

Delft University of Technology

PUMA
Deep Metric Imitation Learning for Stable Motion Primitives
Pérez-Dattari, Rodrigo; Della Santina, Cosimo; Kober, Jens

DOI
10.1002/aisy.202400144
Publication date
2024
Document Version
Final published version
Published in
Advanced Intelligent Systems

Citation (APA)
Pérez-Dattari, R., Della Santina, C., & Kober, J. (2024). PUMA: Deep Metric Imitation Learning for Stable
Motion Primitives. Advanced Intelligent Systems, Article 2400144. https://doi.org/10.1002/aisy.202400144

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/aisy.202400144
https://doi.org/10.1002/aisy.202400144

PUMA: Deep Metric Imitation Learning for Stable Motion
Primitives

Rodrigo Pérez-Dattari,* Cosimo Della Santina, and Jens Kober

1. Introduction

Imitation learning (IL) provides a powerful framework for the
intuitive programming of robotic systems. Its strength lies in
its ability to leverage human-like learning methodologies, such
as demonstrations and corrections, making it accessible to non-
robotics experts. This attribute significantly reduces the resour-
ces needed to build robotic systems. However, the data-driven
nature of these methodologies presents a challenge: providing
guarantees about the learned behaviors.

In the context of reaching motions, it is crucial for the robot’s
motions to consistently reach the intended target, irrespective of

the robot’s initial conditions. Thus, model-
ing motions as dynamical systems proves
beneficial. This approach turns the prob-
lem into a question of ensuring global
asymptotic stability (or stability, for short)
at the goal, and tools from dynamical sys-
tem theory can then be applied to guaran-
tee this property.

Numerous methods have been proposed
to ensure stability in motions represented
by dynamical systems. However, they often
exhibit at least one of the following limita-
tions: 1) constraining the structure of their
function approximators and/or 2) being
designed with the assumption that the
robot’s state space is Euclidean. This can
be elaborated as follows.

Constrained function approximators. To
ensure stability guarantees, methods often
constrain the structure of their function
approximators. For instance, some
approaches necessitate invertibility,[1–3]

while others require positive or negative
definiteness.[4–6] However, these methods
do not enable the full exploitation of mod-

ern deep neural network (DNN) architectures, as these con-
straints are not typically present in DNNs. This limitation
hinders their broader application in more complex models,
where integrating these constraints is challenging.
Furthermore, inherently constraining function approximators
can overly restrict the range of solutions to which they can con-
verge, resulting in less flexible models than necessary. This leads
to suboptimal IL capabilities. In our context, this problem is
known as the stability versus accuracy dilemma.[7]

Euclidean assumption. Learned motions must integrate with
the geometry of the space used to represent a robot’s state. For
example, the end-effector of a manipulator should always reach
the intended target in both position and orientation space.
However, orientations are often represented in non-Euclidean
spaces, such as SOð3Þ or S3. This is because Euclidean represen-
tations like Euler angles may not always provide a continuous
description of motions that are inherently continuous[8] (This
issue stems from singularities and nonunique representations).
Such continuity is often a requirement for motions modeled as
dynamical systems. Furthermore, the generalization capabilities
of function approximations are compromised by noncontinuous
representations. To enable proper generalization, states that are
close in the real world should be represented as closely related in
the function approximator’s input, that is, the state space
representation.

R. Pérez-Dattari, C. Della Santina, J. Kober
Department of Cognitive Robotics
Delft University of Technology
Mekelweg 2, 2628 CD Delft, The Netherlands
E-mail: r.j.perezdattari@tudelft.nl

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202400144.

© 2024 The Author(s). Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/aisy.202400144

Imitation learning (IL) facilitates intuitive robotic programming. However,
ensuring the reliability of learned behaviors remains a challenge. In the context of
reaching motions, a robot should consistently reach its goal, regardless of its
initial conditions. To meet this requirement, IL methods often employ specialized
function approximators that guarantee this property by construction. Although
effective, these approaches come with some limitations: 1) they are typically
restricted in the range of motions they can model, resulting in suboptimal IL
capabilities, and 2) they require explicit extensions to account for the geometry of
motions that consider orientations. To address these challenges, we introduce a
novel stability loss function that does not constrain the function approximator’s
architecture and enables learning policies that yield accurate results.
Furthermore, it is not restricted to a specific state space geometry; therefore, it
can easily incorporate the geometry of the robot’s state space. Proof of the
stability properties induced by this loss is provided and the method is empirically
validated in various settings. These settings include Euclidean and non-Euclidean
state spaces, as well as first-order and second-order motions, both in simulation
and with real robots. More details about the experimental results can be found at
https://youtu.be/ZWKLGntCI6w.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (1 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:r.j.perezdattari@tudelft.nl
https://doi.org/10.1002/aisy.202400144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faisy.202400144&domain=pdf&date_stamp=2024-10-14

Nevertheless, previous methods for stable motion generation
have been initially designed under the assumption that the state
space is Euclidean.[2–4,9] Consequently, some have later been
explicitly adapted to account for the geometry of motions that
consider orientations,[10–12] resulting in rather convoluted learn-
ing frameworks.

In this work, we present a DNN framework capable of learning
accurate, stable motions in state spaces with arbitrary geometries
without constraining the DNN’s architecture. To accomplish
this, we introduce a novel loss function that repurposes the triplet
loss, commonly used in deep metric learning literature.[13,14] We
prove that this loss imposes conditions on the DNN’s latent space
that enforce the learned dynamical system to have a globally
asymptotically stable equilibrium at the motion’s goal state
(see Figure 1). To account for the geometry of the state space,
it is sufficient to consider its corresponding metric during the
computation of the loss, the choice of which depends on the spe-
cific task at hand. We validate our method in various settings,
including Euclidean, non-Euclidean, first-order, and second-
order motions. Additionally, real-world experiments controlling
the six-dimensional pose (x–y–z position and unit quaternion ori-
entation) of a robot manipulator’s end effector demonstrate the
method’s practical applicability and potential.

The rest of this paper offers a thorough discussion of our
developments. Following a review of the relevant literature, we
delve into foundational concepts and problem formulation.
We then present the details of our methodology, provide proof
regarding the stability of the learned motion, and discuss the
integration of the triplet loss function within the context of
non-Euclidean state representations. We validate our approach

through several experiments and conclude by considering poten-
tial directions for future research based on our findings.

2. Related Works

Three categories of works are relevant to this paper. First, there
are papers that focus on learning stable motions, assuming these
motions occur in Euclidean state spaces. Second, others explore
learning motions in non-Euclidean state spaces, but do not con-
sider the stability of the learned motions. Finally, a third set of
papers addresses both learning motions in non-Euclidean state
spaces and their stability. Importantly, in every case, works use
either time-varying (non-autonomous) or time-invariant (auton-
omous) dynamical systems for motionmodeling. In time-varying
systems, evolution explicitly depends on time (or a phase).
Conversely, time-invariant systems do not directly depend on
time; instead, they rely on their time-varying input (i.e., the state
of the system). The property of a system being time invariant or
not dictates the strategies we can use to ensure its stability.
Thus, making a distinction between these systems is important.
Notably, both types of formulations have been shown to be com-
plementary in the context of IL.[15,16]

This work focuses on time-invariant dynamical systems.
Consequently, although we consider both methodologies for
motion learning, we delve deeper into the literature on time-
invariant systems. Furthermore, while we concentrate on
methods that ensure asymptotic stability, we acknowledge that
there are studies imposing other conditions, such as via-point
conditioning,[17,18] which can be significantly relevant in some
robotic contexts.

2.1. Stability in Euclidean State Spaces

Regarding time-varying dynamical systems, a seminal work in IL
that addresses the problem of learning stable motions introduces
Dynamical Movement Primitives (DMPs).[19] DMPs take advan-
tage of the time dependency (via the phase of the canonical
system) of the dynamical system to make it evolve into a simple
and well-understood system as time goes to infinity. The simple
system is designed to be stable by construction. As a conse-
quence, the stability of the learned motions can be guaranteed.
This concept has been extended in multiple ways, for instance
through probabilistic formulations,[20,21] or adapted to the con-
text of DNNs.[22–24]

Conversely, IL approaches based on time-invariant dynamical
systems often constrain the function approximator used to model
the dynamical systems. Such constraints ensure stability by
construction. One seminal work introduces the Stable Estimator
of Dynamical Systems (SEDS).[4] This approach imposes con-
straints on the structure of a Gaussian Mixture Regression
(GMR) such that the conditions for Lyapunov stability are always
met. Multiple extensions of SEDS have been proposed, for
instance by using physically consistent priors,[25] contraction
theory,[26] or diffeomorphisms.[27]

Other works propose explicitly learning Lyapunov functions
that are consistent with the demonstrations. These functions
are then used to correct the transitions learned by the dynamical
systems, ensuring that they are always stable according to the

Figure 1. Motion learned using the proposed framework. The blue trajec-
tory in the task space T demonstrates the evolution of the robot's end
effector state xt when represented in a spherical manifold. The evolution
of this trajectory is governed by the dynamical system ẋ t ¼ ϕθðψθðxtÞÞ,
depicted as a vector field of red arrows in the remaining of the space.
Through deep metric learning, this system is stabilized by deriving a sim-
pler representation in the latent space ℒ.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (2 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

learned Lyapunov functions.[5,6,28] Moreover, some papers have
employed concepts such as contraction metrics[29,30] and
diffeomorphisms[1–3,31] to impose stability, in the sense of
Lyapunov, in time-invariant dynamical systems.

Understandably, all of these methods constrain some part of
their learning framework to ensure stability. From one perspec-
tive, this is advantageous as it guarantees stability. However, in
many cases, this comes at the expense of reduced accuracy in the
learned motions. Notably, some recent methods have managed
to mitigate this loss in accuracy.[2,3] Nevertheless, they are still
limited in terms of the family of models that can be used with
these frameworks, which harms their scalability.

In previous work,[9] we addressed this issue by employing
tools from the deep metric learning literature.[14] There, we intro-
duced CONDOR, which uses a contrastive loss to enforce stabil-
ity in learned motions through the optimization process of a
DNN. This approach proved effective in learning stable, accurate,
and scalable motions from human demonstrations. However,
this method presents two important limitations. First, it requires
the design of a stable and well-understood system for computing
the contrastive loss (referred to as f ℒ in Section 3.3), which can
significantly impact learning performance. Second, similar to the
other methods described in this subsection, CONDOR is limited
to operating within Euclidean state spaces.

In this work, we introduce a novel deep metric learning loss
that ensures stability while addressing the limitations of,[9]

specifically, the need for the function f ℒ and the inability to learn
motions in non-Euclidean manifolds. Moreover, this loss
requires weaker conditions for imposing stability, leading to,
for instance, more robust performance when learning second-
order dynamical systems.

2.2. Stability in Non-Euclidean State Spaces

As noted previously, it is crucial to consider the geometry of our
state spaces when learning motions requiring pose control.
Consequently, many studies have adapted methods that origi-
nally assumed data from Euclidean spaces to work with data from
non-Euclideanmanifolds, such as SOð3Þ and S3. In the context of
IL, pioneering approaches utilized time-varying dynamical
systems (extensions of DMPs) to incorporate the geometry of ori-
entation representations into their models.[8,32,33] Because DMPs
inherently ensure stability, these methods are stable as well.

In contrast, although several geometry-aware IL approaches
based on time-invariant dynamical systems have been intro-
duced, such as Gaussian process regressions,[34,35] GMRs,[36–39]

and kernelized movement primitives,[40,41] such methods are not
inherently stable. As a result, in these cases, models need to be
explicitly endowed with stability properties. This limitation has
been addressed in recent works, where ref. [42] uses GMRs
and employs contraction theory to ensure stability considering
the robot’s orientation geometry. Furthermore, recent methods
have extended the use of diffeomorphism-based techniques for
stability to generate motions in non-Euclidean manifolds as
well.[10–12]

These diffeomorphism-based methods are of particular inter-
est to our work, as our method is grounded in similar concepts
for achieving stability. In both approaches, we transfer the

stability properties of a simple system in the latent space of a
DNN to the dynamical system that models motion in task space.
However, unlike these methods, our approach learns this prop-
erty, whereas the other works constrain the DNN structure to
ensure its satisfaction. Moreover, our method is not constrained
to diffeomorphic solutions for transferring the stability proper-
ties of the simple system to task space. Lastly, our method allows
us to seamlessly incorporate the geometrical aspects of the
robot’s state space into the learned model, as this integration
is factored into the DNN’s optimization process.

3. Preliminaries

3.1. Dynamical Systems for Reaching Tasks

In this work, we model motions as nonlinear time-invariant
dynamical systems represented by

ẋt ¼ f ðxtÞ (1)

where xt ∈ T , with T ⊆ ℝn being the task space, is the robot’s
state and f ∶T ! ℝn is a differentiable function. Additionally, the
subscript t indicates the time instance to which the state corre-
sponds. Since we are interested in solving reaching tasks, we aim
to construct systems with a globally asymptotically stable equilib-
rium at a goal state xg. This implies that

lim
t!∞

jjxg � xtjj ¼ 0; ∀xt ∈ T (2)

3.2. Problem Formulation

We consider a robot learning a reaching motion in the space T
toward the goal state xg ∈ T . Based on a set of demonstrationsD,
the robot is expected to imitate the behavior shown in the dem-
onstrations while always reaching xg, regardless of its initial
state. The dataset D contains N trajectories τ . These trajectories
show the evolution of a dynamical system’s state xt when starting
from some initial condition x0.

