,n]

|f(x) + g(x)|

≤ max
x∈[−n,n]

(|f(x)|+ |g(x)|)

≤ pn(f) + pn(g).

Definition 8.3. A locally convex topological vector space is a vector space X along
a family P of semi-norms on X, which define a topology on X. The topology on X
under P is generated by sets of the form p−1(U), where p ∈ P and U ⊆ R open.

Remark 8.4. There is an equivalent formulation of a topological vector space X
being locally convex which states that every neighbourhood around the 0 element
contains a convex set from a fixed basis. This basis, which only consists of convex
sets, is also a set of neighbourhoods of 0.
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Proving local convexity by using the definition can sometimes be tedious. It
turns out that in case a specific set of functions from our topological X to R is
known, we have a relatively easy to check requirement for local convexity to hold.
This specific set is called the dual of X and is defined below.

Definition 8.5. Let (X,T) be a topological space. Then the dual of X is defined
as:

X∗ = {ϕ : X → R : ϕ is linear and continuous }

Example 8.6. Consider R equipped with the standard topology. Then
R∗ = {ϕ(x) = ax∥a ∈ R}. Indeed, let ϕ be a linear function on R and set a = ϕ(1).
Then we see: ϕ(x) = ϕ(x · 1) = xϕ(1) = ax. Since all functions of these form are
continuous we have hence proven our assertion.

Example 8.7. [4, p. 5,6 Prop. 7.13, Thm. 7.14] Let 1 < p <∞ and choose p′ such
that:

1
p + 1

p′ = 1.

For a measure space (X,A, µ), if f ∈ Lp′
(S), then

F (g) =
∫
fgdµ.

defines a functional from Lp(S) to R. Assuming the standard norms on Lp and Lp′
,

the fact that F (g) only takes values in R follows directly from Hölder’s inequality:∫
|fg|dµ ≤ ∥f∥p′ ∥g∥p <∞.

As we have now shown that |fg| is integrable, fg is also integrable and so:

|F (g)| = |
∫
fgdµ| ≤

∫
|fg|dµ <∞.

One can also easily see that F is linear. It also holds that F is Lipschitz as the
f ∈ Lp′

(S) is fixed:

|F (g)− F (h)| = |
∫
f(g − h)dµ|

≤
∫
|f(g − h)|dµ

≤ ∥f∥p′ ∥g − h∥p (Hölder’s inequality)

which implies F is continuous. Thus we have now established that:

(Lp(S,A, µ))∗ ⊇ {
∫
fgdµ : g ∈ Lp(S)}.

In this case (1 < p <∞) the left inclusion also holds.

A property of a locally convex topological space X is that any linear and con-
tinuous function whose domain is a vector subspace of X can be extended to a
function in X∗.

Theorem 8.8. [5](Hahn-Banach theorem) Let X be a locally convex topological vec-
tor space over R, M a vector subspace of X and f :M → R linear and continuous.
Then f has a linear and continuous extension to all of X.

Using Hahn-Banach, we can finally prove a requirement of X being locally convex
with respect to the dual.
The proof below is inspired by the approach seen at [7] (at this source, the theorem
is proved for the case X being a normed vector space.)
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Corollary 8.9. If X is a locally convex topological vector space, where X ̸= {0}
and is not just generated the trivial semi-norm (the trivial semi-norm is the map
from X that maps every element to 0) then X∗ ̸= {0}.
Proof. As the topology on X is generated by non-trivial semi-norms, we have that
∃x ∈ X and p ∈ P such that p(x) ̸= 0. Then it holds that p( x

p(x) ) = 1. Define

y = x
p(x) and the functional ϕ : span{y} → R by ϕ(αy) = α. Then it holds that ϕ

is linear:

(1) ϕ(αy + βy) = ϕ((α+ β)y) = α+ β = ϕ(αy) + ϕ(βy)
(2) ϕ(c(αy)) = ϕ((cα)y) = c(α) = cϕ(αy)

It also holds that ϕ is bounded by the semi-norm:

|ϕ(αy)| = |α| ≤ 2|α| · 1 = 2|α| · p(y) = 2p(αy).

which implies that ϕ is continuous [6]. Hence, by theorem 8.8, ϕ has a continuous
linear extension to all of X, (say ϕ̄). Then ϕ̄ ∈ X∗ and ϕ̄ ̸= 0, hence X∗ ̸= {0}. □

Remark 8.10. In case X is a locally convex topological vector space generated by
just the trivial semi-norm (say p), then X∗ = {0}.
Indeed: Note that ∀A ∈ B(R)

p−1(A) =

{
X , 0 ∈ A

∅ , 0 /∈ A.

Hence, X has the trivial topology. Now let ϕ ∈ X∗. Then ϕ is continuous and so
∀y ∈ R ϕ−1({y}) is either X or ∅. This means that ϕ has the form:

ϕ(x) = C, where C ∈ R is a constant.

But then by the linearity of ϕ :

C = ϕ(−x) = −ϕ(x) = −C
which implies that C = 0. Hence proven that X∗ = {0}.

Now that we have established this result, we can finally prove that L0(X,Σ, µ)
with the topology of convergence in measure is not locally convex (in general). The
corollary below is a worked out version of the one seen at [8].

Corollary 8.11. L0([0, 1],B([0, 1]), λ) together with the topology of convergence in
measure is not locally convex

Proof. Consider L0([0, 1]) = {ḟ : f : [0, 1] → R measurable }. Then we have earlier

defined the pseudometric: ϕ̄F (ḟ , ġ) =
∫
F
min(|f − g|, 1)dλ and that

ḟn → ḟ in measure ⇐⇒ ϕF (fn, f) → 0, where F ∈ B([0, 1]).

Assume L0([0, 1]) is locally convex. Then by corollary 8.9: ∃ϕ ∈ (L0)∗ : ϕ(ḟ) ̸= 0

for some ḟ ∈ L0. Let

g2k+m = 1[ m

2k
,m+1

2k
] for k ∈ N and m ∈ {0, ..., 2k − 1}.

Then note that: f =
2k+1−1∑
nk=2k

gnk
f . Hence:

0 < |ϕ(f)| = |ϕ(
2k+1−1∑
nk=2k

gnk
f)|
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= |(
2k+1−1∑
nk=2k

ϕ(gnk
f))| (linearity).

△
≤

2k+1−1∑
n=2k

|ϕ(gnk
f)| ∀k ∈ N.

Then it holds that

∀k ∈ N ∃nk ∈ {2k, ..., 2k+1 − 1} : |ϕ(gnk
f)| ≥ 1

2k
|ϕ(f)|.

Indeed, suppose ∃k : ∀nk 2k|ϕ(gnk
f)| < |ϕ(f)|. Then

2k|ϕ(gnk
f)| < |ϕ(f)| ≤

2k+1−1∑
nk=2k

|ϕ(gnk
f)| ≤ 2k max

nk

|ϕ(gnk
f)|.

Since the left-hand side is supposed to hold ∀nk:

2k max
nk

|ϕ(gnk
f)| < 2k max

nk

|ϕ(gnk
f)|.

Hence we have reached a contradiction.
Let hk = 2kgnk

f , then since

µ(|hk| > 0) = µ(2kgnk
|f | > 0) ≤ µ(gnk

> 0) = µ([m
2k
, m+1

2k
]) = 1

2k

it can be proven that hk → 0 in measure. To see this, first note that

min(|hk|, 1) ≤ 1{|hk|>0}.

This holds as:

(1) Case 1: x ∈ {|hk| > 0}. Then min(|hk|(x), 1) ≤ 1 = 1{|hk|>0}(x)
(2) Case 2: x ∈ {|hk| = 0}. Then min(|hk|(x), 1) = 0 = 1{|hk|>0}(x).

And so we get:

0 ≤ ϕ̄F (hk, 0) =
∫
F
min(|hk|, 1)dλ ≤

∫
F
1|hk|>0dλ ≤ 1

2k
, F ∈ B([0, 1])

so it converges in measure.
Now consider the sequence (nk)k≥1 such that |ϕ(gnk

f)| ≥ 1
2k
|ϕ(f)| (as established

before). We see that:

ϕ(gnk
f) ≥ 1

2k
|ϕ(f)| ⇐⇒ |2kϕ(gnk

f)| ≥ |ϕ(f)| linearity⇐⇒ |ϕ(hk)| ≥ |ϕ(f)|.

Since hk → 0 in measure and ϕ continuous, we hence see that 0 ≥ |ϕ(f)| > 0,
contradiction. □

Remark 8.12.