We assume that the demonstrations are drawn from an opti-
mal distribution over trajectories, denoted as p�ðτÞ, that adheres
to the optimal dynamical system f �. Here, “optimal” refers to the
behavior that the demonstrator deems best.

The robot’s motion follows the parametrized system f Tθ ,
inducing the distribution pθðτÞ, where θ is a parameter vector.
Then, the objective is to find the vector θ� that minimizes the
difference, expressed as the (forward) Kullback–Leibler diver-
gence, between pθðτÞ and p�ðτÞ, while ensuring that xg is a glob-
ally asymptotically stable equilibrium.

θ� ¼ arg min
θ∈Θ

DKLðp�ðτÞjjpθðτÞÞ (3a)

s:t: lim
t!∞

dðxg, xtÞ ¼ 0; ∀xt ∈ T (3b)

Here, Θ is the parameter space of a DNN, and dð⋅, ⋅Þ is a dis-
tance function.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (3 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

3.3. Stability Conditions

In,[9] the stability conditions are formulated to enforce stability in
f Tθ . This is achieved by ensuring that f Tθ inherits the stability
properties of a simple and stable system, referred to as f ℒ.
Thus, if f ℒ is asymptotically stable, f Tθ will also be asymptotically
stable. To accomplish this, the system f ℒ is designed to define
the evolution of a state yt with an initial condition derived from
mapping x0 to the output of a hidden layer in the DNN that
parameterizes f Tθ . As a result, the dynamical system f Tθ is
expressed as a composition of two functions, ψθ and ϕθ

ẋt ¼ f Tθ ðxtÞ ¼ ϕθðψθðxtÞÞ (4)

Here, f Tθ is a standard DNN with L layers. ψθ denotes layers
1, : : : , l, and ϕθ layers lþ 1, : : : , L. We define the output of layer l
as the latent spaceℒℝm (Figure 1), which is where yt resides, that
is, yt ∈ ℒ. Note that ℒℝm implies the dimensionality of the vec-
tors used to represent T and ℒ does not need to be the same.
Moreover, for simplicity, although we use the same θ notation for
both ψθ and ϕθ, each symbol actually refers to a different subset
of parameters within θ. These subsets together form the full
parameter set in f Tθ .

Additionally, we introduce a third dynamical system. This sys-
tem denotes the evolution in ℒ of the states visited by f Tθ when
mapped using ψθ, which yields the relationship

ẏt ¼ f T !ℒ
θ ðxtÞ ¼

∂ψθðxtÞ
∂t

(5)

Figure 2 provides an example of the introduced dynamical
systems.

Then, the stability conditions of[9] can be written as follows.
Theorem 1 (Stability conditions: v1). Let f Tθ , f

T !ℒ
θ and f ℒ be

the introduced dynamical systems. Then, in the region T , xg is a
globally asymptotically stable equilibrium of f Tθ if, ∀xt ∈ T :

1) f T !ℒ
θ ðxtÞ ¼ f ℒðytÞ

2) ψθðxtÞ ¼ yg ⇒ xt ¼ xg
These conditions imply that if the system f T !ℒ

θ behaves like
f ℒ, and any point other than xg is excluded from mapping to the
latent goal yg, then f Tθ is stable. Note that the latent goal is defined
by the mapping ψθðxgÞ ¼ yg.

In this work, we reformulate these conditions and propose a
novel way to optimize them. This adaptation endows the learning
framework with increased flexibility, enabling it to tackle a wider
array of problems (e.g., non-Euclidean state spaces) and achieve
improved performance.

3.4. Deep Metric Learning: The Triplet Loss

Commonly employed in the Deep Metric Learning literature, the
triplet loss[13] has been utilized for learning and structuring latent
state representations.[14] Its function is to cluster similar obser-
vations together and differentiate dissimilar ones within the
latent space of a DNN. In this work, however, the triplet loss
is used differently. Although we continue to use this loss to
impose a certain structure on the DNN’s latent space, its purpose

is to enforce the stability conditions, thereby ensuring that f Tθ is
stable.

Let us recall the triplet loss

ltriplet ¼ maxð0,m þ dða, pÞ � dða, nÞÞ (6)

wherem ∈ ℝ>0 is the margin, a is the anchor sample, p the posi-
tive sample, and n the negative sample This loss enforces positive
samples to be at least m distance closer to the anchor than the
negative samples. Notably, this is enough for the loss to become
zero, that is, it does not require the anchor and positive samples
to have the same value.

3.5. Stability Analysis Through Comparison Functions

In this work, we employ comparison functions, namely
class- Kℒ functions, to prove global asymptotic stability at the
equilibrium xg. These functions are used to formulate a general
approach for stability analysis in the sense of Lyapunov. As
described in[43,44] these functions are defined as follows.

Definition 1 (class-K function). A continuous function
α∶½0, aÞ ! ℝ≥0, for a ∈ ℝ>0, is said to belong to class K if it
is strictly increasing and αð0Þ ¼ 0.

Definition 2 [class-ℒ function] (Note that the symbol ℒ is
used in two distinct contexts. While it represents the class-ℒ
functions, it is also used to denote the set ℒ introduced in
Section 3.3. In subsequent sections of the paper, theℒ referring
to class-ℒ functions is exclusively used in the form Kℒ).

Figure 2. Example of trajectories generated by simulating the systems f Tθ ,
f T!ℒ
θ , and f ℒ for different time instants. The stability conditions are not
met in this case, as f T!ℒ

θ differs from f ℒ.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (4 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

A continuous function σ∶ℝ≥0 ! ℝ>0, is said to belong to classℒ
if it is weakly decreasing (We use this term to denote functions that
either remain constant or strictly decrease within any interval of
their domain.) and lims!∞σðsÞ ¼ 0.

Definition 3 (class-Kℒ function). A function
β∶½0, aÞ � ℝ≥0 ! ℝ≥0, for a ∈ ℝ>0, is said to belong to class-
Kℒ if: 1) for each fixed s, the mapping βðr, sÞ belongs to
class-K with respect to r, 2) for each fixed r, the mapping
βðr, sÞ belongs to class-ℒ with respect to s.

Then, we can describe global asymptotic stability in terms of
class-Kℒ functions.

Theorem 2 (Global asymptotic stability with class-Kℒ func-
tions) The state xg is a globally asymptotically stable equilibrium
of (1) in T if there exists a class-Kℒ function β such that, ∀t ∈
ℝ≥0 and ∀x0 ∈ T

jjxg � xtjj ≤ βðjjxg � x0jj, tÞ (7)

Note that this theorem seamlessly integrates the concepts of
stability and attractivity within a single function β, which acts as
an upper bound of jjxg � xtjj. As the initial condition of the sys-
tem moves further away from xg, β correspondingly increases.
Moreover, as the system evolves over time and β decreases, it
follows that the system’s distance to xg will eventually decrease.

4. Methodology

We introduce the Policy via neUral Metric leArning (PUMA)
framework, which learns motion primitives from human dem-
onstrations parametrized as the dynamical system f Tθ .
Furthermore, it enforces the goal of the motion xg to be a globally
asymptotically stable equilibrium of f Tθ while maintaining accu-
racy with respect to the demonstrations. To achieve this, we aug-
ment the IL problem with the stability-enforcing loss lstable.
Hence, our framework minimizes the loss

lPUMA ¼ lIL þ λlstable (8)

where lIL is an IL loss and λ ∈ ℝ>0 is a weight factor.

4.1. Behavioral Cloning

To minimize lIL, and thereby address (3Boots, B,Boots, B,Boots,
B,Boots, B,Boots, B,Boots, B,a), we adopt the behavioral cloning
loss used in.[9] This loss tackles (2a) by modeling the output of the
deterministic dynamical system f Tθ as the mean of a Gaussian
distribution with fixed covariance. Furthermore, it mitigates
covariate shift by minimizing the multistep error over trajectory
segments using backpropagation through time (BPTT), as
depicted in Figure 3.

In every training iteration, we sample a batch ℬi of trajectory
segmentsℋi from the datasetD. These segments can start at any
point within a given demonstration, with the start time defined
as t ¼ 0. Then, by introducing the evolution function
Φx

θðt, x0Þ∶ℝ≥0 � T ! T , which defines the value of xt by inte-
grating f Tθ between 0 and t, with initial condition x0, we can con-
struct the loss

lIL ¼
X

ℋi∈ℬi

X
ðt, x�t Þ∈ℋi

jjx�t �Φx
θðt, x0Þjj22 (9)

Here, the states x�t along the trajectory segment ℋi serve as
labels for the states predicted by the DNN from the initial condi-
tion x0 using Φx

θðt, x0Þ. Note that the initial condition is obtained
from ℋi, that is, x0 ¼ x�0.

Since we do not have an analytical solution of Φx
θ , we approxi-

mate it using the forward Euler method, that is

Φx
θðt, x0Þ ¼ Φx

θðt0, x0Þ þ f Tθ ðΦx
θðt0, x0ÞÞΔt (10)

where t0 ¼ t� Δt and Δt ∈ ℝ>0 is the time step size. This inte-
gration starts with the initial state x0, that is, Φx

θð0, x0Þ ¼ x0. It is
important to note that the recursive nature of Φx

θðt, x0Þ necessi-
tates the use of BPTT for the optimization of the DNN.

4.2. Triplet Stability Loss

4.2.1. Reformulating the Stability Conditions

The stability conditions of Theorem 1 involve three dynamical sys-
tems: f Tθ , f

T !ℒ
θ , and f ℒ. Note, however, that its first condition,

namely, f T !ℒ
θ ¼ f ℒ ∀xt ∈ T , essentially states that f T !ℒ

θ must
exhibit global asymptotic stability. In other words, if the behavior of
f T !ℒ
θ is identical to that of another system, f ℒ, for which stability
is verified, then the stability of f T !ℒ

θ is also verified. Nonetheless,
if we can enforce its stability through a different method, these
conditions can be more generally written as follows.

Theorem 3 (Stability conditions: v2) Let f Tθ and f T !ℒ
θ be the

introduced dynamical systems. Then, in the region T , xg is a globally
asymptotically stable equilibrium of f Tθ if, ∀xt ∈ T ,:

1) yg is a globally asymptotically stable equilibrium of f T !ℒ
θ ðxtÞ,

2) ψθðxtÞ ¼ yg ⇒ xt ¼ xg.

4.2.2. Surrogate Stability Conditions

Theorem 3 introduces stability conditions for f Tθ ; nevertheless, it
does not specify how to enforce these conditions in the system.
Therefore, we introduce the surrogate stability conditions of

MSE(,)
MSE(,)

MSE(,)

*

*

*

*
*

*

Figure 3. Illustration of the behavioral cloning loss computation. Starting
from an initial condition x0, the system f Tθ evolves to various time instants
via Φx

θ . At each instant, the estimated state is compared with a demon-
strated state. The red arrows show the gradient path used to update the
DNN's weights using BPTT.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (5 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

Theorem 3. These conditions, when met, imply that the stability
conditions of Theorem 3 are also satisfied. Unlike the stability
conditions, the surrogate conditions can be directly transformed
into a specific loss function, lstable, for optimizing the DNN to
enforce their satisfaction.

To formulate the surrogate stability conditions, we note that
Theorem 3 can be expressed in terms of relative distances.
We define the distance between any given latent state yt and
the goal state yg as dt ¼ dðyg, ytÞ ¼ kyg � ytk. Then, according
to Condition 1 of Theorem 3, which addresses global asymptotic
stability, the value of dt should, generally speaking, decrease over
time. Moreover, the second condition specifies that the value of
dt should remain constant only for yg ¼ ψθðxgÞ. Formally, we
introduce the conditions as follows.

Theorem 4 (Surrogate stability conditions) Let two dynamical
systems be governed by the equations ẋt ¼ f Tθ ðxtÞ and
ẏt ¼ f T !ℒ

θ ðytÞ, such that yt ¼ ψθðxtÞ. Assume both f Tθ and f T !ℒ
θ

are continuously differentiable. Then, in the region T , xg is a globally
asymptotically stable equilibrium of f Tθ if, ∀t ∈ ℝ≥0:

1) dt ¼ dtþΔt, for y0 ¼ yg,
2) dt > dtþΔt, ∀y0 with x0 ∈ T \ fxgg,

where Δt ∈ ℝ>0.
Proof. To prove this theorem, we demonstrate that if the sur-

rogate stability conditions are satisfied, then the stability condi-
tions from Theorem 3 must also hold. This leads to xg being a
globally asymptotically stable equilibrium of f Tθ .

Second Stability Condition of Theorem 3: Let us begin by analyz-
ing the fulfillment of the second stability condition from
Theorem 3. This condition states that only xg can map to yg
via ψθ. Then, since yg is defined as ψθðxgÞ, we need to establish
that no other xt maps to yg. To achieve this, we note that both xt
and x0 belong to the same state space T . Therefore, showing that
this statement holds ∀x0 ∈ T implies that it also holds ∀xt ∈ T .

Now, suppose for a contradiction that there exists some x0
such that x0 6¼ xg and y0 ¼ ψθðx0Þ ¼ yg. Then, according to
the second surrogate condition, dt > dtþΔt, which contradicts
the first surrogate condition. Consequently, the second stability
condition must be satisfied.

First Stability Condition Theorem 3: Let us now study the first
stability condition. Our goal is to prove that yg is a globally asymp-

totically stable equilibrium of f T !ℒ
θ within the region ℒ, where

the system is defined. Surrogate condition 2 hints that the sys-
tem’s stability could be verified through a Lyapunov candidate
defined using dt. This is because the condition enforces the dis-
tance dt to strictly decrease within the interval defined by Δt.
However, this does not necessarily imply that the Lyapunov can-
didate strictly decreases with time, as it is possible for it to strictly
increase locally while adhering to this condition, as exemplified
in Figure 4. As a result, we proceed to demonstrate the global
asymptotic stability of yg using Theorem 2. Specifically, we aim
to do so by employing a class-Kℒ upper bound β that fulfills (3).

To achieve this, we first define an evolution function for the
distance dt, for a given y0 and t, as δ∶ℒ� ℝ≥0 ! ℝ≥0, with
δðy0, tÞ ¼ jjyg �Φy

θðt, y0Þjj. Here, Φy
θ represents the evolution

function of yt under the dynamical system f T !ℒ
θ . Then, we

can express the upper bound β as

δðy0, tÞ ≤ βðd0, tÞ (11)

where d0 ¼ δðy0, 0Þ. Recall that for ensuring asymptotic stability,
β must also satisfy the following properties: 1) βð0, tÞ ¼ 0, 2) β
weakly decreases with t, 3) β is continuous with respect to d0
and t, 4) β ! 0 as t ! ∞, and 5) β strictly increases with d0.

It is important to note that verifying all these properties can
lead to a lengthy proof. Thus, while we introduce β and discuss
the key concepts behind its design here, the complete proof and
details are provided in Prop. 1, Appendix A.

We now proceed to describe the three main aspects considered
in the design of β.

Upper bound in time: First, we need to identify a β that weakly
decreases with time. For this purpose, we introduce a function
that computes the maximum of δ over the window ½t, tþ Δt� for
any given y0 and t, that is

δmax
tþΔtðy0, tÞ ¼ max

s∈½t, tþΔt�
δðy0, sÞ (12)

Clearly, this function serves as an upper bound for δ.
Moreover, this function must weakly decrease with time.
Considering surrogate condition 2, which indicates that
∀s ∈ ½t, tþ Δt�, we have δðy0, sþ ΔtÞ < δðy0, sÞ; it follows that
there is no δ greater than δmax

tþΔt in the interval ½tþ Δt, tþ 2Δt�.
By extending this observation for every interval
½tþ n ⋅ Δt, tþ ðnþ 1Þ ⋅ Δt�, with n ∈ ℕ, we can conclude that
δmax
tþΔt weakly decreases with time.
Upper bound in space: The function δmax

tþΔtðy0, tÞ provides an
upper bound of δ for a given y0. However, βðd0, tÞ depends on
d0 rather than directly on y0. To address this, for any specified
d0, we must ensure that β ≥ δ for every y0 located at this
particular distance from the equilibrium. The set of initial
conditions y0 fulfilling this condition can be defined as
Y0ðd0Þ ¼ fy0 ∈ ℒ∶jjyg � y0jj ¼ d0g. Considering this, we can
introduce an upper bound dependent on d0 by computing the
maximum of each δmax

tþΔtðy0, tÞ, where y0 ∈ Y0

0 1 2 3 4 5 6 7 8

time (t)

0.0

0.2

0.4

0.6

0.8

Surrogate conditions on δ

δ1

δ2

δmax

β

Figure 4. Time evolution of two functions δ, δ1, and δ2, starting with dif-
ferent initial conditions y0, but same d0. Both satisfy the surrogate stability
conditions with Δt ¼ 2. Additionally, the values of δmax and β, computed
using these functions, are shown. In this representation, δ ¼
e�a⋅tðsin2ðωtÞ þ d0 ⋅ cos2ðωtÞÞ with a ¼ 0.75, d0 ¼ 0.2, and ω ¼ ½π, π=2�.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (6 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

δmaxðd0, tÞ ¼ max
y0∈Y0ðd0Þ

ðδmax
tþΔtðy0, tÞÞ (13)

Strictly increasing/decreasing function: Similarly to δmax
tþΔt, the

function δmax also weakly decreases as a function of time (see
Appendix A for details). This is not inherently problematic, as
it verifies the properties of class-Kℒ functions. However, βmust
strictly increase as a function of d0, and for this to be the case, in
our formulation, β must also strictly decrease as a function of
time, ∀d0 ∈ ℒ \ fygg.

To achieve this, we consider β the evolution function of a first-
order linear dynamical system with state zt, using δmax as the
reference. This leads to the equation

żt ¼ αðzt � δmaxÞ (14)

where α < 0. With an initial condition z0 greater than
δmax
0 ¼ δmaxðd0, 0Þ, we ensure that β strictly decreases with time.
Moreover, β remains above δmax, and consequently above δ, for
all d0 ∈ ℒ \ fygg. Hence, by choosing z0 ¼ δmax

0 þ d0, we ensure
that β exhibits the desired increasing/decreasing properties. We
can express β as

βðd0, tÞ ¼ z0 þ
Z

t

0
żsds. (15)

Based on Prop. 1, Appendix A, we can confirm that our for-
mulation for β is a valid class- Kℒ upper bound of δ. This indi-
cates that the first stability condition of Theorem 3 is satisfied,
concluding our proof.

4.2.3. Loss Function

Crucially, the surrogate stability conditions from Theorem 4 can
be enforced in a DNN by minimizing the following expression,
∀y0 ∈ ℒ and ∀t ∈ ℝ≥0

maxð0,m þ dðyg, ytþΔtÞ � dðyg, ytÞÞ (16)

where m ∈ ℝ>0. This function resembles the form of the triplet
loss introduced in Section 3.4. However, in our context, yg serves
as the anchor sample, ytþΔt as the positive sample, and yt as the
negative sample. In the following discussion, we explore how this
expression induces the fulfillment of the surrogate stability con-
ditions within a DNN.

Second Surrogate Condition: For any y0 where x0 6¼ xg,
minimizing (5) enforces transitions to progressively approach
yg, as its minimization implies

dðyg, ytþΔtÞ þm ≤ dðyg, ytÞ (17)

Hence, dðyg, ytþΔtÞ < dðyg, ytÞ, that is, the second surrogate
condition (see Figure 5).

First Surrogate Condition: In the case where y0 ¼ yg ¼ ψθðxgÞ,
that is, when the system is initialized at the equilibrium, enforc-
ing a value of ytþΔt different from yg would only increase the
function in (5). Consequently, for y0 ¼ yg ¼ ψθðxgÞ, (5) achieves
its minimum when ytþΔt ¼ yg ¼ y0, equal to m. Therefore, this
equation also enforces the first surrogate condition.

Finally, since δðy0, tÞ ¼ dðyg, ytÞ, we present the stability loss
function as

lstable ¼
X
y0∈ℬs

X
t∈ℋs

maxð0,m þ δðy0, tþ ΔtÞ � δðy0, tÞÞ (18)

In this equation, ℬs denotes a batch of initial latent states y0.
These states are derived by mapping initial states x0 (sampled
randomly from T) via the function ψθ. Meanwhile, ℋs repre-
sents a set of time instants t at which the loss is minimized.
To compute this loss, we must recall that the evolution function
of yt is represented as Φy

θ. Consequently

δðy0, tÞ ¼ jjyg �Φy
θðt, y0Þjj (19)

Given the absence of an analytical representation for Φy
θ, we

approximate it using the forward Euler method and optimize it
using BPTT, in a similar manner to Section 4.1.

Importantly, optimizing this loss for all t ∈ ℝ≥0 using BPTT is
not feasible, as it would necessitate computing the loss over an
infinite number of samples. Nevertheless, this limitation is not a
significant concern when dealing with time-invariant dynamical
systems. In such systems, any state yt can be equivalently repre-
sented by an initial condition y0, since both reside in the same
state space ℒ. Consequently, when states are randomly sampled
from T , and thereby from ℒ, we are essentially sampling from
the space of all possible yt.

4.3. On the Stability Loss Metric

Intentionally, we have not specified which distance function or
metric should be used for computing the stability loss, since it
should be selected depending on the geometry employed to
describe the robot’s state space.

To elaborate, recall that the learned dynamical system can be
expressed as ẋt ¼ ϕθðytÞ. It then follows that the output of our
model is entirely determined by the latent state yt. This implies
that if two different states xat and xbt map to the same latent state,
that is, yt ¼ ψθðxat Þ ¼ ψθðxbt Þ, the time derivative computed by
the learned dynamical system for both states will be identical.
Such behavior would manifest in certain states if ψθ were a

Task Space

Latent Space

Figure 5. Left: Illustration of the effect of optimizing lstable. The red arrow
depicts yt and ytþΔt being modified to fulfill (6). Right: Example of trajec-
tories generated with f Tθ and f T !ℒ

θ post-training. Each ytþΔt is closer to yg
than its predecessor yt.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (7 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

nonbijective (More rigorously, the property being described is
that of noninjective functions. However, for practical purposes,
we can define the codomain of ψθ to be equal to its image, which
is the property that an injective function must have to be bijec-
tive. Hence, in this specific context, we use these terms inter-
changeably) function. It would, therefore, be potentially
harmful for the learning process to enforce ψθ to be nonbijective,
as this would constrain the family of solutions to which the sys-
tem can converge, hindering the DNN’s optimization process.
Ideally, we would like ψθ to have the capacity to converge to a
bijective function if required, where each state xt maps to a
unique latent state yt. Consequently, for any state xt, it would
be possible to compute a value of ẋt that is independent of those
calculated for any other state. Figure 6 presents an example of
bijective and nonbijective mappings between dynamical systems
where the surrogate stability conditions are enforced.

It turns out that the capacity of ψθ to converge to a bijective
function is closely linked to the metric used in calculating lstable,
which should be chosen based on the geometry of the robot’s
state space. In the following subsection, we explore this relation-
ship in more depth.

4.3.1. Homeomorphisms and State Space Geometry

To study under which conditions ψθ can converge to a bijective
function, let us introduce the concept of topologically equivalent
manifolds. Two manifolds, for example, T and ℒ, are topologi-
cally equivalent if a continuous and bijective mapping, known as
an homeomorphism, exists between them.[45] In other words,
two topologically equivalent manifolds can be stretched, com-
pressed, or twisted into each other without tearing or gluing
space. Since DNNs are continuous functions (We can assume
this since every broadly used model is continuous.[46,47]), a bijec-
tive function ψθ would also serve as a homeomorphism (DNNs
are commonly continuously differentiable, so sometimes in the
literature the term diffeomorphism is employed instead, as diffeo-
morphisms are continuously differentiable homeomorphisms.)
between T and ℒ.

Moreover, since we have a notion of distance in both T andℒ,
it follows that these manifolds are metric spaces. A key
property of metric spaces is that their topology is generated by
their distance functions. Therefore, if two metric spaces are
topologically equivalent, their metrics are termed as being
equivalent.[48] It is important to clarify that this does not neces-
sarily mean that the two distance functions are identical, but
rather that they induce metric spaces that are homeomorphic
to each other.

In our context, this implies that the distance function employed
in the stability loss (7) must induce a topology inℒ that is equiva-
lent to that of T . For example, if orientations are described using
unit quaternions, the topology of T would be spherical. Then, the
stability loss metric should generate a topology that is homeomor-
phic to the sphere. Otherwise, it would be infeasible for the DNN
to establish a homeomorphism between T and ℒ.

In this work, Section 5, we use unit quaternions to represent
orientations in our robot experiments. For a detailed discussion
on metrics and pose control in this context, the reader is referred
to Appendix B.

4.4. Boundary Conditions

Lastly, it is crucial to ensure that a dynamical system evolving in
T always remains within this manifold. Two scenarios are rele-
vant to this work: 1) ensuring T is positively invariant with
respect to f Tθ and 2) considering the state’s geometry when com-
puting the evolution of the dynamical system.

4.4.1. Positively Invariant Sets

In PUMA, the stability of a motion is enforced by randomly sam-
pling points from T and minimizing lstable. Thus, stability can-
not be ensured in regions where this loss is not minimized, that
is, outside of T . When boundaries are imposed on the robot’s
workspace, the learned dynamical system f Tθ can potentially
evolve toward these boundaries, leaving T . Hence, to ensure sta-
bility, a state evolving within T must not leave T . In other words,
T has to be a positively invariant set with respect to f Tθ .

[6,43]

To address this, we design the dynamical system so that it can-
not leave T by construction. This can be achieved by projecting
any transitions that would leave T back onto its boundary. For
example, in Euclidean state spaces, T can be represented as a
hypercube; therefore, in this case, this projection is achieved
by saturating/clipping the points that leave T . Furthermore,
we found that introducing an additional loss, denoted as l ∂,
can be beneficial in enforcing this condition through the optimi-
zation process of the DNN. As proposed in ref. [6], this can be
accomplished by using the scalar product between the dynamical
system’s velocity vðxtÞ (which equates to f Tθ for first-order sys-
tems) and the outward-pointing normal vector nðxtÞ at states
within the boundary of T . This product should be ensured to
be equal to or less than zero. Then, to achieve this for DNNs,
we introduce the following loss function

l ∂ ¼ maxð0, nðxtÞ � vðxtÞÞ (20)

Non-bijective

Bijective (homeomorphism)

Figure 6. Nonbijective vs bijective solution. In the nonbijective case, every
point on the blue line in T maps to the blue point in ℒ. In the bijective
case, the original line undergoes a transformation that both compresses
and skews it, yet a one-to-one mapping is maintained.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (8 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

4.4.2. Evolving in Non-Euclidean State Spaces

When modeling dynamical systems in non-Euclidean state
spaces, it is crucial to ensure that states do not evolve outside
the manifold representing them. For instance, unit quaternions
must remain within the unit sphere. However, if these states are
evolved using Euclidean geometry tools, such as the forward
Euler integration method, deviations from the manifold are likely
to occur.