(1) The result of corollary 8.11 can be extended to a more general setting. It
turns out that for L0(S,Σ, µ) with a finite non-atomic (see [9, p. 395 Def
10.51] for definition non-atomic. For example N together with the counting
measure is atomic and R with Lebesgue measure is non-atomic) the dual of
L0(S,Σ, µ) is trivial [9, p. 481 Thm 13.41] and so is not locally convex by
corollary 8.9 for the topology of convergence in measure. This result also
holds for Lp spaces together with the topology of convergence in measure
(where 0 < p ≤ ∞)([9, p. 482 Thm. 13.43]). Showing, for instance, that
Lp([0, 1],B([0, 1]), λ) is not locally convex as well.
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(2) For 0 < p < 1, Lp(S,Σ, µ) together with the topology induced by the
metric:

d(f, g) =
∫
|f − g|pdµ

is locally convex if and only if the range of µ consists of only finitely many
values [17, p. 5 Thm 3.2].

(3) For L0(N) together with the product topology, it holds that the product
topology is generated by the family of semi-norms:

pn(x) = |x(n)|.
Hence by definition 8.3, L0(N) is locally convex in this instance. What
can also be observed is that convergence in measure is equivalent with
convergence with the product topology.
Indeed, suppose that (ẋn)n≥1, ẋ ∈ L0(N) and E ∈ P(N). Note that the
equivalence class of any element in L0(N) only consists of that one element
under the counting measure. Then as

k∑
j=1

min(|xn(j)− x(j)|, 1)1{j} ↑ min(|xn − x|, 1)

by the Monotone Convergence Theorem we obtain:

ϕ̄E(ẋn, ẋ) =
∑
j∈E

min(|xn(j)− x(j)|, 1)

Hence ϕ̄E(ẋn, ẋ) → 0 ⇐⇒ ∀j ∈ E : xn(j) → x(j). And so we obtain
convergence under the product topology and convergence of topology in
measure are equivalent. By theorem 6.6, the topology of convergence in
measure on L0(N) is metrizable (as N together with the counting measure
is σ-finite) and L0(N) under the product topology is metrizable as well
metrizable as N is countable ([9, p. 206 Lemma 5.74]). This implies that
both topologies are equivalent ([13]). Hence we can conclude that L0(N)
under the topology of convergence in measure is locally convex.
Lp(N) for 0 < p < 1 under the topology of convergence in measure is not
locally convex by the second remark (as the counting measure does not take
finitely many values in this case).
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9. Essential supremum

In applications of measure theory to financial markets, it is common to let the
probability distribution of the market depend on time. This means that each second
corresponds to a potentially different random variable and so it is valuable to us to
consider these different distributions in a set. With sets in R one is able to define
a supremum and one might want to be able to have this concept defined for a set
of random variables to be able to predict behavior of the random variables over
time. Hence, in this section we will define a supremum over a set of measurable
functions. The supremum over a set of non-negative measurable functions is called
an essential supremum and is defined below.

Definition 9.1. Let (Ω,F , Q) be a measure space and let X be a non-empty set of
non-negative measurable functions defined on (Ω,F , Q). The essential supremum
of X , denoted by ess supX is a measurable function X∗ satisfying:

(1) ∀X ∈ X : X ≤a.e. X
∗

(2) If Y is a measurable satisfying X ≤a.e. Y ∀X ∈ X , then X∗ ≤a.e. Y

Remark 9.2. This definition of an essential supremum differs from the one used for
localizability (see definition 7.8).

Corollary 9.3. Under the same conditions as definition 9.1, if the essential supre-
mum exists then it is unique (in an a.e. sense).

Proof. Suppose X∗
1 and X∗

2 are both the essential supremum of X . Then since
X ≤a.e. X

∗
1 and X ≤a.e. X

∗
2 ∀X ∈ X we have by part two of the definition that:

X∗
1 ≤a.e. X

∗
2 and X∗

2 ≤a.e. X
∗
1 , hence obtaining that X∗

1 =a.e. X
∗
2 □

In order to prove existence of X∗, we will first define a measure which is ab-
solutely continuous with respect to Q. Then it turns out that X∗ is actually the
Radon-Nikodym derivative of Q with that said measure.

Definition 9.4. Given X as defined in definition 9.1 and given A ∈ F , then we
call π = (K;A1, .., AK ;X1, .., XK) an X−partition of A if:

(1) K ∈ N

(2) Ai ∩Aj = ∅ ∀i ̸= j, where Ai ∈ F and
K⋃
i=1

Ai = A

(3) X1, ..., XK ∈ X

For λ ∈ (0,∞], we define:

µλ
π(A) =

∫
Ω

K∑
k=1

min(Xk, λ)1Ak
dQ and µλ(A) = sup{µλ

π(A) : π X -partition of A}.

Theorem 9.5.

(1) µλ is a non-negative function on F .
(2) µλ is finitely additive

Proof.

(1) Per definition, λ > 0, Xk ≥ 0 (as X consists of non-negative measurable
functions) and 1Ak

≥ 0, hence µλ
π(A) ≥ 0 for any partition π, and so

µλ(A) ≥ 0.
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(2) Let A,B ∈ F : A ∩B = ∅.
Then I will first show that:
{µλ

π(A∪B) : π partition} = {µλ
πA

(A)+µλ
πB

(B) : πA, πB partitions of A, B}.
First I will show that set on the right is contained in set on the left.
Since A ∩B = ∅, the following is a partition of A ∪B:

(kA + kB ;A1, .., AkA
, BkA+1, ..., BkA+kB

, X1, ..., XkA
, XkA+1, ..., XkA+kB

)

where

πA = (kA, A1, .., Ak, X1, .., XkA
) partition of A

πB = (kB , BkA+1, .., BkA+kB
, XkA+1, .., XkA+kB

) partition of B.

we have: µλ
π(A ∪B) =

∫ kA+kB∑
k=1

min(Xk, λ)1Ak
dQ = µλ

πA
(A) + µλ

πB
(B).

Next, I will show that the left set is contained in the right set.
Let π = (K;A1, ..., AK ;X1, .., XK) be a partition of A ∪B.
Then

πA = (K;A1 \B, ...., AK \B;X1, ..., XK)
and

πB = (k;A1 \A, ...., AK \A;X1, ..., XK)

are X− partitions of A and B respectively and since

1Ai\A + 1Ai\B = 1Ai ∀i = 1, ..,K

we obtain that µλ
π(A ∪B) = µλ

πA
(A) + µλ

πB
(B).

Hence we obtain our desired result:

µλ(A ∪B) = sup{µλ
π(A ∪B) : π}

= sup{µλ
πA

(A) + µλ
πB

(B) : πA, πB}

= sup{µλ
πA

(A) : πA}+ sup{µλ
πB

(B) : πB} (µλ
πA
, µλ

πB
≥ 0)

= µλ(A) + µλ(B).

.

□

Remark 9.6. Per definition, we have that u∞π (A) =
∫ K∑

k=1

Xk1Ak
dQ for some par-

tition π of A. Note that it also holds that lim
λ→∞

min(Xk, λ) = Xk. Since this limit

is increasing in λ and min(Xk, λ) is measurable, we obtain that by the Monotone
Convergence Theorem:

µ∞
π (A) = lim

λ→∞

∫ K∑
k=1

min(Xk, λ)1Ak
dQ

= sup
λ∈(0,∞)

∫ K∑
k=1

min(Xk, λ)1Ak
dQ ( integral increasing )

= sup
λ∈(0,∞)

µλ
π(A).

Hence the following holds:
µ∞(A) = sup

π
sup

λ∈(0,∞)

µλ
π(A) = sup

λ∈(0,∞)

sup
π
µλ
π(A) = sup

λ∈(0,∞)

µλ(A).
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The proof of the following lemma for the case that λ = ∞ is partly inspired from
the proof seen at [10, p. 324 Lemma A.2].

Lemma 9.7. Suppose (Ω,F , µ) is a σ−finite space. Then λ ∈ (0,∞], µλ is σ-
additive.

Proof. Case 1: λ <∞.
Assume (Ω,F , Q) is a finite space. Since µλ(∅) = 0 and µλ is finitely additive,
it suffices to show that for any sequence (An)n≥1 with An ↓ ∅ that µλ(An) → 0
(n→ ∞) (see [16]). Note that for any partition π of An, it holds that:

µλ
π(An) =

∫ K∑
k=1

min(Xk, λ)1Ak,n
dQ

≤ λQ(An).