Non-Euclidean state spaces are commonly defined within a
higher-dimensional Euclidean space and can sometimes be con-
structed by incorporating constraints into this space. Consider
the unit quaternion as an example: its state space consists of
every vector in ℝ4 with a unit norm, forming the 3-sphere
S3 ⊆ ℝ4. Therefore, in such scenarios, by integrating an opera-
tion that enforces these constraints, such as normalization for
S3, into the structure of the DNN representing f Tθ , we ensure
that transitions remain within the manifold. Moreover, in this
way, the distortions that this operation introduces into the
dynamical system’s output are factored into the DNN’s optimi-
zation process, ensuring they are accounted for.

Alternatively, when we have access to the Riemannian metric
of a state space manifold, it is possible to use the exponential and
logarithmic maps to do Euclidean calculus in the tangent bundle
of the manifold and then map the solution back on the manifold
(the reader is referred to ref. [49] for more details).

5. Experimental Section

We validated our method with three datasets, each allowing us to
study different aspects of it. For evaluation purposes, we used
these datasets under the assumption of perfect tracking of the
desired state derivatives, ẋdt , provided by f Tθ , without any involve-
ment of robots in this process. Subsequently, we tested our
method in two real-world settings using two different robots.
We made our code implementation of PUMA publicly available
at https://github.com/rperezdattari/Deep-Metric-IL-for-Stable-
Motion-Primitives. Details on the DNN’s hyperparameters
optimization process are presented in Appendix C.

5.1. Euclidean Datasets

First, we evaluated our method using datasets of Euclidean
motions. This approach allowed us to examine the performance
of different variations of PUMA for Euclidean dynamical systems
and compare their effectiveness against state-of-the-art methods.

5.1.1. LASA

The LASA dataset[4] was composed of 30 human handwriting
motions, each consisting of seven demonstrations of desired
trajectories under different initial conditions. These demonstra-
tions were 2D and designed to be modeled using first-order
systems, that is, output desired velocities as a function of their
positions. To compare accuracy performance between different
models, we employed the same metrics in every experiment:

1) root mean squared error (RMSE), 2) dynamic time warping
distance (DTWD),[50] and 3) Fréchet distance (FD).[51]

Accuracy: Figure 7a showcases the accuracy of four variations
of PUMA. Here, we compared the performance of different dis-
tance metrics in lstable for motions in Euclidean spaces, focusing
on the Euclidean distance and the great-circle (spherical) dis-
tance. Furthermore, we also examined the influence of l ∂ on
the accuracy of the learned motions. We used behavioral cloning
(BC) without a stability loss as an upper performance bound for
comparison. Interestingly, each variation of PUMA achieved a
similar performance; however, PUMA with a spherical metric
showed slightly better performance than PUMA with an
Euclidean metric. This suggested that the DNN had no difficul-
ties in mapping the Euclidean space T into a spherical space ℒ.
Lastly, we could also observe that the use of l ∂ did not harm the
accuracy performance of PUMA.

Stability: The stability of the motions learned by PUMA hinged
on the successful minimization of (4), which we needed to test
after the learning process concluded empirically. To do this, we
integrated the dynamical system over L time steps, starting from
P initial states, and observed whether the system converges to the
goal. The larger the P, the more accurate our results. If L was
sufficiently large, the system should reach the goal after L steps.
By measuring the distance between the last state visited and the
goal, and confirming that it falls below a preset threshold ε, we
could evaluate if a trajectory was successful (i.e., it converges to
the goal).

Table 1 provides the stability results of BC and different
PUMA variations. The data showed that every variation of
PUMA successfully enforced stability across the dataset, gener-
ating no unsuccessful trajectories. Compared to BC, which had a
36.4653% rate of unsuccessful trajectories, the benefit of the pro-
posed loss in enforcing stability became clear.

RMSE DTWD FD
Metric

0

1

2

3

4

5

E
rr

o
r

(m
m

)

LASA Acc. PUMA Study
Model

Euc.
Euc. + bound.
Sph.
Sph. + bound.
BC

RMSE DTWD FD
Metric

0

2

4

6

8

E
rr

o
r

(m
m

)

LASA Acc. SoA Comparison
Model

CLF-DM
SDS-EF
CONDOR
PUMA

(a) (b)

Figure 7. Accuracy study in the LASA dataset.

Table 1. Percentage of unsuccessful trajectories over the LASA dataset
(L= 2500, P= 2500, ε= 1mm). Bold indicates the lowest values,
which are four in this case.

Behavioral
cloning

PUMA
[Euc.]

PUMA
[Euc.þ l ∂]

PUMA
[Sph.]

PUMA
[Sph.þ l ∂]

36.4653% 0.0000% 0.0000% 0.0000% 0.0000%

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (9 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

State-of-the-Art Comparison: Figure 7b presents an accuracy
comparison of PUMA with other state-of-the-art methods,
namely: 1) Control Lyapunov Function-based Dynamic
Movements (CLF-DM) using GMR,[5] 2) Stable Dynamical
System learning using Euclideanizing Flows (SDS-EF),[2] and
3) CONDOR. The results for PUMA corresponded to the best-
performing variation in this dataset, that is, spherical distance
with l ∂. We observed that PUMA achieved competitive results,
demonstrating similar performance in DTWD and FD to
CONDOR and SDS-EF and slightly superior performance under
RMSE.

Boundary Loss: Figure 8 demonstrates the effect of the bound-
ary loss l ∂ in PUMA. Figure 8a,b presents an example of the
qualitative performance of PUMA and CONDOR when no
boundary loss is applied. In the top-left region of these images,
PUMA exhibited nonsmooth trajectories at the boundary, which
abruptly change direction due to the applied saturation (see
Section 4.4). Conversely, CONDOR learned a smoother trajectory
in this region. This feature in PUMA vanished when l ∂ was
applied, as depicted in Figure 8c. Finally, Figure 8d provides a
quantitative evaluation of the boundary loss, confirming our
qualitative observations.

In this work, this loss was only relevant for Euclidean state
spaces because we do not introduce boundaries in the state space
when controlling orientation in S3.

5.1.2. LAIR

Contrary to the LASA dataset, the LAIR dataset[9] was specifically
designed to evaluate second-order motions, that is, those that
map current position and velocity to acceleration. This dataset
comprised ten human handwriting motions, with the state being
four-dimensional, encompassing a 2D position and velocity. The
dataset’s shapes contained multiple position intersections, inten-
tionally designed to necessitate the use of at least second-order
systems for their successful modeling.

CONDOR/PUMA Comparison: The state-of-the-art methods
outlined in Section 5.1.1, excluding CONDOR, did not address
the challenge of learning stable second-order systems. This can
be attributed to the greater difficulty inherent in learning such
systems compared to first-order systems. As a result, we com-
pared the performance of PUMA with that of CONDOR.
Figure 9a illustrates the comparative accuracy of both methods,
with PUMA surpassing CONDOR on all metrics. PUMA’s
greater learning flexibility allowed it to converge to solutions
beyond CONDOR’s capabilities. Moreover, this enhanced
flexibility, as depicted in Figure 9b, endowed PUMA with a more
stable learning process. In practice, this made a significant
difference, as motions with unsuccessful trajectories must be
discarded when considering the system’s stability. Therefore,
greater learning stability results in a larger set of motions without
unsuccessful trajectories, providing more alternatives of success-
fully learned systems to choose from.

Stability: Table 2 presents the results of stability analysis for
PUMA on the LAIR dataset. Similar to the findings with the
LASA dataset, every variation of PUMA achieved a 0% rate of
unsuccessful trajectories. This validated PUMA’s ability to learn
stable second-order motions.

(a) (b)

(c) (d)

Figure 8. Positive invariance evaluation. a–c), white curves represent dem-
onstrations. Red curves represent learned motions when starting from the
same initial conditions as the demonstrations. The arrows indicate the
vector field of the learned dynamical system. Figure d) provides a positive
invariance comparison between CONDOR and the variations of PUMA.

RMSE DTWD FD
Metric

0

10

20

30

40

50

E
rr

o
r

(p
x

)

LAIR Acc. Comparison

Model
CONDOR

PUMA

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iterations ×104

0

20

40

60

80

100

120

D
is

t.
 t

o
g

o
al

(p
x

)

LAIR Training Comparison

CONDOR
PUMA

(a) (b)

Figure 9. LAIR dataset PUMA/CONDOR comparison. a) Accuracy com-
parision, b) Training stability comparision measured as the average dis-
tance to the goal.

Table 2. Percentage of unsuccessful trajectories over the LAIR dataset
(L= 2500, P= 2500, ε= 10 px). Bold indicates the lowest values,
which are four in this case.

Behavioral
cloning

PUMA
[Euc.]

PUMA
[Euc.þ l ∂]

PUMA
[Sph.]

PUMA
[Euc.þ l ∂]

14.1160% 0.0000% 0.0000% 0.0000% 0.0000%

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (10 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

5.2. Non-Euclidean Dataset: LASA S2

The LASA S2 dataset[11] comprised 24 motions, each with 3 dem-
onstrations. Unlike the LASA dataset, the LASA S2 dataset rep-
resented these motions in spherical geometry, as indicated by its
name, in S2. The sphere, where the motions evolved, was struc-
tured similarly to unit quaternions, though with one less dimen-
sion. Essentially, we had a 3D Euclidean space where vectors
were constrained to have a unit norm. As a result, the state space
was a 2D spherical manifold embedded in this 3D space. T
his setup allowed us to examine the performance of PUMA in
a manifold with similar attributes to those of unit quaternions.
However, the more straightforward visualization of this setup
facilitated a more intuitive analysis of PUMA’s performance.

5.2.1. Accuracy

Figure 10a presents the performance of two variations of PUMA,
namely when using Euclidean and spherical distance functions.
Moreover, BC was included, serving as a lower-bound reference.
As explained in Section 5.1.1, the boundary loss l ∂ did not apply
in this case and was, therefore, not evaluated. We could observe
that the accuracy performance of both variations of PUMA was
very similar, and BC performed slightly better than both of them.

5.2.2. Stability

Table 3 depicts the stability results for the LASA S2 dataset. In
this case, we also conducted a stability analysis of CONDOR,
which, as discussed in Section 2, should not be capable of ensur-
ing stability in non-Euclidean state spaces. This assertion was
confirmed by the data in Table 3, which showed that
CONDOR yielded 7.3133% of unsuccessful trajectories. When
compared to BC, which had a 15.9217% rate of unsuccessful

trajectories, it can be inferred that CONDOR reduced the num-
ber of unsuccessful trajectories in non-Euclidean state spaces.
However, its performance was still far from satisfactory. In con-
trast, both versions of PUMA achieved 0% of unsuccessful
trajectories, marking a significant improvement. Moreover, this
validated that the Euclidean distance was effective for enforcing
stability in spheres, as it can induce spherical metrics, such
as the chordal distance, in lower-dimensional manifolds (see
Appendix B).

5.2.3. Qualitative Analysis

Figure 11 illustrates motions learned with PUMA in S2 using
both spherical and Euclidean distances. Within the observed
region of the sphere, the vector field exhibited no spurious attrac-
tors. Furthermore, when initiated from the same conditions as
the demonstrations, the trajectories in both cases showed an
accurate reproduction of the motions.

5.2.4. State-of-the-Art Comparison

Figure 10b depicts a comparison between three methods:
1) CONDOR, 2) PUMA, and 3) Lie Flows,[11] a method developed
for learning stable motions in non-Euclidean manifolds using tools
from Lie Theory. PUMA outperforms both CONDOR and Lie
Flows in terms of accuracy. Moreover, in contrast to CONDOR,
PUMA also successfully ensured stability in this dataset.

RMSE DTWD FD
Metric

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
rr

o
r

Model
Euc.
Sph.
BC

LASA Acc. PUMA Study×10 1−

RMSE DTWD FD
Metric

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
rr

o
r

Model
Lie Flows
CONDOR
PUMA

×10−1LASA Acc. SoA Comparison(a) (b)

Figure 10. Accuracy study in LASA S2 dataset. a) Comparision of different
variations of PUMA. b) Comparion of PUMA with other state-of-the art
(SoA) methods.

Table 3. Percentage of unsuccessful trajectories over the LASA S2 dataset
(L= 2500, P= 2500, ε= 0.06). Bold indicates the lowest values, which are
four in this case.

Behavioral cloning CONDOR PUMA [Euc.] PUMA [Sph.]

15.9217% 7.3133% 0.0000% 0.0000%

(a)

(b)

Figure 11. Motions learned with PUMA in S2. White curves represent
demonstrations. Red curves represent learned motions when starting
from the same initial conditions as the demonstrations. The arrows indi-
cate the vector field of the learned dynamical system. a) Results using the
great-circle distance; b) results using the Euclidean distance.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (11 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

5.3. Real-World Experiments

We validated our method in two real-world setups, using two dif-
ferent robots. Both robots had six degrees of freedom, with their
end-effector pose represented inℝ3 � S3, and were guided using
PUMA. In these experiments, f Tθ was employed to generate
velocity references in real time, which were then sent to the
low-level controllers responsible for tracking these references
in the robots. Note that throughout the experiments, we operated
under the assumption that the target states of the robots were
already known.