Since Q is measure, we have that lim
n→∞

Q(An) = 0, so we obtain that:

lim
n→∞

µλ(An) = lim
n→∞

sup{µλ
π(An) : π} ≤ λ lim

n→∞
Q(An) = 0.

Hence by the lemma, µλ is σ-additive. As µλ is σ−additive for finite spaces, it is
also σ−additive for σ-finite spaces by theorem 9.8.
Case 2: λ = ∞.

Let (Aj)j≥1 be an increasing sequence of sets in F with A =
∞⋃
j=1

Aj . By remark

9.6 it holds:

lim
j→∞

µ∞(Aj) = sup
j∈(0,∞)

sup
λ∈(0,∞)

µλ(Aj)

= sup
λ∈(0,∞)

sup
j∈(0,∞)

µλ(Aj)

= sup
λ∈(0,∞)

µλ(A) = µ∞(A).

Now let (Bi)i≥1 be a sequence of disjoint sets in F with
∞⋃
i=1

Bi = B. Define

B′
j =

j⋃
i=1

Bi, then (B′
j)j≥1 is increasing and

∞⋃
j=1

B′
j = B, hence by the result above

lim
j→∞

µλ(B′
j) = µλ(B) ⇐⇒ lim

j→∞
µλ(

j⋃
i=1

Bi) = µλ(B)

thm9.5⇐⇒ lim
j→∞

j∑
i=1

µλ(Bi) = µλ(B).

□

Before I prove the theorem on the existence of the essential supremum of a set
of non-negative measurable functions on a σ-finite space, I will first state and prove
a lemma that shows that it suffices to show the existence for functions on finite
spaces.
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Lemma 9.8. Suppose (S,Σ, Q) is a σ-finite space, where S =
∞⋃

n=1
Sn and Q(Sn) <

∞ ∀n ≥ 1. Then for ν : Σ → [0,∞) : ν(A) =
∞∑

n=1

Q(Sn∩A)
1+2nQ(Sn)

it holds that (S,Σ, ν)

is a finite measure space.
Furthermore, for measurable functions X,Y : (S,Σ) → R it holds that:

X =a.e. Y on (S,Σ, µ) ⇐⇒ X =a.e. Y on (S,Σ, ν).

Proof. I will first show that (S,Σ, ν) is a measure space:

(1) ν(∅) =
∞∑

n=1

Q(Sn∩∅)
1+2nQ(Sn)

= 0.

(2) Let A =
⋃

m≥1

Am where Ai ∩Aj = ∅ ∀i ̸= j and Ai ∈ Σ ∀i ≥ 1. Then first

it should be noted that:

ν(A) =

∞∑
n=1

Q(Sn ∩A)
1 + 2nQ(Sn)

≤
∞∑

n=1

Q(Sn)

1 + 2nQ(Sn)

≤
∞∑

n=1

1

2n
<∞.

Hence we can conclude the following:

ν(
⋃
m≥1

Am) =

∞∑
n=1

Q(
⋃

m≥1

(Sn ∩Am))

1 + 2nQ(Sn)

=

∞∑
n=1

∞∑
m=1

Q((Sn ∩Am))

1 + 2nQ(Sn)
(Q is σ-finite)

=

∞∑
m=1

∞∑
n=1

Q((Sn ∩Am))

1 + 2nQ(Sn)
(Sum is finite)

=

∞∑
m=1

ν(Am).

It also holds that for a set A ∈ Σ:

Q(A) = 0 ⇐⇒ ν(A) = 0.

Indeed, in case Q(A) = 0 it follows trivially that Q(Sn ∩ A) = 0 for any n, hence
proving ν(A) = 0.
In case ν(A) = 0, we have that all summands must be equal to 0. This means

that for any n ≥ 1: Q(Sn ∩ A) = 0. Hence: 0 ≤ Q(A) = Q(
∞⋃

n=1
(Sn ∩ A)) ≤

∞∑
n=1

Q(Sn ∩A) = 0

In case X =a.e. Y on (S,Σ, µ), we have that µ({ω ∈ S : X(ω) ̸= Y (ω)}) = 0, hence
by our previous proof X =a.e. Y on (S,Σ, ν) and by symmetry, this also holds the
other way around. □

Remark 9.9. From the last part of lemma 9.8, it follows that if for a set of non-
negative measurable functions X has an essential supremum on the finite space
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(S,Σ, ν), then this essential supremum is equal (a.e.) to the essential supremum of
X on the σ-finite space (S,Σ, Q).

Now we can finally prove existence of the essential supremum. The proof below
is a generalisation of the proof seen at [10, p. 324 Lemma A.3] (the proof at this
source only proves existence for the case that (Ω,F , Q) is a probability space).

Theorem 9.10. Suppose (Ω,F , Q) is σ-finite. Let X be a non empty family of
non-negative measurable functions. Then X∗=ess supX exists.
Furthermore, if X is closed under pairwise maximization (meaning: X,Y ∈ X =⇒
max(X,Y ) ∈ X ), then there exists non-decreasing sequence (Zn)n≥1, of measurable
functions in X such that X∗ =a.e. lim

z→∞
Zn.

Proof. First note that µ∞ is absolutely continuous with respect to Q. Indeed: let
A ∈ F such that Q(A) = 0. Then we see that:

0 ≤ µλ
π(A) =

∫ K∑
k=1

min(Xk, λ)1Ak
dQ ≤ λ

∫
1AdQ = λQ(A) = 0.

Since π was taken arbitrary here: µλ(A) = 0 and this gives

µ∞(A) = sup
λ∈(0,∞)

µλ(A) = 0.

Hence by Radon-Nikodym, dµ∞

dQ exists (and can possibly take the value ∞, see

Appendix C), and we define X∗ = dµ∞

dQ . Now, X∗ has the following properties:

(1) X∗ ≥a.e. 0
(2) ∀A ∈ F : µ∞(A) =

∫
1AX

∗dQ

Let X ∈ X and A ∈ F and consider the partition π1 = (1;A;X).
We have that for this π1:∫

1AXdQ = µ∞
π1
(A) ≤ sup

π
µ∞
π (A) = µ∞(A) =

∫
1AX

∗dQ.

Since A was arbitrary, we see that for A = {X > X∗}:∫
1X>X∗XdQ ≤

∫
1X>X∗X∗dQ =⇒

∫
(X −X∗)1X>X∗dQ ≤ 0.

Since the measurable function inside the integral is greater or equal to 0, we see
that that integral is greater or equal to 0, hence: (X − X∗)1X>X∗ =a.e. 0, so
X ≤a.e. X

∗. So condition 1 of definition 9.1 is satisfied.
Let Y be as in condition 2 of definition 9.1. Note that for any partition π of A:∫

1AX
∗dQ = µ∞(A) = sup

π
(
∫ K∑

k=1

1Ak
XkdQ) ≤

∫
1AY dQ

hence
∫
1AX

∗dQ ≤
∫
1AY dQ ∀A ∈ F . So we obtain X∗ ≤a.e. Y (using the same

argument as before).
Now assume X is closed under pairwise maximization and let ν be the measure
on (Ω,F) as defined in lemma 9.8. By the above argument, X has an essential
supremum, X∗

ν , with respect to the finite measure space (Ω,F , ν). Given n ∈ N, we
know that µn(Ω) <∞ (with respect to measure ν). Per definition of a supremum,

we can define a partition π(n) = (k(n), A
(n)
1 , .., A

(n)

k(n) , X
(n)
1 , ..., X

(n)

k(n)) of Ω satisfying:
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µn(Ω) ≤ µn
π(n)(Ω) +

1
n .

Then Yn = max(X
(n)
1 , ..., X

(n)

k(n)) is also in X (by our assumption) and we see that

since min(X
(n)
k , n) ≤ X

(n)
k ≤ max(X

(n)
1 , ..., X

(n)

k(n)) = Yn, we acquire:

µn
π(n)(Ω) =

∫ K∑
k=1

min(X
(n)
k , n)1Ak(n)dν ≤

∫ K∑
k=1

Yn1A
k(n)

dν =
∫
Yndν

hence obtaining:

µn(Ω) ≤
∫
Yndν +

1
n .

Likewise Zn = max(Y1, ..., Yn) is in X and µn(Ω) ≤
∫
Zndν + 1

n . Then letting
n→ ∞ gives:∫
X∗

ν1Ωdν = µ∞(Ω) ≤ lim
n→∞

∫
Zndν

MCT
=

∫
( lim
n→∞

Zn)dν.

Also as

lim
n→∞

Zn ≤a.e. X
∗
ν (Zn ∈ X ∀n =⇒ Zn ≤a.e. X

∗
ν ∀n)

We see that X∗
ν =a.e. lim

n→∞
Zn. Hence, by lemma 9.8 we have that X∗

ν =a.e. lim
n→∞

Zn

with respect to Q as well. Since, by remark 9.9, X∗
ν is also the essential supremum

of X with respect to Q, this finishes the proof. □

Under the restriction that (Ω,F , Q) is σ-finite, we found that X∗ exists and is

the Radon-Nikodym derivative dµ∞

dQ . In this case it can possibly take the value ∞.

For the case of an interval (a, b) in R, we know that sup(a, b) = b. So requiring
that the interval is bounded above, suffices to ensure that the supremum is finite
in this case. We can impose a similar requirement on X for it to have an essential
supremum that only takes finite values.

Theorem 9.11. Let (Ω,F , Q) be σ-finite and let X be a set of non-negative mea-
surable functions for which it holds that it is almost everywhere bounded by a mea-
surable function f who is almost everywhere bounded by a constant M i.e.:

X ≤a.e. f ≤a.e. M <∞ ∀X ∈ X
Then essential supremum of X only takes values in R.

Proof. By Radon-Nikodym, it suffices to show that µ∞ is σ-finite (as then X∗ =
dµ∞

dQ will take finite values, see Appendix C). We knowX =
⋃
n≥1

Bn, where Q(Bn) <

∞ ∀n. For an arbitrary X−partition π of Bn it holds that:

µλ
π(Bn) =

K∑
k=1

∫
min(λ,Xk)1Ak

dQ

≤MQ(Bn) <∞

Hence µλ is σ-finite (as established upper-bound does not depend on π) ∀λ ∈ (0,∞).
And so as

µ∞(Bn) = sup
λ∈(0,∞)

µλ(Bn)

µ∞ is σ-finite as well (as established upper-bound also does not depend on λ). □
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Example 9.12. Let (Ω,F , Q) be a σ-finite space and let X be a set of non-negative
measurable functions, closed under pairwise maximization. Define the following
set:

Ψ = { X
1+X : X ∈ X}.

Then as X
1+X ≤a.e. 1 ∀X ∈ X , we have that by theorem 9.11 that Ψ has an

essential supremum which takes values in R. Suppose that ess supΨ =a.e 1. Then
by theorem 9.10, we have that ∃ non-decreasing sequence such that

Xn

1+Xn
∈ Ψ and lim

n→∞
Xn

1+Xn
=a.e. 1. ∀n ≥ 1.

For this sequence to exist it must hold that Xn →a.e. ∞ (n → ∞), which implies
that X has no finite essential supremum.

Theorem 9.11 states that if X is bounded above by a function f which itself
bounded above by a constant (a.e.), then the essential supremum of X only takes
values in R. It turns out that the requirement that f should be bounded above by
a constant (a.e.) is not needed in order for the theorem to still hold. For this I
will first extend the definition of the supremum of two elements in a Riesz space
(as seen at definition 2.13) to the supremum of |I| elements (where I is some index
set) as follows:
sup(uτ : τ ∈ I) is the element in a Riesz space X for which holds:

∀a ∈ X: sup(uτ : τ ∈ I) ≤ a ⇐⇒ uτ ≤ a ∀τ ∈ I

Note that this element does not necessarily exist in X.

Remark 9.13. Note that if we take X = L0 as our Riesz space, the above definition
generalises the concept of an essential supremum to L0. Indeed, for a set Ẋ = {u̇τ :
τ ∈ I} (where uτ is a non-negative measurable function), sup(u̇τ : τ ∈ I) must
have the following two properties:

(1) ∀u̇τ ∈ Ẋ : u̇τ ≤ sup(u̇τ : τ ∈ I) ∀τ ∈ I.
(2) If ẏ ∈ L0 such that u̇τ ≤ ẏ ∀τ ∈ I, then sup(u̇τ ) ≤ ẏ

By observing that in case of existence sup(u̇τ : τ ∈ I) = ˙sup(uτ : τ ∈ I), we see
that the above is equivalent with

(1) uτ ≤a.e. sup(uτ : τ ∈ I) ∀τ ∈ I.
(2) If uτ ≤a.e. y ∀τ ∈ I, then sup(uτ : τ ∈ I) ≤a.e. y.

Hence obtaining that (in case of existence): sup(u̇τ : τ ∈ I) = ˙ess sup{uτ : τ ∈ I}.

Using this extension, we can now prove the assertion. The proof below is an
adjusted and worked out version to the one found at [11, p. 126 Ex. 23.3iv]
(adjusted to fit the terminology of this thesis).

Theorem 9.14. Let (Ω,F , Q) be a σ-finite measure space.
Then any subset of X of L0(Ω,F , Q), where the equivalence classes contain non-
negative functions and which is bounded above by a function v ∈ L0(Ω,F , Q) has a
supremum (as defined above) which is in L0(Ω,F , Q).

Proof. Denote X by X = {u̇τ : τ ∈ I}, where I is some index set and uτ non-
negative. Assume X is bounded above by v̇ ∈ L0(Ω,F , Q) (i.e. uτ ≤a.e. v
∀τ). For n ∈ N define: u̇τ,n = inf(u̇τ , n) (in sense of definition 2.13), then

u̇n = ˙ess sup {uτ,n : τ ∈ I} exists in L0 for every fixed n by theorem 9.11. Now
consider u̇0 = sup(u̇n : n ≥ 1). Then since u̇n ≤ v̇ ∀n: sup(u̇n : n ≥ 1) ≤
v̇ < ∞, so sup(un : n ≥ 1) <a.e. ∞. Define sup′(un : n ≥ 1) = sup(un :
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n ≥ 1)1{sup(un:n≥1) ̸=∞}. Then sup′(un : n ≥ 1) is measurable, real valued and
sup′(un : n ≥ 1) =a.e. sup(un : n ≥ 1) meaning that we can view u̇0 as an element
of L0. Writing out the extended definition of the supremum of |I| elements and
essential supremum gives that

u̇0 = sup(u̇τ,n : τ ∈ I, n ∈ N) = sup(u̇τ : τ ∈ I).

The first equality can be seen as follows: Let ȧ ∈ L0. Then:

u̇0 ≤ ȧ
def⇐⇒ u̇n ≤ ȧ ∀n ≥ 1

def⇐⇒ ˙ess sup{uτ,n : τ ∈ I} ≤ ȧ ∀n ≥ 1

⇐⇒ ess sup{uτ,n : τ ∈ I} ≤a.e. a ∀n ≥ 1

⇐⇒ uτ,n ≤a.e. a ∀n ≥ 1,∀τ ∈ I

⇐⇒ u̇τ,n ≤ ȧ ∀n ≥ 1,∀τ ∈ I.

Hence we obtain that u̇0 = sup(u̇τ,n : τ ∈ I, n ∈ N).
Similarly, for the second equality:

sup(u̇τ,n : τ ∈ I, n ≥ 1) ≤ ȧ ⇐⇒ u̇τ,n ≤ ȧ ∀τ, n
⇐⇒ uτ,n ≤a.e. a ∀τ, n
⇐⇒ uτ ≤a.e. a ∀τ
⇐⇒ u̇τ ≤ ȧ ∀τ.

Hence obtaining sup(u̇τ : τ ∈ I) = sup(u̇τ,n : τ ∈ I, n ≥ 1) and so sup(u̇τ : τ ∈
I) = u̇0, where u̇0 can be viewed as an element of L0. □

Remark 9.15. The theorem even holds in case Q is semi-finite (in sense of definition
4.12) ([11, p. 127 Ex. 23.3iv ]).
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10. Application: Stochastic Differential Equations

Up until now, we have only considered theoretical aspects of L 0 and L0. One of
the many applications of this theory are Stochastic Differential Equations (SDEs).
We know that Ordinary Differential Equations (ODEs) are of the form:

d

ds
xs = b(s, xs), x0 = x(0)(10.1)

where x : R → R. In most physical applications however, ODEs will not suffice to
model phenomena accurately. This can for example be seen in case we interpret
(10.1) as a particle which has position xt at time t and speed b(t, xt). The ODE does
not take phenomena into account such as measurement errors. As measurement
errors are probabilistic, the position of a random particle at time t can be more
realistically described as a random variable rather than a fixed number. As such,
we want to model differential equations as to obtain random variables for each t
and on this we will give a broad introduction in this chapter. Such equations are
of the form:

dXt = b(t,Xt) + σ(t,Xt)dBt(10.2)

whereXt denotes a random variable at time t and σ(t,Xt)dBt a random component.
The exact definition will be given in the next section.