5.3.1. Greenhouse

This experiment was conducted in a greenhouse, where a robot
was trained to reach a black marker on a tomato plant (see
Figure 12). This marker, simulating a plant’s peduncle, repre-
sented the target state the robot must reach to harvest the plant.
Here, the marker allowed us to test the method without causing
harm to the plant. This task presented significant challenges, as it
required the robot to perform precise position and orientation
control while considering the plant’s complex geometry, which
was nontrivial to model. In a practical setting, a motion library
should be developed to account for the variability across
different plants and targets. This library could then be used to
select or combine suitable motions to create an appropriate
movement strategy considering the plant’s characteristics.
This experiment represented a preliminary step toward achieving
this objective.

We utilized an ABB IRB 1200 robot equipped with the
Externally Guided Motion (Code: https://github.com/ros-
industrial/abb_robot_driver.) module, allowing real-time joint
velocity control. As the motion takes place in the end-effector
space, the desired velocity at each time step was calculated using
f Tθ and subsequently mapped to the joint space. This conversion
was accomplished using the inverse kinematics module with
joint limits from the Robotics Toolbox.[52] Similarly, we trans-
lated the robot’s estimated joint state into the end-effector space
using the forward kinematics module from the same toolbox.
The same approach was taken to collect the demonstrations of

this task directly in the end-effector space, where a space mouse
was employed to teleoperate the robot.

Figure 13 presents the demonstrations and simulations of
motions conducted in this experiment. It can be observed that
five demonstrations were provided. Note that these demonstra-
tions do not have the same end time; only the final state needs to
be consistent. Over a span of 70 s, all simulated trajectories visi-
bly converge to the goal. For more details, the reader is referred to
the attached video.

5.3.2. Hammer

The second experiment involved a robot accurately positioning a
hammer next to other tools on a table. This task required precise
control of the robot’s position and orientation, as shown in
Figure 12. We were interested in controlling the hammer’s
movement, so we assumed that the state of the hammer directly

Figure 12. Two sequences of frames, each depicting a robot performing a task: 1) operating in a greenhouse and 2) placing a hammer. The red circle is
used to highlight a target marker in the greenhouse experiment.

Greenhouse Simulation
Position

x

y

z

0 10 20 30 40 50 60 70
time (s)

0 10 20 30 40 50 60 70
time (s)

0 10 20 30 40 50 60 70
time (s)

1

0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

-1

w

x

y

z

time (s)

time (s)

time (s)

time (s)

Quaternion

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

Figure 13. Simulated trajectories, as a function of time, of the greenhouse
experiment. Blue trajectories correspond to evaluations of the model
under different initial conditions and the black trajectory corresponds
to the demonstration. The red point is the goal.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (12 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

related to the state of the robot’s end effector. This assumption
was necessary because the employed low-level controller acted on
the robot’s end-effector state, and we ensured stability in this
state space. Given that the hammer was attached to the robot
through a double hook, this assumption was valid as long as
the hammer’s head was securely held. This assumption broke
down toward the end of the motion when the robot placed the
hammer on the table. However, since the final states of both
the hammer and the robot were similar, we observed that ensur-
ing stability in the end-effector’s motion effectively guided the
hammer’s motion toward its goal state, as can be seen in
Figure 12 and in the attached video.

We used the Kinova Gen2 Ultra lightweight robot arm with a
double hook replacing its default gripper. The control commands
obtained from f Tθ were directly sent to a Cartesian space control-
ler from Kinova (Kinova’s controllers: https://github.com/
Kinovarobotics/kinova-ros). The demonstrations were collected
through kinesthetic teaching, that is, physically moving the robot
along desired paths. The simulated performance in this task was
similar to that in the greenhouse, given that the state space was
identical in both cases. We refer the reader to the attached video
for examples of the robot executing this task from various initial
conditions.

6. Conclusions

We introduced a novel approach for learning stable robotic
motions in both Euclidean and non-Euclidean state spaces. To
achieve this, we introduced a new loss function based on the trip-
let loss from the deep metric learning literature. We validated
this loss both theoretically and experimentally.

Our approach, PUMA, showcased state-of-the-art perfor-
mance in every experiment, both in terms of accuracy and sta-
bility. It was validated using datasets where the dynamical
system evolution was simulated, as well as real robotic platforms
where it was employed to provide control commands to low-level
controllers.

Compared to previous work, PUMA offers not only an
improvement in addressing non-Euclidean state spaces but also
increased flexibility by reducing restrictions in the latent space of
the DNN, leading to generally better performance. More specifi-
cally, in previous work, the latent dynamical system is con-
strained to evolve along straight lines toward the goal. In
contrast, PUMA allows the latent dynamical system to converge
toward a broader range of stable dynamical systems, since its loss
function only enforces the latent dynamical system to reduce the
distance toward the goal. This feature expands the set of feasible
solutions available to the DNN during optimization, thereby
enhancing the model’s adaptability.

Lastly, while this paper’s findings are promising, there are also
limitations that can be addressed in future works. First, further
exploration of the scalability properties of PUMA is needed, as
the largest DNN input employed in this paper had seven dimen-
sions. Second, we have so far focused on learning independent
motion primitives for specific tasks. A relevant line of research
would be integrating this model into a larger framework where
multiple primitives are learned and combined together. Third, a
topic that we did not address in this work is obstacle avoidance.

Recent techniques, such as Geometric Fabrics,[53] exploit dynam-
ical systems to represent motions that achieve full-body obstacle
avoidance, which can be integrated with dynamical systems
learned in the end-effector space of the robot. Consequently,
an exciting avenue for future work is exploring the combination
of these methods with PUMA. Finally, another interesting
research direction is studying the integration of these approaches
with the low-level control of the robots. Currently, it is assumed
that the transitions requested by PUMA can be tracked by the
controllers of the robot. However, this is not always the case,
and it would be beneficial to incorporate this information into
the learning framework.

Appendix A

Upper Bound β

In this section, we introduce and prove the proposition used in
Section 4.2.2 to demonstrate that the surrogate stability condi-
tions ensure asymptotic stability in the dynamical system f Tθ ðxtÞ.

Proposition 1 (Existence of class-Kℒ function). Consider a
dynamical system ẏt ¼ f ðytÞ with f ∶ℒℝn!ℝn continuously differen-
tiable, and Φy

θðt, y0Þ∶ℝ≥0 �ℒ ! ℒ as its evolution function. For a
distance function dt inℒ, we define its evolution, for a given t and y0,
as δ∶ℒ� ℝ≥0 ! ℝ≥0, with δðy0, tÞ ¼ jjyg �Φy

θðt, y0Þjj.
Then, consider the function β∶ℝ≥0 �ℝ≥0 ! ℝ≥0 defined as

βðd0, tÞ ¼ z0 þ
Z

t

0
żsds (A1)

with derivative

żt ¼ αðzt � δmaxðd0, tÞÞ (A2)

where α ∈ ℝ<0 and

δmaxðd0, tÞ ¼ max
y0∈Y0

ð max
s∈½t, tþΔt�

δðy0, sÞÞ (A3)

with Y0ðd0Þ ¼ fy0 ∈ ℒ∶jjyg � y0jj ¼ d0g and Δt ∈ ℝ>0. The ini-
tial condition z0 is set as

z0 ¼ δ
max

0 þ d0 (A4)

where δmax
0 ¼ δmaxðd0, 0Þ.

Then, under the conditions of Theo. 4, i.e., ∀t ∈ ℝ≥0,
1) dt ¼ dtþΔt, for y0 ¼ yg
2) dt > dtþΔt, ∀y0 ∈ ℒ \ fygg
there exists a class-Kℒ function β such that ∀yt ∈ ℒ and

∀t ∈ ℝ≥0,

jjyg � ytjj ≤ βðd0, tÞ (A5)

which can also be expressed as

δðy0, tÞ ≤ βðd0, tÞ (A6)

Proof. To prove that a function β is an upper bound of δ and is
class-Kℒ, we need the following conditions to hold ∀yt ∈ ℒ and
∀t ∈ ℝ≥0

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (13 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

i) βð0, tÞ ¼ 0,
ii) β decreases with t,
iii) δ ≤ β,
iv) β is continuous with respect to d0 and t,
v) β ! 0 as t ! ∞,
vi) β strictly increases with d0.
Therefore, we proceed to prove all of these conditions.

A summary of this proof is depicted in Figure A1.

aÞ βð0, tÞ ¼ 0

To demonstrate that this condition is valid, we introduce
Lemma 1. For this lemma to be applicable, a specific condition
must be met. To validate this condition, we refer to Lemma 2 and
Cor. 1, both of which will be introduced subsequently. We also
present Cor. 2, which will prove beneficial in subsequent
discussions.

Lemma 1 (βð0, tÞ ¼ 0 constant). βð0, tÞ ¼ 0 if δ
max ð0, tÞ ¼ 0,

∀t ∈ ℝ≥0.
Proof. If δmaxð0, tÞ ¼ 0, ∀t ∈ ℝ≥0, for d0 ¼ 0, from

Equation (A4) and (A2), we can observe that z0 ¼ 0 and
żt ¼ 0, ∀t ∈ ℝ≥0. Replacing this in (8), we conclude that
βð0, tÞ ¼ 0, ∀t ∈ ℝ≥0.

Lemma 2 (δ ¼ 0 constant). δðyg, tÞ ¼ 0, ∀t ∈ ℝ≥0, if:
1) dt ¼ dtþΔt, for ytþΔt ¼ yg (Theo. 4, 1)
2) dt > dtþΔt, ∀yt ∈ ℒ \ fygg (Theo. 4, 2)
Proof. Let us introduce tg, which is the earliest t ∈ ℝ≥0 where

yt ¼ yg. Then, condition 1 gives rise to two scenarios for every
state visited after tg :

i) δðy0, tÞ is constant: A constant function satisfies dt ¼ dtþΔt.
ii) δðy0, tÞ is periodic: A set of functions could meet the condi-

tion dt ¼ dtþΔt by varying over time but always returning to the
same value after Δt seconds. However, in this case, the only pos-
sibility is that, for all t > tg, we have δðy0, tÞ ¼ δðy0, tþ ΔtÞ, that
is, a periodic function. This is because the time derivative of δ is
solely defined by yt, since ∂δ= ∂t ¼ ∂δ= ∂yt ⋅ ẏt, and both of these
variables only depend on yt. Therefore, ∂δ= ∂t at yg, and at any
state visited afterward, given the state, must always be the same.

This implies that δ must evolve over time to the same states as
those to which it evolvedΔt seconds ago, since for every state, the
derivative is the same as it was Δt seconds before.

However, the periodic case for δðy0, tÞ contradicts condition 2,
which requires that δ strictly decreases after Δt seconds, and in
the periodic scenario, it returns to the same value after Δt sec-
onds. Hence, the only remaining scenario is that δ is constant
after tg, with a value of 0 (by definition). Lastly, by noting that
y0 ¼ yg implies that tg ¼ 0, we get that δðyg, tÞ ¼ 0, ∀t ∈ ℝ≥0.

Corollary 1 (δmaxð0, tÞ ¼ 0). δ
max ð0, tÞ ¼ 0 if δðyg, tÞ ¼ 0,

∀t ∈ ℝ≥0.
Proof. If δðyg, tÞ ¼ 0, ∀t ∈ ℝ≥0, and noting d0 ¼ 0 implies that

every y0 ∈ Y0 in (10) is equal to yg, from (10), it follows that
δmaxð0, tÞ ¼ 0, ∀t ∈ ℝ≥0.

Corollary 2 (minðδmaxÞ ¼ 0). minðδmax Þ ¼ 0 if δ
max ð0, tÞ ¼ 0,

∀t ∈ ℝ≥0.
Proof. Recall that δ is positive definite and that δmax takes the

value of some δ. Then, δmaxð0, tÞ ¼ 0, ∀t ∈ ℝ≥0, indicates that
this is the minimum value δmax can achieve. Hence,
minðδmaxÞ ¼ 0.

Then, provided that the conditions of Prop. 1 are met, the con-
ditions of Lemma 2 are fulfilled. Therefore, δðyg, tÞ ¼ 0 for every
t ∈ ℝ≥0, and hence, δmaxð0, tÞ ¼ 0 (from Cor. 1). Consequently,
we can employ Lemma 1 to demonstrate that βð0, tÞ ¼ 0 for all
t ∈ ℝ≥0.

b) β decreases with t, and δ ≤ β
We introduce Lemma 3, which presents one condition that, if

satisfied, implies that β > δ and β strictly decreases over time,
∀d0 ∈ ℝ≥0 \ f0g. After proving this lemma, we introduce
Lemma 4, which is then used to show that this condition is sat-
isfied in our case. Lastly, we combine this with the fact that
βð0, tÞ ¼ 0 to conclude that β decreases with t (that is, is a non-
increasing function), and δ ≤ β, ∀d0 ∈ ℝ≥0.

Lemma 3 (β > δ and strictly decreasing). βðd0, tÞ > δðy0, tÞ and
βðd0, tÞ strictly decreases with respect to t, ∀d0 ∈ ℝ≥0 \ f0g,
∀t ∈ ℝ≥0, if:

1) δmax decreases with respect to t, ∀d0 ∈ ℝ≥0 \ f0g.
Proof. Although δmax evolves as a function of time, we can infer

from (9) that, locally, β behaves as a linear first-order dynamical
system, with the origin at δmax. Given that α < 0, it follows that β
will converge toward δmax over time.