10.1. The definition of a SDE. We will start this section by formally defining
equation 10.2. For this equation, we expected the solution to give a random variable
Xt for each time t. The collection (Xt)t≥0 of solutions for each time t is called a
stochastic process and is defined below.

Definition 10.1. Let (Σ,A , P ) be a probability space. A d-dimensional stochastic
process indexed by I ⊆ [0,∞) is a family of random variables Xt : Σ → Rd t ∈ I
We write X = (Xt)t∈I . I is called the index set and Rd the state space.

As pointed out earlier, (10.2) has a random component σ(t,Xt)dBt. In order to
solve SDEs, we will have to make an assumption on the distribution of the random
component. As one might expect, the random component is linked to the normal
distribution via a Brownian Motion, which is defined below.

Definition 10.2. A d-dimensional Brownian Motion (Bt)t≥0 is a d-dimensional
stochastic process on a probability space (Σ,A , P ) indexed by [0,∞) which has the
following properties:

(1) B0(ω) = 0 a.s.
(2) Btn −Btn−1 , ..., Bt1 −Bt0 are independent ∀0 = t0 < .. < tn <∞.
(3) Bt −Bs ∼ Bt+h −Bs+h ∀0 ≥ s ≤ t, h ≥ −s
(4) Bt −Bs ∼ N d(0, t− s)
(5) t 7→ Bt(ω) is a continuous function ∀ω ∈ Ω.

Notation: A d-dimensional Brownian Motion will be denoted by BMd.

Remark 10.3. For a d-dimensional Brownian Motion Bt = (B1
t , .., B

d
t ) it holds

that all components B1
t , .., B

d
t are independent and are one dimensional Brownian

Motions. The converse holds as well [3, p. 17 Theorem 2.16].

For our SDEs, we will also make assumptions on the σ-algebras corresponding to
the domain of Xt and Bt. The definitions below will be used for these assumptions.
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Definition 10.4. A filtration on a probability space (Ω,F , P ) is a nested family
of σ-algebras Fs ⊂ Ft ⊂ F , s ≤ t satisfying:

(1) Fs =
⋂
t>s

Ft, s ≥ 0

(2) All A ∈ F with P (A) = 0 are contained in F0.

Remark 10.5. One interpretation of a filtration is that it is the σ-algebra that keeps
all the information from the past preserved (as Fs ⊂ Ft for s ≤ t).

Definition 10.6. Let (Bt)t≥0 be a BMd on (Ω,F , P ). A filtration (Ft)t≥0 is
called admissible if:

(1) FB
t ⊂ Ft ∀t ≥ 0, where FB

t = σ(Bs : s ≤ t)
(2) Bt −Bs ⊥⊥ Fs ∀0 ≤ s ≤ t.

Before we can define a solution of (10.2), we first have to define what σ(t,Xt)dBt

means. For this we have to build up some stochastic integration theory, where we
define the stochastic integral as a limit over integrals of simple processes.

Definition 10.7. A real valued stochastic process (f(t, •))t∈[0,T ] (in sense of defi-
nition 10.1) of the form

f(t, ω) =
n∑

j=1

ϕj−1(ω)1[sj−1,sj)(t)

where n ≥ 1 and 0 = s0 ≤ s1 ≤ ... ≤ sn ≤ T and ϕj ∈ L∞(Fsj ), is called a simple
process.
We denote ET for the family of all simple processes on [0, T ] and L2

T as the closure
of ET in L2(P ⊗ λ) (with respect to the L2-norm).

Definition 10.8. Let I ⊆ [0,∞] and (Ft)t∈I be a filtration. Then a martingale
(Xt,Ft)t∈I is a real valued process Xt : Ω → Rd satisfying:

(1) E(|Xt|) <∞.
(2) Xt is Ft measurable ∀t ∈ I.
(3) E(Xt|Fs) = Xs ∀s, t ∈ I s ≤ t.

Example 10.9. The BMd as defined at definition 10.2 is a martingale with respect
to any admissible filtration as defined at 10.6 ([3, p. 49 Ex. 5.2]).

Using the two definitions above, we can define the stochastic integral for simple
processes.

Definition 10.10. Let M be a continuous L2 martingale and f ∈ ET . Then we
define the stochastic integral as follows:

T∫
0

f(s)dMs =
n∑

j=1

f(sj−1)(M(sj)−M(sj−1))

where 0 = s0 ≤ s1 ≤ ... ≤ sn = T .

Similar to the definition the integral over a positive measurable function, the
stochastic integral is defined as a limit of integrals of simple processes.

Definition 10.11. Let (Bt)t≥0 be a BM1 and let f ∈ L2
T . Then the stochastic

integral is defined as:
t∫
0

f(s)dBs = lim
n→∞

t∫
0

fn(s)dBs
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where (fn)n≥1 ⊆ ET such that lim
n→∞

fn = f in L2(λT ⊗ P ).

Remark 10.12. ([3, p. 216 Ex. 14.15]) Not all intuition from (Riemann) integrals
in R carries over to stochastic integrals. For instance, in case that (Bt)t≥0 is a BM1

and T > 0, then:
T∫
0

BtdBt =
1
2 (B

2
T − T ).

Using all the tools defined above, we can finally formulate what it means to be
solution of (10.2).

Definition 10.13. Let (Bt,Ft) be a BMd with admissible filtration Ft, where for
each t: Bt : (Ω,Ft, P ) → (Rd,B(Rd)).
Let b : [0,∞)× Rn → Rn and σ : [0,∞)× Rn → Rn×d be measurable functions.
A solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

with initial condition X0 = ξ is a d-dimensional stochastic process (Xt)t≥0 where
for each t it holds that the restricted map:
X : [0, t]× Ω → Rd where (s, ω) 7→ Xs(ω) is B([0, t])⊗ Ft measurable ∀t ≥ 0.
It furthermore holds that Xt(ω) = (X1

t (ω), .., X
d
t (ω)) ∈ Rd has that:

Xj
t = ξj +

t∫
0

bj(s,Xs)ds+
d∑

k=1

t∫
0

σjk(s,Xs)dB
k
s ∀j = 1, .., d.

We usually use the following short-hand notation for the condition above:

Xt = ξ +
t∫
0

b(s,Xs)ds+
t∫
0

σ(s,Xs)dBs.

Remark 10.14. The measurability condition on the restricted map on Xt is called
progressive measurability.

In the remainder of this text, I will use the following notation for b and σ as
defined in definition 10.13:

|b|2 =

n∑
j=1

b2j

|σ|2 =

n∑
j=1

d∑
k=1

σ2
jk.

It can also be shown, using Cauchy-Schwarz, that for a matrix-vector multiplication
σx (x ∈ Rd) we have the following relation:

|σx| =
n∑

j=1

(

d∑
i=1

(xiσji)
2)

≤
n∑

j=1

(

d∑
i=1

x2i )(

d∑
i=1

σ2
ji)

=

d∑
i=1

x2i

n∑
j=1

d∑
i=1

σ2
ji = |σ| · |x|.
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Now that we have formally defined SDEs, one might be interested in techniques on
how to solve them. As the techniques are beyond the scope of this thesis, we will
not treat them here. But to give one an intuition on what these solutions might
look like, two SDEs and their solutions will be compared to their corresponding
(non-random) ODE and their solutions.

Example 10.15. [3, p. 275 Ex. 18.3] Consider the following one dimensional SDE
(where we assume β(t) and δ(t) are integrable):

dXt = β(t)Xtdt+ δ(t)XtdBt.

The solution to this SDE is:

Xt = X0 exp(
t∫
0

β(s)− 1
2 (δ(s))

2ds) +
∫ t

0
δ(s)dBs.

The non-random ODE corresponding to this SDE is:

x′(t) = β(t)x(t)

which has as the solution

x(t) = x0 exp(
t∫
0

β(s)ds).

Example 10.16. (Langevin equation) The following SDE:

dXt = −aXtdt+ bdWt (a, b ∈ R)
has the corresponding solution:

Xt = exp(−at)X0 + b
t∫
0

exp(−a(t− s))dWs

The corresponding ODE:

x′(t) = −ax(t)
has as the solution:

x(t) = x0 exp(−at).