Moreover, (A4) indicates that z0 > δmax
0 for every d0 > 0.

Given the properties of linear first-order systems, β will strictly
decrease toward δmax

0 , without ever reaching or overshooting this
value. Combined with condition 1, which indicates that δmax

decreases with respect to t for all d0 ∈ ℝ≥0 \ f0g, we can conclude
that β will always be greater than δmax and will continue to strictly
decrease toward this value as a function of time. Therefore, β > δ
and β strictly decreases with respect to t, ∀d0 ∈ ℝ≥0 \ f0g.

Lemma 4 (δmax decreases over time) δ
max ðd0, tÞ decreases with

respect to t, ∀d0 ∈ ℝ≥0 \ f0g, ∀t ∈ ℝ≥0, if:
1) dt > dtþΔt, ∀t ∈ ℝ≥0, ∀y0 ∈ ℒ \ fygg, (Theo. 4, 2).
Proof. Let us define

δmax
tþΔtðy0, tÞ ¼ max

s∈½t, tþΔt�
δðy0, sÞ (A7)

0, = 0

decreases in ≤

continuous

→ 0

stric. increases in

Lemma 10

Lemma 11

Lemma 5

Coro. 1

Lemma 3 Lemma 8

Lemma 9

Coro. 2
Lemma 7

Lemma 4Lemma 1

Lemma 2

Lemma 6

Figure A1. Summary of lemmas and corollaries related to the proof of
Prop. 1. Bisque-colored boxes indicate the conditions necessary for the
proposition to be true, while blue boxes represent lemmas relying directly
on its assumptions and requirements.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (14 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

which allows us to write δmax ¼ maxy0∈Y0
ðδmax

tþΔtÞ. We will first
prove that δmax

tþΔt decreases with t.
To do so, observe that condition 1 can be rewritten as

δðy0, tþ ΔtÞ < δðy0, tÞ. Given that this condition holds true for
every s in the interval ½t, tþ Δt�, none of the values of δðy0, sÞ com-
puted in this interval can exceed the maximum of this interval,
that is, δmax

tþΔtðy0, tÞ, after Δt seconds. If there were such a value
δðy0, sÞ that is greater than δmax

tþΔtðy0, tÞ after Δt seconds, it would
imply that δðy0, sÞ had increased, for some s, after Δt, contradict-
ing condition 1. Therefore, δmax

tþΔt can only decrease as time pro-
gresses. Since this holds for all instances of t, we conclude that
δmax
tþΔt decreases with respect to t, ∀y0 ∈ ℒ \fygg.
Now, the function δmax computes the maximum over a set of

functions δmax
tþΔt with different initial conditions y0 ∈ Y0ðd0Þ.

However, for any given d0, ∀y0 ∈ ℒ \fygg, each one of these
functions decreases with respect to time. Then, for any given
interval of time, we have two possible scenarios: 1) δmax is equal
to one function δmax

tþΔt (the current maximum). In this case, δmax

decreases with time, since δmax
tþΔt decreases with time. 2) The func-

tion that is currently the maximum over the set of functions δmax
tþΔt

reaches a point in time t 0 where it changes. At the point where
the change occurs, the function will be lower than or equal to its
previous values for t < t0, since the previous maximum is
decreasing. Furthermore, it will be greater than or equal to
the values for t > t0, since the new maximum also decreases.

Therefore, we can conclude that ∀d0 where Y0 ∈ Y0 d0ð Þ is not
yg , δmax decreases with respect to time. Moreover, by noting that
∀Y0 ∈ Y0 d0Þ; 6¼ 0ð implies that Y0 6¼ Yg, it follows that δmax

decreases with respect to time, ∀d0 ∈ ℝ≥0 \ f0g, ∀t ∈ ℝ≥0.
As a consequence, the assumptions and conditions

outlined in Prop. 1 enable us to apply Lemma 4 to demonstrate
that the conditions of Lemma 3 are satisfied. This, in turn, leads
us to the conclusion that β > δ and βðd0, tÞ strictly decreases with
respect to t, ∀d0 ∈ ℝ≥0 \ f0g, ∀t ∈ ℝ≥0. Lastly, before we showed
that, for d0 ¼ 0, βð0, tÞ ¼ 0, ∀t ∈ ℝ≥0. Therefore, in general, we
have that β ≥ δ and β decreases with respect to t, ∀d0 ∈ ℝ≥0,
∀t ∈ ℝ≥0.

c) Continuity of β
We require β to be continuous with respect to t, for each fixed

d0, and with respect to d0, for each fixed t. To achieve this, we will
introduce Lemmas 5, 6, and 7.

Lemma 5. [Continuity of δ] If ẏt ¼ f ðytÞ is continuously differen-
tiable, then δðy0, tÞ is continuous with respect to y0 and t.

Proof. Given that ẏt ¼ f ðytÞ is continuously differentiable, it
follows that Φy

θðt, y0Þ is continuously differentiable with respect
to both t and y0.

[54] Moreover, since δ is a metric onℒ defined by
δ ¼ jjyg �Φy

θðt, y0Þjj, it is continuous with respect to Φy
θðt, y0Þ.[55]

Since Φy
θðt, y0Þ is continuously differentiable and thus continu-

ous, and the composition of two continuous functions is contin-
uous, it follows that δðy0, tÞ is continuous with respect to both y0
and t.

Lemma 6 (δmax continuous with respect to t). δmax is a continu-
ous function with respect to t, if δ is continuous with respect to t.

Proof. We will first prove this for δmax
tþΔt (as defined in (12)).

Given that δmax
tþΔt is the maximum value of δðy0, sÞ over the interval

½t, tþ Δt�, any change in δmax
tþΔt must be due to a change in δ for

some s in the boundaries of ½t, tþ Δt�. Then, since δ changes

continuously, δmax
tþΔt can only change continuously as well.

Thus, δmax
tþΔt is continuous with respect to t.

However, we need to show that δmax ¼ maxy0∈Y0
ðδmax

tþΔtÞ
is continuous with respect to t. This follows from the fact that
δmax computes the point-wise maximum along t over a set of
continuous functions δmax

tþΔt, which results in a continuous
function.[56]

Lemma 7 (δmax continuous with respect to d0). δmax is contin-
uous with respect to d0, if δ is continuous with respect to y0.

Proof. Given the continuity of the function δðy0, tÞ with respect
to y0, the function δmax

tþΔt computes the point-wise maximum along
y0 over a set of continuous functions, specifically
fδðy0, sÞ∶s ∈ ½t, tþ Δt�g. Consequently, δmax

tþΔt is also continuous
in y0.

[56]

Building on this, we seek to demonstrate that δmax ¼
maxy0∈Y0

ðδmax
tþΔtÞ is continuous with respect to d0. To accomplish

this, we will use the maximum theorem.[57] This theorem states
that if Y0ðd0Þ is continuous with respect to d0 and compact-
valued (The concepts of compact-valued and continuous refer
to those employed in the literature of set-valued functions/
correspondences. For further details, we refer the reader
to.[57]), and δmax

tþΔtðy0, tÞ is continuous in y0, then δmaxðd0, tÞ is con-
tinuous in d0.

Y0ðd0Þ is continuous because the relationship between each y0
and d0, that is, the metric onℒ, is continuous.[55] Y0ðd0Þ is com-
pact-valued if, for each d0, Y0 constitutes a compact set. Given
that Y0ℝn, the Heine-Borel theorem[56] indicates that Y0 is com-
pact if it is both closed and bounded. Every Y0 is closed as it ful-
fills an algebraic equation and can be contained within any ball of
radius larger than d0, making it bounded. Consequently, Y0ðd0Þ
is compact-valued.

Therefore, since δmax
tþΔtðy0, tÞ is continuous with respect to y0,

and Y0ðd0Þ is both continuous and compact-valued, the maxi-
mum theorem states that δmaxðd0, tÞ is continuous with respect
to d0.

Now, we can proceed to conclude about the continuity of β for
both t and d0.

Continuity in t: For any given d0, since β evolves as a linear
first-order system (as per (8)), its solution will exist provided that
δmax is continuous with respect to t.[58] Then, under the assump-
tions of Prop. 1, Lemma 6 confirms that δmax is indeed continu-
ous, provided that δ is continuous. From Lemma 5, we infer that
δ is continuous with respect to t. Hence, β is well-defined for any
given d0, indicating that it is differentiable with respect to t and,
therefore, continuous.

Continuity in d0: For any given t, from (8), we know that β will
be continuous with respect to d0 as long as both of its terms, z0
and the intregral of żt, are continuous. The continuity of both
terms depends on the continuity of δmax. Then, since Lemma
7 indicates that δmax is continuous with respect to d0 provided
that δ is continuous with respect to y0, and Lemma 5 confirms
that this is indeed the case (given the assumptions of Prop. 1), we
conclude that β is continuous with respect to d0.

d) β ! 0 as t ! ∞
To prove that this condition holds, we will utilize Lemma 8.

The application of this lemma necessitates the use of Lemma 4
and Cor. 1, which are already introduced previously, and
Lemma 9, which is introduced afterward.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (15 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

Lemma 8 (β converges to zero). β ! 0 as t ! ∞ if:
1) δmax ∈ ½0, maxðδÞ�,
2) δmax decreases with respect to t, ∀d0 ∈ ℝ≥0, ∀t ∈ ℝ≥0,
3) dt < dt�Δt, ∀y0 ∈ ℒ \ fygg, ∀t ∈ ℝ≥0 (Theo. 4, 2).
4) δmax surjective in d0,
5) δ

max ð0, tÞ ¼ 0, ∀t ∈ ℝ≥0.
Proof. According to (9), β approaches δmax as t ! ∞. Thus,

demonstrating that δmax ! 0 as t ! ∞ would imply that
β ! 0 as t ! ∞.

Note that δmax ∈ ½0, maxðδÞ� (condition 1) and δmax decreases
for all t (condition 2). This indicates that as t goes to infinity, δmax

must approach a limit a ∈ ½0, maxðδÞ�. We will proceed to show
that this limit can only be zero.

Let us define y�0 ∈ Y0 and t� ∈ ℝ≥0 as the variables in (A3)
where the maxima are achieved for a given d0 and t. Thus,
δmax ¼ δðy�0, t�Þ. From condition 3, we know that
δðy�0, t� þ ΔtÞ < δðy�0, t�Þ, ∀y�0 ∈ ℒ \ fygg, ∀t� ∈ ℝ≥0. This leads
to two scenarios.

y�0 remains constant: If y�0 does not change in the interval
½t, t� þ Δt�, then δðy�0, t�Þ, and therefore, δmax must strictly
decrease at some point within this interval. Otherwise, δðy�0, t� þ
ΔtÞ < δðy�0, t�Þ would not hold true.

y�0 changes: If y
�
0 changes during the interval ½t, t� þ Δt�, given

that δmax decreases with t (condition 2), this change can only
occur if δðy�0, t�Þ, and hence, δmax strictly decreases at some point
within the interval.

In either case, δmax strictly decreases at some point in the inter-
val ½t, t� þ Δt�, ∀d0 ∈ ℝ≥0 \ f0g, ∀t ∈ ℝ≥0.

Taking this into account, if the limit was some value a 6¼ 0, a
contradiction would arise. If a 6¼ 0, we would always have a
d0 6¼ 0 such that δmaxðd0, 0Þ ¼ a (conditions 4 and 5). This
implies that δmax must become lower than a before t� þ Δt,
and, since it is decreasing (condition 2), it will remain lower
as time progresses. Therefore, the only feasible value for the limit
is a ¼ 0, which confirms δmax ! 0 as t ! ∞. Consequently,
β ! 0 as t ! ∞.

Lemma 9 (δmax with d0). δmax ∈ ½0, maxðδÞ�, and δmax surjective
with respect to d0, if:

1) minðδmaxÞ ¼ 0,
2) δmax continuous with respect to d0.
Proof. Given that δmax computes a maximum over values of δ,

we get maxðδmaxÞ ¼ maxðδÞ. Then, we know that minðδmaxÞ ¼ 0
(condition 1) and that δmax is continuous with respect to d0 (con-
dition 2). Therefore, as a consequence of the intermediate value
theorem, δmax can take any value between minðδmaxÞ and
maxðδmaxÞ, that is, δmax ∈ ½0, maxðδÞ�. Moreover, each value of
δmax ∈ ½0, maxðδÞ� must have at least one corresponding
value of d0; hence, in this interval, δmaxðd0, tÞ is surjective with
respect to d0.

To summarize, given the conditions and assumptions of Prop.
1, Lemmas 4 and 9 and Cor. 1 indicate that the conditions of
Lemma 8 are fulfilled, implying that β ! 0 as t ! ∞.

e) β strictly increases with d0
To prove this, we will introduce Lemma 10, which needs a

condition supported by Lemma 11, introduced afterward.
Lemma 10 (β strictly increases with d0) β strictly increases with

d0 if:
1) z0 strictly increases with d0,

2) δmaxð0, tÞ ¼ 0, ∀t ∈ ℝ≥0,
3) β strictly decreases with t, ∀d0 ∈ ℝ≥0,
4) β continuous with t,
5) β ! 0 as t ! ∞.
Proof. For a fixed t, the β strictly increases in d0 if for any two

numbers da0 and db0 (where da0 < db0) within its domain, the con-
dition da0 < db0 implies βaðda0, tÞ < βbðdb0, tÞ.

By condition 1, z0 strictly increases with d0, so we have
za0ðda0Þ < zb0ðdb0Þ. Moreover, since (any) z0 is nonnegative (see
(A4)), it follows that zb0 > za0 ≥ 0. Given condition 2, this indi-
cates that db0 > 0.

Recalling (A1), we have

βb ¼ zb0 þ
Z

t

0
żsds (A8)

Since db0 > 0, it follows from condition 3 that βðdb0, tÞ strictly
decreases with respect to t (i.e., żt < 0). Furthermore, β is con-
tinuous with t and approaches zero as time goes to infinity (con-
ditions 4 and 5). This, combined with zb0 > za0, implies that there
must exist a time ta > 0 such that

βb ¼ zb0 þ
Z

ta

0
żsds|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

za0

þ
Z

t

ta
żsds. (A9)

Since żt < 0, starting from the same initial condition, a larger
integration interval results in a smaller value of β. Therefore, we
deduce that βb > βa, as βa follows the same format as
Equation (13) (when replacing the terms equivalent to za0, with
za0) but with an integral that starts at 0 instead of ta, and
0 < ta. Thus, under the given conditions, β strictly increases with
respect to d0.

Lemma 11 (z0 strictly increases with d0). z0 strictly increases
with d0 if:

1. δðy0, tÞ continuous with respect to t.
Proof. For z0 to strictly increase with d0, for any two numbers

da0 and db0 within its domain, the inequality da0 < db0 must imply
za0ðda0Þ < zb0ðdb0Þ. From (11), we have z0 ¼ δmax

0 þ d0. Given that
d0 strictly increases with itself, it suffices to analyze the behavior
of δmax

0 .
Recall that δmax

0 ¼ maxy0∈Y0
ðδmax

tþΔtðy0, 0ÞÞ and that 0pt
plustw500pt plus-tw δmax

tþΔtðy0, 0Þ computes the maximum over
the set fδðy0, sÞ∶s ∈ ½0,Δt�g. We will refer to this set as Wðy0Þ.
Importantly, Wðy0Þ contains δðy0, 0Þ ¼ d0 for all y0. Then, for
any da0 and db0 satisfying da0< db0, the behavior of δ

max
0 can be stud-

ied in three different scenarios. Let ya0 ∈ Y0ðda0Þ be the state that
maximizes δmax

tþΔt for d
a
0, then

i) da0 ¼ δmax
tþΔtðya0, 0Þ : This scenario occurs when da0 is the maxi-

mum of Wðya0Þ. Then, if yb0 ∈ Y0ðdb0Þ is the state that maximizes
δmax
tþΔt for d

b
0, and hence, db0 ∈ Wðyb0Þ, the maximum ofWðyb0Þ can-

not be lower than db0. Consequently, since da0 < db0, we get
δmax
tþΔtðya0, 0Þ < δmax

tþΔtðyb0, 0Þ. As both ya0 and yb0 are those that maxi-
mize δmax

tþΔt over y0, for d
a
0 and db0, respectively, we conclude that

δmax
0 ðda0Þ < δmax

0 ðdb0Þ.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (16 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

ii) da0 < δmax
tþΔtðya0, 0Þ ≤ db0: This scenario occurs when the max-

imum of Wðya0Þ is not da0, and db0 is greater than or equal to this
maximum. Following a similar reasoning to the above, we can
conclude that δmax

0 ðda0Þ ≤ δmax
0 ðdb0Þ.

iii) da0 < db0 < δmax
tþΔtðya0, 0Þ: This scenario occurs when the max-

imum of Wðya0Þ is not da0, and db0 is lower than this maximum.
Provided that δ is continuous with t (condition 1), in the set
Wðya0Þ, since, for t ¼ 0, δ ¼ da0, and for some t� > 0,
δ ¼ δmax

tþΔtðya0, 0Þ, then we know there must exist a tb, with
0 < tb < t� ≤ Δt, where δ ¼ db0.

Now, observe that t� ∈ ½tb, tb þ Δt�. Therefore, δmax
tþΔtðya0, tbÞ,

which computes the maximum over fδðya0, sÞ∶s ∈ ½tb, tb þ Δt�g,
cannot be lower than δmax

tþΔtðya0, 0Þ. Moreover, we can select yat
at time tb, that is, ya

tb
, as a new initial condition such that

δmax
tþΔtðyatb , 0Þ ¼ δmax

tþΔtðya0, tbÞ. Since δðya
tb
, 0Þ ¼ db0, we get that

ya
tb
∈ Y0ðdb0Þ. Hence, even though ya

tb
might not maximize

δmax
tþΔt for Y0ðdb0Þ, we know that the maximum, achived at yb0, must
be at least greater than or equal to δmax

tþΔtðyatb , 0Þ.
Consequently, we have that δmax

tþΔtðyb0, 0Þ ≥ δmax
tþΔtðyatb , 0Þ, and

δmax
tþΔtðyatb , 0Þ ¼ δmax

tþΔtðya0, tbÞ ≥ δmax
tþΔtðya0, 0Þ. Hence,

δmax
tþΔtðya0, 0Þ ≤ δmax

tþΔtðyb0, 0Þ, and, therefore, δmax
0 ðda0Þ ≤ δmax

0 ðdb0Þ.
In summary, for any da0 and db0 with da0 < db0, it is always true

that δmax
0 ðda0Þ ≤ δmax

0 ðdb0Þ, meaning δmax
0 is nondecreasing with

respect to d0. As the sum of a nondecreasing function (δmax
0)

and a strictly increasing function (d0) results in a strictly increas-
ing function, we conclude that z0 strictly increases with d0.

From Lemma 10, we can conclude that β strictly increases with
respect to d0, since assuming the conditions of Prop. 1, and that
we have proven that β is continuous in t, Lemmas 11, 3, and 8
indicate that the conditions of Lemma 10 are fulfilled.

To summarize, we have demonstrated that all the require-
ments for βðd0, tÞ to be a class-Kℒ function, and to serve as
an upper bound for δðy0, tÞ, are met for every yt ∈ ℒ and for
all t ∈ ℝ≥0. With this, our proof of Prop. 1 is complete.

Appendix B

B Learning on Spherical Manifolds

In this work, we employ unit quaternions to control orientation;
therefore, we consider two distance functions that are relevant
when learning spherical geometries: 1) great-circle distance
and 2) chordal distance.

Great-Circle Distance: This is the distance along a great circle.
A great circle is the largest circle that can be drawn on any given
sphere, defining the shortest distance between two points. In the
context of unit quaternions, which have a unitary norm, this dis-
tance is equivalent to the central angle α subtended by two points
on the sphere. Hence, we can define it as

dg:c: ¼ α. (B1)

Chordal Distance: This is a distance that can be computed
when an n-sphere is embedded in a higher-dimensional
Euclidean space, that is, Sn

ℝnþ1 . Then, by computing the

Euclidean distance in ℝnþ1 between two points in Sn, we induce
a distance in Sn, corresponding to the chordal distance.[59–61] As
the name suggests, this distance is the length of the chord con-
necting two points in an n-sphere. Hence, it is defined as

dchord ¼ 2r sinðα=2Þ (B2)

where r is the radius of the n-sphere.
These distances are depicted in Figure B1. Since both define

the same topology Sn, they are considered to be equivalent and
can be utilized in PUMA to enforce stability when states are rep-
resented as unit quaternions. The great circle distance is espe-
cially suited to spherical spaces as it defines the shortest path,
or the geodesic, between two points. Conversely, the chordal dis-
tance is straightforward to apply because it naturally arises when
calculating the Euclidean distance at the output of ψθ. This is due
to ℒℝm , where m > n represents the output size of ψθ.

B1 Comments on Local Stability

Considering a 1D sphere, it is notable that at α ¼ π (with respect
to the goal), both the great-circle distance and the chordal dis-
tance can decrease in two possible ways: by evolving either to
the right or to the left (see Figure B1). Consequently, to ensure
these distances decrease in the region around α ¼ π, one of these
options should be selected. However, this would require the
dynamical system to instantly change its direction at this point,
rendering f Tθ discontinuous. Yet, in Theorem 4, we assume this
function is continuous, as continuity is a prerequisite for the
class-Kℒ upper bound β to also be continuous, which is neces-
sary to prove stability.

Therefore, by extending this idea to higher-dimensional
spheres, this implies that when employing these metrics, we
can only enforce local asymptotic stability for Sn \fpg, where p
is the point at α ¼ π. Moreover, due to the continuity of f Tθ , this
point must correspond to a zero and, therefore, represents an
unstable equilibrium. This property is not a flaw in the great-cir-
cle distance or the chordal distance. Rather, it is a result of the
topology of Sn, which does not allow for the existence of a single
stable equilibrium. This is a consequence of the Poincaré–Hopf
theorem.[62]

Figure B1. Left: A spherical trajectory toward a goal at the north pole. The
chordal and great-circle distances at specific points are indicated as dchord
and dg:c:, respectively. Right: Distances as a function of the central angle
between points.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (17 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

B2 Pose Control

Until now, our discussion has centered on the applicability of our
method for unit quaternions. However, practical control of a
robot’s pose requires simultaneous control of both its position
(Euclidean) and orientation (non-Euclidean). This can be
achieved by using a product metric, that is, a metric resulting
from the Cartesian product of spaces. In this case, we are looking
at the product ℝ3 � S3.

A simple product metric is the sum of the metrics from each
space in the product,[48] for example, dℝn þ dSn for ℝn � Sn,
where dℝn is a distance in ℝn and dSn is a distance in Sn.
However, it is not straightforward to do this in ℒ without modi-
fying the DNN structure. This is because the latent states yt are
an entangled representation of the robot states xt, making it
impossible to simply add together the distances of the
Euclidean and non-Euclidean parts in the latent space.

Interestingly, when the product metric is computed using
manifolds of identical topology, such asℝ�ℝ, the resulting met-
ric is equivalent to the one obtained by directly computing the
metric in the higher-dimensional space (ℝ2 in this example).[48]

Hence, for such scenarios, there is no need to explicitly disentan-
gle the states inℒ; instead, we can compute the metric directly in
the complete latent space. Our case, nevertheless, is more com-
plex since the topologies of S3 and ℝ3 are different. Fortunately,
we found two ways of easily overcoming this limitation.

B2.1 Pose in Euclidean Space

We have observed that an Euclidean metric, the chordal distance,
can generate spherical metrics in lower-dimensional manifolds.
This becomes particularly relevant when a Euclidean metric is
employed inℝm, wherem exceeds the dimensionality of our state
space (6 in our case). In this scenario, the metric is equivalent to
dℝ3 þ dℝm0 for m0 > 3 and 3þm0 ¼ m. Given that S3 can be

induced inside ℝm0
, this suggests that ℝ3 � S3 can be induced

in ℝm when using the Euclidean distance in this space.
B2.2 Pose in Spherical Space: Finally, we also note that the

great-circle distance can be employed to achieve the same objec-
tive. Suppose we compute this distance in S6. Then, it would be
equivalent to dS3 þ dS3 . Interestingly, a diffeomorphism can be
found between ℝn and a subset of Sn, for example, the stereo-
graphic projection.[63] This implies that it is feasible to use the
metric dS3 in ℒ and find a valid representation for ℝ3 within
a subspace of S3. Consequently, the product space ℝ3 � S3

can be represented within a subset of S6.

Appendix C

C Hyperparameter Optimization

To optimize the hyperparameters of the different variations of
PUMA employed in the LASA and LAIR datasets, we utilized
the Tree Parzen Estimator.[64] This optimization method builds
a probability model that facilitates the selection of the most prom-
ising set of hyperparameters in each optimization round. For the
implementation of the Tree Parzen Estimator, we used the
Optuna API.[65]

To evaluate the selected sets of hyperparameters, we employ a
loss function ℒhyper composed of two components. The first
component, ℒacc, assesses the accuracy of the trained model.
This is done by computing the RMSE between the demonstra-
tions and the trajectories simulated by the learned model, in a
manner similar to the approach used in the experiments section.
The second component, ℒgoal, quantifies the average distance
between the final points of trajectories, simulated using the
learned model, and the target goal. Thus, we have

ℒhyper ¼ ℒacc þ γℒgoal (C1)

Table C1. Hyperparameter optimization results of the different variations of PUMA.

Hyperparameter Opt.? Hand-tuned value/initial opt. guess Optimized value

Euc. Sph. Euc. (2nd order) Sph. (2nd order) Sph. Euc. (2nd order) Sph. (2nd order)

Stability loss margin [m] ✓ 1.250e�8 1.250e�4 1.250e�4 1.250e�4 3.012e�05 2.424e�08 2.919e�7

Triplet imitation loss weight [λ] ✓ 1 1 1 1 3.496 1.022e�1 4.473e�1

Window size imitation [ℋi] ✓ 14 14 14 14 13 14 14

Window size stability [ℋs] ✓ 4 1 1 1 13 11 11

Batch size imitation [ℬi] ✗ 250 250 250 250 – – –

Batch size stability [ℬs] ✗ 250 250 250 250 – – –

Neural network

Optimizer ✗ Adam Adam Adam Adam – – –

Number of iterations ✗ 40000 40000 40000 40000 – – –

Learning rate ✓ 1e�4 1e�4 1e�4 1e�4 8.574e�4 1.670e�4 1.245e�4

Activation function ✗ GELU GELU GELU GELU – – –

Num. layers [ψθ , ϕθ] ✗ (3, 3) (3, 3) (3, 3) (3, 3) – – –

Neurons/hidden layer ✗ 300 300 300 300 – – –

Layer normalization ✗ Yes Yes Yes Yes – – –

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (18 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

where γ is a weighting factor. After initial tests, we settled on
γ ¼ 3.5.