What one might readily notice in the examples above, is that the solutions to
the corresponding ODE is always contained in solution to the SDE. Hence, one
can interpret the solutions to SDEs as the solutions to the ODE ”plus a random
component”.
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10.2. Existence and uniqueness SDE. Main questions surrounding differential
equation are always related to the existence and uniqueness of solutions. For the
case of SDEs, for the case that σ ≡ 0 we have an ODE about which we have a lot of
information regarding existence and uniqueness available to us in case we assume
Lipschitz conditions on the coefficients.
Therefore, it seems natural to extend these Lipschitz conditions to general cases of
SDEs. When we require the coefficients of our SDEs to be Lipschitz we will mean
the following:

n∑
j=1

|bj(t, x)− bj(t, y)|2 +
n∑

j=1

d∑
k=1

|σjk(t, x)− σjk(t, y)|2 ≤ L2|x− y|2(10.3)

∀x, y ∈ Rn, t ∈ [0, T ], L = LT ∀T > 0.
When we assume a linear growth on the coefficients, it is meant that:

n∑
j=1

|bj(t, x)|2 +
n∑

j=1

d∑
k=1

|σjk(t, x)|2 ≤M2(1 + |x|)2(10.4)

for x ∈ Rn, t ∈ [0, T ] and M =MT ∀T > 0.
Before we can state and prove the theorems regarding existence and uniqueness, we
will first establish a bound the expected difference between two processes satisfying
(10.2). For the proof of the bound on the processes (and other proofs in this section)
we will need to establish a few inequalities from number theory, which are given in
the remark below.

Remark 10.17. Consider f : R → R, f(x) = |x|k, k ≥ 1. Then as f is convex, the
following holds:

|1
2
a+

1

2
b|k ≤ 1

2
|a|k +

1

2
|b|k ⇐⇒

2−k|a+ b|k ≤ 2−1|a|k + 2−1|b|k ⇐⇒

|a+ b|k ≤ 2k−1|a|k + 2k−1|b|k

We can extend this idea to the sum of three elements as follows. Define b′ = b
2 , c

′ =
c
2 , then:

|1
3
a+

1

3
b+

1

3
c|k ≤ 1

3
|a|k +

2

3
|b′ + c′|k

≤ 1

3
|a|k +

2

3
(2k−1|b′|k + 2k−1|c′|k)

Hence obtaining the following inequality:

|a+ b+ c|k ≤ 3k−1|a|k + 3k−1|b|k + 3k−1|c|k

This argument can be extended to sums of an arbitrary amount of numbers (count-
able) using induction. In particular, we see that the following two inequalities hold
(k = 2):

(1) |a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2
(2) |a+ b|2 ≤ 2|a|2 + 2|b|2.

For the proof of the bound, we will also need an inequality from Stochastic
Integral Theory. The more general statement and its proof can be found at [3, p.
213 Thm. 14.13d].
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Corollary 10.18. Assuming the Lipschitz condition 10.3, it holds that for σ as
defined at definition 10.13:

E(sup
t≤T

|
t∫
0

σ(s,Xs)− σ(s, Ys)dBs|2) ≤ 4
T∫
0

E(|σ(s,Xs)− σ(s, Ys)|2)ds.

The proof of the corollary below is a worked out version of the one found at [3,
p. 280 Thm. 18.9].

Corollary 10.19. (Stability) Let (Bt,Ft)t≥0 be a BMd and assume that the coef-
ficients b : [0,∞)×Rn → Rn and σ : [0,∞)×Rn → Rn×d of (10.2) satisfy (10.3).
If (Xt)t≥0 and (Yt)t≥0 are any two solutions of (10.2) with F0 measurable initial
condition

X0 = ξ ∈ L2(P ) and Y0 = ν ∈ L2(P )

then:

E(sup
t≤T

(|Xt − Yt|2)) ≤ 3 exp (3L2(T + 4)T )E(|ξ − ν|2).

Proof. It holds that

Xt − Yt = (ξ − ν) +
t∫
0

(b(s,Xs)− b(s, Ys)ds+
t∫
0

σ(s,Xs)− σ(s, Ys)dBs

by the second to last given equation of remark 10.17:

E(sup
t≤T

|Xt − Yt|2)

= E(sup
t≤T

|(ξ − ν) +

t∫
0

b(s,Xs)− b(s, Ys)ds+

t∫
0

σ(s,Xs)− σ(s, Ys)dBs|2)

≤ E(sup
t≤T

(3(ξ − ν)2 + 3(

t∫
0

b(s,Xs)− b(s, Ys)ds)
2 + 3(

t∫
0

σ(s,Xs)− σ(s, Ys)dBs)
2)

= 3E((ξ − ν)2) + 3E((
T∫

0

b(s,Xs)− b(s, Ys)ds)
2) + 3E((

T∫
0

σ(s,Xs)− σ(s, Ys)dBs)
2)

As it holds that:

(

T∫
0

|b(s,Xs)− b(s, Ys) · 1|ds)2
C.S.
≤

T∫
0

|b(s,Xs)− b(s, Ys)|2ds
T∫

0

12ds

= T

T∫
0

|b(s,Xs)− b(s, Ys)|2ds.

we obtain:

E(sup
t≤T

|
t∫

0

b(s,Xs)− b(s, Ys)ds|2)

≤ E(sup
t≤T

(

∫ t

0

|b(s,Xs − b(s, Ys)|ds)2)



51

= E((
T∫

0

|b(s,Xs)− b(s, Ys) · 1|ds)2)

≤ E(
T∫

0

|b(s,Xs)− b(s, Ys)|2ds)T (Cauchy-Schwarz)

≤ L2T (

T∫
0

E(|Xs − Ys|2)ds (Lipschitz)

For σ it holds:

E(sup
t≤T

|
t∫

0

σ(s,Xs)− σ(s, Ys)dBs|2)

≤ 4

T∫
0

E(|σ(s,Xs)− σ(s, Ys)|2)ds (Cor. 10.18)

≤ 4L2

T∫
0

E(|Xs − Ys|2)ds.

Hence we obtain that:

E(sup
t≤T

|Xt − Yt|2) ≤ 3E(|ξ − ν|2) + 3L2(T + 4)

T∫
0

E(|Xs − Ys|2)ds

≤ 3E(|ξ − ν|2) + 3L2(T + 4)

T∫
0

E(sup
r≤s

|Xr − Yr|2)ds.

Now Grönwall’s inequality (see Appendix B) with u(T ) = E(sup
t≤T

|Xt −Yt|2), a(s) =

3E(|ξ − ν|2), b(s) = 3L2(T + 4) yields:

E(sup
t≤T

|Xt − Yt|2) ≤ 3 exp(3L2(T + 4)T )E(|ξ − ν|2).

□

Using the established bound on two solutions, we can now prove uniqueness.
The proof below is the one found at [3, p. 281 Cor. 18.10] with an extra detail
added.

Theorem 10.20. (Uniqueness) Let (Bt,Ft) be a BMd and assume b : [0,∞) ×
Rn → Rn and σ : [0,∞) × Rn → Rn×d as defined at definition 10.13 satisfies
the Lipschitz condition 10.3. Then for any two solutions (Xt)t≥0,(Yt)t≥0 with F0

measurable condition X0 = Y0 = ξ ∈ L2(P ) it holds that:

P (∀t ≥ 0 : Xt = Yt) = 1.

Proof. The bound at corollary 10.19 shows that:

E(sup
t≤n

|Xt − Yt|2) ≤ 0 ∀n ≥ 0.
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Hence we have that:

P (∀t ∈ [0, n] : Xt = Yt) = 1 ∀n ≥ 1.

Define An = {∀t ∈ [0, n] : Xt = Yt}. Then as (An)n≥1 is non-increasing:

P (∀t ≥ 0 : Xt = Yt) = P (

∞⋂
n=1

An)

= lim
n→∞

P (An) = 1.

□

The proof of the following theorem, which shows existence of an unique solution
to our SDE under the Lipschitz and linear growth condition is based on the proof
seen at [3, p. 282 Thm. 18.11].

Theorem 10.21. (Existence) Let (Bt,Ft) be a BMd and assume coefficients b :
[0,∞)× Rn → Rn and σ : [0,∞)× Rn → Rn as defined at definition 10.13 satisfy
Lipschitz condition (10.3) and linear growth condition (10.4). Then for every F0

measurable initial condition X0 = ξ ∈ L2(P ) there exists a unique solution (Xt)t≥0

of equation (10.2) that satisfies:

E(sup
t≤T

|Xs|2) ≤ kT E((1 + |ξ|)2) ∀T > 0.

Proof. Just as for ODEs, we will use a Picard iteration scheme. Define

X0(t) = ξ

Xn+1(t) = ξ +
t∫
0

σ(s,Xn(s))dBs +
t∫
0

b(s,Xn(s))ds.