To make the computationally intensive process of optimizing
hyperparameters more feasible, we employed six strategies:
1) reducing the overhead of the objective function, 2) limiting
the size of the evaluation set, 3) utilizing Bayesian optimization,
4) applying pruning techniques, 5) selecting a subset of hyper-
parameters for optimization, and 6) employing an optimization
range. For details on the first five strategies, the reader is referred
to.[9] The sixth strategy consists of restricting the hyperparameter
search to a predefined range.

Table C1 presents the results of this optimization process.
We can observe the hyperparameters that were optimized, their
initial values (chosen based on preliminary tests), and their final
optimized values. The ranges for hyperparameter optimization
are as follows: 1) m∶½1e� 9, 1e� 1�, 2) λ∶½1e� 1, 10�,
3) ℋi∶½1, 14�, 4) ℋs∶½1, 14�, and 5) learning rate:
½1e� 5, 1e� 3�. Note that the variations using the boundary loss
are not included in the table, since in those cases the same hyper-
parameters were employed and the boundary loss was added
with a weight of 0.001. The same holds for the behavioral cloning
case. Lastly, regarding Section 4.4.2 it is important to note that in
every experiment involving spherical state spaces, the dynamical
system was kept within the manifold by normalizing the forward
Euler integration output.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors would like to thank Xin Wang, Thomas Versmissen, Bastiaan
Vroegindeweij, Rekha Raja, Gert Kootstra, and Eldert van Henten of the
Agricultural Biosystems Engineering Group at Wageningen University
and Research. Their assistance during the real-world experiments of this
work, conducted at their facilities, was invaluable.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
Rodrigo Pérez Dattari: Conceptualization: (lead); Formal analysis: (lead);
Investigation: (lead); Methodology: (lead); Software: (lead); Validation:
(lead); Visualization: (lead); Writing—original draft: (lead); Writing—
review and editing: (lead). Cosimo Della Santina: Formal analysis: (sup-
porting); Writing—review and editing: (supporting). Jens Kober:
Conceptualization: (supporting); Formal analysis: (supporting);
Supervision: (lead); Writing—review and editing: (supporting).

Data Availability Statement
Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

Keywords
deep metric learning, deep neural networks, dynamical systems, imitation
learning, motion primitives, non-Euclidean geometries

Received: February 22, 2024
Revised: August 11, 2024

Published online:

[1] N. Perrin, P. Schlehuber-Caissier, Syst. Control Lett. 2016, 96, 51.
[2] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, N. Ratliff, 2nd Annual

Conf. on Learning for Dynamics and Control (L4DC), 2020.
[3] J. Urain, M. Ginesi, D. Tateo, J. Peters, 2020 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ 2020, pp.
5231–5237.

[4] S. M. Khansari-Zadeh, A. Billard, IEEE Trans. Robot. 2011, 27, 943.
[5] Robot. Auton. Syst. 2014, 62, 752.
[6] A. Lemme, K. Neumann, R. F. Reinhart, J. J. Steil, Neurocomputing

2014, 141, 3.
[7] N. Figueroa, A. Billard, Int. J. Robot. Res. 2022, 41, 312.
[8] A. Ude, B. Nemec, T. Petrić, J. Morimoto, 2014 IEEE International

Conf. on Robotics and Automation (ICRA), IEEE, Piscataway, NJ
2014, pp. 2997–3004.

[9] R. Pérez-Dattari, J. Kober, IEEE Trans. Robot. 2023, 39, 3909.
[10] J. Zhang, H. B. Mohammadi, L. Rozo, Conf. on Robot Learning, PMLR

2022.
[11] J. Urain, D. Tateo, J. Peters, IEEE Robot. Autom. Lett. 2022, 7, 12569.
[12] M. Saveriano, F. J. Abu-Dakka, V. Kyrki, Robot. Auton. Syst. 2023, 169,

104510.
[13] F. Schroff, D. Kalenichenko, J. Philbin, Proc. of the IEEE Conf. on

Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ
2015, pp. 815–823.

[14] M. Kaya, H. S. Bilge, Symmetry 2019, 11, 1066.
[15] S. Calinon, A. Pistillo, D. G. Caldwell, 2011 IEEE/RSJ International

Conf. on Intelligent Robots and Systems, IEEE, Piscataway, NJ 2011,
pp. 3413–3418.

[16] H. Ravichandar, A. S. Polydoros, S. Chernova, A. Billard, Annu. Rev.
Control Robot. Auton. Syst. 2020, 3, 297.

[17] A. Paraschos, C. Daniel, J. R. Peters, G. Neumann, in Advances in
Neural Information Processing Systems, Curran Associates, Inc.
2013, 26.

[18] M. Y. Seker, M. Imre, J. H. Piater, E. Ugur, Robotics: Science and
Systems 2019, 10.

[19] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Neural
Comput. 2013, 25, 328.

[20] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, G. Neumann, IEEE Robot.
Autom. Lett. 2023, 8, 2325.

[21] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, J. Peters, 2014
IEEE International Conf. on Robotics and Automation (ICRA), IEEE,
Piscataway, NJ 2014, pp. 2831–2837.

[22] A. Pervez, Y. Mao, D. Lee, 2017 IEEE-RAS 17th International Conf. on
Humanoid Robotics (Humanoids), IEEE, Piscataway, NJ 2017,
pp. 191–197.

[23] R. Pahič, B. Ridge, A. Gams, J. Morimoto, A. Ude, Neural Netw. 2020,
127, 121.

[24] S. Bahl, M. Mukadam, A. Gupta, D. Pathak, Adv. Neural Inf. Process.
Syst. 2020, 33, 5058.

[25] N. Figueroa, A. Billard, Conf. on Robot Learning, PMLR 2018, pp. 927–
946.

[26] H. Ravichandar, I. Salehi, A. Dani, Conf. on Robot Learning , PMLR
2017, pp. 369–378.

[27] K. Neumann, J. J. Steil, Robot. Auton. Syst. 2015, 70, 1.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (19 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

[28] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, C. Xu, IEEE Trans. Syst. Man
Cybernet. Syst. 2017, 49, 1175.

[29] H. Ravichandar, A. Dani, Dynamic Systems and Control Conf., Vol.
57250, American Society of Mechanical Engineers, New York, NJ
2015, p. V002T27A008.

[30] C. Blocher, M. Saveriano, D. Lee, 2017 14th International Conf. on
Ubiquitous Robots and Ambient Intelligence (URAI), IEEE,
Piscataway, NJ 2017, pp. 124–129.

[31] W. Zhi, T. Lai, L. Ott, F. Ramos, in L4DC, PMLR 2022,
pp. 508–519.

[32] P. Pastor, L. Righetti, M. Kalakrishnan, S. Schaal, 2011 IEEE/RSJ
International Conf. on Intelligent Robots and Systems, IEEE,
Piscataway, NJ 2011, pp. 365–371.

[33] L. Koutras, Z. Doulgeri, Conf. on Robot Learning, PMLR 2020, pp. 293–
302.

[34] M. Lang, S. Hirche, IEEE Robot. Autom. Lett. 2017, 2, 1601.
[35] M. Arduengo, A. Colomé, J. Lobo-Prat, L. Sentis, C. Torras, J. Ambient

Intell. Humaniz. Comput. 2023, 1.
[36] J. Silvério, L. Rozo, S. Calinon, D. G. Caldwell, 2015 IEEE/RSJ inter-

national Conf. on Intelligent Robots and Systems (IROS), IEEE,
Piscataway, NJ 2015, pp. 464–470.

[37] I. Havoutis, S. Calinon, Auton. Robots 2019, 43, 713.
[38] M. J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, D. G. Caldwell,

IEEE Robot. Autom. Lett. 2017, 2, 1240.
[39] S. Kim, R. Haschke, H. Ritter, Robot. Auton. Syst. 2017, 87, 28.
[40] Y. Huang, F. J. Abu-Dakka, J. Silvério, D. G. Caldwell, IEEE Trans.

Robot. 2020, 37, 82.
[41] F. J. Abu-Dakka, Y. Huang, J. Silvério, V. Kyrki, Robot. Auton. Syst.

2021, 141, 103761.
[42] H. C. Ravichandar, A. Dani, Auton. Robots 2019, 43, 897.
[43] H. K. Khalil, inNonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle

River, NJ 2002.
[44] C. M. Kellett, Math. Control, Signal. Syst. 2014, 26, 339.
[45] T. Needham, in Visual Differential Geometry and Forms: A

Mathematical Drama in Five Acts, Princeton University Press,
Princeton, NJ 2021.

[46] I. Goodfellow, Y. Bengio, A. Courville, in Deep Learning, MIT Press,
Cambridge, Mass 2016.

[47] A. Géron, in Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, O’Reilly Media, Inc., Sebastopol, CA 2022.

[48] E. Deza, M. M. Deza, M. M. Deza, E. Deza, in Encyclopedia of
Distances, Springer, New York 2009.

[49] S. Sommer, T. Fletcher, X. Pennec, in Riemannian Geometric Statistics
in Medical Image Analysis, Elsevier, Amsterdam 2020, pp. 3–37.

[50] M. Müller, in Information Retrieval for Music and Motion, Springer
Berlin, Heidelberg, Berlin, Heidelberg 2007, p. 69.

[51] T. Eiter, H. Mannila, Computing Discrete Fréchet Distance,
Technische Universitat Wien, Tech. Rep. CD-TR 94/64, 1994.

[52] P. Corke, J. Haviland, 2021 IEEE International Conf. on Robotics and
Automation (ICRA), IEEE, Piscataway, NJ 2021, pp. 11 357–11 363.

[53] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan,
I. Akinola, B. Sundaralingam, D. Fox, B. Boots, N.D. Ratliff, IEEE
Robot. Autom. Lett. 2022, 7, 3202.

[54] V. I. Arnold, in Ordinary Differential Equations, 3rd ed., Springer
Science & Business Media, Berlin/Heidelberg, Germany 1992,
pp. 97–98.

[55] J. R. Munkres, in Topology, 2nd ed., Pearson Education, London,
England 2000, pp. 119–126.

[56] C. C. Pugh, in Real Mathematical Analysis, 2nd ed., Undergraduate
Texts in Mathematics, Springer, New York 2015, pp. 81, 97.

[57] K. C. Border, in Fixed Point Theorems with Applications to Economics
and Game Theory, Cambridge University Press, Cambridge, England
1985, pp. 53–66.

[58] R. K. Nagle, E. B. Saff, A. D. Snider, in Fundamentals of Differential
Equations, 9th ed., Pearson, London, England 2018, p. 53.

[59] J. M. Lee, in Riemannian Manifolds: An Introduction to Curvature, Vol.
176, Springer Science & Business Media, Berlin/Heidelberg,
Germany 2006.

[60] C. Berg, in Complex Analysis, Matematisk Afdeling, Københavns
Universitet, København, Denmark 2008.

[61] J. Jeong, M. Jun, M. G. Genton, Stat. Sci. 2017, 32, 501.
[62] V. Guillemin, A. Pollack, in Differential Topology, Vol. 370, American

Mathematical Society, Providence, RI 2010.
[63] J. Oprea, in Differential Geometry and Its Applications. MAA The

Mathematical Association of America, Washington, DC 2007.
[64] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Advances in Neural

Information Processing Systems, Curran Associates, Inc. 2011, 24.
[65] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Proc. of the 25th

ACM SIGKDD International Conf. on Knowledge Discovery & Data
Mining, 2019, pp. 2623–2631.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400144 2400144 (20 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400144 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

	PUMA: Deep Metric Imitation Learning for Stable Motion Primitives
	1. Introduction
	2. Related Works
	2.1. Stability in Euclidean State Spaces
	2.2. Stability in Non-Euclidean State Spaces

	3. Preliminaries
	3.1. Dynamical Systems for Reaching Tasks
	3.2. Problem Formulation
	3.3. Stability Conditions
	3.4. Deep Metric Learning: The Triplet Loss
	3.5. Stability Analysis Through Comparison Functions

	4. Methodology
	4.1. Behavioral Cloning
	4.2. Triplet Stability Loss
	4.2.1. Reformulating the Stability Conditions
	4.2.2. Surrogate Stability Conditions
	4.2.3. Loss Function

	4.3. On the Stability Loss Metric
	4.3.1. Homeomorphisms and State Space Geometry

	4.4. Boundary Conditions
	4.4.1. Positively Invariant Sets
	4.4.2. Evolving in Non-Euclidean State Spaces

	5. Experimental Section
	5.1. Euclidean Datasets
	5.1.1. LASA
	5.1.2. LAIR

	5.2. Non-Euclidean Dataset: LASA S2S^{2}
	5.2.1. Accuracy
	5.2.2. Stability
	5.2.3. Qualitative Analysis
	5.2.4. State-of-the-Art Comparison

	5.3. Real-World Experiments
	5.3.1. Greenhouse
	5.3.2. Hammer

	6. Conclusions
	6. Conclusions
	6. Conclusions
	Comments on Local Stability
	Pose Control
	Pose in Euclidean Space

	Pose in Euclidean Space