(1) By the last inequality given at remark 10.17, we see that:

|Xn+1(t)− ξ| = |
t∫

0

σ(s,Xn(s))dBs +

t∫
0

b(s,Xn(s))ds|2

≤ 2|
t∫

0

σ(s,Xn(s)|2 + 2|
t∫

0

b(s,Xn(s)ds|2.

Fully analogous to the computations in the proof of corollary 10.19, where
we now set Xs = Xn(s), omit the Y terms and use the linear growth
condition (10.4) instead of Lipschitz, we obtain:

E(sup
t≤T

(|Xn+1(t)− ξ|)2) ≤ 2M2(T + 4)

T∫
0

E((1 + |Xn(s)|)2)ds

≤ 2M2(T + 4)

T∫
0

E(sup
s≤T

(1 + |Xn(s)|)2)ds

= 2M2(T + 4)

T∫
0

1dsE(sup
s≤T

(1 + |Xn(s)|)2)
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= 2M2(T + 4)T E(sup
s≤T

(1 + |Xn(s)|)2).

(2) Similar to (1), we have:

|Xn+1(t)−Xn(t)| ≤2|
t∫

0

b(s,Xn(s))− b(s,Xn−1(s))ds|2+

2|
t∫

0

σ(s,Xn(s))− σ(s,Xn−1(s)dBs|2

Analogous to the computations of the proof of corollary 10.19 usingX = Xn

and Y = Xn−1 we see that:

E(sup
t≤T

|Xn+1(t)−Xn(t)|2) ≤ 2L2(T + 4)

T∫
0

E(|Xn(s)−Xn−1(s)|2)ds.(10.5)

Define:

ϕn(T ) = E(sup
t≤T

|Xn+1(t)−Xn(t)|2) and cT = 2L2(T + 4).

Then we can establish using induction that ∀n ≥ 0:

ϕn(T ) ≤ cnT
Tn

n! ϕ0(T )

Base case: For n = 0, result follows immediately.

Induction step: Suppose ϕk−1(s) ≤ ck−1
s

sk−1

(k−1)!ϕ0(s) (s ∈ [0, T ]) holds.

Then:

ϕk(T ) ≤ 2L2(T + 4)

T∫
0

E(|Xk(s)−Xk−1(s)|2)ds (10.5)

≤ 2L2(T + 4)

T∫
0

E(sup
w≤s

(|Xk(s)−Xk−1(s)|2))ds

≤ 2L2(T + 4)

T∫
0

ϕk−1(s)ds

≤ cT

T∫
0

ck−1
s

sk−1

(k − 1)!
ϕ0(s)ds (Induction assumption)

≤ ckT

T∫
0

sk−1

(k − 1)!
dsϕ0(T ) (ϕ0, c

k−1
s increase in s)

= ckT
T k

(k)!
ϕ0(T ).

As the final estimate from the first part of the proof (1), for n = 0, is
equivalent to:

ϕ0(t) = E(sup
s≤T

|X1(t)− ξ|2) ≤ 2M2(T + 4)T E((1 + |ξ|)2)
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we obtain:
∞∑

n=0

(E(sup
s≤T

|Xn+1 −Xn|2))
1
2 ≤

∞∑
n=0

(cnT
Tn

n!
ϕ0(T ))

1
2

≤
∞∑

n=0

(cnT
Tn

n!
2M2(T + 4)T E((1 + |ξ|)2)) 1

2

= E((1 + |ξ|)2) 1
2

∞∑
n=0

(cnT
Tn

n!
2M2(T + 4)T )

1
2

= E((1 + |ξ|)2) 1
2C(L,M, T )

where CT = C(L,M, T ) =
∞∑

n=0
(cnT

Tn

n! 2M
2(T + 4)T )

1
2 and this sum con-

verges for any T > 0.
(3) Let n ≥ m. By the triangle-inequality for the sup-norm it holds that:

sup
s≤T

|Xn(s)−Xm(s)| = sup
s≤T

|
n∑

j=m+1

Xj −Xj−1| ≤
n∑

j=m+1

sup
s≤T

|Xj −Xj−1|.

Now applying the L2(P )-norm to the last inequality above gives:

E(sup
s≤T

|Xn −Xm|2) 1
2 = E((sup

s≤T
|

n∑
j=m+1

Xj −Xj−1|)2)
1
2

≤
n∑

j=m+1

E((sup
s≤T

|Xj −Xj−1|)2)
1
2

≤
∞∑

j=m+1

E((sup
s≤T

|Xj −Xj−1|)2)
1
2 .

Therefore, as the right-hand side is the tail of a convergent series, (Xn)n≥0

is a Cauchy sequence in L2 and we denote its limit by X. The above
inequality shows that there exists a sequence m(k) such that:

lim
k→∞

|X(s)−Xm(k)(s)| =a.e. 0.

Since Xm(k) is continuous and adapted, so is X. Moreover if we set m = 0
and use that Xm(k) →.a.e X we have that:

E(sup
s≤T

|X(s)− ξ|2) 1
2 ≤

∞∑
n=0

E(sup
t≤T

|Xn+1 −Xn|2)
1
2

≤ CT (E((1 + |ξ|)2)) 1
2 .

by the inequalities obtained during this proof. This inequality gives us the
desired inequality from the theorem with kT = (CT +1)2. Indeed, first note
that (using reverse triangle inequality for the sup-norm):

sup
s≤T

|X(s)− ξ| ≥ |sup
s≤T

|X(s)| − |ξ||.

Taking the L2 norm on both sides of the inequality yields:

E((sup
s≤T

|Xs| − |ξ|)2) ≤ C2
T E((1 + |ξ|)2)
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Now using the reverse triangle inequality for the L2 gives us:

(E((sup
s≤T

|Xs| − |ξ|)2) 1
2 ≥ |(E(sup

t≤T
|Xs|2))

1
2 − (E(|ξ|2)) 1

2 |

≥ (E(sup
s≤T

|Xs|2))
1
2 − (E(|ξ|2)) 1

2 .

Hence we obtain:

(E(sup
s≤T

|Xs|2))
1
2 ≤ (C2

T (E((1 + |ξ|)2))) 1
2 + (E(|ξ|2)) 1

2

≤ ((CT + 1)E((1 + |ξ|))2) 1
2 .

□

10.3. Localization. In the previous section we have shown that under a global
Lipschitz (with respect to x, y ∈ Rn) and linear growth condition, we have exis-
tence and uniqueness of solutions. In this section, we will establish that we can
weaken conditions and still obtain uniqueness and existence. We will also show
that we can establish uniqueness of solutions until a certain stopping time which
will be formally defined below.

Definition 10.22. Let (Ft)t≥0 be a filtration. A random time τ : Ω → [0,∞] is
called a stopping time if

{τ ≤ t} ∈ Ft ∀t ≥ 0.

Stopping times are useful if we want to know when a process (Xt):

• Leaves or enters a set for the first time.
• Hit its maximum.
• Returns to 0.

Example 10.23. ([3, p. 53 Section 5.2]) Examples of stopping times with respect to
process a (Xt) are entry and hitting times into a set A ∈ B(Rd):

• Entry time: τ̊A = inf{t ≥ 0 : Xt ∈ A}
• Hitting time: τA = inf{t > 0 : Xt ∈ A}

The first lemma shows that under certain conditions we obtain that the coordinates
of Xt are equal a.s. until a certain stopping time.

Lemma 10.24. [3, p. 286 Lemma 18.15] Let (Bt,F)t≥0 be a BMd. Consider the
SDEs

dXj
t = bj(t,X

j
t )dt+ σj(t,X

j
t )dBt, j = 1, 2

with initial condition: X1
0 = X2

0 = ξ ∈ L2(P ). Assume ξ is F0 measurable and that
the coefficients bj : [0,∞) × Rn → Rn and σj : [0,∞) × Rn → Rn satisfy (10.3)
∀x, y ∈ Rn with global Lipschitz constant L. If for some T > 0, R > 0:

b1|[0,T ]×B(0,R) = b2|[0,T ]×B(0,R) and

σ1|[0,T ]×B(0,R) = σ2|[0,T ]×B(0,R)

(where B(0, R) is a ball with around 0 with radius R) we have for stopping times

τj = inf{t ≥ 0 : |Xj
t − ξ| ≥ R} ∧ T that it holds that:

P (τ1 = τ2) = 1 and P ( sup
s≤τ1

|X1
s −X2

s | = 0) = 1.
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Proof. Observe that:

X1
t∧τ1 −X1

t∧τ2 =

t∧τ1∫
0

b1(s,X
1
s )− b2(s,X

2
s )ds+

t∧τ1∫
0

(σ1(s,X
1
s )− σ2(s,X

2
s )dBs

=

t∧τ1∫
0

b2(s,X
1
s )− b2(s,X

2
s )ds+

t∧τ1∫
0

σ2(s,X
1
s )− σ2(s,X

2
s )dBs

where it was used that by our assumption (same holds for σ):

b1(s,X
1
s )− b2(s,X

2
s ) = b1(s,X

1
s )− b2(s,X

1
s ) + b2(s,X

1
s )− b2(s,X

2
s )

= b2(s,X
1
s )− b2(s,X

2
s ).

Analogous to the steps seen in the proof of corollary 10.19 where we in this case
use Xt = X1

t∧τ1 , Yt = X2
t∧τ1 together with remark 10.17 to obtain:

E(sup
s≤T

|X1
t∧τ1 −X2

t∧τ1 |
2) ≤ 2L2(T + 4)

T∫
0

E(sup
r≤s

|X1
r∧τ1 −X2

r∧τ1 |
2)ds

Grönwall’s inequality with a(s) = 0, b(s) = 2L2(T + 4) yields:

E(sup
r≤s

|X1
r∧τ1 −X2

r∧τ1 |
2) = 0 ∀s ≤ T.

From this it follows that:

X1
•∧τ1 =a.s. X

2
•∧τ1

in particular τ1 ≤a.s. τ2. Reversing the roll of X1 and X2 finishes the proof. □

The following theorem shows that we can actually weaken the Lipschitz condition
(10.3) by substituting the restriction ∀x, y ∈ R to ∀x, y ∈ K where K is a compact
subset of Rn. The proof of this theorem can be found at [3, p. 287 Thm 18.17].

Theorem 10.25. Let (Bt,Ft)t≥0 be a BMd and assume that the coefficients b :
[0,∞) × Rn and σ : [0,∞) × Rn → Rn×d of (10.2) satisfy linear growth (10.4)
∀x, y ∈ Rn and the Lipschitz condition 10.3 ∀x, y ∈ K for every compact set K ⊂
Rn with local Lipschitz constants LT,K . For every F0 measurable initial condition
X0 = ξ ∈ L2(p) there exists an unique solution (Xt)t≥0 which satisfies:

E(sup
s≤T

|Xs|2) ≤ kT E((1 + |ξ|)2) ∀T > 0.

Thus far we have only talked about existence and uniqueness of solutions for
all t ≥ 0. It turns out that if we assume a local Lipschitz condition [12, p. 245
(34.5.2)] (instead of a Lipschitz condition as defined at (10.3)) we can still obtain
uniqueness and existence of solutions but until a certain maximal stopping time.
The following theorem makes the claim about existence of solutions until a maximal
stopping time more precise:

Theorem 10.26. [12, p. 246 Thm. 34.7] For a SDE as defined at definition 10.13
together with the local Lipschitz condition [12, p. 245 (34.5.2)], there exists a P
a.s. uniquely defined stopping time τ and an unique P a.s. process X on [0, τ ] (i.e.
Xt∧τ (ω) solves the SDE ∀t > 0) for which hold:

(1) X is a solution of our SDE on [0, τ ].
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(2) For all stopping times τ ′ for which there exists a process X ′ which is a
solution on [0, τ ′] we have that [0, τ ′] ⊆ [0, τ ] and X = X ′ on [0, τ ′].

The proof of this theorem makes use of the following two lemma’s.

Lemma 10.27. [12, p. 247 Lemma 34.8] Let X,Y be two solutions of (10.2) on
the stochastic interval [0, τ ′]. Then X =a.s. Y on [0, τ ′].

Remark 10.28. The proof of this lemma 10.27 can be constructed in a similar way
as the proof of lemma 10.24.

Lemma 10.29. [12, p. 248 Lemma 34.8] Let X be a solution of (10.2) on [0, τ ]
and X ′ a solution on [0, τ ′]. Then there exists a solution on [0,max(τ, τ ′)].

Proof. Because of lemma 10.27, we have that X and X ′ coincide on [0,min(τ, τ ′)].
Therefore it holds that the process Y defined on [0,max(τ, τ ′)] by

Y (ω) =

{
X(ω) ω ∈ [0, τ ]

X ′(ω) ω ∈ [0, τ ′]

is a solution of (10.2). □

Now consider the following set of stopping times:

Ψ = {τ : ∃ process X such that (X, τ) is a solution of (10.2) }.
As τ is a random variable on a probability space, is non-negative and Ψ is non-
empty: we have that ess supΨ exists by theorem 9.10. As Ψ is also closed under
pairwise maximization by lemma 10.29 (and the fact that the maximum of two stop-
ping times is again a stopping time ([3, p. 341 A.12b])) there exists a non-decreasing
sequence τn such that τn →a.s. τ (n → ∞) and to each such τn corresponds a so-
lution Xn. It is clear that τ corresponds to the maximum stopping time solution
and that Xn converges a.s. to the X as described in theorem 10.26.
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Appendix A. Topological spaces

As the basics of general topology are not taught in any of the non-elective bach-
elor of science courses at the TU Delft, I will briefly state some concepts from
topology that I frequently used in the thesis.

Definition A.1. (Topology) A topological space is a set M with a collection T of
subsets U ⊆ M . We call a subset U ⊆ M open if it is in T . The open sets are
required to satisfy the following rules:

(1) ∅,M ∈ T .
(2) Unions of open sets are open (possibly uncountable).
(3) Finite intersections of open sets are open.

Definition A.2. Let M be a topological space. An open neighbourhood of x ∈ M
is an open set U ⊆M that contains x.

Definition A.3. (Continuity) Let M,N be topological spaces. Then the map ϕ :
M → N is called continuous if ϕ−1(U) is open in M for any open set U of N .

Definition A.4. (Topology on metric spaces) For a metric space (M,d) we define
the topology Td by declaring that U ⊆M is open if ∀x ∈ U ∃ϵ > 0:

Bϵ(x) = {y ∈M : d(x, y) < ϵ} ⊆ U .

Definition A.5. (Subspace topology) Let M be a topological space. Let Σ ⊆ M .
Then the subspace topology of Σ is the collection of sets U ∩ Σ, where U ⊆ M is
open in M.

Definition A.6. (Product topology) If M,N are topological spaces we define a
subset of M ×N to be open if it is the union of sets of the form U × V where U is
open in M and V open in N .

Remark A.7. Needless to say that the topology on metric spaces, subspace topology
and product topology are indeed topologies by definition A.1.

Definition A.8. (Convergence) A sequence (xn)n≥1 of points in a topological space
M converges to x ∈M if for every open neighbourhood U of x there exists a N > 0
such that: xn ∈ U ∀n ≥ N .

Definition A.9. (Hausdorff spaces) A topological space M is called Hausdorff if
for any two distinct points x, y ∈ M there exists an open neighbourhood Ux of x
and Uy of y such that: Ux ∩ Uy = ∅.
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Appendix B. Grönwall’s inequality

In the section on Stochastic Differential Equations, a frequently used result is
Grönwall’s inequality for measurable functions. As this form of Grönwall’s inequal-
ity has not been stated in any of the non-elective courses, I will state it here for the
sake of completeness. The proof can be found at [3, p. 360 Thm. A.43].

Theorem B.1. Let u, a, b : [0,∞) → [0,∞) be measurable functions satisfying:

u(t) ≤ a(t) +
t∫
0

b(s)u(s)ds ∀t ≥ 0.

Then the following holds:

u(t) ≤ a(t) +
t∫
0

a(s)b(s) exp(
∫ t

s
b(r)dr)ds ∀t ≥ 0
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Appendix C. Radon-Nikodym

The Radon-Nikodym theorem relating to the existence of the Radon-Nikodym
derivative has a few different formulations which lead in the end to the derivative
taking only finite or also infinite values. In my thesis I used two different formula-
tions of Radon-Nikodym which I will state here.

Theorem C.1. [14] Let (X,A, µ) be a σ-finite measure space (and µ is a positive
measure). Let ν be another measure on (X,A) where ν is absolutely continuous
with µ. Then there exists a measurable function f : (X,A) → [0,∞] such that:

∀A ∈ A : µ(A) =
∫
1Afdν.

Remark C.2. In case we assume ν is σ-finite as well, the measurable function f will
only take finite values. ([15]).
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